TWI730642B - 間接加熱式陰極離子源及操作其的方法 - Google Patents

間接加熱式陰極離子源及操作其的方法 Download PDF

Info

Publication number
TWI730642B
TWI730642B TW109106135A TW109106135A TWI730642B TW I730642 B TWI730642 B TW I730642B TW 109106135 A TW109106135 A TW 109106135A TW 109106135 A TW109106135 A TW 109106135A TW I730642 B TWI730642 B TW I730642B
Authority
TW
Taiwan
Prior art keywords
voltage
extraction
ion source
extraction plate
heating type
Prior art date
Application number
TW109106135A
Other languages
English (en)
Other versions
TW202044328A (zh
Inventor
史費特那B 瑞都凡諾
本雄 具
亞歷山大 利坎斯奇
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202044328A publication Critical patent/TW202044328A/zh
Application granted granted Critical
Publication of TWI730642B publication Critical patent/TWI730642B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/061Construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本發明公開一種具有被電隔離的萃取板的間接加熱式陰 極離子源。特別是,公開一種間接加熱式陰極離子源及操作其的方法。通過將萃取板隔離,可對萃取板施加與電弧腔室的主體不同的電壓。通過對萃取板施加更正的電壓,可以更高的等離子體密度達成更高效的離子源操作。在此模式下,等離子體電位增大,且靜電鞘減少去往腔室壁的電子的損失。通過施加更負的電壓,可鄰近萃取孔形成富含離子的鞘。在此模式下,經由離子轟擊達成對萃取板的調節及清潔。此外,在某些實施例中,被施加到萃取板的電壓可以是脈動式的,以使離子萃取與清潔能夠同時發生。

Description

間接加熱式陰極離子源及操作其的方法
本發明的實施例涉及一種離子源,且更確切來說涉及一種具有被電隔離的萃取板的間接加熱式陰極離子源,可獨立於電弧腔室的主體對所述被電隔離的萃取板施加偏壓。
可使用各種類型的離子源來形成在半導體處理設備中所使用的離子。舉例來說,間接加熱式陰極(indirectly heated cathode,IHC)離子源通過向設置在陰極後面的長絲(filament)供應電流而進行操作。所述長絲發射熱離電子,所述熱離電子朝向陰極加速並對陰極進行加熱,繼而使得陰極將電子發射到離子源的電弧腔室中。陰極設置在電弧腔室的一端處。排斥極(repeller)可設置在電弧腔室的與陰極相對的一端上。可對陰極及排斥極施加偏壓以排斥電子,從而將電子朝向電弧腔室的中心引導回去。在其他實施例中,可在電弧腔室的相對端上設置冷陰極。在一些實施例中,使用磁場來進一步將電子約束在電弧腔室內。使用多個側來連接電弧腔室的兩端。
沿著這些側中的一側、靠近電弧腔室的中心設置有萃取孔(extraction aperture),可經過所述萃取孔萃取在電弧腔室中形成的離子。
IHC離子源可存在一些缺陷。舉例來說,某些離子物質可沉積在萃取孔附近,從而會形成晶須(whisker),這些晶須可導致所萃取的束不均勻。另外,由於從電弧腔室的中心移動到萃取孔,等離子體密度會減小,因此IHC離子源可能效率低下。
因此,如果存在能克服這些問題的IHC離子源將是有益的。此外,如果IHC離子源可容易地在不同的操作模式之間轉變將是有利的。
公開一種具有被電隔離的萃取板的間接加熱式陰極離子源。通過將萃取板隔離,可對所述萃取板施加與電弧腔室的主體不同的電壓。通過對萃取板施加更正的電壓,可以更高的等離子體密度達成更高效的離子源操作。在此模式下,等離子體電位增大,且靜電鞘減少去往腔室壁的電子的損失。通過對萃取板施加更負的電壓,可鄰近萃取孔形成富含離子的鞘。在此模式下,經由離子轟擊達成對萃取板的調節及清潔。此外,在某些實施例中,被施加到萃取板的電壓可以是脈動式的,以使離子萃取與清潔能夠同時發生。
根據一個實施例,公開一種間接加熱式陰極離子源。所 述間接加熱式陰極離子源包括:主體,包括對第一端與第二端進行連接的多個壁;以及萃取板,包括萃取孔,經過所述萃取孔萃取離子,所述萃取孔與所述主體電隔離,其中所述主體與所述萃取板形成封閉的體積;以及間接加熱式陰極,設置在所述電弧腔室的所述第一端上。在某些實施例中,所述離子源包括與所述萃取板連通的萃取電源。在一些實施例中,所述萃取電源是雙極電源。在某些實施例中,所述萃取電源向所述萃取板供應脈動式直流(direct current,DC)電壓。在某些實施例中,控制器與所述萃取電源連通。在某些實施例中,所述間接加熱式陰極電連接到所述主體。在一些實施例中,以與所述主體不同的電位對所述萃取板施加偏壓。
根據另一實施例,公開一種操作上文所述的間接加熱式陰極離子源的方法。所述方法包括:在所述電弧腔室中將原料氣體離子化;對所述萃取板施加DC電壓;對靠近所述萃取孔設置在所述電弧腔室外的電極施加負電壓,以經過萃取孔萃取離子;以及對所述萃取板施加與所述DC電壓不同的清潔電壓,以清潔所述電弧腔室。在某些實施例中,所述DC電壓等於被施加到所述電弧腔室的所述主體的電壓。在一些實施例中,所述DC電壓具有比被施加到所述電弧腔室的所述主體的電壓更正的值。在一些實施例中,所述清潔電壓是具有比被施加到所述電弧腔室的所述主體的電壓更負的值的DC電壓。在一些實施例中,所述清潔電壓包括在負電壓與第二電壓之間轉變的脈動式DC電壓,其中所述第二電壓 等於或大於被施加到所述電弧腔室的所述主體的電壓。在某些實施例中,在所述清潔電壓被施加到所述萃取板的同時,所述負電壓被施加到所述電極,以使得在對所述電弧腔室進行清潔的同時萃取離子。
根據另一實施例,公開一種間接加熱式陰極離子源。所述離子源包括電弧腔室,所述電弧腔室包括:主體,包括對第一端與第二端進行連接的多個壁;以及萃取板,包括萃取孔,經過所述萃取孔萃取離子,所述萃取孔與所述主體電隔離,其中所述主體與所述萃取板形成封閉的體積;所述離子源還包括:間接加熱式陰極,設置在所述電弧腔室的所述第一端上;萃取電源,與所述萃取板連通;以及控制器,與所述萃取電源連通,以使所述離子源能夠以多種模式操作。在某些實施例中,所述多種模式中的一種模式包括清潔模式,其中在所述清潔模式期間,來自所述電弧腔室內的離子轟擊所述萃取板。在某些實施例中,在所述清潔模式期間經過所述萃取孔萃取離子。在某些實施例中,所述多種模式中的一種模式包括增強操作模式。在一些實施例中,在所述增強操作模式期間所述萃取孔處的等離子體密度增大至少100%。
根據另一實施例,公開一種間接加熱式陰極離子源。所述離子源包括電弧腔室,所述電弧腔室包括:主體,包括對第一端與第二端進行連接的多個壁;以及萃取板,包括萃取孔,經過所述萃取孔萃取離子,所述萃取孔與所述主體電隔離,其中所述 主體與所述萃取板形成封閉的體積;所述離子源還包括:間接加熱式陰極,設置在所述電弧腔室的所述第一端上;以及萃取電源,與所述萃取板連通,其中所述萃取電源向所述萃取板供應脈動式DC電壓,其中所述脈動式DC電壓從所述負電壓轉變到第二電壓,其中所述第二電壓等於或大於被施加到所述主體的電壓。在某些實施例中,在所述電弧腔室外且靠近所述萃取孔設置有電極;其中向所述電極施加負電壓,以使得在對所述萃取板施加所述脈動式DC電壓的同時經過所述萃取孔萃取離子。
1:離子
10:間接加熱式陰極離子源
100:電弧腔室
101:壁/腔室壁
103:萃取板
104:第一端
105:第二端
106:氣體入口
108:中心
110:陰極
111:偏壓電源
115:陰極偏壓電源
120:排斥極
123:排斥極偏壓電源
140:萃取孔
141:絕緣體
145:萃取電源
160:長絲
165:長絲電源
180:控制器
190:磁場
200:電極
201:電極電源
210:質量分析儀
220:質量分辨器件
221:分辨孔
230:准直器
240:加速/減速級
250:工件
800、810、820、830、840:程序
T1、T2、T3、T4:持續時間
X、Y、Z:方向
為更好地理解本發明,請參考附圖,所述附圖併入本文中供參考,且在所述附圖中:圖1是根據一個實施例的間接加熱式陰極(IHC)離子源。
圖2示出時序圖,所述時序圖示出根據一個實施例的不同的操作模式。
圖3示出時序圖,所述時序圖示出清潔根據一個實施例的IHC離子源。
圖4示出時序圖,所述時序圖示出清潔根據第二實施例的IHC離子源。
圖5示出時序圖,所述時序圖示出根據一個實施例在萃取離子的同時清潔IHC離子源。
圖6示出時序圖,所述時序圖示出根據第二實施例在萃取離 子的同時清潔IHC離子源。
圖7示出時序圖,所述時序圖示出根據另一實施例在萃取離子的同時調節IHC離子源。
圖8示出在一個實施例中的清潔IHC離子源的方法。
圖9示出利用圖1所示IHC離子源的離子注入系統。
圖1示出根據一個實施例的IHC離子源10。IHC離子源10包括電弧腔室100。電弧腔室100具有:主體,包括兩個相對的端;以及壁101,連接到這兩端。電弧腔室100的兩端及壁101可由導電材料構造而成且可彼此電連通。在一些實施例中,靠近壁101中的一者或多者可設置有襯墊(liner)。在電弧腔室100中在電弧腔室100的第一端104處設置有陰極110。在陰極110後面設置有長絲160。長絲160與長絲電源165連通。長絲電源165被配置成使電流經過長絲160,以使得長絲160發射熱離電子。陰極偏壓電源115相對於陰極110對長絲160施加負偏壓,因此這些熱離電子從長絲160朝向陰極110加速且當這些熱離電子撞擊陰極110的後表面時對陰極110進行加熱。陰極偏壓電源115可對長絲160施加偏壓,以使得長絲160具有比陰極110的電壓負例如200V到1500V之間的電壓。然後陰極110在其前表面上向電弧腔室100中發射熱離電子。
因此,長絲電源165向長絲160供應電流。陰極偏壓電 源115對長絲160施加偏壓以使得長絲160具有比陰極110更負的值,從而從長絲160朝向陰極110吸引電子。在某些實施例中,可例如由偏壓電源111相對於電弧腔室100對陰極110施加偏壓。在其他實施例中,陰極110可電連接到電弧腔室100,以與電弧腔室100的壁101處於相同的電壓。在這些實施例中,可不採用偏壓電源111且陰極110可電連接到電弧腔室100的壁101。在某些實施例中,電弧腔室100連接到電接地。
在與第一端104相對的第二端105上可設置有排斥極120。可通過排斥極偏壓電源123相對於電弧腔室100對排斥極120施加偏壓。在其他實施例中,排斥極120可電連接到電弧腔室100,以與電弧腔室100的壁101處於相同的電壓。在這些實施例中,可不採用排斥極偏壓電源123且排斥極120可電連接到電弧腔室100的壁101。在另外的其他實施例中,則不採用排斥極120。
在又一實施例中,第二端105上可設置有冷陰極。
陰極110及排斥極120各自由例如金屬或石墨等導電材料製成。
構成電弧腔室100的主體的組件全部電耦合且機械耦合到彼此。換句話說,第一端104、第二端105及壁101全部皆處於相同的電位。
在某些實施例中,在電弧腔室100中產生磁場190。此磁場190旨在沿著一個方向約束電子。磁場190通常平行於從第一端104到第二端105的壁101。舉例來說,電子可被約束在與從陰 極110到排斥極120的方向(即Y方向)平行的柱中。因此,電子不會經受任何電磁力而在Y方向上移動。然而,電子在其他方向上的移動可能會經受電磁力。
此外,IHC離子源10還包括氣體入口106,可將待被離子化的原料氣體經過氣體入口106引入到電弧腔室100。
電弧腔室100的一側被稱為萃取板103。萃取板103包括萃取孔140。在圖1中,萃取孔140設置在與X-Y平面平行(與頁面垂直)的一側上。萃取板103由例如金屬或石墨等導電材料製成。
通過使用絕緣體141將萃取板103與電弧腔室100的主體電隔離。如上文所述,第一端104、第二端105及腔室壁101被維持在共同的電位。此共同的電位可以是接地。然而,在其他實施例中,可使用電源對這些組件施加偏壓。本文中所使用的術語「電弧腔室的主體」指代第一端104、第二端105及腔室壁101。
如上文所述,通過使用絕緣體141將萃取板103與電弧腔室100的主體電隔離。具體來說,絕緣體141可將萃取板103與腔室壁101、第一端104及第二端105中的兩者分隔開。這些絕緣體141可由例如氮化硼(BN)、氧化鋁(Al2O3)等介電材料及其他材料構造而成。
當組裝起來時,萃取板103與電弧腔室100的主體形成封閉的體積。原料氣體經由氣體入口106進入此封閉的體積,在此封閉的體積中被離子化,且離子經過萃取孔140離開此封閉的 體積。
使用萃取電源145獨立地對萃取板103施加偏壓。在某些實施例中,萃取電源145是相對於電弧腔室100的主體來說的。萃取電源145可以是能夠向萃取板103供應電壓的雙極直流(DC)電源,所述電壓相對於電弧腔室100的主體是正電壓或負電壓。
相對於電弧腔室100的主體被施加正偏壓的萃取板103以更高的等離子體密度實現高效的離子源操作。在此模式下,等離子體電位增大,且靜電鞘減少去往腔室壁的電子的損失。
反之,相對於電弧腔室100的主體被施加負偏壓的萃取板103能夠鄰近萃取孔140形成富含離子的鞘。然後,經由離子轟擊達成對萃取板的調節及清潔。可使用相對低的DC負偏壓電壓(例如但不限於-50V到-200V)移除萃取板103上的沉積物。在較高的負DC電壓(例如,高達-1000V且高於-1000V)下,可對萃取板103進行溫度控制。
在某些實施例中,萃取電源145能夠提供脈動式DC電壓。在此種特殊情形中,使用與DC離子束萃取同步的脈衝發射(pulsing)來進行均勻的發射脈衝會使離子萃取與對萃取板103的清潔同時進行。
在另一實施例中,可通過使用一個或多個切換器使多個不同的電源與萃取板103電連通。舉例來說,可使用第一切換器將萃取板103直接連接到電弧腔室100的主體。可使用額外切換器將一個或多個電源電連接到萃取板103。
在電弧腔室100外靠近萃取孔140可設置有一個或多個電極200。當對電極200施加負電壓時,來自IHC離子源10內的正離子經過萃取孔140並朝向位於電極200的下游的工件加速。每一電極可以是其中設置有孔的單個導電組件。電極200可以是金屬,例如鎢、鉬或鈦。可使用電極電源201相對於電弧腔室100的主體對電極200中的一者或多者施加偏壓,以吸引離子穿過萃取孔140。
控制器180可與電源中的一者或多者連通,以使得可更改由這些電源供應的電壓或電流。控制器180可包括處理單元,例如微控制器、個人計算機、專用控制器或另一適合的處理單元。控制器180還可包括非暫時性存儲元件,例如半導體存儲器、磁性存儲器或另一適合的存儲器。此非暫時性存儲元件可含有使控制器180能夠執行本文中所述的功能的指令及其他數據。舉例來說,控制器180可與萃取電源145連通以使IHC離子源10能夠進入下文所述的模式。控制器180也可與電極電源201連通以如本文中所述地對電極施加偏壓。
圖9示出使用圖1所示IHC離子源10的離子注入系統。如圖1中所示,在IHC離子源10外且靠近IHC離子源10的萃取孔設置有一個或多個電極200。
質量分析儀210位於電極200的下游。質量分析儀210使用磁場來導引所萃取的離子1的路徑。磁場根據離子的質量及電荷影響離子的遷移路徑(flight path)。在質量分析儀210的輸出 或遠端處設置有具有分辨孔221的質量分辨器件220。通過恰當地選擇磁場,僅具有選定質量及電荷的那些離子1才會被引導穿過分辨孔221。其他離子將撞擊質量分析儀210的質量分辨器件220或壁且在系統中將不行進到更遠處。
准直器230可設置在質量分辨器件220的下游。准直器230接受穿過分辨孔221的離子1並產生由多個平行或近乎平行的子束形成的帶狀離子束。質量分析儀210的輸出或遠端與准直器230的輸入或近端可間隔開固定的距離。質量分辨器件220設置在這兩個組件之間的空間中。
加速/減速級240可位於准直器230的下游。加速/減速級240可被稱為能量純度模塊。能量純度模塊是被配置成獨立地控制離子束的偏轉、減速及聚焦的束線透鏡組件。舉例來說,能量純度模塊可以是垂直靜電能量過濾器(vertical electrostatic energy filter,VEEF)或靜電過濾器(electrostatic filter,EF)。工件250位於加速/減速級240的下游。
返回圖1,包括被電隔離的萃取板103及萃取電源145會使IHC離子源10能夠以多種不同的模式操作。
在第一模式(被稱為傳統操作模式)下,萃取板103被維持在與電弧腔室100的主體相同的電位。另外,在此模式下對電極200施加負偏壓以從IHC離子源10萃取離子。
已發現,存在可與傳統操作模式相關聯的一些缺點。舉例來說,測試已表明,由於沿Z方向從電弧腔室100的中心108 朝向萃取孔140移動等離子體密度展現出陡坡,因此IHC離子源10效率低下。舉例來說,萃取孔140處的離子密度可能是電弧腔室100的中心108處的離子密度的10%。
另外,排斥極120及腔室壁101上的沉積可導致陰極110與腔室壁101之間短路。更具體來說,在傳統操作模式下,等離子體電位是約4eV,而電子溫度是約8eV。此使電子容易地沿磁場行進且在第一端104及第二端105損失掉。
此外,萃取孔140上的晶鬚生長會降低離子束均勻性。當原料氣體是碳或含碳物質時,可能會發生晶鬚生長。這些情況限制IHC離子源10的壽命且增大自轉突變(glitching)的可能性。
包括被電隔離的萃取板103及萃取電源145允許使用解決上述缺點的操作模式。
第二操作模式被稱為增強操作模式。在所述增強操作模式下,相對於電弧腔室100的主體以正電壓對萃取板103施加偏壓。此模式在給定源功率下使得束操作更高效、等離子體密度增大及摻雜物分餾(dopant fractionation)增強。
在增強操作模式下,可相對於電弧腔室100的主體以約50V到100V對萃取板103施加偏壓。當然,也可使用其他電壓。此偏壓用於增大等離子體電位。此舉用於產生富含電子的鞘,尤其是在萃取孔140附近。靜電鞘還將減少第一端104及第二端105處的電子損失。相反,將朝向萃取板103吸引電子。然而,由於磁場190,電子被稍微限制在此方向上。
增強朝向萃取板103的電子擴散用於增大萃取孔140附近的等離子體密度。具體來說,電子擴散能增強在萃取板103附近對原料氣體的離子化。在一項測試中,相對於電弧腔室100的主體對萃取板103施加60V的電壓。經測量,在萃取孔140附近,等離子體密度增大超過100%。經測量,在電弧腔室100的中心108處等離子體密度增大30%。
增強操作模式使得能以更高的等離子體密度實現更高程度的分餾且以較低的源功率產生單體離子。另外,在增強操作模式下,對電極200施加負偏壓以從IHC離子源10萃取離子。
選擇在增強操作模式下使用的恰當正電壓可包括對諸多因素加以考量。具體來說,當正電壓增大時,靠近萃取孔140的等離子體密度繼續增大。然而,當正電壓增大時,更多電子可與萃取板103碰撞,這會使萃取板103的溫度升高。在某些實施例中,萃取板013的最大溫度可受萃取板103的物理性質限制。舉例來說,可將溫度維持在低於萃取板103的熔點的溫度。此外,萃取板103的溫度提高可導致等離子體自身的溫度提高。這可影響對所形成的離子與離子物質的分餾。因此,用於增強操作模式的恰當正電壓可隨原料氣體、萃取板材料、所期望的離子物質及其他考量而變化。
第三模式被稱為清潔模式。在清潔模式下,相對於電弧腔室100的主體對萃取板103施加負偏壓。在某些實施例中,可相對於電弧腔室100的主體在100V與500V之間對萃取板103 施加負偏壓,但可使用其他電壓。
在此清潔模式下,在萃取孔140附近形成富含離子的鞘。經由離子轟擊達成對萃取板103的清潔。具體來說,由於相對於電弧腔室100的主體及等離子體電位對萃取板103施加負偏壓,因此正離子朝向萃取板103加速。正離子的轟擊用於將材料從萃取板103濺射掉。此外,正離子的轟擊也用於提高萃取板103的溫度。因此,在必要時,被施加到萃取板103的負電壓用作額外控制手段(control knob)來抑制晶鬚生長及/或沉積。
選擇在清潔模式下使用的恰當負電壓可包括對諸多因素加以考量。具體來說,當負電壓具有更負的值時,撞擊萃取板103的正離子的數目及速度增大。足夠負的電壓可致使正離子對萃取板本身而非萃取板103上的沉積進行濺射。此外,對萃取板103的轟擊還會使萃取板103的溫度升高。因此,負電壓的量值及其持續時間是確保萃取板103在清潔模式期間不受損壞而要考量的準則。
在某些實施例中,在清潔模式下相對於電弧腔室100的主體對電極200施加正偏壓,以抑制從IHC離子源10萃取離子。然而,在其他實施例中,在清潔模式下對電極施加負偏壓,以使得可從IHC離子源萃取正離子。
可以各種方式調用這些各種模式。舉例來說,圖2示出時序圖,在所述時序圖中,在垂直軸上示出對萃取板103施加的電壓(相對於電弧腔室100的主體)。水平軸表示時間。在此示意 圖中,IHC離子源10在傳統操作模式下開始操作達持續時間T1。此模式可用於萃取某些離子物質。在此持續時間之後,可期望清潔萃取板103。可通過對萃取板103施加負電壓達持續時間T2來達成此清潔。如上文所述,負電壓使來自電弧腔室100內的正離子朝向萃取板103加速,從而將先前沉積在萃取板103上的材料濺射掉。
在清潔過程完成之後,IHC離子源10可返回到操作模式中的一種操作模式。舉例來說,IHC離子源10可進入增強操作模式達持續時間T3。此通過對萃取板103施加正電壓達成。在不同的實施例中,IHC離子源10可返回到傳統操作模式。在持續時間T3之後,可再次對IHC離子源10進行清潔。持續時間T3可等於或不同於持續時間T1。然後,在持續時間T4期間再次對萃取板103施加負電壓。
此種操作模式後續接著清潔模式的順序可無限期地繼續下去。在一個實施例中,控制器180可監測從最後一次清潔開始所經過的時間量並調用清潔模式。在其他實施例中,可在IHC離子源10所使用的配方發生改變時調用清潔模式。當然,也可使用其他準則來判斷何時調用清潔模式。
另外,如上文所述,在某些實施例中,被施加到萃取板103的電壓可以是脈動式的。可在各個時間使用脈動式DC電源調用本文中所述的模式。圖3到圖7中示出一些實例。在這些圖中的每一圖中,垂直軸表示相對於電弧腔室100的主體而被施加到 萃取板103的電壓。水平軸表示時間。
在某些實施例中,如圖3中所示,可在各過程之間調用清潔模式。在一個實施例中,IHC離子源10可在傳統操作模式下操作達一定時間週期。在此時間週期之後,可確定IHC離子源10的內部得到清潔。因此,通過相對於電弧腔室的主體對萃取板103施加脈動式負電壓來調用清潔模式。在清潔完成之後,IHC離子源10返回到傳統操作模式或增強操作模式。在清潔模式之後執行的過程可使用與在清潔模式之前所使用的相同的配方,或可以是不同的配方。
在一個實施例中,控制器180可監測從最後一次清潔開始已經過的時間量並調用清潔模式。在其他實施例中,可在IHC離子源10所使用的配方發生改變時調用清潔模式。在某些實施例中,清潔模式可以是被施加到萃取板103的電壓保持負值的延長的時間週期,如圖2中所示。
在某些實施例中,如圖3中所示,清潔模式可以是延長的時間週期,在此延長的時間週期期間,被施加到萃取板103的電壓是脈動式的以在負電壓與第二電壓之間轉變,所述第二電壓可等於被施加到電弧腔室100的主體的電壓。在其他實施例中,如圖4中所示,清潔模式可以是延長的時間週期,在此延長的時間週期期間,被施加到萃取板103的電壓是脈動式的以在負電壓與第二電壓之間轉變,所述第二電壓大於被施加到電弧腔室100的主體的電壓。此第二電壓可高達100V或大於100V。使用這些 雙極脈衝以在正脈衝期間使電子加速以對等離子體孔進行加熱,且在負脈衝期間使離子加速以將沉積物從等離子體孔濺射掉。可根據特定的等離子體條件來調諧及調整脈衝的振幅、頻率及工作循環。在某些實施例中,在清潔模式期間不執行離子注入。換句話說,被施加到設置在萃取孔140外的電極200的電壓相對於IHC離子源10可以是中性的或正的,從而抑制離子萃取。
在一個實施例中,脈動式DC電壓可在負電壓(例如,-100V到-1000V)與第二電壓之間轉變。所述第二電壓可與被施加到電弧腔室100的主體的電壓相同或者可大於所述電壓。此脈動式電壓的頻率可大於0.1kHz且可處於MHz範圍中。萃取板103所經受的剝蝕量隨脈動式DC電壓的振幅、頻率及工作循環而變化。
在其他實施例中,在清潔模式期間執行離子注入。換句話說,被施加到設置在萃取孔140外的電極200的電壓相對於IHC離子源10可以是負電壓。
使用脈動式DC電壓使離子萃取能夠在清潔模式期間繼續進行。在一個實施例中,脈動式DC電壓在負電壓(例如,-100V到-1000V)與第二電壓之間轉變。所述第二電壓可與被施加到電弧腔室100的主體的電壓相同或者可大於所述電壓。此脈動式電壓的頻率可大於0.1kHz且可處於MHz範圍中。由於電子的質量遠小於正離子的質量,因此電子更快地對被施加到萃取板103的電壓的改變作出響應。因此,此電壓的迅速轉變可最低限度地影響IHC離子源10中的正離子。因此,即使在使用清潔模式時, 仍可從IHC離子源10萃取離子束。圖5類似於圖4,但施加到電極200的電壓保持為負電壓以即使在清潔模式期間仍萃取離子。此外,當在清潔模式期間萃取離子時,脈動式DC電壓的頻率可更大。舉例來說,在清潔模式下使用極高頻脈衝(例如,大於1MHz)確保離子萃取不會中斷且確保短脈衝對離子束的萃取及源操作無影響。
在另一實施例中,如圖6中所示,被施加到萃取板103的電壓可以是正電壓,以採用增強操作模式。然後,施加負DC脈衝以在增強操作期間清潔萃取板103。舉例來說,對萃取板103施加的約+60V的電壓可與短的微秒脈衝一起使用以在萃取孔140處形成富含電子的鞘。此方法能增強對萃取板103的加熱,這可防止塗布及晶鬚生長。此熱量傳遞到周圍氣體,繼而會影響離子-中子及電子-中子的碰撞。在不增大系統的熱負荷的情況下發生額外加熱。施加正電壓並輔以短的負脈衝會靠近萃取孔140在電弧腔室內增強電子交叉擴散。脈動式電壓的頻率及工作循環應使得dc萃取不受擾亂。當使用納秒脈衝(<10ns的上升時間)時,可控制沉積。納秒脈衝可調變離子化對離解的比率及其他等離子體參數。
在又一實施例中,被施加到萃取板103的電壓可以是負電壓,施加負電壓能連續地清潔萃取板。如圖7中所示,可使用短的正脈衝來調節IHC離子源10。
如上文所述,可在從電弧腔室100萃取離子的同時提供 在清潔模式期間使用的脈動式DC電壓。在其他實施例中,更改被施加到電極200的電壓,以使得在清潔模式期間不從電弧腔室100萃取離子。
圖8中闡述IHC離子源10的操作。首先,在電弧腔室100中將原料氣體離子化,如程序800中所示。對萃取板103施加DC電壓,如程序810中所示。在某些實施例中,此程序在將原料氣體離子化之前執行。此DC電壓相對於主體可以是0V(即,傳統操作模式),或可以是正電壓(即,增強操作模式)。然後,對電極200施加負電壓以經過萃取孔140萃取離子,如程序820中所示。此時,IHC離子源10形成經過萃取孔140萃取且用於離子注入的離子。
在一定時間間隔之後,可期望進行清潔程序。此可通過對萃取板103施加清潔電壓來達成,如程序830中所示。如上文所述,在某些實施例中,清潔電壓是負DC電壓。在其他實施例中,清潔電壓是在負電壓(可介於-100V與-1000V之間)與第二電壓之間轉變的脈動式DC電壓,如圖3到圖6中所示。此第二電壓可以是與施加到電弧腔室的主體的電壓相同的電壓,如圖3中所示。另一選擇為,此第二電壓可以是正電壓,如圖4到圖6中所示。在一些實施例中,此第二電壓是在程序810期間施加到萃取板103的電壓,如圖3及圖6中所示。
如果不更改施加到電極的負電壓,則在程序830期間將繼續萃取離子。然而,如果在清潔模式期間禁止離子注入,則可 在程序830之前更改施加到電極200的電壓。
當清潔模式完成時,再次對萃取板103施加DC電壓,如程序840中所示。如果先前已禁止離子注入,則可在程序840之後恢復對電極200施加負電壓。
本申請中的上述實施例可具有諸多優點。首先,已知隨著與電弧腔室100的中心108的距離增大,電弧腔室內的等離子體密度減小。通過將萃取板電隔離,可對萃取板103施加正電壓。此正電壓使得在萃取板103附近的區中碰撞會增強。這使得萃取板103附近的等離子體密度增大。如上文所述,在一項測試中,當相對於電弧腔室100的主體以60V對萃取板103施加偏壓時,測量到等離子體密度增大超過100%。
另外,對萃取板施加負電壓使得離子與萃取板103碰撞。此提高萃取板的溫度且也濺射掉設置在萃取板上的任何沉積。
此外,通過對被電隔離的萃取板施加脈動式電壓,可在清潔電弧腔室的內部的同時也從電弧腔室萃取離子。
本發明的範圍不受本文中所述的具體實施例限制。實際上,通過閱讀前述說明及附圖,除本文中所述的實施例及潤飾之外,所屬領域的技術人員還將明瞭本發明的其他各種實施例及對本發明的各種潤飾。因此,這些其他實施例及潤飾皆旨在處於本發明的範圍內。此外,儘管本文中已出於特定目的在特定的環境中在特定實施方案的上下文中闡述了本發明,但所屬領域的技術人員應認識到,其有效性並不僅限於此且本發明可出於任何數目 個目的而有益地實施在任何數目個環境中。因此,所提出的申請專利範圍應根據本文所述的本發明的全部廣度及精神來加以解釋。
10:間接加熱式陰極離子源
100:電弧腔室
101:壁/腔室壁
103:萃取板
104:第一端
105:第二端
106:氣體入口
108:中心
110:陰極
111:偏壓電源
115:陰極偏壓電源
120:排斥極
123:排斥極偏壓電源
140:萃取孔
141:絕緣體
145:萃取電源
160:長絲
165:長絲電源
180:控制器
190:磁場
200:電極
201:電極電源
X、Y、Z:方向

Claims (15)

  1. 一種間接加熱式陰極離子源,包括:電弧腔室,包括:主體,包括連接所述電弧腔室的第一端與第二端的多個壁,其中所述主體具有導電性;以及萃取板,包括萃取孔,經過所述萃取孔萃取離子,所述萃取板具有導電性且與所述主體電隔離,其中所述主體與所述萃取板形成封閉的體積;間接加熱式陰極,設置在所述電弧腔室的所述第一端上;以及控制器,相對於所述主體更改供應到所述萃取板的電壓,以使所述間接加熱式陰極離子源能夠以多種模式操作。
  2. 如請求項1所述的間接加熱式陰極離子源,還包括與所述萃取板連通的萃取電源。
  3. 如請求項2所述的間接加熱式陰極離子源,其中所述萃取電源是雙極電源。
  4. 如請求項2所述的間接加熱式陰極離子源,其中所述萃取電源向所述萃取板供應脈動式直流電壓。
  5. 如請求項2所述的間接加熱式陰極離子源,其中所述萃取電源向所述萃取板供應脈動式直流電壓,其中所述脈動式直流電壓從負電壓轉變到第二電壓,其中所述第二電壓等於或大於被施加到所述主體的電壓。
  6. 如請求項5所述的間接加熱式陰極離子源,還包括:電極,設置在所述電弧腔室外且靠近所述萃取孔;其中向所述電極施加負電壓,以使得在對所述萃取板施加所述脈動式直流電壓的同時經過所述萃取孔萃取離子。
  7. 一種操作間接加熱式陰極離子源的方法,其中所述間接加熱式陰極離子源是請求項1所述的間接加熱式陰極離子源,所述操作間接加熱式陰極離子源的方法包括:在所述電弧腔室中將原料氣體離子化;對所述萃取板施加直流電壓;對靠近所述萃取孔設置在所述電弧腔室外的電極施加負電壓,以經過所述萃取孔萃取離子;以及對所述萃取板施加與所述直流電壓不同的清潔電壓,以清潔所述電弧腔室。
  8. 如請求項7所述的操作間接加熱式陰極離子源的方法,其中所述直流電壓等於被施加到所述電弧腔室的所述主體的電壓或具有比被施加到所述電弧腔室的所述主體的所述電壓更正的值。
  9. 如請求項7所述的操作間接加熱式陰極離子源的方法,其中所述清潔電壓是具有比被施加到所述電弧腔室的所述主體的電壓更負的值的直流電壓。
  10. 如請求項7所述的操作間接加熱式陰極離子源的方法,其中所述清潔電壓包括在負電壓與第二電壓之間轉變的脈動 式直流電壓,其中所述第二電壓等於或大於被施加到所述電弧腔室的所述主體的電壓。
  11. 如請求項7所述的操作間接加熱式陰極離子源的方法,其中在所述清潔電壓被施加到所述萃取板的同時,所述負電壓被施加到所述電極以使得在對所述電弧腔室進行清潔的同時萃取離子。
  12. 一種間接加熱式陰極離子源,包括:電弧腔室,包括:主體,包括連接所述電弧腔室的第一端與第二端的多個壁,其中所述主體具有導電性;以及萃取板,包括萃取孔,經過所述萃取孔萃取離子,所述萃取板具有導電性且與所述主體電隔離,其中所述主體與所述萃取板形成封閉的體積;間接加熱式陰極,設置在所述電弧腔室的所述第一端上;萃取電源,與所述萃取板連通;以及控制器,與所述萃取電源連通,以使所述間接加熱式陰極離子源能夠以多種模式操作。
  13. 如請求項12所述的間接加熱式陰極離子源,其中所述多種模式中的一種模式包括清潔模式,其中在所述清潔模式期間,來自所述電弧腔室內的離子轟擊所述萃取板。
  14. 如請求項13所述的間接加熱式陰極離子源,其中在所述清潔模式期間經過所述萃取孔萃取離子。
  15. 如請求項12所述的間接加熱式陰極離子源,其中所述多種模式中的一種模式包括增強操作模式,其中在所述增強操作模式期間所述萃取孔處的等離子體密度增大至少100%。
TW109106135A 2019-03-13 2020-02-26 間接加熱式陰極離子源及操作其的方法 TWI730642B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/351,956 US10923306B2 (en) 2019-03-13 2019-03-13 Ion source with biased extraction plate
US16/351,956 2019-03-13

Publications (2)

Publication Number Publication Date
TW202044328A TW202044328A (zh) 2020-12-01
TWI730642B true TWI730642B (zh) 2021-06-11

Family

ID=72424200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106135A TWI730642B (zh) 2019-03-13 2020-02-26 間接加熱式陰極離子源及操作其的方法

Country Status (6)

Country Link
US (1) US10923306B2 (zh)
JP (1) JP7440528B2 (zh)
KR (1) KR102646737B1 (zh)
CN (1) CN113508449A (zh)
TW (1) TWI730642B (zh)
WO (1) WO2020185348A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886755B1 (ko) * 2017-11-17 2018-08-09 한국원자력연구원 다중 펄스 플라즈마를 이용한 음이온 공급의 연속화 시스템 및 방법
US11600473B2 (en) 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
US20230082224A1 (en) * 2021-09-13 2023-03-16 Applied Materials, Inc. Device To Control Uniformity Of Extraction Ion Beam
US11810746B2 (en) 2021-09-13 2023-11-07 Applied Materials, Inc. Variable thickness ion source extraction plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073387A (ja) * 2008-09-17 2010-04-02 Seiko Epson Corp イオン発生装置、半導体プロセス用イオン注入装置および半導体装置の製造方法
TW201401323A (zh) * 2012-03-22 2014-01-01 Sen Corp 離子源裝置及離子束產生方法
US20140041684A1 (en) * 2012-08-07 2014-02-13 Varian Semiconductor Equipment Associates, Inc. Techniques For Improving The Performance And Extending The Lifetime Of An Ion Source
US20160086759A1 (en) * 2013-03-15 2016-03-24 Nissin Ion Equipment Co., Ltd. Plasma Generator With at Least One Non-Metallic Component
CN105655217A (zh) * 2015-12-14 2016-06-08 中国电子科技集团公司第四十八研究所 一种射频偏压供电的磁控溅射金属铝离子源
US20180254166A1 (en) * 2017-03-06 2018-09-06 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion generator

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356026B1 (en) * 1999-11-24 2002-03-12 Texas Instruments Incorporated Ion implant source with multiple indirectly-heated electron sources
US7838842B2 (en) 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
US7838850B2 (en) * 1999-12-13 2010-11-23 Semequip, Inc. External cathode ion source
JP2001229841A (ja) * 2000-02-21 2001-08-24 Hitachi Ltd 引出し電極のクリーニング方法及びイオンビーム処理装置
US7459704B2 (en) 2004-11-12 2008-12-02 Varian Semiconductor Equipment Associates, Inc. Ion source configuration for production of ionized clusters, ionized molecules and ionized mono-atoms
US20080081882A1 (en) 2006-10-02 2008-04-03 Dong Tian Polyester binder for flooring products
US7700925B2 (en) 2007-12-28 2010-04-20 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US9062377B2 (en) * 2012-10-05 2015-06-23 Varian Semiconductor Equipment Associates, Inc. Reducing glitching in an ion implanter
JP2014110136A (ja) * 2012-11-30 2014-06-12 Nissin Ion Equipment Co Ltd イオン源、イオンビーム照射装置、及び、イオン源のクリーニング方法
CN104871286B (zh) * 2012-12-21 2018-06-26 普莱克斯技术有限公司 用于碳离子注入的掺杂物组合物的储存和负压输送
US9232628B2 (en) 2013-02-20 2016-01-05 Varian Semiconductor Equipment Associates, Inc. Method and system for plasma-assisted ion beam processing
US9288889B2 (en) 2013-03-13 2016-03-15 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for energetic neutral beam processing
US9711316B2 (en) * 2013-10-10 2017-07-18 Varian Semiconductor Equipment Associates, Inc. Method of cleaning an extraction electrode assembly using pulsed biasing
JP2015215972A (ja) * 2014-05-08 2015-12-03 日新電機株式会社 イオンビーム処理装置
JP2017054707A (ja) * 2015-09-10 2017-03-16 住友重機械工業株式会社 イオン源、イオン源フロントスリット電圧設定装置、及びイオン源フロントスリット電圧設定方法
US9899193B1 (en) * 2016-11-02 2018-02-20 Varian Semiconductor Equipment Associates, Inc. RF ion source with dynamic volume control
US11404254B2 (en) * 2018-09-19 2022-08-02 Varian Semiconductor Equipment Associates, Inc. Insertable target holder for solid dopant materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073387A (ja) * 2008-09-17 2010-04-02 Seiko Epson Corp イオン発生装置、半導体プロセス用イオン注入装置および半導体装置の製造方法
TW201401323A (zh) * 2012-03-22 2014-01-01 Sen Corp 離子源裝置及離子束產生方法
US20140041684A1 (en) * 2012-08-07 2014-02-13 Varian Semiconductor Equipment Associates, Inc. Techniques For Improving The Performance And Extending The Lifetime Of An Ion Source
US20160086759A1 (en) * 2013-03-15 2016-03-24 Nissin Ion Equipment Co., Ltd. Plasma Generator With at Least One Non-Metallic Component
CN105655217A (zh) * 2015-12-14 2016-06-08 中国电子科技集团公司第四十八研究所 一种射频偏压供电的磁控溅射金属铝离子源
US20180254166A1 (en) * 2017-03-06 2018-09-06 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion generator

Also Published As

Publication number Publication date
JP7440528B2 (ja) 2024-02-28
TW202044328A (zh) 2020-12-01
KR20210128009A (ko) 2021-10-25
JP2022525105A (ja) 2022-05-11
US20200294750A1 (en) 2020-09-17
WO2020185348A1 (en) 2020-09-17
CN113508449A (zh) 2021-10-15
US10923306B2 (en) 2021-02-16
KR102646737B1 (ko) 2024-03-13

Similar Documents

Publication Publication Date Title
TWI730642B (zh) 間接加熱式陰極離子源及操作其的方法
JP4428467B1 (ja) イオン源
TWI728120B (zh) 用於增益型離子化的離子源
US20090200158A1 (en) High power impulse magnetron sputtering vapour deposition
JP5393696B2 (ja) イオンビーム注入装置用のプラズマ電子フラッドシステム
US20070205096A1 (en) Magnetron based wafer processing
TWI671778B (zh) 離子束裝置、離子植入裝置、離子束放出方法
US20170178866A1 (en) Apparatus and techniques for time modulated extraction of an ion beam
US6184532B1 (en) Ion source
US20130287963A1 (en) Plasma Potential Modulated ION Implantation Apparatus
JP2013112830A (ja) イオンボンバードメント装置及びこの装置を用いた基材表面のクリーニング方法
TW201442077A (zh) 用於處理基底的系統與方法
TW202123283A (zh) 用於改善束電流之系統以及方法的離子源
TW202111753A (zh) 用於改善束電流之系統以及方法的離子源
US11600473B2 (en) Ion source with biased extraction plate
RU2601903C2 (ru) Способ напыления тонкопленочных покрытий на поверхность полупроводниковых гетероэпитаксиальных структур методом магнетронного распыления
JP3073711B2 (ja) イオンプレーティング装置
US20210134571A1 (en) Improvements in and relating to coating processes
TWI839888B (zh) 離子源及離子植入系統
TWI818252B (zh) 間接加熱式陰極離子源
TW202318461A (zh) 離子源及離子植入系統