TWI729787B - Method for the discrimination of antrodia cinnamomea strains - Google Patents

Method for the discrimination of antrodia cinnamomea strains Download PDF

Info

Publication number
TWI729787B
TWI729787B TW109113825A TW109113825A TWI729787B TW I729787 B TWI729787 B TW I729787B TW 109113825 A TW109113825 A TW 109113825A TW 109113825 A TW109113825 A TW 109113825A TW I729787 B TWI729787 B TW I729787B
Authority
TW
Taiwan
Prior art keywords
bcrc
antrodia cinnamomea
rpb2
gene
strains
Prior art date
Application number
TW109113825A
Other languages
Chinese (zh)
Other versions
TW202140782A (en
Inventor
謝松源
詹馥菱
林宛柔
李涵荺
吳淑芬
陳慶源
Original Assignee
財團法人食品工業發展研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人食品工業發展研究所 filed Critical 財團法人食品工業發展研究所
Priority to TW109113825A priority Critical patent/TWI729787B/en
Priority to CN202010565384.7A priority patent/CN113549703A/en
Application granted granted Critical
Publication of TWI729787B publication Critical patent/TWI729787B/en
Publication of TW202140782A publication Critical patent/TW202140782A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本發明揭示一種用於鑑別牛樟芝菌株的方法,該方法包括:提供一含有一牛樟芝菌株的RPB2基因的DNA片段;以及將該DNA片段拿來與一供比對之牛樟芝菌株的RPB2基因進行SNP基因分型,俾以偵測該等牛樟芝菌株的RPB2基因之SNP位點上的鹼基差異,其中,若存在有至少一個SNP位點上的鹼基差異,表示該等牛樟芝菌株是彼此不同的分離株。The present invention discloses a method for identifying Antrodia cinnamomea strains. The method comprises: providing a DNA fragment containing the RPB2 gene of an Antrodia cinnamomea strain; and using the DNA fragment to perform SNP gene with the RPB2 gene of an Antrodia cinnamomea strain for comparison Typing to detect the base differences at the SNP site of the RPB2 gene of the Antrodia cinnamomea strains. If there is at least one base difference at the SNP site, it means that the Antrodia cinnamomea strains are separate from each other. Strain.

Description

用於鑑別牛樟芝菌株的方法Method for identifying Antrodia cinnamomea strains

本發明是有關於一種用於鑑別牛樟芝菌株( Antrodia cinnamomeastrains)的方法,該方法包括:提供一含有一牛樟芝菌株的RPB2基因的DNA片段;以及將該DNA片段拿來與一供比對之牛樟芝菌株的RPB2基因進行單一核苷酸多型性(SNP)基因分型[single nucleotide polymorphism (SNP) genotyping],俾以偵測該等牛樟芝菌株的RPB2基因之SNP位點上的鹼基差異,其中,若存在有至少一個SNP位點上的鹼基差異,表示該等牛樟芝菌株是彼此不同的分離株。 The present invention relates to a method for identifying Antrodia cinnamomea strains. The method comprises: providing a DNA fragment containing the RPB2 gene of an Antrodia cinnamomea strain; and using the DNA fragment for comparison with an Antrodia cinnamomea strain Single nucleotide polymorphism (SNP) genotyping [single nucleotide polymorphism (SNP) genotyping] for the RPB2 gene of the strains to detect the base differences at the SNP site of the RPB2 gene of the Antrodia If there is a base difference in at least one SNP site, it means that the Antrodia cinnamomea strains are different isolates from each other.

牛樟芝( Antrodia cinnamomea)(中文別名為樟芝、樟菇、樟內菇、牛樟菇、樟窟內菰、紅樟以及紅樟芝;同種異名為 Taiwanofungus camphoratusAntrodia camphorata以及 Ganoderma comphoratum)是多孔菌科(Polyporaceae)薄孔菌屬( Antrodia)的真菌,子實體(fruit body)形態多變(包括板狀以及馬蹄狀),初生時呈鮮紅色,漸長變為淡紅褐色、淡褐色或淡黃褐色,主要生長在台灣高海拔的樟樹( Cinnamomum kanehirai)上。已有研究指出,牛樟芝的子實體與菌絲體(mycelium)富含有多醣(polysaccharide)、三萜類(triterpenoids)以及生物鹼(alkaloids)等活性成分,並且已被揭示具有抗氧化(antioxidant)、抗腫瘤(antitumor)、抗病毒(antiviral)、抗細菌(antibacterial)以及抗發炎(anti-inflammation)的生物活性,因而在生物醫藥產業以及食品產業上備受矚目。 Antrodia cinnamomea (Antrodia cinnamomea) (Chinese aliases are Antrodia camphora, Antrodia camphorata, Antrodia camphora, Antrodia camphora, Antrodia camphora, Cinnamomum camphora and Antrodia camphora; the synonym of Taiwanofungus camphoratus, Antrodia camphorata, and Ganoderma comphoratum ) is a porous fungus A fungus of the Antrodia family (Polyporaceae). The fruit body (fruit body) has variable morphology (including plate-like and horseshoe-like). It is bright red when it is born, and gradually becomes reddish brown, light brown or light yellow Brown, mainly grown on the high-altitude camphor tree ( Cinnamomum kanehirai ) in Taiwan. Studies have pointed out that the fruiting bodies and mycelium of Antrodia cinnamomea are rich in polysaccharides, triterpenoids and alkaloids and other active ingredients, and they have been revealed to have antioxidants. , Antitumor, antiviral, antibacterial, and anti-inflammation biological activity, which has attracted much attention in the biomedical industry and food industry.

由於不同的分離株可能會在生物活性的種類與強度上存在相當大的差異,因此本領域的相關研究人員皆致力於分離與篩選出具有所欲活性的分離株。而為了鑑定所得到的牛樟芝菌株是否為一新穎的分離株,或者驗證所購得的牛樟芝產品是否確實是業者所宣稱的分離株,如何精確地鑑別牛樟芝菌株已成為一個重要的研發課題。傳統上,對於牛樟芝的鑑定大多是以形態觀察(morphological observation)為主,繼而以生理或生化特徵鑑定等方法來作為輔助。然而,牛樟芝會因為培養環境或條件的不同而影響其外觀特徵,以致於利用傳統的方法來鑑別牛樟芝時所得到的分析結果的可信度與精確性並不高。Since different isolates may have considerable differences in the type and intensity of biological activity, relevant researchers in the field are dedicated to isolating and screening isolates with desired activities. In order to identify whether the Antrodia cinnamomea strain obtained is a novel isolate, or to verify whether the purchased Antrodia cinnamomea product is indeed the isolate claimed by the industry, how to accurately identify the Antrodia cinnamomea strain has become an important research and development topic. Traditionally, the identification of Antrodia cinnamomea is mostly based on morphological observation, followed by identification of physiological or biochemical characteristics as a supplement. However, Antrodia cinnamomea may affect its appearance characteristics due to the difference in culture environment or conditions, so that the reliability and accuracy of the analysis results obtained when using traditional methods to identify Antrodia cinnamomea are not high.

一般而言,在真菌的基因組DNA序列中會包含有高度守恆(highly conserved)與高度變異(highly variable)的DNA序列,它們可能可供用於屬-特異性(genus-specific)、物種-特異性(species-specific)或分離株-特異性(isolate-specific)的鑑定或鑑別。已有研究顯示,核糖體RNA基因(ribosomal RNA genes)的內部轉錄間隔(internal transcribed spacers, ITS)、基因間隔區(intergenic spacer, IGS),以及細胞核核糖體大次單元(nuclear ribosomal large subunit, nrLSU)在真菌的物種間具有高度變異性,因而可被用來分析真菌的親緣關係(phylogenetic relationships),據以區別不同的物種(White T.J. et al.(1990), PCR Protocols: A Guide to Methods and Applications, 315-322; Vilgalys R. and Hester M. (1990), J. Bacteriol., 172:4238-4246)。 Generally speaking, the genomic DNA sequence of fungi contains highly conserved and highly variable DNA sequences, which may be available for genus-specific and species-specific (species-specific) or isolate-specific (isolate-specific) identification or identification. Studies have shown that ribosomal RNA genes (ribosomal RNA genes) have internal transcribed spacers (ITS), intergenic spacers (IGS), and nuclear ribosomal large subunits (nrLSU). ) Has a high degree of variability among species of fungi, so it can be used to analyze the phylogenetic relationships of fungi to distinguish different species (White TJ et al. (1990), PCR Protocols: A Guide to Methods and Applications , 315-322; Vilgalys R. and Hester M. (1990), J. Bacteriol ., 172: 4238-4246).

DNA-指引的RNA聚合酶II次單元(DNA-directed RNA polymerase II subunit, RPB2)是一種編碼RNA聚合酶II的第二大次單元(the second largest subunit of RNA polymerase II)的核基因(nuclear gene),它所含有的12個高度守恆的區域在真菌之間具有85%以上的相同性(identity),因此已有研究將RPB2基因應用於真菌的鑑別。例如,在Sung G.H. et al. (2007), Stud. Mycol., 57:5-59中,Sung G.H.等人使用RPB2、RPB1、nrLSU、細胞核核糖體小次單元(nuclear ribosomal small subunit, nrSSU)、延長因子1-α (elongation factor 1-α, EF1-α)、β-微管蛋白(β-tubulin)以及粒線體ATP6 (mitochondrial ATP6, atp6)中的5至7個基因來對冬蟲夏草屬( Cordyceps)與麥角菌科(Clavicipitaceae)進行親緣關係的分析,藉此而將冬蟲夏草屬重新分類並區隔為下列四個屬:冬蟲夏草屬( Cordyceps)、鹿蟲草屬( Elaphocordyceps)、異蟲草屬( Metacordyceps)以及蛇形蟲草屬( Ophiocordyceps);以及將麥角菌科重新分類並區隔為下列三個科:麥角菌科(Clavicipitaceae)、蛇形蟲草科(Ophiocordycipitaceae)以及蟲草菌科(Cordycipitaceae)。 DNA-directed RNA polymerase II subunit (RPB2) is a nuclear gene encoding the second largest subunit of RNA polymerase II (the second largest subunit of RNA polymerase II). ), the 12 highly conserved regions it contains have more than 85% identity between fungi. Therefore, there have been studies on applying the RPB2 gene to the identification of fungi. For example, in Sung GH et al . (2007), Stud. Mycol ., 57: 5-59, Sung GH et al. used RPB2, RPB1, nrLSU, nuclear ribosomal small subunit (nrSSU), Elongation factor 1-α (elongation factor 1-α, EF1-α), β-tubulin (β-tubulin), and mitochondrial ATP6 (mitochondrial ATP6, atp6) have 5 to 7 genes to target Cordyceps) to analyze genetic relationship with ergot (Clavicipitaceae), which will take Cordyceps segment and reclassified into the following four genera: Cordyceps (Cordyceps), deer Cordyceps (Elaphocordyceps), different Cordyceps ( Metacordyceps and Ophiocordyceps ; and reclassification and division of Clavicepsaceae into the following three families: Clavicipitaceae, Ophiocordycipitaceae and Cordycipitaceae .

而針對牛樟芝而言,已有研究嘗試以ITS來鑑別牛樟芝菌株。例如,TW 200912001 A揭示一種用以鑑別牛樟芝菌株的方法,其主要是藉由使用限制酶 BvbI來對一菌株的ITS基因之擴增產物進行切割,並利用能否切割來判斷是否為牛樟芝菌株,還是其他同屬不同種的菌株。在此件專利申請案的實施例中,另外發現使用限制酶 SapI來對ITS基因之擴增產物進行切割,則無法利用能否切割來區隔不同來源的6株牛樟芝菌株。 For Antrodia cinnamomea, studies have tried to use ITS to identify Antrodia cinnamomea strains. For example, TW 200912001 A discloses a method for identifying Antrodia cinnamomea strains, which mainly uses restriction enzyme Bvb I to cut the amplified product of the ITS gene of a strain, and judge whether it is an Antrodia cinnamomea strain by whether it can be cut or not. , Or other strains of the same genus and different species. In the example of this patent application, it was also discovered that the restriction enzyme Sap I was used to cut the amplified product of the ITS gene, and the ability to cut the amplified product of the ITS gene could not be used to distinguish 6 Antrodia cinnamomea strains from different sources.

雖然已存在有上述的文獻報導,就申請人所知,迄今尚無任何文獻或專利前案曾經揭示RPB2基因可被應用於牛樟芝物種的菌株鑑別。因此,於本發明中,申請人意外地發現,藉由比對牛樟芝菌株之RPB2基因中的鹼基差異[亦即,單一核苷酸多型性(single nucleotide polymorphism, SNP)]來對牛樟芝菌株進行基因分型(genotyping),能夠有效地鑑別出不同的牛樟芝分離株。Although the above-mentioned literature reports have existed, as far as the applicant knows, there is no literature or patent precedent that has disclosed that the RPB2 gene can be used to identify strains of Antrodia cinnamomea species. Therefore, in the present invention, the applicant unexpectedly discovered that by comparing the base differences in the RPB2 gene of Antrodia cinnamomea strains [ie, single nucleotide polymorphism (single nucleotide polymorphism, SNP)], the Antrodia cinnamomea strains Genotyping can effectively identify different Antrodia cinnamomea isolates.

發明概要Summary of the invention

於是,本發明提供一種用於鑑別牛樟芝菌株的方法,該方法包括:提供一含有一牛樟芝菌株的RPB2基因的DNA片段;以及將該DNA片段拿來與一供比對之牛樟芝菌株的RPB2基因進行SNP基因分型,俾以偵測該等牛樟芝菌株的RPB2基因之SNP位點上的鹼基差異,其中,若存在有至少一個SNP位點上的鹼基差異,表示該等牛樟芝菌株是彼此不同的分離株。Therefore, the present invention provides a method for identifying Antrodia cinnamomea strains. The method comprises: providing a DNA fragment containing the RPB2 gene of an Antrodia cinnamomea strain; and performing comparison between the DNA fragment and the RPB2 gene of an Antrodia cinnamomea strain for comparison. SNP genotyping is used to detect the base differences in the SNP site of the RPB2 gene of the Antrodia cinnamomea strains. If there is at least one base difference in the SNP site, it means that the Antrodia cinnamomea strains are different from each other Of isolates.

本發明的上述以及其它目的、特徵與優點,在參照以下的詳細說明與較佳實施例後,將變得明顯。The above and other objects, features and advantages of the present invention will become apparent with reference to the following detailed description and preferred embodiments.

發明的詳細說明Detailed description of the invention

要被瞭解的是:若有任何一件前案刊物在此被引述,該前案刊物不構成一個下述承認:在台灣或任何其他國家之中,該前案刊物形成本技藝中的常見一般知識之一部分。It should be understood that if any previous case publication is quoted here, the previous case publication does not constitute a recognition: in Taiwan or any other country, the previous case publication forms a common general in the art. Part of knowledge.

為了這本說明書之目的,將被清楚地瞭解的是:文字“包含有(comprising)”意指“包含但不限於”,以及文字“包括(comprises)”具有一對應的意義。For the purpose of this specification, it will be clearly understood that the word "comprising" means "including but not limited to", and the word "comprises" has a corresponding meaning.

除非另外有所定義,在本文中所使用的所有技術性與科學術語具有熟悉本發明所屬技藝的人士所共同瞭解的意義。一熟悉本技藝者會認知到許多與那些被描述於本文中者相似或等效的方法和材料,它們可被用於實施本發明。當然,本發明決不受到所描述的方法和材料之限制。為表清楚,下面的界定被使用於本文中。Unless otherwise defined, all technical and scientific terms used in this article have meanings commonly understood by those familiar with the art of the present invention. A person familiar with the art will recognize that many methods and materials similar or equivalent to those described herein can be used to implement the present invention. Of course, the present invention is by no means restricted by the described methods and materials. For clarity, the following definitions are used in this article.

如本文中所用的,“核酸”、“核酸序列”或“核苷酸序列”等術語意指呈單股或雙股形式的去氧核糖核苷酸(deoxyribonucleotides)序列或核糖核苷酸(ribonucleotides)序列,且當中包含有已知的天然存在的核苷酸(naturally occurring nucleotides)或人造化學仿效物(artificial chemical mimics)。如本文中所用的,“核酸”此術語可與“基因”、“DNA”、“cDNA”、“mRNA”、“寡核苷酸”和“聚核苷酸”交換使用。As used herein, terms such as "nucleic acid", "nucleic acid sequence" or "nucleotide sequence" mean deoxyribonucleotides sequences or ribonucleotides in single-stranded or double-stranded form. ) Sequence, which contains known naturally occurring nucleotides or artificial chemical mimics. As used herein, the term "nucleic acid" can be used interchangeably with "gene", "DNA", "cDNA", "mRNA", "oligonucleotide" and "polynucleotide".

如本文中所用的,術語“DNA片段”與“核酸片段”可被互換地使用,並且意指一種DNA聚合物(DNA polymer),該DNA聚合物是呈一獨立節段(separate segment)的形式或者是作為一較大的DNA建構物(DNA construct)的一組分(component),其可以是衍生自經分離的DNA (isolated DNA)或是藉由本技術領域中所熟知的方法而被化學地或酵素地合成。As used herein, the terms "DNA fragment" and "nucleic acid fragment" are used interchangeably and mean a DNA polymer that is in the form of a separate segment Or as a component of a larger DNA construct, which can be derived from isolated DNA or chemically modified by methods well known in the art. Or the synthesis of enzymes.

除非另有指明,一核苷酸序列除了於本文中所揭示的特定序列外,亦涵蓋其互補序列(complementary sequences),以及它們的守恆性類似物(conservative analogs)、相關的自然存在的結構變異體和/或合成的非天然存在的類似物。Unless otherwise specified, in addition to the specific sequences disclosed herein, a nucleotide sequence also encompasses its complementary sequences, as well as their conservative analogs, and related naturally occurring structural variations. Body and/or synthetic non-naturally occurring analogues.

如本文中所用的,術語“單一核苷酸多型性(single nucleotide polymorphism, SNP)”可與“SNP位點(SNP site)”、“SNP位置(SNP position)”和“SNP基因座(SNP locus)”交換使用,並且意指基因組中的一單核苷酸(single nucleotide)(A、T、C或G)在牛樟芝的不同分離株之間所存在的一種DNA序列變異(DNA sequence variation)。而該DNA序列變異可能是因該單核苷酸發生鹼基的取代(substitution)[包括轉變(transition)與置換(transversion)]、插入(insertion)或刪除(deletion)所導致的。As used herein, the term "single nucleotide polymorphism (SNP)" can be used with "SNP site", "SNP position" and "SNP locus". locus" is used interchangeably, and means a single nucleotide (A, T, C, or G) in the genome that exists between different isolates of Antrodia cinnamomea (DNA sequence variation). . The variation of the DNA sequence may be caused by the substitution (including transition and transformation), insertion or deletion of the single nucleotide.

傳統上主要是以形態觀察來鑑別牛樟芝物種,但因牛樟芝的外觀特徵容易受到培養環境或條件的影響,以致於所得到的分析結果存在有不精確的問題。於是,如何精確地鑑別出牛樟芝菌株已成為一個重要的研發課題。分子生物學方法[諸如,聚合酶鏈反應(polymerase chain reaction, PCR)]具有速度快、分析結果的可信度與精確性高等之優點,因此,申請人致力於研發這方面的鑑別方法,並嘗試從DNA-指引的RNA聚合酶II次單元(DNA-directed RNA polymerase II subunit, RPB2)基因的核苷酸序列中找出單一核苷酸多型性(SNP)位點以供鑑別之用。Traditionally, morphological observations are used to identify Antrodia cinnamomea species. However, the appearance characteristics of Antrodia cinnamomea are easily affected by the culture environment or conditions, so that the analysis results obtained have inaccurate problems. Therefore, how to accurately identify Antrodia cinnamomea strains has become an important research and development topic. Molecular biology methods [such as polymerase chain reaction (PCR)] have the advantages of fast speed, high reliability and accuracy of analysis results, therefore, the applicant is committed to the development of identification methods in this area, and Try to find a single nucleotide polymorphism (SNP) site from the nucleotide sequence of the DNA-directed RNA polymerase II subunit (RPB2) gene for identification purposes.

於本發明中,申請人將不同來源的16株牛樟芝菌株拿來作為試驗菌株(test strains),繼而對該等試驗菌株的RPB2基因進行定序。經由定序所得到的16種試驗菌株的RPB2基因的核苷酸序列在藉由SNP基因分型(SNP genotyping)後發現:RPB2基因中的SNP能夠有效地用來區分不同的牛樟芝分離株。In the present invention, the applicant used 16 Antrodia cinnamomea strains from different sources as test strains, and then sequenced the RPB2 genes of these test strains. The nucleotide sequences of the RPB2 genes of the 16 test strains obtained by sequencing were found by SNP genotyping: the SNP in the RPB2 gene can be effectively used to distinguish different Antrodia cinnamomea isolates.

於是,本發明提供一種用於鑑別牛樟芝菌株的方法,該方法包括: 提供一含有一牛樟芝菌株的RPB2基因的DNA片段;以及 將該DNA片段拿來與一供比對之牛樟芝菌株的RPB2基因進行SNP基因分型,俾以偵測該等牛樟芝菌株的RPB2基因之SNP位點上的鹼基差異, 其中,若存在有至少一個SNP位點上的鹼基差異,表示該等牛樟芝菌株是彼此不同的分離株。 Therefore, the present invention provides a method for identifying Antrodia cinnamomea strains, the method comprising: Provide a DNA fragment containing the RPB2 gene of an Antrodia cinnamomea strain; and The DNA fragment was used for SNP genotyping with the RPB2 gene of an Antrodia cinnamomea strain for comparison, so as to detect the base differences at the SNP site of the RPB2 gene of the Antrodia cinnamomea strains. Wherein, if there is a base difference in at least one SNP site, it means that the Antrodia cinnamomea strains are different isolates from each other.

依據本發明,該供比對之牛樟芝菌株的RPB2基因之SNP位點上的鹼基可以是已知的(例如,任何公開的文獻或資料庫所揭示的)或預先偵測的。或者,該等牛樟芝菌株的RPB2基因之SNP位點上的鹼基可以是同時進行偵測的。According to the present invention, the bases at the SNP site of the RPB2 gene of the Antrodia cinnamomea strain for comparison can be known (for example, disclosed in any published literature or database) or detected in advance. Alternatively, the bases at the SNP site of the RPB2 gene of the Antrodia cinnamomea strains can be detected at the same time.

較佳地,該供比對之牛樟芝菌株是選自於由下列所構成之群組:BCRC 35396、BCRC 35398、BCRC 37609、BCRC 37941,以及它們的組合。Preferably, the Antrodia cinnamomea strains for comparison are selected from the group consisting of: BCRC 35396, BCRC 35398, BCRC 37609, BCRC 37941, and combinations thereof.

依據本發明,該SNP基因分型可藉由使用下列方法學之至少一者來進行:定序[諸如,焦磷酸定序(pyrosequencing)以及次世代定序(next generation sequencing, NGS)]、限制片段長度多型性分析(restriction fragment length polymorphism, RFLP)、寡核苷酸接合分析(oligonucleotide ligation assay, OLA)、分子信標(molecular beacon)、5’-核酸酶分析(5’-nuclease assay)、動態等位基因-特異性雜交(dynamic allele-specific hybridization, DASH)、SNP微陣列(SNP microarray)、DNA-DNA雜交(DNA-DNA hybridization)以及變性梯度凝膠電泳(denaturing gradient gel electrophoresis, DGGE)。According to the present invention, the SNP genotyping can be performed by using at least one of the following methodologies: sequencing [such as pyrosequencing and next generation sequencing (NGS)], restriction Fragment length polymorphism analysis (restriction fragment length polymorphism, RFLP), oligonucleotide ligation assay (OLA), molecular beacon, 5'-nuclease assay (5'-nuclease assay) , Dynamic allele-specific hybridization (DASH), SNP microarray (SNP microarray), DNA-DNA hybridization (DNA-DNA hybridization), and denaturing gradient gel electrophoresis (DGGE) ).

較佳地,該SNP基因分型是藉由定序來進行。Preferably, the SNP genotyping is performed by sequencing.

依據本發明,在進行定序之前,可先進行RPB2基因的擴增反應和/或基因組DNA的萃取,而這些處理的操作程序與參數條件等是落在熟習此項技術之人士的專業素養與例行技術範疇內。依據本發明,該RPB2基因的擴增反應可藉由使用任何已知的或自行設計之可用於擴增RPB2基因的引子對而被進行。在本發明的一個較佳具體例中,該引子對包含一具有一如序列辨識編號:1所示的核苷酸序列之前向引子,以及一具有一如序列辨識編號:2所示的核苷酸序列之反向引子。According to the present invention, the amplification reaction of the RPB2 gene and/or the extraction of genomic DNA can be carried out before the sequencing, and the operating procedures and parameter conditions of these treatments are based on the professionalism and quality of those who are familiar with this technology. Within the scope of routine technology. According to the present invention, the amplification reaction of the RPB2 gene can be performed by using any known or self-designed primer pair that can be used to amplify the RPB2 gene. In a preferred embodiment of the present invention, the primer pair includes a forward primer with a nucleotide sequence as shown in the sequence identification number: 1 and a nucleoside with a nucleotide sequence as shown in the sequence identification number: 2 Reverse primer for acid sequence.

依據本發明,該至少一個SNP位點上的鹼基差異可存在一選自於下列的RPB2基因之核苷酸殘基位置:16、21、22、25、31、34、40、76、79、80、81、82、83、85、91、93、100、101、107、113、114、115、175、244、253、256、295、337、349、403、409、418、424、440、463、475、481、484、508、541、547、661、673、682、685、725、727、754、775、796、799、832、844、877、922、1066、1078、1085、1089、1096、1102、1105、1108、1113處,以及它們的組合。According to the present invention, the base difference at the at least one SNP site may have a nucleotide residue position selected from the following RPB2 genes: 16, 21, 22, 25, 31, 34, 40, 76, 79 , 80, 81, 82, 83, 85, 91, 93, 100, 101, 107, 113, 114, 115, 175, 244, 253, 256, 295, 337, 349, 403, 409, 418, 424, 440 , 463, 475, 481, 484, 508, 541, 547, 661, 673, 682, 685, 725, 727, 754, 775, 796, 799, 832, 844, 877, 922, 1066, 1078, 1085, 1089 , 1096, 1102, 1105, 1108, 1113, and combinations thereof.

較佳地,該至少一個SNP位點上的鹼基差異是存在一選自於下列的RPB2基因之核苷酸殘基位置:16、25、31、34、76、79、80、81、82、83、93、100、101、107、113、114、115、295、349、409、418、463、475、484、508、661、673、685、725、727、754、775、796、799、922、1066、1078、1105,以及它們的組合。Preferably, the base difference at the at least one SNP site is the presence of a nucleotide residue position selected from the following RPB2 genes: 16, 25, 31, 34, 76, 79, 80, 81, 82 , 83, 93, 100, 101, 107, 113, 114, 115, 295, 349, 409, 418, 463, 475, 484, 508, 661, 673, 685, 725, 727, 754, 775, 796, 799 , 922, 1066, 1078, 1105, and combinations thereof.

依據本發明,上述RPB2基因之核苷酸殘基位置可能會隨著不同的牛樟芝菌株的RPB2基因在核苷酸序列上的變異[例如,插入、刪除或截短(truncation)]而有所出入。如本文中所用的,RPB2基因之核苷酸殘基位置是以牛樟芝BCRC 35396的RPB2基因的核苷酸序列(序列辨識編號:7)為基礎。According to the present invention, the nucleotide residue positions of the above-mentioned RPB2 gene may vary with the nucleotide sequence variation [for example, insertion, deletion or truncation] of the RPB2 gene of different Antrodia cinnamomea strains. . As used herein, the nucleotide residue positions of the RPB2 gene are based on the nucleotide sequence of the RPB2 gene of Antrodia cinnamomea BCRC 35396 (Sequence ID: 7).

依據本發明,拿來進行SNP基因分型的RPB2基因可以是全長的(full-length)、實質上全長的(essentially full-length)或部分的(partial),只要足以確認RPB2基因中是否存在至少一個SNP位點上的鹼基差異。具體而言,可先針對含有部分的RPB2基因的DNA片段來偵測其中的SNP位點上是否存在鹼基差異,較佳地,可先針對含有下列的RPB2基因之核苷酸殘基位置中的一或多者之片段來偵測:16、25、31、295、349、418、463、475以及1105 (例如,一含有核苷酸殘基位置16至475的片段)。在本發明的一個較佳具體例中,可先偵測下列的RPB2基因之核苷酸殘基位置:16、25、31、295、349、418以及1105。在本發明的另一個較佳具體例中,可先偵測下列的RPB2基因之核苷酸殘基位置:16、25、31、295、349、463以及1105。在本發明的又另一個較佳具體例中,可先偵測下列的RPB2基因之核苷酸殘基位置:16、25、31、295、349、475以及1105。若無偵測到任何SNP位點上的鹼基差異,則可逐步增加所偵測之RPB2基因片段的長度,直到偵測完全長的RPB2基因。According to the present invention, the RPB2 gene used for SNP genotyping can be full-length, essentially full-length, or partial, as long as it is sufficient to confirm whether the RPB2 gene is at least A base difference at a SNP site. Specifically, the DNA fragment containing part of the RPB2 gene can be first detected to detect whether there is a base difference at the SNP site, and preferably, the nucleotide residue position of the following RPB2 gene can be detected first To detect one or more fragments of: 16, 25, 31, 295, 349, 418, 463, 475, and 1105 (for example, a fragment containing nucleotide residue positions 16 to 475). In a preferred embodiment of the present invention, the following nucleotide residue positions of the RPB2 gene can be detected first: 16, 25, 31, 295, 349, 418, and 1105. In another preferred embodiment of the present invention, the following nucleotide residue positions of the RPB2 gene can be detected first: 16, 25, 31, 295, 349, 463, and 1105. In yet another preferred embodiment of the present invention, the following nucleotide residue positions of the RPB2 gene can be detected first: 16, 25, 31, 295, 349, 475, and 1105. If no base difference at any SNP site is detected, the length of the detected RPB2 gene fragment can be gradually increased until the full length of the RPB2 gene is detected.

依據本發明的方法可與傳統的牛樟芝鑑定技術[例如,形態觀察、指標成份分析,以及基因比對(gene alignment)等]組合使用,或者與針對不同標的基因的其他基因分型技術[例如,微衛星基因分型(microsatellite genotyping)、RFLP、OLA、DASH、SNP微陣列,以及DGGE等]組合使用,可使用的標的基因包括,但不限於:內部轉錄間隔(internal transcribed spacer, ITS)、細胞核核糖體大次單元(nuclear ribosomal large subunit, nrLSU),以及延長因子1-α (elongation factor 1-α, EF1-α)。 較佳實施例之詳細說明 The method according to the present invention can be used in combination with traditional Antrodia cinnamomea identification techniques [for example, morphological observation, index component analysis, and gene alignment, etc.], or with other genotyping techniques for different target genes [for example, Microsatellite genotyping (microsatellite genotyping), RFLP, OLA, DASH, SNP microarray, and DGGE, etc.] are used in combination, and the target genes that can be used include, but are not limited to: internal transcribed spacer (ITS), nucleus Nuclear ribosomal large subunit (nrLSU), and elongation factor 1-α (EF1-α). Detailed description of the preferred embodiment

本發明將就下面的實施例來做進一步說明,但應瞭解的是,該等實施例僅是供例示說明用,而不應被解釋為本發明的實施上的限制。 實施例 實施例 1. 牛樟芝 ( Antrodia cinnamomea) 之不同標的基因之 SNP 對於牛樟芝菌株的鑑別能力之評估 The present invention will be further described with respect to the following embodiments, but it should be understood that these embodiments are for illustrative purposes only, and should not be construed as limitations on the implementation of the present invention. EXAMPLES Example 1. Antrodia (Antrodia cinnamomea) of different SNP target gene to assess the ability to identify the strain of Antrodia

為了評估牛樟芝的DNA-指引的RNA聚合酶II次單元(DNA-directed RNA polymerase II subunit, RPB2)、內部轉錄間隔(internal transcribed spacer, ITS)以及細胞核核糖體大次單元(nuclear ribosomal large subunit, nrLSU)的SNP對於不同來源之牛樟芝菌株的鑑別效用,下面的實驗被進行。 實驗材料: 1.  在下面實驗中所使用的13株牛樟芝菌株的子實體(fruit body)是得自於台灣的食品工業發展研究所(Food Industry Research and Development Institute, FIRDI)的生物資源保存及研究中心(Biosource Collection and Research Center, BCRC)(300新竹市食品路331號,台灣),這些菌株包括:牛樟芝BCRC 35396、35398、35716、36401、36795、36799、37609、37616、37848、37889、37893、37941以及MU30118。 2.  在下面實驗中所使用的3株牛樟芝菌株BCRC 38806、13M0049以及13M0052的子實體分別是採集自中壢、台東以及花蓮的山區。 3.  在下面實驗中所使用的3組引子對RPB2-5F/RPB2-7.1R、V9G/LR1以及LROR/LR5分別是以牛樟芝的RPB2、ITS以及nrLSU的序列作為標的基因並參考Liu Y.J. et al. (1999), Mol. Biol. Evol., 16:1799-1808、Matheny P.B. (2005), Mol. Phylogenet. Evol., 35:1-20、A.H.G. Gerrits van den Ende and G.S. de Hoog (1999), Stud. Mycol., 43:151-162以及Vilgalys R. and Hester M. (1990), J. Bacteriol., 172:4238-4246當中所述的引子對而被設計出,接而委託友和貿易股份有限公司來代為合成。為表清楚,有關該等引子對的相關資訊(包括:核苷酸序列、所擴增出的PCR產物大小以及參考文獻)已被整合於下面表1中。 表1. 被用於偵測牛樟芝菌株的引子對及其參考文獻 標的基因 核苷酸序列(5’→3’) PCR產物大小(bp) 參考文獻 RPB2 前向引子RPB2-5F gaygaymgwgatcayttygg (序列辨識編號:1) 1,123 Liu Y.J. et al. (1999)(同上述) 反向引子RPB2-7.1R cccatrgcytgyttmcccatdgc (序列辨識編號:2) Matheny P.B. (2005)(同上述) ITS 前向引子V9G ttacgtccctgccctttgta (序列辨識編號:3) 794 A.H.G. Gerrits van den Ende and G.S. de Hoog (1999)(同上述) 反向引子LR1 ggttggtttcttttcct (序列辨識編號:4) Vilgalys R. and Hester M. (1990)(同上述) nrLSU 前向引子LROR acccgctgaacttaagc (序列辨識編號:5) 925 Vilgalys R. and Hester M. (1990)(同上述) 反向引子LR5 tcctgagggaaacttcg (序列辨識編號:6) Vilgalys R. and Hester M. (1990)(同上述) 註:有關引子對RPB2-5F/RPB2-7.1R的核苷酸序列,其中符號y代表t/u或c;符號m代表a或c;符號w代表a或t/u;符號r代表g或a;以及符號d代表a或g或t/u。 實驗方法: In order to evaluate the DNA-directed RNA polymerase II subunit (RPB2), internal transcribed spacer (ITS) and nuclear ribosomal large subunit (nrLSU) of Antrodia cinnamomea The SNP of) is useful for identifying Antrodia cinnamomea strains from different sources, and the following experiment was carried out. Experimental materials: 1. The fruit bodies of the 13 Antrodia cinnamomea strains used in the following experiments were obtained from the biological resource preservation and research of the Food Industry Research and Development Institute (FIRDI) in Taiwan Center (Biosource Collection and Research Center, BCRC) (300, No.331 Food Road, Hsinchu City, Taiwan), these strains include: Antrodia cinnamomea BCRC 35396, 35398, 35716, 36401, 36795, 36799, 37609, 37616, 37848, 37889, 37893, 37941 and MU30118. 2. The fruit bodies of the three Antrodia cinnamomea strains BCRC 38806, 13M0049 and 13M0052 used in the following experiments were collected from the mountainous areas of Zhongli, Taitung and Hualien, respectively. 3. The 3 sets of primer pairs RPB2-5F/RPB2-7.1R, V9G/LR1 and LROR/LR5 used in the following experiments are based on the sequences of RPB2, ITS and nrLSU of Antrodia cinnamomea as the target genes and refer to Liu YJ et al. . (1999), Mol. Biol. Evol ., 16: 1799-1808, Matheny PB (2005), Mol. Phylogenet. Evol. , 35: 1-20, AHG Gerrits van den Ende and GS de Hoog (1999), Stud. Mycol ., 43:151-162 and Vilgalys R. and Hester M. (1990), J. Bacteriol ., 172:4238-4246 were designed and entrusted to Youhe Trading Co., Ltd. The company will do it for synthesis. For clarity, relevant information about these primer pairs (including: nucleotide sequence, size of amplified PCR product, and references) has been integrated in Table 1 below. Table 1. Primers used to detect Antrodia cinnamomea strains and their references Target gene Nucleotide sequence (5'→3') PCR product size (bp) references RPB2 Forward primer RPB2-5F gaygaymgwgatcayttygg (Sequence ID: 1) 1,123 Liu YJ et al . (1999) (same as above) Reverse primer RPB2-7.1R cccatrgcytgyttmcccatdgc (Sequence ID: 2) Matheny PB (2005) (same as above) ITS Forward primer V9G ttacgtccctgccctttgta (Sequence ID: 3) 794 AHG Gerrits van den Ende and GS de Hoog (1999) (same as above) Reverse primer LR1 ggttggtttcttttcct (Sequence ID: 4) Vilgalys R. and Hester M. (1990) (same as above) nrLSU Forward primer LROR acccgctgaacttaagc (Sequence ID: 5) 925 Vilgalys R. and Hester M. (1990) (same as above) Reverse primer LR5 tcctgagggaaacttcg (Sequence ID: 6) Vilgalys R. and Hester M. (1990) (same as above) Note: For the nucleotide sequence of primer pair RPB2-5F/RPB2-7.1R, the symbol y represents t/u or c; the symbol m represents a or c; the symbol w represents a or t/u; the symbol r represents g or a; and the symbol d represents a or g or t/u. experimental method:

首先,將在上面“實驗材料”的第1與2項當中所述的16株牛樟芝菌株的子實體分別切塊(體積約為0.5 cm 3),繼而接種於麥芽萃取物瓊脂(MEA)培養盤[malt extract agar (MEA) plate](購自於Merck)上,並於室溫下進行培養歷時14天。接著,使用NucleoSpin ®Plant II (MACHEREY-NAGEL GmbH & Co. KG)並依據製造商所提供的操作指引來抽取牛樟芝菌株的基因組DNA (genomic DNA)。 First, the fruit bodies of the 16 Antrodia cinnamomea strains described in Items 1 and 2 of the above "Experimental Materials" were cut into pieces (about 0.5 cm 3 in volume), and then inoculated on Malt Extract Agar (MEA) Plate [malt extract agar (MEA) plate] (purchased from Merck), and cultured at room temperature for 14 days. Then, NucleoSpin ® Plant II (MACHEREY-NAGEL GmbH & Co. KG) was used to extract the genomic DNA of the Antrodia cinnamomea strain according to the operating instructions provided by the manufacturer.

具體而言,從MEA培養盤上所形成的雙核菌絲體(dikaryotic mycelium)刮取約100 mg並置於一為2 mL的微量離心管(microtube)中,然後添加400 μL的PL1緩衝液以及0.05 g的Chelex樹脂(Chelex resin),繼而予以研磨(grinding)。接著,對所形成的研磨物加入10 μL的核糖核酸酶A (RNase A)並予以混合均勻,然後於一溫度被設定為65℃的乾浴槽(dry bath)中加熱歷時10分鐘,繼而以13,000 rpm來進行離心歷時2分鐘。之後,收取上澄液並將之置於一NucleoSpin ®過濾器(NucleoSpin ®filter)中,繼而以13,000 rpm來進行離心歷時2分鐘,然後將所得到的濾液吸取至一為1.5 mL的微量離心管中,接而加入450 μL的磷脂醯膽鹼(PC)緩衝液[phosphatidylcholine (PC) buffer]並予以混合均勻。接著,將一NucleoSpin ®Plant II管柱(NucleoSpin ®Plant II column)放入至一收集管(collection tube)中,並將700 μL的混合物移至該管柱中,繼而以13,000 rpm來進行離心歷時1分鐘。在移除洗出物(eluate)之後,將該管柱放回該收集管內並加入400 μL的PW1緩衝液,繼而以13,000 rpm來進行離心歷時1分鐘。在移除洗出物之後,將該管柱放回該收集管內並加入650 μL的PW2緩衝液,繼而以13,000 rpm來進行離心歷時1分鐘。在移除洗出物之後,將該管柱放回該收集管內並加入200 μL的PW2緩衝液,然後以13,000 rpm來進行離心歷時2分鐘。最後,將該管柱放入至一個新的收集管中,繼而加入50 μL的PE緩衝液並於一溫度被設定為70℃的乾浴槽中加熱歷時5分鐘,然後以13,000 rpm來進行離心歷時1分鐘以洗提出牛樟芝菌株的基因組DNA。 Specifically, about 100 mg of dikaryotic mycelium formed on the MEA culture plate was scraped and placed in a 2 mL microtube, and then 400 μL of PL1 buffer and 0.05 were added. g Chelex resin, followed by grinding. Next, 10 μL of ribonuclease A (RNase A) was added to the formed grind and mixed uniformly, and then heated in a dry bath with a temperature set to 65°C for 10 minutes, followed by 13,000 Centrifugation at rpm lasted 2 minutes. After that, the supernatant was collected and placed in a NucleoSpin ® filter (NucleoSpin ® filter), followed by centrifugation at 13,000 rpm for 2 minutes, and then aspirated the obtained filtrate into a 1.5 mL microcentrifuge tube Then, add 450 μL of phosphatidylcholine (PC) buffer [phosphatidylcholine (PC) buffer] and mix well. Next, put a NucleoSpin ® Plant II column (NucleoSpin ® Plant II column) into a collection tube, and transfer 700 μL of the mixture to the column, and then centrifuge at 13,000 rpm for a period of time 1 minute. After removing the eluate, the column was put back into the collection tube and 400 μL of PW1 buffer was added, followed by centrifugation at 13,000 rpm for 1 minute. After removing the eluate, the column was put back into the collection tube and 650 μL of PW2 buffer was added, followed by centrifugation at 13,000 rpm for 1 minute. After removing the eluate, put the column back into the collection tube and add 200 μL of PW2 buffer, and then centrifuge at 13,000 rpm for 2 minutes. Finally, put the column into a new collection tube, then add 50 μL of PE buffer and heat it in a dry bath set at 70°C for 5 minutes, and then centrifuge at 13,000 rpm for a period of time One minute to elute the genomic DNA of the Antrodia cinnamomea strain.

以所得到的基因組DNA作為模版(template),並分別使用上面“實驗材料”的第3項當中所述的引子對RPB2-5F/RPB2-7.1R、V9G/LR1以及LROR/LR5來進行聚合酶鏈反應(polymerase chain reaction, PCR),而有關PCR的反應條件被顯示於下面的表2中。 表2. PCR的反應條件 內容物 體積(µL) 基因組DNA (100 ng/µL) 2 前向引子(10 µM) 0.5 反向引子(10 µM) 0.5 O’ in 1 DNA聚合酶預混物(O’ in 1 DNA polymerase premix)(2X)(含有100 U/µL的YEAtaq DNA聚合酶以及0.4 mM的dNTPs) 12.5 純水 9.5 操作條件:在94℃下進行變性反應(denaturation)歷時10分鐘;接而進行35個循環如下:在94℃下進行變性反應歷時30秒、在50℃下進行引子黏合(primer annealing)歷時1分鐘、在72℃下進行延伸反應(extension)歷時1分鐘;最後,在72℃下進行延長反應(elongation)歷時5分鐘。 Use the obtained genomic DNA as a template, and use the primer pairs RPB2-5F/RPB2-7.1R, V9G/LR1, and LROR/LR5 as described in item 3 of the "Experimental Materials" above for polymerase Chain reaction (polymerase chain reaction, PCR), and the reaction conditions related to PCR are shown in Table 2 below. Table 2. Reaction conditions for PCR Contents Volume (µL) Genomic DNA (100 ng/µL) 2 Forward primer (10 µM) 0.5 Reverse primer (10 µM) 0.5 O'in 1 DNA polymerase premix (2X) (contains 100 U/µL YEAtaq DNA polymerase and 0.4 mM dNTPs) 12.5 Pure water 9.5 Operating conditions: denaturation at 94°C for 10 minutes; followed by 35 cycles as follows: denaturation at 94°C for 30 seconds, primer annealing at 50°C for 1 minute The extension reaction (extension) was performed at 72°C for 1 minute; finally, the elongation reaction (elongation) was performed at 72°C for 5 minutes.

於完成PCR之後,所得到48個PCR擴增產物分別被拿來進行1.2%瓊脂糖凝膠電泳(agarose gel electrophoresis),俾以確認是否可得到如上面表1中所示之既定大小的PCR產物。接著,從凝膠回收純化該經確認的PCR產物,並委託源資國際生物科技股份有限公司(Tri-I Biotech, Inc.)來進行定序,而所得到的定序結果是利用NCBI網站所提供的Gene Blast軟體來進行比對分析,藉此而得到該16株牛樟芝菌株之全長的RPB2、ITS以及nrLSU基因的核苷酸序列。當所定序出的鹼基以符號為y、r、w、m、s以及k來表示時,分別代表兩套染色體上對應的核苷酸殘基位置具有如下面表3中所示的2種鹼基。 表3. 不同符號所代表的2種鹼基 符號 鹼基 y t c r g a w t a m c a s c g k g t After completing the PCR, the 48 PCR amplification products obtained were respectively used for 1.2% agarose gel electrophoresis (agarose gel electrophoresis) to confirm whether the PCR products of the predetermined size as shown in Table 1 above can be obtained . Next, the confirmed PCR product was recovered and purified from the gel, and was entrusted to Tri-I Biotech, Inc. for sequencing, and the sequencing results obtained were obtained using the NCBI website The provided Gene Blast software was used for comparison and analysis to obtain the nucleotide sequences of the full-length RPB2, ITS and nrLSU genes of the 16 Antrodia cinnamomea strains. When the sequenced bases are represented by the symbols y, r, w, m, s, and k, they represent that the corresponding nucleotide residue positions on the two sets of chromosomes have the two types shown in Table 3 below. Base. Table 3. Two kinds of bases represented by different symbols symbol Base y t c r g a w t a m c a s c g k g t

接著,使用BioEdit軟體以及ClustalW軟體來對該16株牛樟芝菌株的RPB2、ITS以及nrLSU基因的核苷酸序列進行多重序列比對分析(multiple sequence alignment analysis),俾以偵測與鑑別這3個基因的單一核苷酸多型性(single nucleotide polymorphism, SNP)。之後,藉由分析該16株牛樟芝菌株之間位於RPB2、ITS以及nrLSU基因的SNP的遺傳變異(genetic variation of SNP)來進行牛樟芝菌株的基因分型(genotyping)。 結果: Next, use BioEdit software and ClustalW software to perform multiple sequence alignment analysis on the nucleotide sequences of the RPB2, ITS, and nrLSU genes of the 16 Antrodia cinnamomea strains to detect and identify these three genes. Single nucleotide polymorphism (SNP). Afterwards, the genetic variation of SNPs located in the RPB2, ITS and nrLSU genes among the 16 Antrodia cinnamomea strains were analyzed to perform genotyping of the Antrodia cinnamomea strains. result:

下面表4顯示藉由比對16株牛樟芝菌株之RPB2基因中的SNP的遺傳變異而進行的基因分型結果。從表4可見,RPB2基因中存在有64個SNP,其分別位於核苷酸殘基位置16、21、22、25、31、34、40、76、79至83、85、91、93、100、101、107、113至115、175、244、253、256、295、337、349、403、409、418、424、440、463、475、481、484、508、541、547、661、673、682、685、725、727、754、775、796、799、832、844、877、922、1066、1078、1085、1089、1096、1102、1105、1108以及1113處[以牛樟芝BCRC 35396的RPB2基因的核苷酸序列(序列辨識編號:7)為基礎]。依據該等SNP的鹼基差異情形,可以將該16株牛樟芝菌株區分出16種基因型。這表示:RPB2基因中的SNP能夠有效地用來區分不同的牛樟芝分離株。 BCRC 38806 BCRC 37941 BCRC 37893 BCRC 37889 BCRC 37609 BCRC 36795 BCRC 36401 BCRC MU30118 BCRC 37848 BCRC 37616 BCRC 35716 BCRC 35398 BCRC 13M0052 BCRC 36799 BCRC 13M0049 BCRC 35396 菌株 表4. 各個牛樟芝菌株於RPB2基因上的SNP位點 -接續表4- -接續表4- -接續表4- t y y t t t t c t t t y c y y t 16 核苷酸殘基位置 核苷酸殘基位置 核苷酸殘基位置 核苷酸殘基位置 t t t t t t t t y t t y t t t t 21 c y c y y c y y y c y c c y c c 22 t c y y y t y y y t y y c c y t 25 g a r r r g r r r g r r a a r g 31 t y t y y t y c y t y t t y t t 34 g r g r r g r g r g r g g r g g 40 t w w t t t t t t t t w a w w t 76 c y y c c c c c c c c y t y y c 79 g r r g g g g g g g g r a r r g 80 c y y c c c c c c c c y t y y c 81 t y t t t t t t t t t t c y y t 82 c y c c c c c c c c c c t y y c 83 核苷酸殘基位置 -接續表4- a w a w w a w t w a w a a w a a 85 c m m c c c c c c c c m a m m c 91 c y c c y c y y y c y c c y c c 93 c m m c c c c c m c c m a m m c 100 g r r g g g g g r g g r a r r g 101 c y y c c c c c c c c y t y y c 107 t y y t t t t t t t t y c y y t 113 c s s c c c c c c c c s g s s c 114 g k k g g g g g g g g k t k k g 115 t y t y y t y y y t y t t y t t 175 a a r r a a r a a a r a a a a a 244 t t t t t t t t t y t t t t t t 253 g g g g g r g g g g g g g g g g 256 a r r g r a g r r r g a a r a a 295 c c c c c c y y c c c c c c c c 337 g r r a g g a r g g a g g g g g 349 核苷酸殘基位置 -接續表4- c c c c c c y y c c c c c c c c 403 a r g g r a r a r r g a a r r g 409 c y t y y y y c c y y c c c y t 418 t t t t y y t t t t t t t t t t 424 t t t t t t t t t y t t t t t t 440 t y c y y y y t t y y t t t y c 463 g r a r r r r g g r r g g g r a 475 m c c c c c c m c m c c c m c c 481 c y t y c c y c c y y c c c y t 484 g g g g k k g g g g g g g g g g 508 a a a a r r a a a a a a a a a a 541 c c c c y y c c c c c c c c c c 547 y y y y t y c y t y y y c t y c 661 t y t t c y t y t y t t t c t t 673 g r g g r r g g g r g g g r g g 682 r r r r g r r r g r r g a g r a 685 核苷酸殘基位置 -接續表4- t y y t c y t y t y t c t c y t 725 r r r r a r r r a r r a a a r g 727 y y y y c y y t c y y c c c y t 754 r r r r a r r r a r r a a a r g 775 y c c y c c y c t c y c t c c c 796 y y y y c y y y c y y c c c y t 799 a w a a w w a a a w a a a w a a 832 c y c c y y c c c y c c c y c c 844 r r r r g r r r g r r g g g r a 877 y c c y y y y c t y y y t y y t 922 c c c c c c c c c y c c c c y t 1066 y t t y y y y c t y y y c y t t 1078 a a a a a a a a r a a a a a a a 1085 c c c c s c c c c c c c c s c c 1089 t t t t t t t t t t t w t t t t 1096 a a a a a a a a a r a a a a a a 1102 核苷酸殘基位置 -接續表4- y t y y y y y c t y c y c y t t 1105 g g g g r g g g g g g g g r g g 1108 c c c c y c c c c c c c c y c c 1113 Table 4 below shows the results of genotyping by comparing the genetic variation of SNPs in the RPB2 gene of 16 Antrodia cinnamomea strains. It can be seen from Table 4 that there are 64 SNPs in the RPB2 gene, which are located at nucleotide residue positions 16, 21, 22, 25, 31, 34, 40, 76, 79 to 83, 85, 91, 93, 100. , 101, 107, 113 to 115, 175, 244, 253, 256, 295, 337, 349, 403, 409, 418, 424, 440, 463, 475, 481, 484, 508, 541, 547, 661, 673 , 682, 685, 725, 727, 754, 775, 796, 799, 832, 844, 877, 922, 1066, 1078, 1085, 1089, 1096, 1102, 1105, 1108 and 1113 [RPB2 of Antrodia cinnamomea BCRC 35396 The nucleotide sequence of the gene (sequence identification number: 7) is the basis]. Based on the base differences of the SNPs, 16 Antrodia cinnamomea strains can be distinguished into 16 genotypes. This means that the SNP in the RPB2 gene can be effectively used to distinguish different Antrodia cinnamomea isolates. BCRC 38806 BCRC 37941 BCRC 37893 BCRC 37889 BCRC 37609 BCRC 36795 BCRC 36401 BCRC MU30118 BCRC 37848 BCRC 37616 BCRC 35716 BCRC 35398 BCRC 13M0052 BCRC 36799 BCRC 13M0049 BCRC 35396 Strains Table 4. SNP sites on the RPB2 gene of each Antrodia cinnamomea strain-continuation table 4-continuation table 4-continuation table 4 t y y t t t t c t t t y c y y t 16 Nucleotide residue position Nucleotide residue position Nucleotide residue position Nucleotide residue position t t t t t t t t y t t y t t t t twenty one c y c y y c y y y c y c c y c c twenty two t c y y y t y y y t y y c c y t 25 g a r r r g r r r g r r a a r g 31 t y t y y t y c y t y t t y t t 34 g r g r r g r g r g r g g r g g 40 t w w t t t t t t t t w a w w t 76 c y y c c c c c c c c y t y y c 79 g r r g g g g g g g g r a r r g 80 c y y c c c c c c c c y t y y c 81 t y t t t t t t t t t t c y y t 82 c y c c c c c c c c c c t y y c 83 Nucleotide residue position -Continued from Table 4- a w a w w a w t w a w a a w a a 85 c m m c c c c c c c c m a m m c 91 c y c c y c y y y c y c c y c c 93 c m m c c c c c m c c m a m m c 100 g r r g g g g g r g g r a r r g 101 c y y c c c c c c c c y t y y c 107 t y y t t t t t t t t y c y y t 113 c s s c c c c c c c c s g s s c 114 g k k g g g g g g g g k t k k g 115 t y t y y t y y y t y t t y t t 175 a a r r a a r a a a r a a a a a 244 t t t t t t t t t y t t t t t t 253 g g g g g r g g g g g g g g g g 256 a r r g r a g r r r g a a r a a 295 c c c c c c y y c c c c c c c c 337 g r r a g g a r g g a g g g g g 349 Nucleotide residue position -Continued from Table 4- c c c c c c y y c c c c c c c c 403 a r g g r a r a r r g a a r r g 409 c y t y y y y c c y y c c c y t 418 t t t t y y t t t t t t t t t t 424 t t t t t t t t t y t t t t t t 440 t y c y y y y t t y y t t t y c 463 g r a r r r r g g r r g g g r a 475 m c c c c c c m c m c c c m c c 481 c y t y c c y c c y y c c c y t 484 g g g g k k g g g g g g g g g g 508 a a a a r r a a a a a a a a a a 541 c c c c y y c c c c c c c c c c 547 y y y y t y c y t y y y c t y c 661 t y t t c y t y t y t t t c t t 673 g r g g r r g g g r g g g r g g 682 r r r r g r r r g r r g a g r a 685 Nucleotide residue position -Continued from Table 4- t y y t c y t y t y t c t c y t 725 r r r r a r r r a r r a a a r g 727 y y y y c y y t c y y c c c y t 754 r r r r a r r r a r r a a a r g 775 y c c y c c y c t c y c t c c c 796 y y y y c y y y c y y c c c y t 799 a w a a w w a a a w a a a w a a 832 c y c c y y c c c y c c c y c c 844 r r r r g r r r g r r g g g r a 877 y c c y y y y c t y y y t y y t 922 c c c c c c c c c y c c c c y t 1066 y t t y y y y c t y y y c y t t 1078 a a a a a a a a r a a a a a a a 1085 c c c c s c c c c c c c c s c c 1089 t t t t t t t t t t t w t t t t 1096 a a a a a a a a a r a a a a a a 1102 Nucleotide residue position -Continued from Table 4- y t y y y y y c t y c y c y t t 1105 g g g g r g g g g g g g g r g g 1108 c c c c y c c c c c c c c y c c 1113

下面表5顯示藉由比對16株牛樟芝菌株之ITS基因中的SNP的遺傳變異而進行的基因分型結果。從表5可見,ITS基因中存在有25個SNP,其分別位於核苷酸殘基位置310、333、367、591、597、643、677以及682至699處[以牛樟芝BCRC 37941的ITS基因的核苷酸序列(序列辨識編號:8)為基礎]。依據該等SNP的鹼基差異情形,只能將該16株牛樟芝菌株區分出10種基因型,其中牛樟芝BCRC 13M0049、36799、MU30118以及36795具有相同的基因型,牛樟芝BCRC 35716、37609以及37889具有相同的基因型,以及牛樟芝BCRC 35396與38806具有相同的基因型。這表示:ITS基因中的SNP無法用來區分不同的牛樟芝分離株。 BCRC 37941 BCRC 37893 BCRC 37848 BCRC 37616 BCRC 35398 BCRC 13M0052 BCRC 36401 BCRC 38806 BCRC 35396 BCRC 37889 BCRC 37609 BCRC 35716 BCRC 36795 BCRC MU30118 BCRC 36799 BCRC 13M0049 菌株 表5. 各個牛樟芝菌株於ITS基因上的SNP位點 t t t t y t t t t t t t t t t t 310 核苷酸殘基位置 t t t t t t y t t t t t t t t t 333 t t t k t t t t t t t t t t t t 367 t t t y t t t c c t t t y y y y 591 t - - - - t - - - - - - - - - - 597 a a r a a a a a a a a a a a a a 643 t c t t t t t t t t t t t t t t 677 g g g g g - g g g g g g g g g g 682 a a a a a - a a a a a a a a a a 683 g g g g g - g g g g g g g g g g 684 g g g g g - g g g g g g g g g g 685 t t t t t - t t t t t t t t t t 686 g g g g g - g g g g g g g g g g 687 g g g g g - g g g g g g g g g g 688 核苷酸殘基位置 -接續表5- g g g g g - g g g g g g g g g g 689 a a a a a - a a a a a a a a a a 690 t t t t t - t t t t t t t t t t 691 c c c c c - c c c c c c c c c c 692 g g g g g - g g g g g g g g g g 693 g g g g g - g g g g g g g g g g 694 c c c c c - c c c c c c c c c c 695 t t t t t - t t t t t t t t t t 696 t t t t t - t t t t t t t t t t 697 c c c c c - c c c c c c c c c c 698 t t t t t - t t t t t t t t t t 699 Table 5 below shows the results of genotyping by comparing the genetic variation of SNPs in the ITS genes of 16 Antrodia cinnamomea strains. It can be seen from Table 5 that there are 25 SNPs in the ITS gene, which are located at nucleotide residue positions 310, 333, 367, 591, 597, 643, 677, and 682 to 699 [The ITS gene of Antrodia cinnamomea BCRC 37941 Nucleotide sequence (Sequence Identification Number: 8) as the basis]. Based on the base differences of these SNPs, the 16 Antrodia cinnamomea strains can only be distinguished into 10 genotypes. Among them, Antrodia cinnamomea BCRC 13M0049, 36799, MU30118 and 36795 have the same genotype, and Antrodia cinnamomea BCRC 35716, 37609 and 37889 have the same genotype. The genotype of Antrodia cinnamomea, and BCRC 35396 and 38806 have the same genotype. This means that the SNP in the ITS gene cannot be used to distinguish different Antrodia cinnamomea isolates. BCRC 37941 BCRC 37893 BCRC 37848 BCRC 37616 BCRC 35398 BCRC 13M0052 BCRC 36401 BCRC 38806 BCRC 35396 BCRC 37889 BCRC 37609 BCRC 35716 BCRC 36795 BCRC MU30118 BCRC 36799 BCRC 13M0049 Strains Table 5. SNP sites on the ITS gene of each Antrodia cinnamomea strain t t t t y t t t t t t t t t t t 310 Nucleotide residue position t t t t t t y t t t t t t t t t 333 t t t k t t t t t t t t t t t t 367 t t t y t t t c c t t t y y y y 591 t - - - - t - - - - - - - - - - 597 a a r a a a a a a a a a a a a a 643 t c t t t t t t t t t t t t t t 677 g g g g g - g g g g g g g g g g 682 a a a a a - a a a a a a a a a a 683 g g g g g - g g g g g g g g g g 684 g g g g g - g g g g g g g g g g 685 t t t t t - t t t t t t t t t t 686 g g g g g - g g g g g g g g g g 687 g g g g g - g g g g g g g g g g 688 Nucleotide residue position -Continued from Table 5- g g g g g - g g g g g g g g g g 689 a a a a a - a a a a a a a a a a 690 t t t t t - t t t t t t t t t t 691 c c c c c - c c c c c c c c c c 692 g g g g g - g g g g g g g g g g 693 g g g g g - g g g g g g g g g g 694 c c c c c - c c c c c c c c c c 695 t t t t t - t t t t t t t t t t 696 t t t t t - t t t t t t t t t t 697 c c c c c - c c c c c c c c c c 698 t t t t t - t t t t t t t t t t 699

下面表6顯示藉由比對16株牛樟芝菌株之nrLSU基因中的SNP的遺傳變異而進行的基因分型結果。從表6可見,nrLSU基因中存在有8個SNP,其分別位於核苷酸殘基位置142、380、388、515、539、653、681以及757處[以牛樟芝BCRC 37609的nrLSU基因的核苷酸序列(序列辨識編號:9)為基礎]。依據該等SNP的鹼基差異情形,只能將該16株牛樟芝菌株區分出8種基因型,其中牛樟芝BCRC 36799、13M0052、35398、37616、36795、37893、37941以及38806具有相同的基因型,以及牛樟芝BCRC 35716與37889具有相同的基因型。這表示:nrLSU基因中的SNP無法用來區分不同的牛樟芝分離株。 BCRC MU30118 BCRC 37848 BCRC 37609 BCRC 13M0049 BCRC 35396 BCRC 36401 BCRC 37889 BCRC 35716 BCRC 38806 BCRC 37941 BCRC 37893 BCRC 36795 BCRC 37616 BCRC 35398 BCRC 13M0052 BCRC 36799 菌株 表6. 各個牛樟芝菌株於nrLSU基因上的SNP位點 r g g g g g g g g g g g g g g g 142 核苷酸殘基位置 c y c c c c c c c c c c c c c c 380 - - c - - - - - - - - - - - - - 388 r a a r g a a a a a a a a a a a 515 a a a a a r a a a a a a a a a a 539 c c c c c c y y c c c c c c c c 653 g r g g g g g g g g g g g g g g 681 y c c y t c c c c c c c c c c c 757 Table 6 below shows the results of genotyping by comparing the genetic variation of the SNP in the nrLSU gene of 16 Antrodia cinnamomea strains. It can be seen from Table 6 that there are 8 SNPs in the nrLSU gene, which are located at nucleotide residue positions 142, 380, 388, 515, 539, 653, 681, and 757 [The nucleoside of the nrLSU gene of Antrodia cinnamomea BCRC 37609 Acid sequence (sequence identification number: 9) as the basis]. Based on the base differences of these SNPs, the 16 Antrodia cinnamomea strains can only be distinguished into 8 genotypes, among which Antrodia cinnamomea BCRC 36799, 13M0052, 35398, 37616, 36795, 37893, 37941 and 38806 have the same genotype, and Antrodia cinnamomea BCRC 35716 and 37889 have the same genotype. This means that the SNP in the nrLSU gene cannot be used to distinguish different Antrodia cinnamomea isolates. BCRC MU30118 BCRC 37848 BCRC 37609 BCRC 13M0049 BCRC 35396 BCRC 36401 BCRC 37889 BCRC 35716 BCRC 38806 BCRC 37941 BCRC 37893 BCRC 36795 BCRC 37616 BCRC 35398 BCRC 13M0052 BCRC 36799 Strains Table 6. SNP sites of various Antrodia cinnamomea strains on the nrLSU gene r g g g g g g g g g g g g g g g 142 Nucleotide residue position c y c c c c c c c c c c c c c c 380 - - c - - - - - - - - - - - - - 388 r a a r g a a a a a a a a a a a 515 a a a a a r a a a a a a a a a a 539 c c c c c c y y c c c c c c c c 653 g r g g g g g g g g g g g g g g 681 y c c y t c c c c c c c c c c c 757

將該等牛樟芝菌株分別針對nrLSU與ITS基因來進行SNP基因分型所得到的結果整理於下面表7中。從表7可見,就牛樟芝BCRC 36799、36795、13M0052、35398、37616、37893、37941以及38806這8株菌株而言,若以nrLSU基因來進行SNP基因分型時會被鑑別為具有同一種基因型(III)的分離株,若以ITS基因來進行SNP基因分型時則會被鑑別為具有不同基因型(a至g)的7種分離株。然而,就牛樟芝BCRC 35716、37889以及37609這3株菌株而言,若以ITS基因來進行SNP基因分型時會被鑑別為具有同一種基因型(h)的分離株,若以nrLSU基因來進行SNP基因分型時則會被鑑別為具有不同基因型(V至VI)的2種分離株。即使進一步結合這兩種基因來進行SNP基因分型時,該16株牛樟芝菌株也只能被鑑別為具有不同基因型(1至14)的14種分離株,其中牛樟芝BCRC 36799與36795被鑑別為同一種基因型的分離株,以及牛樟芝BCRC 35716與37889被鑑別為同一種基因型的分離株。相對地,如上所述,單獨以RPB2基因來進行SNP基因分型能夠有效地鑑別出具有不同基因型的16種分離株。The results of the SNP genotyping of the Antrodia cinnamomea strains against the nrLSU and ITS genes are summarized in Table 7 below. It can be seen from Table 7 that the 8 strains of Antrodia cinnamomea BCRC 36799, 36795, 13M0052, 35398, 37616, 37893, 37941 and 38806 will be identified as having the same genotype when SNP genotyping is performed with the nrLSU gene. The isolates of (III) will be identified as 7 isolates with different genotypes (a to g) when SNP genotyping is performed using the ITS gene. However, for the three strains of Antrodia cinnamomea BCRC 35716, 37889 and 37609, if the ITS gene is used for SNP genotyping, they will be identified as isolates with the same genotype (h). If the nrLSU gene is used for SNP genotyping, SNP genotyping will be identified as two isolates with different genotypes (V to VI). Even when these two genes were further combined for SNP genotyping, the 16 Antrodia cinnamomea strains could only be identified as 14 isolates with different genotypes (1 to 14), of which Antrodia cinnamomea BCRC 36799 and 36795 were identified as The isolates of the same genotype, and Antrodia cinnamomea BCRC 35716 and 37889 were identified as isolates of the same genotype. In contrast, as described above, SNP genotyping with RPB2 gene alone can effectively identify 16 isolates with different genotypes.

據此,申請人認為:針對RPB2基因的SNP基因分型可供用於牛樟芝菌株的鑑別。 表7. 以nrLSU和/或ITS基因來進行SNP基因分型所鑑別出的基因型種類 菌株 nrLSU SNP基因型 ITS SNP基因型 nrLSU+ITS SNP基因型 BCRC MU30118 I a 1 BCRC 13M0049 II 2 BCRC 36799 III 3 BCRC 36795 BCRC 13M0052 b 4 BCRC 35398 c 5 BCRC 37616 d 6 BCRC 37893 e 7 BCRC 37941 f 8 BCRC 38806 g 9 BCRC 35396 IV 10 BCRC 35716 V h 11 BCRC 37889 BCRC 37609 VI 12 BCRC 36401 VII i 13 BCRC 37848 VIII j 14 Accordingly, the applicant believes that the SNP genotyping for the RPB2 gene can be used for the identification of Antrodia cinnamomea strains. Table 7. Types of genotypes identified in SNP genotyping using nrLSU and/or ITS genes Strains nrLSU SNP genotype ITS SNP genotype nrLSU+ITS SNP genotype BCRC MU30118 I a 1 BCRC 13M0049 II 2 BCRC 36799 III 3 BCRC 36795 BCRC 13M0052 b 4 BCRC 35398 c 5 BCRC 37616 d 6 BCRC 37893 e 7 BCRC 37941 f 8 BCRC 38806 g 9 BCRC 35396 IV 10 BCRC 35716 V h 11 BCRC 37889 BCRC 37609 VI 12 BCRC 36401 VII i 13 BCRC 37848 VIII j 14

另外,申請人進一步分析上面表4之RPB2基因中存在的64個SNP而發現到,最少只需要比對RPB2基因中的7個SNP位點,就能夠將各個牛樟芝菌株完全區分開來(如下面表8至10中所示),而該7個SNP位點有下列三種組合:(1)核苷酸殘基位置16、25、31、295、349、418以及1105處;(2)核苷酸殘基位置16、25、31、295、349、463以及1105處;以及(3)核苷酸殘基位置16、25、31、295、349、475以及1105處[以牛樟芝BCRC 35396的RPB2基因的核苷酸序列(序列辨識編號:7)為基礎]。 表8. 用於區分各個牛樟芝菌株的RPB2基因之核苷酸殘基位置的組合1 菌株 核苷酸殘基位置 16 25 31 295 349 418 1105 BCRC 35396 t t g a g t t BCRC 13M0049 y y r a g y t BCRC 36799 y c a r g c y BCRC 13M0052 c c a a g c c BCRC 35398 y y r a g c y BCRC 35716 t y r g a y c BCRC 37616 t t g r g y y BCRC 37848 t y r r g c t BCRC MU30118 c y r r r c c BCRC 36401 t y r g a y y BCRC 36795 t t g a g y y BCRC 37609 t y r r g y y BCRC 37889 t y r g a y y BCRC 37893 y y r r r t y BCRC 37941 y c a r r y t BCRC 38806 t t g a g c y 表9. 用於區分各個牛樟芝菌株的RPB2基因之核苷酸殘基位置的組合2 菌株 核苷酸殘基位置 16 25 31 295 349 463 1105 BCRC 35396 t t g a g c t BCRC 13M0049 y y r a g y t BCRC 36799 y c a r g t y BCRC 13M0052 c c a a g t c BCRC 35398 y y r a g t y BCRC 35716 t y r g a y c BCRC 37616 t t g r g y y BCRC 37848 t y r r g t t BCRC MU30118 c y r r r t c BCRC 36401 t y r g a y y BCRC 36795 t t g a g y y BCRC 37609 t y r r g y y BCRC 37889 t y r g a y y BCRC 37893 y y r r r c y BCRC 37941 y c a r r y t BCRC 38806 t t g a g t y 表10. 用於區分各個牛樟芝菌株的RPB2基因之核苷酸殘基位置的組合3 菌株 核苷酸殘基位置 16 25 31 295 349 475 1105 BCRC 35396 t t g a g a t BCRC 13M0049 y y r a g r t BCRC 36799 y c a r g g y BCRC 13M0052 c c a a g g c BCRC 35398 y y r a g g y BCRC 35716 t y r g a r c BCRC 37616 t t g r g r y BCRC 37848 t y r r g g t BCRC MU30118 c y r r r g c BCRC 36401 t y r g a r y BCRC 36795 t t g a g r y BCRC 37609 t y r r g r y BCRC 37889 t y r g a r y BCRC 37893 y y r r r a y BCRC 37941 y c a r r r t BCRC 38806 t t g a g g y In addition, the applicant further analyzed the 64 SNPs in the RPB2 gene in Table 4 above and found that at least only 7 SNP loci in the RPB2 gene need to be compared to completely distinguish the Antrodia cinnamomea strains (as shown below) Tables 8 to 10), and the 7 SNP sites have the following three combinations: (1) nucleotide residue positions 16, 25, 31, 295, 349, 418, and 1105; (2) nucleosides Acid residue positions 16, 25, 31, 295, 349, 463, and 1105; and (3) nucleotide residue positions 16, 25, 31, 295, 349, 475, and 1105 [RPB2 of Antrodia cinnamomea BCRC 35396 The nucleotide sequence of the gene (sequence identification number: 7) is the basis]. Table 8. Combinations of nucleotide residue positions of RPB2 gene used to distinguish various Antrodia cinnamomea strains 1 Strains Nucleotide residue position 16 25 31 295 349 418 1105 BCRC 35396 t t g a g t t BCRC 13M0049 y y r a g y t BCRC 36799 y c a r g c y BCRC 13M0052 c c a a g c c BCRC 35398 y y r a g c y BCRC 35716 t y r g a y c BCRC 37616 t t g r g y y BCRC 37848 t y r r g c t BCRC MU30118 c y r r r c c BCRC 36401 t y r g a y y BCRC 36795 t t g a g y y BCRC 37609 t y r r g y y BCRC 37889 t y r g a y y BCRC 37893 y y r r r t y BCRC 37941 y c a r r y t BCRC 38806 t t g a g c y Table 9. Combinations of nucleotide residue positions of the RPB2 gene used to distinguish each Antrodia cinnamomea strain 2 Strains Nucleotide residue position 16 25 31 295 349 463 1105 BCRC 35396 t t g a g c t BCRC 13M0049 y y r a g y t BCRC 36799 y c a r g t y BCRC 13M0052 c c a a g t c BCRC 35398 y y r a g t y BCRC 35716 t y r g a y c BCRC 37616 t t g r g y y BCRC 37848 t y r r g t t BCRC MU30118 c y r r r t c BCRC 36401 t y r g a y y BCRC 36795 t t g a g y y BCRC 37609 t y r r g y y BCRC 37889 t y r g a y y BCRC 37893 y y r r r c y BCRC 37941 y c a r r y t BCRC 38806 t t g a g t y Table 10. Combinations of nucleotide residue positions of RPB2 gene used to distinguish various Antrodia cinnamomea strains 3 Strains Nucleotide residue position 16 25 31 295 349 475 1105 BCRC 35396 t t g a g a t BCRC 13M0049 y y r a g r t BCRC 36799 y c a r g g y BCRC 13M0052 c c a a g g c BCRC 35398 y y r a g g y BCRC 35716 t y r g a r c BCRC 37616 t t g r g r y BCRC 37848 t y r r g g t BCRC MU30118 c y r r r g c BCRC 36401 t y r g a r y BCRC 36795 t t g a g r y BCRC 37609 t y r r g r y BCRC 37889 t y r g a r y BCRC 37893 y y r r r a y BCRC 37941 y c a r r r t BCRC 38806 t t g a g g y

於本說明書中被引述之所有專利和文獻以其整體被併入本案作為參考資料。若有所衝突時,本案詳細說明(包含界定在內)將佔上風。All patents and documents cited in this specification are incorporated into this case as reference materials in their entirety. If there is a conflict, the detailed description of the case (including definitions) will prevail.

雖然本發明已參考上述特定的具體例被描述,明顯地在不背離本發明之範圍和精神之下可作出很多的修改和變化。因此意欲的是,本發明僅受如隨文檢附之申請專利範圍所示者之限制。Although the present invention has been described with reference to the above specific specific examples, it is obvious that many modifications and changes can be made without departing from the scope and spirit of the present invention. Therefore, it is intended that the present invention is only limited by the scope of the patent application attached hereto.

Figure pseq-0
Figure pseq-0

Figure pseq-1
Figure pseq-1

Figure pseq-2
Figure pseq-2

Figure pseq-3
Figure pseq-3

Figure pseq-4
Figure pseq-4

Figure pseq-5
Figure pseq-5

Figure pseq-6
Figure pseq-6

Figure pseq-7
Figure pseq-7

Claims (8)

一種用於鑑別牛樟芝菌株的方法,該方法包括: 提供一含有一牛樟芝菌株的RPB2基因的DNA片段;以及 將該DNA片段拿來與一供比對之牛樟芝菌株的RPB2基因進行SNP基因分型,俾以偵測該等牛樟芝菌株的RPB2基因之SNP位點上的鹼基差異, 其中,若存在有至少一個SNP位點上的鹼基差異,表示該等牛樟芝菌株是彼此不同的分離株。 A method for identifying Antrodia cinnamomea strains, the method comprising: Provide a DNA fragment containing the RPB2 gene of an Antrodia cinnamomea strain; and The DNA fragment was used for SNP genotyping with the RPB2 gene of an Antrodia cinnamomea strain for comparison, so as to detect the base differences at the SNP site of the RPB2 gene of the Antrodia cinnamomea strains. Wherein, if there is a base difference in at least one SNP site, it means that the Antrodia cinnamomea strains are different isolates from each other. 如請求項1的方法,其中,該SNP基因分型是藉由使用下列方法學之至少一者來進行:定序、限制片段長度多型性分析、寡核苷酸接合分析、分子信標、5’-核酸酶分析、動態等位基因-特異性雜交、SNP微陣列、DNA-DNA雜交以及變性梯度凝膠電泳。The method of claim 1, wherein the SNP genotyping is performed by using at least one of the following methodologies: sequencing, restriction fragment length polymorphism analysis, oligonucleotide conjugation analysis, molecular beacon, 5'-nuclease analysis, dynamic allele-specific hybridization, SNP microarray, DNA-DNA hybridization, and denaturing gradient gel electrophoresis. 如請求項1的方法,其中該至少一個SNP位點上的鹼基差異是存在一選自於下列的RPB2基因之核苷酸殘基位置:16、21、22、25、31、34、40、76、79、80、81、82、83、85、91、93、100、101、107、113、114、115、175、244、253、256、295、337、349、403、409、418、424、440、463、475、481、484、508、541、547、661、673、682、685、725、727、754、775、796、799、832、844、877、922、1066、1078、1085、1089、1096、1102、1105、1108、1113處,以及它們的組合。The method of claim 1, wherein the base difference at the at least one SNP site is the presence of a nucleotide residue position selected from the following RPB2 genes: 16, 21, 22, 25, 31, 34, 40 , 76, 79, 80, 81, 82, 83, 85, 91, 93, 100, 101, 107, 113, 114, 115, 175, 244, 253, 256, 295, 337, 349, 403, 409, 418 , 424, 440, 463, 475, 481, 484, 508, 541, 547, 661, 673, 682, 685, 725, 727, 754, 775, 796, 799, 832, 844, 877, 922, 1066, 1078 , 1085, 1089, 1096, 1102, 1105, 1108, 1113, and combinations thereof. 如請求項3的方法,其中該至少一個SNP位點上的鹼基差異是存在一選自於下列的RPB2基因之核苷酸殘基位置:16、25、31、34、76、79、80、81、82、83、93、100、101、107、113、114、115、295、349、409、418、463、475、484、508、661、673、685、725、727、754、775、796、799、922、1066、1078、1105,以及它們的組合。The method of claim 3, wherein the base difference at the at least one SNP site is the presence of a nucleotide residue position selected from the following RPB2 genes: 16, 25, 31, 34, 76, 79, 80 , 81, 82, 83, 93, 100, 101, 107, 113, 114, 115, 295, 349, 409, 418, 463, 475, 484, 508, 661, 673, 685, 725, 727, 754, 775 , 796, 799, 922, 1066, 1078, 1105, and combinations thereof. 如請求項3的方法,其中該SNP位點上的鹼基差異之偵測包括偵測下列的RPB2基因之核苷酸殘基位置:16、25、31、295、349、418以及1105。The method of claim 3, wherein the detection of the base difference at the SNP site includes detecting the following nucleotide residue positions of the RPB2 gene: 16, 25, 31, 295, 349, 418, and 1105. 如請求項3的方法,其中該SNP位點上的鹼基差異之偵測包括偵測下列的RPB2基因之核苷酸殘基位置:16、25、31、295、349、463以及1105。The method of claim 3, wherein the detection of the base difference at the SNP site includes detecting the following nucleotide residue positions of the RPB2 gene: 16, 25, 31, 295, 349, 463, and 1105. 如請求項3的方法,其中該SNP位點上的鹼基差異之偵測包括偵測下列的RPB2基因之核苷酸殘基位置:16、25、31、295、349、475以及1105。The method of claim 3, wherein the detection of the base difference at the SNP site includes detecting the following nucleotide residue positions of the RPB2 gene: 16, 25, 31, 295, 349, 475, and 1105. 如請求項1的方法,其中該供比對之牛樟芝菌株是選自於由下列所構成之群組:BCRC 35396、BCRC 35398、BCRC 37609、BCRC 37941,以及它們的組合。The method of claim 1, wherein the Antrodia cinnamomea strain for comparison is selected from the group consisting of: BCRC 35396, BCRC 35398, BCRC 37609, BCRC 37941, and combinations thereof.
TW109113825A 2020-04-24 2020-04-24 Method for the discrimination of antrodia cinnamomea strains TWI729787B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109113825A TWI729787B (en) 2020-04-24 2020-04-24 Method for the discrimination of antrodia cinnamomea strains
CN202010565384.7A CN113549703A (en) 2020-04-24 2020-06-19 Method for identifying antrodia camphorata strains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109113825A TWI729787B (en) 2020-04-24 2020-04-24 Method for the discrimination of antrodia cinnamomea strains

Publications (2)

Publication Number Publication Date
TWI729787B true TWI729787B (en) 2021-06-01
TW202140782A TW202140782A (en) 2021-11-01

Family

ID=77517481

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113825A TWI729787B (en) 2020-04-24 2020-04-24 Method for the discrimination of antrodia cinnamomea strains

Country Status (2)

Country Link
CN (1) CN113549703A (en)
TW (1) TWI729787B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200912001A (en) * 2007-09-13 2009-03-16 Univ Fooyin Method for identifying Antrodia cinnamomea

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561245A (en) * 2013-10-16 2015-04-29 复旦大学 Rapid identification method and kit for MTBC (mycobacterium tuberculosis complex)
WO2016120777A2 (en) * 2015-01-27 2016-08-04 Gokhale Mrunal Sanjog System and method for predicting restriction associated snp profiles to identify an organism
CN106755520A (en) * 2017-02-16 2017-05-31 无限极(中国)有限公司 A kind of red ganoderma identification of strains method
CN109022426A (en) * 2018-09-20 2018-12-18 福建农林大学 It is a kind of extract Antrodia camphorata total DNA reagent and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200912001A (en) * 2007-09-13 2009-03-16 Univ Fooyin Method for identifying Antrodia cinnamomea

Also Published As

Publication number Publication date
TW202140782A (en) 2021-11-01
CN113549703A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
Wagner et al. A new species concept for the clinically relevant Mucor circinelloides complex
Gardes et al. ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts
Liu et al. Genetic diversity and breeding history of winter mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers
CN111088329B (en) Fluorescence composite amplification system, kit and application thereof
WO2016165591A1 (en) Mgmt gene promoter methylation detection based on pyrosequencing technology
Zhu et al. Maturational alteration of oppositely orientated rDNA and differential proliferation of GC-and AT-biased genotypes of Ophiocordyceps sinensis and Paecilomyces hepiali in natural Cordyceps sinensis
Bridge The history and application of molecular mycology
CN111500759A (en) Method and primer pair for identifying mating type genes of commercially-cultured morchella species
TWI729787B (en) Method for the discrimination of antrodia cinnamomea strains
Siva et al. Genetic diversity study of important Indian rice genotypes using biochemical and molecular markers
KR101946162B1 (en) Snp markers for discriminating raphanus sativus cultivar and uses thereof
CN113403417A (en) SSR molecular marker AerM01 for sex identification of actinidia arguta and application thereof
Bao et al. Rapid Communication-Identification of Oryza Species with the CD Genome Based on RFLP Analysis of Nuclear Ribosomal ITS Sequences
Kompe et al. Mycorrhizal diversity in some species of Dactylorhiza genus (Orchidaceae)
Kuzina et al. Genes involved in carotene synthesis and mating in Blakeslea trispora
KR20130037512A (en) Dna polymorphism marker for identification of cucumis sativus l
Amarakoon et al. Biotechnology: principles and applications
KR101582172B1 (en) Method for identifying of Cordyceps militaris
Vural et al. Molecular analysis of chickpea species through molecular markers
CN117512202B (en) SNP molecular marker remarkably related to papaya fruit chamber diameter, method and application
KR102323668B1 (en) INDEL marker for color discrimination of Flammulina velutipes and use thereof
CN108315437B (en) SNP molecular marker for identifying perna viridis
KR101955073B1 (en) Snp markers for discrimination of raphanus sativus
RU2631933C1 (en) Method for differentiation of commercially important mites of amblyseius genus based on restrictive analysis
Markers Molecular Characterization