TWI729418B - 用於檢測及/或處理樣品的裝置和方法 - Google Patents

用於檢測及/或處理樣品的裝置和方法 Download PDF

Info

Publication number
TWI729418B
TWI729418B TW108121315A TW108121315A TWI729418B TW I729418 B TWI729418 B TW I729418B TW 108121315 A TW108121315 A TW 108121315A TW 108121315 A TW108121315 A TW 108121315A TW I729418 B TWI729418 B TW I729418B
Authority
TW
Taiwan
Prior art keywords
probe
sample
scanning
microscope
item
Prior art date
Application number
TW108121315A
Other languages
English (en)
Other versions
TW202001975A (zh
Inventor
克里斯多福 包爾
麥可 布達施
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW202001975A publication Critical patent/TW202001975A/zh
Application granted granted Critical
Publication of TWI729418B publication Critical patent/TWI729418B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2583Tubes for localised analysis using electron or ion beams characterised by their application using tunnel effects, e.g. STM, AFM

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本發明係關於一種用於檢測及/或處理樣品(400、2010)的裝置(2400、2600),所述裝置包含:(a)一掃描式粒子顯微鏡(2410),其用於提供可在該樣品(400、2010)之一表面上導向的一帶電粒子束(840);以及(b)一掃描式探針顯微鏡(2470),其帶有一可偏轉探針(200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600);(c)其中一偵測結構(230、530、1030、1130、1330、1530、1630、1690、2630)附接到該可偏轉探針(200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600)。

Description

用於檢測及/或處理樣品的裝置和方法 【交互參照相關申請】
本專利申請案主張轉讓給文中受讓人的2018年6月21日所申請之標題為「Vorrichtung und Verfahren zum Untersuchen und/oder zum Bearbeiten einer Probe」的德國專利申請號DE 10 2018 210 098.5之利益,並將其完整特意併入文中作為參考。
本發明係關於一種用於檢測及/或處理樣品的裝置和方法。特別是,本發明係關於一種用於移動該樣品之粒子的裝置和方法。
由於半導體產業中的積體密度不斷提高,因此光微影成像圖罩必須在晶圓上成像越來越小的結構。就光微影成像而論,積體密度不斷提高的趨勢可透過將光微影成像系統之曝光波長移位至越來越短的波長來應對。目前在光微影成像系統或微影系統中,經常使用發出波長約為193nm的氟化氬(Argon fluoride,ArF)準分子雷射器作為光源。
來自周圍環境的粒子可沉積於光微影成像圖罩、光罩或僅僅圖罩上,並妨害前述圖罩之成像功能。在圖罩生產期間及該等圖罩之操作期間,標準作法為透過清潔步驟將粒子從該等圖罩之表面去除。一般來說, 粒子可能存在於樣品上且對該樣品之功能具有負面影響。
光微影成像圖罩之結構尺寸不斷減小,使得清潔程序之難度不斷提高。而且,由於曝光波長日益減小,因此在晶圓上的曝光程序期間,吸附於該圖罩之表面上越來越小的外來或灰塵粒子變得越來越可見。
以下以示例性方式提到借助於奈米操縱器或微操縱器(例如掃描式探針顯微鏡之測量尖端)檢測奈米粒子之移動的一些文件:H.H.Pieper:「帶有螢石結構的原始與金覆蓋表面之形貌和電位」(Morphology and electric potential of pristine and gold covered surfaces with fluorite structure),論文,奧斯納布魯克大學(Osnabruck University)2012年;S.Darwich等人:「在動態模式下用原子力顯微鏡操縱金膠體奈米粒子:粒子之影響-基板化學和形貌及操作條件」(Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode:influence of particle-substrate chemistry and morphology,and operating conditions),《Beilstein J.Nanotechnol.》期刊,第2冊(2011年),85-98頁;H.H.Pieper等人:「單晶和Si(111)支承鈰氧薄膜之CeO2(111)表面之形貌和奈米結構」(Morphology and nanostructure of CeO2(111)surfaces of single crystals and Si(111)supported ceria films),《Phys.Chemistry Chemical Physics》期刊,第14冊,15361ff頁,2013年;E.Gallagher等人:「EUVL圖罩修復:用奈米加工擴展選項」(EUVL mask repair:expanding options with nanomachining),《BACUS》期刊,第3冊,第3期(2013年),1-8頁;M.Martin等人:「利用非接觸原子力顯微鏡操縱Ag奈米粒子」(Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy),《Appl.Phys.Lett.》期刊,第72冊,第11期,1998年9月,1505-1507頁;P.J.Durston等人:「用掃描式穿隧顯微鏡操縱石墨上的鈍化金簇」(Manipulation of passivated gold clusters on graphite with the scanning tunneling microscope),《Appl.Phys.Lett.》期刊,第72冊,第2期,1998年1月,176-178頁;R.Requicha:「用原子力顯微 鏡的奈米操縱」(Nanomanipulation with the atomic force microscope),《Nanotechnology Online》,ISBN:9783527628155;C.Baur等人:「透過機械推動的奈米粒子操縱:潛在現象和即時監測」(Nanoparticle manipulation by mechanical pushing:underlying phenomena and real-time monitoring),《Nanotechnology》期刊9(1998年),360-364頁;J.D.Beard等人:「用於奈米微影和生物應用的原子力顯微鏡奈米刮刀」(An atomic force microscope nanoscalpel for nanolithography and biological applications),《Nanotechnology》期刊20(2009年),445302,1-10頁;US 6 812 460 B1;以及US 8 696 818 B2。
下列以示例性方式指定的文件係關於借助於原位提升方法生成TEM樣品:J.Mayer等人:「TEM樣品製備及FIB所引致損傷」(TEM sample preparation and FIB-induced damage),《MRS Bulletin》期刊,第32冊,2007年5月,400-407頁;B.Myers:「用FIB/SEM進行TEM樣品製備」(TEM Sample Preparation with the FIB/SEM),西北大學(Northwestern University)Nuance中心-Evanston,2009年;M.Schaffer等人:「透過FIB在低電壓下用於原子STEM的樣品製備」(Sample preparation for atomic STEM at low voltages by FIB),《Ultramicroscopy》期刊,第114冊,62-71頁(2012年);以及US 2017/0 256 380 A1。
在文章「新型AFM/STM/SEM系統」(A novel AFM/STM/SEM system)(《Rev.Sci.Instrum.》期刊65(9),2853-2954頁,1994年9月)中,作者A.V.Ermakov和E.L.Garfunkel說明使用電子束以便偵測AFM之懸臂之振動。
美國專利文件US 4 440 475說明掃描式電子顯微鏡與光學顯微鏡之組合,其中該光學顯微鏡在解析度較高的操作模式下操作時,該光學光束之一些在該掃描式電子顯微鏡之圓柱(column)中引導。
美國專利文件US 7 395 727 B2說明允許其尖端之偵測落於 樣品表面上的奈米操縱器。
為符合空間要件,在一台儀器中組合掃描式粒子顯微鏡與掃描式探針顯微鏡需要將這兩個顯微鏡之空間隔開,因此在這兩個顯微鏡之操作之間進行切換變得複雜且緩慢。若這兩個顯微鏡彼此相鄰緊密設置,則必須在這兩個顯微鏡之功能方面找出折衷方案。
因此,本發明設法解決指定有助於改進樣品之檢測及/或處理的裝置和方法之問題。
依據本發明之示例性具體實施例,此問題透過如申請專利範圍第1項和第12項的裝置且透過如申請專利範圍第17項的方法解決。在第一具體實施例中,用於檢測及/或處理樣品的裝置包含:(a)一掃描式粒子顯微鏡,其用於提供可在該樣品之一表面上導向的一帶電粒子束;以及(b)一掃描式探針顯微鏡,其帶有一可偏轉探針;(c)其中一偵測結構附接到該可偏轉探針。
由於掃描式粒子顯微鏡之帶電粒子束以與用於判定掃描式探針顯微鏡之探針之偏轉的慣用光指示器系統相似的方式,與附接到掃描式探針顯微鏡之探針的偵測結構組合使用,因此依據本發明的裝置可具有緊密構造。該掃描式探針顯微鏡之探針與該掃描式粒子顯微鏡之帶電粒子束之該等交互作用區域可重疊,而不必相對於這兩個顯微鏡之功能進行折衷。而且,可能在掃描式粒子顯微鏡操作模式與掃描式探針顯微鏡操作模式之間非常迅速切換。特別是,該掃描式粒子顯微鏡之帶電粒子束可用於監測將該掃描式探針顯微鏡之探針接近樣品,及/或使用該探針處理該樣品。
該掃描式粒子顯微鏡可配置成執行下列群組之至少一個要素:將該帶電粒子束導向到該偵測結構上、在該偵測結構上方執行該帶電粒子束之線掃描,以及在該偵測結構上方掃描該帶電粒子束。
該偵測結構可具有與該可偏轉探針之材料組成物不同的材料組成物。該偵測結構與該探針之不同材料組成物導致該二次電子(Secondary electron,SE)產出率改變或背向散射電子的背向散射係數改變,這有助於偵測該掃描式探針顯微鏡之探針之偏轉。
該偵測結構可具有圓柱形、圓錐形、桿形或n邊形結構,其中n
Figure 108121315-A0202-12-0005-31
3。
該偵測結構可附接到該探針之正面,且測量尖端可附接到該探針之背面。
該偵測結構可包含至少兩種隔開的相鄰材料,其帶有不同原子序數。
該偵測結構之該等至少兩種隔開的相鄰材料可沿著該可偏轉探針之縱軸隔開。
該偵測結構可配置成最佳化帶電二次電子及/或背向散射電子之發出。
該偵測結構可包含一偵測區域,其配置成最佳化帶電二次電子及/或背向散射電子之一發出。
該偵測區域可以其在非偏轉探針之情況下與該帶電粒子束包括±20°之一角度的方式對準。
該偵測區域可體現成將透過該偵測區域生成的測量信號從該帶電粒子束之入射表面,經過該帶電粒子束之至少10個、較佳為至少50個、更佳為至少100個、及最佳為至少500個波束直徑之距離解耦合到該偵測區域上。
偵測區域滿足至少兩項功能。首先,最佳化該偵測區域透過該帶電粒子束造成之測量信號。其次,該偵測區域簡化該探針上該帶電粒子束之調整。一方面,這透過關於該偵測區域故意散焦該帶電粒子束達成,且另一方面,透過調整該帶電粒子束相對於該探針之縱軸之容差達成。在 此處所說明第一示例性具體實施例中,該帶電粒子束較佳為作為固定波束導向到該探針之偵測區域上。
該帶電粒子束之波束直徑定義為該強度已下降至最大強度之一半處的寬度,即該強度分佈之半波高全寬度(Full width at half maximum,FWHM)寬度。
該偵測區域可包含該探針之90%、較佳為50%、更佳為30%、及最佳為10%之一寬度。
就像光指示器系統之聚焦光束,該所說明第一示例性具體實施例中的帶電粒子束使用該偵測之顯著百分比。
該偵測區域可具有有助於使用具有大於10nm2、較佳為50nm2、更佳為100nm2、及最佳為大於500nm2之截面積的波束偵測該探針之偏轉的尺寸。
帶電粒子束之截面積係關於其強度分佈狀況之半波高全寬度(FWHM)之面積。
此具體實施例有助於該帶電粒子束相對於該探針之偵測區域之故意散焦。結果,由於該帶電粒子束而透過該偵測區域引致的測量信號之空間相關性可降低。
該偵測區域可具有矩形具體實施例。又,該偵測區域可相對於該探針之表面設置於60°至90°、較佳為70°至90°、更佳為80°至90°、及最佳為85°至90°之角度範圍內。
由於該偵測區域之此具體實施例,因此慣用掃描式探針顯微鏡之光學光指示器系統可借助於帶電粒子束及對應所設置偵測器大致再現。
該偵測結構和該探針可以整體方式生產。然而,也可能分別生產該探針和該偵測結構,並在第二步驟中例如透過黏著接合將該偵測結構施加於該探針。而且,可能在該探針中提供該偵測結構可插入其中的切 口。
該帶電粒子束及該探針之表面可包括60°至120°、較佳為70°至110°、更佳為80°至100°、及最佳為85°至95°之一角度範圍。
由於該探針之實質上水平設置,因此該樣品同樣可以水平方式設置。結果,大型樣品(例如晶圓或光微影成像圖罩)可關於掃描式粒子顯微鏡之帶電粒子束及/或掃描式探針顯微鏡之探針容易貼附且精確定位。
在本申請案中的此處和別處,依據先前技術使用測量儀器進行測量變量測量時,該措辭「實質上」(substantially)表示指示在其誤差容限內的測量變量。
該偵測結構可能具有為了二次電子之發出而最佳化的材料組成物。原子序數高的材料(例如金)為此目的具優勢。
該偵測區域可能具有曲率。該偵測區域之曲率可能體現成線性化該探針之偏轉之測量信號。
探針之偏轉通常會在該偵測區域之測量信號方面導致強勁、特別是非線性變化。可能透過適當設計用於該探針之振動的閉合迴路控制補償此非線性。然而,也可能以該探針之偏轉與透過設置於該探針上的偵測區域生成的測量信號之間有接近線性關係的方式,選擇該偵測區域之表面外形或曲率。在此示例性具體實施例中,放棄該帶電粒子束在該偵測區域上方之平移不變性。
該掃描式粒子顯微鏡可體現成將固定帶電粒子束導向到該偵測區域上。
該偵測結構可能包含至少一個區域元件,且該區域元件之一法線向量可實質上平行或反向平行該可偏轉探針之縱軸導向。
該至少一個區域元件可包含一矩形結構,其延伸於該探針之大部分寬度上方。該探針之大部分寬度表示該探針大於該探針之50%寬度之一部分寬度。
該偵測結構可附接到該可偏轉探針之背面。測量尖端可附接到該偵測結構。
該偵測結構可能包含至少兩個區域元件,其沿著該可偏轉探針之縱軸設置。該等至少兩個區域元件可能彼此平行設置。該等至少兩個區域元件可能具有不同高度。該等至少兩個區域元件可能包含一矩形結構。
該掃描式粒子顯微鏡可體現成沿著該可偏轉探針之縱軸掃描該帶電粒子束。
該偵測結構和該測量尖端可附接到該可偏轉探針之同一面。該偵測結構和該測量尖端可附接到該可偏轉探針之背面。該測量尖端可附接到該偵測結構。
該偵測結構可能包含至少一個標記。
該至少一個標記可體現成在該探針之偏轉之情況下,在該掃描式粒子顯微鏡之圖像中造成位置方面的改變,前述位置方面的改變允許判定該探針之偏轉。
在該以上所說明形式為偵測區域的偵測結構之第一示例性具體實施例中,散焦帶電粒子束通常會固定定位於該偵測區域上。在第二示例性具體實施例中,聚焦電子束在該探針之其中該至少一個標記設置於該探針上的區域上方掃描。該探針之偏轉藉由該標記之圖像中該至少一個標記之側向偏移偵測。該偵測結構之此示例性具體實施例之優勢在於,該掃描式粒子顯微鏡之圓柱內的偵測器(即透鏡內偵測器)可用於偵測該探針之偏轉。如此有助於以上所說明裝置之緊密具體實施例。該掃描式粒子顯微鏡為了分析該樣品及/或該探針或該探針之偏轉之目的而在該掃描模式下操作。如此意指該掃描式粒子顯微鏡之設定只需要在掃描樣品或光微影成像元件與掃描該探針之間稍微改變。如此有助於在該元件與該探針之掃描之間迅速切換。
該至少一個標記可體現為尖端,並可設置於該探針之表面上 (其上該帶電粒子束入射到該探針上)。該至少一個標記可能包含一材料,其與該探針之材料不同。特別是,該標記可能包含一材料,其最佳化該探針與該至少一個標記之間的材料對比。
結果,成像該標記或該探針包含該標記之區域時,該標記之成像除了布局對比之外還產出材料對比。
該偵測結構可能包含至少兩個標記,其高度彼此不同。該等至少兩個標記可設置於實質上垂直該探針之縱軸延伸的線上。
設置於該探針上高度不同的兩個標記藉由差異測量,有助於判定該探針在其偏轉之情況下之側向偏移,前述差異測量允許該準確度方面的提高(藉此可判定該探針之偏轉)。特別是,在以兩個標記之形式體現的偵測結構之情況下,可避免執行基準測量。
依據本發明的裝置更可具有光學光指示器系統,且該偵測結構可包含一反射結構,其體現成反射該光學光指示器系統之光學輻射,且該反射結構可以相對於該可偏轉探針之一正面不同零的一角度設置。
此具體實施例有助於在該掃描式粒子顯微鏡和該掃描式探針顯微鏡與該樣品之共同或至少部分重疊交互作用區域中,使用帶電粒子束及掃描式探針顯微鏡之探針同時或依序檢測及/或處理樣品。又,此具體實施例允許第一工具處理該樣品,且該第二工具檢測或監測該處理流程。
該反射結構可能包含一反射鏡。該反射結構可能包含一金屬或一金屬回火層。該反射結構可能在該探針之正面之間包含一角度,其在70°至100°、較佳為75°至95°、更佳為80°至90°、及最佳為83°至87°之範圍內。該反射結構可能包含一成像功能。
該掃描式探針顯微鏡之交互作用區域與該掃描式粒子顯微鏡之交互作用區域可能至少部分重疊。
用該掃描式粒子顯微鏡成像該標記可透過以第一頻率掃描該帶電粒子束實行,其中該第一頻率比該探針之振動頻率高至少5倍、較 佳為10倍、更佳為30倍、及最佳為100倍。然而,該第一頻率也可比該探針之振動頻率低。
又,依據本發明的裝置可能包含一信號處理單元,其配置成使用該頻閃效應以一圖示方式擷取該探針之甚至高振動頻率。
該探針可能具有以該帶電粒子束可通過該開口導向到該樣品上的方式體現的開口。又,該探針之開口可體現使得該帶電粒子束可通過用於成像目的之開口掃描該樣品。
該開口之該等尺寸以一方面該帶電粒子束之掃描區域不會非必要受限的方式選擇。另一方面,該開口垂直該探針之縱軸延伸之寬度特別是以對該探針之機械穩定性沒有風險的方式選擇。
該開口可具有任何外形。對稱開口(例如圓形、三角形、矩形、或方形開口)較佳。
此配置有助於非常良好重疊該探針和該帶電粒子束與樣品之該等交互作用區域。特別是,此配置允許例如查明存在於樣品上的粒子相對於該探針與該粒子之交互作用區域之位置。如此在借助於該探針操縱該粒子時係很大的優勢。而且,在該探針之此具體實施例中,在藉由該掃描式粒子顯微鏡之帶電粒子束檢測該樣品與檢測該探針之間可有非常迅速且簡單的切換。
該探針可具有為了屏蔽及/或補償該樣品之靜電荷之目的之導電具體實施例。
若電絕緣樣品(例如光微影成像圖罩)例如使用帶電粒子束檢測及/或處理,則該樣品可能帶靜電。通常,會將形式為緊密網格的屏蔽裝置施加於掃描式粒子顯微鏡之粒子光學單元之輸出,以便屏蔽樣品(例如光微影成像圖罩)之靜電充電。若掃描式探針顯微鏡之探針放置於該掃描式粒子顯微鏡之出口開口下方,則沒有用於掃描式粒子顯微鏡之屏蔽裝置的空間。該探針可憑藉前述具有導電具體實施例的掃描式探針顯微鏡之探針 至少部分還導入屏蔽元件之功能。如此若該探針具有用於通過該帶電粒子束的開口,則特別是適用。
若該樣品在該探針接近樣品表面時判定成具有靜電荷,則樣品之靜電荷可透過將電壓施加於導電探針補償,使得即使該樣品具有靜電荷,藉助該探針無風險檢測該樣品表面仍顯現可能。
該探針可連接到配置成使該探針偏轉的壓電四漸變(quad-morph)壓電致動器。
管狀壓電致動器時常用於將掃描式探針顯微鏡之探針定位於樣品表面上。然而,由於該掃描式粒子顯微鏡之帶電粒子束之出口開口在最佳情境下通常會與樣品之表面具有數公釐之距離,因此壓電致動器之此具體實施例對於依據本發明的裝置之掃描式探針顯微鏡不具優勢。以四漸變致動器元件之形式體現的壓電致動器以最佳方式利用該帶電粒子束之出口開口與該樣品之間可用的受限空間,而不必訴諸於機械上不穩定的替代解決方案。
依據本發明的裝置可能包含一控制單元,其體現成在<50μs、較佳為<10μs、更佳為<1μs、及最佳為<0.1μs之一時間間隔內,在該光微影成像元件之一坐標系統與該探針之坐標系統之間執行一坐標變換。
掃描式探針顯微鏡通常會以該壓電致動器之坐標系統和該樣品或該樣品台(該樣品設置於其上)之坐標系統關於彼此對準的方式建構。然而,如此在由於前述已就空間而論的該等限制而組合掃描式粒子顯微鏡與掃描式探針顯微鏡之情況下,在這兩個顯微鏡之原位配置之情況下時常不可能。依據本發明的裝置之控制單元能夠接近即時(即延遲極小)執行坐標變換。這種能力有助於該裝置對所偵測到該探針之偏轉之迅速反應。依據本發明的裝置之配置所造成其處理量方面的限制可在很大程度上避免。快速坐標變換可例如以場可編程閘陣列(Field programmable gate array, FPGA)或特定應用積體電路(Application-specific integrated circuit,ASIC)之形式實行於該控制單元中。
又,該控制單元可配置成執行依據本發明的方法之該等方法步驟。
在第二具體實施例中,一種用於檢測及/或處理樣品的裝置包含:(a)一掃描式粒子顯微鏡,其用於提供可在該樣品之一表面上導向的一帶電粒子束;以及(b)一掃描式探針顯微鏡,其帶有一可偏轉探針及用於偵測該探針之一偏轉的一光指示器系統;(c)其中該光指示器系統在該掃描式粒子顯微鏡之一圓柱中至少部分引導。
依據本發明的裝置之此具體實施例允許非常緊密實現掃描式粒子顯微鏡與掃描式探針顯微鏡之組合,其該等交互作用區域帶有樣品或光微影成像元件重疊。儘管依據本發明的裝置之結構緊密,但該掃描式探針顯微鏡之探針之偏轉仍可藉助已證明其價值的光指示器系統偵測。
在其用於該帶電粒子束的出口開口,該掃描式粒子顯微鏡可能具有至少一個透鏡,其用於帶有用於通過該帶電粒子束的開口的光指示器系統。用於該光指示器系統的透鏡可體現為環形透鏡。
該掃描式粒子顯微鏡可能包含該光指示器系統之一偏轉反射鏡及一窗口。該偏轉反射鏡可使該光指示器系統之光學輻射偏轉實質上90°。該偏轉反射鏡可能具有用於通過該帶電粒子束的開口。
如此允許該光源(其可能透過例如雷射實現)及該光偵測器(其可能以例如四象限光二極體之形式體現)設置於該掃描式粒子顯微鏡之外部。
該光指示器系統之設置於該掃描式粒子顯微鏡中之該等光學元件可具有光學上實質上透明且導電塗層。該光學上透明且導電塗層可能包含一氧化銦錫(Indium tin oxide,ITO)層。
該等光學元件(即該掃描式粒子顯微鏡中的該等透鏡和反射 鏡)之傳導性塗層,可透過散射電子實質上防止該等光學組件之靜電充電。
依據本發明的裝置可能包含一光源,其設置於該掃描式粒子顯微鏡之外部並體現成使該探針偏轉,其中該光源之光學強度在該掃描式粒子顯微鏡中部分引導。用於使該探針偏轉的光源可使用該掃描式粒子顯微鏡中的光指示器系統之該等光學元件。該光源可能包含一雷射系統。該光源可能使用與該光指示器系統之光源不同的波長範圍。
由於激發該偏轉並使用該掃描式粒子顯微鏡內的相同光學元件偵測該偏轉,因此依據本發明的裝置可具有緊密結構。
又,依據本發明的裝置可能包含至少一個第一容器,其用於存放至少一種前驅物氣體;以及至少一個第二容器,其用於存放至少一種蝕刻氣體。而且,依據本發明的裝置可能包含至少一個第三容器,其用於儲備一添加劑氣體。該添加劑氣體必要時可能與該前驅物氣體或該蝕刻氣體混合,以便輔助該樣品上及/或該探針上的局部沉積反應,或輔助該樣品上及/或該探針上的局部蝕刻反應。
存放於該等容器中的該等氣體不僅允許檢測樣品(例如光微影成像圖罩及/或晶圓),而且允許在依據本發明的裝置之情況下對其進行處理。
依據本發明的裝置可配置成在該掃描式探針顯微鏡之探針上沉積犧牲尖端。該犧牲尖端可借助於該掃描式粒子顯微鏡之帶電粒子束及存放於該第一容器中的一種或多種前驅物氣體,沉積於該掃描式探針顯微鏡之探針上。
該帶電粒子束可為了沉積該犧牲尖端之目的而穿過該探針。該掃描式探針顯微鏡可能進一步體現成使該探針繞著其縱軸旋轉。
該等以上所說明裝置可能進一步體現成將存在於該樣品上的粒子連接到該探針。該粒子可透過藉助沉積製程(其透過該帶電粒子束在該前驅物氣體上引致)將材料沉積於該探針及/或該粒子上連接到該探針。
該帶電粒子束可為了沉積該連接材料之目的而穿過該探針。又,該帶電粒子束可為了沉積該連接材料之目的而引導通過該探針之開口。
又,依據本發明的該等裝置可體現成將連接到該探針的粒子與該探針分離。該粒子可透過執行局部電子束引致蝕刻(Electron beam induced etching,EBIE)製程與該探針分離。
該粒子可透過將粒子連接到該掃描式探針顯微鏡之探針確實去除,即使是來自樣品難以接近之各點的粒子。該樣品之清潔製程時常無法到達在難以接近的各點的粒子。
該連接材料可能在該探針與該粒子之間形成連接,前述連接在受限範圍內可拆離或不可拆離。
若該連接材料在該探針或該探針之犧牲尖端與該粒子之間形成在受限範圍內可拆離的連接,則具優勢。在這種情況下,該探針可用於依次去除若干粒子。然而,該連接材料也可能在該探針與該粒子之間實現不可拆離連接。在這種情況下,已裝載粒子的探針會更換為新探針。
用於在該探針上及/或該粒子上沉積連接材料的前驅物氣體可能包含來自下列群組的至少一個要素:乙烯(C2H4)、苯乙烯(C8H8)、芘(C16H10)、十六烷(C16H34)、液態石蠟、甲酸(CH2O2)、丙酸(C3H6O2)、及甲基丙烯酸甲酯(C5H8O2)。
若該連接材料具有大量碳成分,則具優勢。該連接材料之大量碳成分有助於簡單分離從該樣品、從該掃描式探針顯微鏡之探針去除的粒子。而且,在EBIE製程中分離該探針與該粒子之間連接期間,占大多數或至少部分的連接材料包含碳形式揮發性化合物,其可容易地從該局部製程之反應區域去除。
用於連接探針和粒子的材料可導電。用於沉積導電連接材料的前驅物氣體可包含一金屬羰基。金屬羰基可包含來自下列群組的至少一 個要素:六羰基鉻(Cr(CO)6)、六羰基鉬(Mo(CO)6)、六羰基鎢(W(CO)6)、八羰基二鈷(Co2(CO)8)、十二羰基三釕(Ru3(CO)12)、及五羰基鐵(Fe(CO)5)。
蝕刻氣體可能包含水蒸汽、過氧化氫、二氟化氙(XeF2)、二氯化氙(XeCl2)、四氯化氙(XeCl4)、XNO、XNO2、XONO2、X2O、XO2、X2O2、X2O4、及X2O6,其中X係鹵素,以及亞硝醯氯(NOCl)。
該探針可能包含一測量尖端,其用於檢測該樣品。依據本發明的該等裝置可體現成將犧牲尖端沉積到該探針上。又,該等所說明裝置可體現成在該探針之測量尖端上沉積該犧牲尖端。
為了在該探針上沉積犧牲尖端之目的,若該犧牲尖端之尖端和該帶電粒子束共線,則具優勢。因此,若該探針體現成可繞著其縱軸旋轉,則具優勢。通常,該帶電粒子束之參數必須為了沉積該犧牲尖端之目的而調適。
該犧牲尖端可具有50nm至10μm、較佳為100nm至5μm、更佳為200nm至2μm、及最佳為500nm至1μm之範圍內的長度。該犧牲尖端可具有直徑在5nm至1000nm、較佳為10nm至500nm、更佳為15nm至200nm、及最佳為20nm至100nm之範圍內的圓柱外形。
該探針之犧牲尖端可基於碳。用於沉積犧牲尖端的前驅物氣體可能包含下列至少一個要素:乙烯(C2H4)、苯乙烯(C8H8)、芘(C16H10)、十六烷(C16H34)、液態石蠟、甲酸(CH2O2)、丙酸(C3H6O2)、及甲基丙烯酸甲酯(C5H8O2)。
犧牲尖端可能導電。用於沉積導電犧牲尖端的前驅物氣體可能包含一金屬羰基。金屬羰基可包含來自下列群組的至少一個要素:六羰基鉻(Cr(CO)6)、六羰基鉬(Mo(CO)6)、六羰基鎢(W(CO)6)、八羰基二鈷(Co2(CO)8)、十二羰基三釕(Ru3(CO)12)、及五羰基鐵(Fe(CO)5)。
該探針可能包含一懸臂,其帶有一測量尖端;以及一扣接(fastening)區域,其附接到該懸臂與該測量尖端相對之末端。藉助其扣接區 域,該探針可連接到該掃描式探針顯微鏡之壓電致動器。
該帶電粒子束可能包含下列群組之至少一個要素:一電子束及一離子束。
用於檢測該樣品的電子束實質上不會損傷樣品(例如光微影成像元件)。又,用於沉積犧牲尖端及/或用於將該犧牲尖端連接到粒子的電子束所引致沉積製程具優勢,因為該沉積反應可精確局部化。而且,對該探針或該犧牲尖端的損傷,可透過使用用於從該探針或該犧牲尖端去除粒子的EBIE製程保持很低。
該粒子可包含5nm至10μm、較佳為10nm至5μm、更佳為15nm至20μm、及最佳為20nm至1μm之一直徑。
該探針定位成收納粒子之犧牲尖端可能與要去除的粒子具有0nm至2000nm、較佳為0nm至500nm、更佳為0nm至100nm、及最佳為0nm至50nm距離。
該樣品可能包含一光微影成像元件。該光微影成像元件可能包含來自下列群組的至少一個要素:一光微影成像圖罩、用於奈米壓印微影的一模板、及一晶圓。該光微影成像圖罩可包含一反射或透射圖罩。而且,該光微影成像圖罩可能包含任何圖罩類型。
該等裝置可能包含一個或多個位移元件,其體現成在三個空間方向上執行該探針與該樣本之間的一相對移動。
依據本發明的裝置可能包含一經修改掃描式電子顯微鏡及至少一個原子力顯微鏡。
依據本發明的該等裝置可能更包含一偵測器,其用於偵測X光輻射。
粒子只能在樣品上很受限範圍內進行檢測,例如在光罩上。首先,粒子時常局部化於該樣品難以接近之各點。其次,當然由於分析該粒子不應一方面修改該樣品之周圍環境區域,因此原位的該等分析選項很 受限。另一方面,分析該粒子不應受到圍繞該粒子的樣品扭曲。若粒子借助於清潔製程從該樣品去除,則分析其材料組成物通常會漠視前述粒子。
與該帶電粒子束(其激發從該樣品去除的粒子)組合,該偵測器可用於判定該粒子之材料組成物。
在一個具體實施例中,用於在樣品上移動粒子的方法包括下列步驟:(a)將可相對於該樣品移動的一探針定位於要移動的粒子附近;(b)為了在該定位期間判定該探針之一偏轉之目的,使用一掃描式粒子顯微鏡之一帶電粒子束、在該掃描式粒子顯微鏡中至少部分引導的一光指示器系統、或包含設置於一探針上的一反射結構的一光指示器系統(前述反射結構以不同於零的一角度設置於該探針之一表面上);以及(c)透過相對於該樣品移動該探針移動該粒子。
掃描式粒子顯微鏡之帶電粒子束可用於檢測樣品。然後,透過該帶電粒子束識別的粒子,應借助於掃描式探針顯微鏡之探針移動。藉由該移動,該粒子應從其錨定或鎖定於該樣品上拆離,使得該粒子可在清潔製程期間從該樣品去除。透過藉由該探針移動,也可能將該粒子輸送到該樣品上該粒子不會妨害該樣品(例如該光微影成像元件)之功能的位置。在光罩之情況下,舉例來說,這可以係光罩或吸收圖案元件之非活性區域。
該探針必須為了移動該所識別出粒子之目的而定位於該粒子或附近。由於該樣品及/或該探針可在使掃描式探針顯微鏡之探針接近樣品表面的製程中受損,因此該製程係有風險的製程。因此,有必要監測此製程。由於在此使用該掃描式粒子顯微鏡之帶電粒子束(其發現該粒子)、使用光指示器系統(其在該掃描式粒子顯微鏡中至少部分引導該光學輻射)、或使用光指示器系統(其在該掃描式探針顯微鏡之探針上具有反射結構)(前述反射結構相對於該探針之表面具有不同於零的角度),因此依據本發明的方法一方面需要該探針關於該所識別出粒子之對準的最小花費,且另一方面有助於該探針無風險接近樣品或要移動的粒子。而且,使用光指示器系統 有助於判定施加於探針上的該等力道,並因此判定其控制。
相對於該樣品定位該探針可能包含判定作用於該探針與該樣品之間的一力道。
該探針接近該樣品之表面時對該探針及/或該樣品的損傷,可透過測量該探針與該樣品之間的交互作用避免。
依據本發明的方法可能更包括下列步驟:使用該掃描式粒子顯微鏡之粒子束成像該樣品及/或該粒子。
該所說明方法可能更包括下列步驟:在判定該探針之偏轉與成像該樣本之間切換。
該所說明方法之顯著優勢在於,掃描式粒子顯微鏡與掃描式探針顯微鏡之組合(其該等交互作用區域帶有樣品重疊)有助於在該等個別顯微鏡之該等操作模式之間迅速切換。所以,除了該探針接近樣品之流程之外,粒子在樣品表面上之移動也可監測。結果,嘗試錯誤程序之本質可從粒子在樣品上之移動至少部分去除。
依據本發明的方法可能更包含下列步驟:將該探針連接到該粒子。將該探針連接到該粒子可能包含下列步驟:將材料沉積於該探針及/或該粒子上。
除了借助於該掃描式探針顯微鏡之探針移動粒子之外,也可能透過將材料沉積於這兩個元件上或之間將該粒子連接到該探針。在該探針與該粒子之間生成穩定機械連接之後,該粒子可透過在該探針與該樣品之間執行相對移動以所定義方式移動。特別是,該粒子可從該樣品去除。
依據本發明的方法可能更包括下列步驟:借助於該帶電粒子束及用於電磁輻射的能量分散偵測器分析該粒子。該帶電粒子束可能激發該粒子,且源自該粒子的X光輻射可透過能量分散X光輻射偵測器分析。
將該探針連接到粒子之優勢在於,耦合到該探針的粒子可提供進行其未受到該等樣品周圍環境影響的材料組成物之檢測。結果,可能 至少部分判定該(等)粒子產生源。所以,該粒子分析代表用於去除此粒子源(這些粒子源)的重要步驟。
該所說明方法可能更包含下列步驟:從該探針去除該粒子。從該探針去除該粒子可能更包含執行透過一帶電粒子束引致的一局部蝕刻製程。
透過從該探針去除該粒子,載有粒子的探針無需更換,但可用於移動或去除進一步粒子。
判定該探針之偏轉可能包含:將該帶電粒子束定位於附接到該探針的一偵測區域上。
該所說明方法可能更包含下列步驟:設定該帶電粒子束之截面積,使得該波束具有大於10nm2、較佳為20nm2、更佳為50nm2、及最佳為大於100nm2之截面積。
如以上已解說,在依據本發明的方法之第一示例性具體實施例中,該帶電粒子束關於附接到該探針的偵測區域故意散焦,使得透過該探針之帶電粒子束引致的測量信號之空間相關性降低。又,在此示例性具體實施例中,該帶電粒子束未在該探針上方掃描;而是,設定到該探針之區域交互作用區域內的固定位置。
判定該探針之偏轉可能包含:在該探針上方掃描該帶電粒子束。特別是,判定該探針之偏轉可能包含:在該探針具有至少一個標記之一區域上方掃描該帶電粒子束。
依據本發明的方法可能更包含下列步驟:使該探針上方該帶電粒子束之掃描與該探針之一振動同步進行。
該所說明方法可能更包括下列步驟:在<50μs、較佳為<10μs、更佳為<1μs、及最佳為<0.1μs的一時間間隔內,在該探針之一坐標系統與該樣品之坐標系統之間執行一坐標變換。
依據本發明的方法可能更包括下列步驟:使用一能量分散X 光輻射偵測器偵測源自一粒子的X光輻射。
最後,一種電腦程式可能包含指令,其當透過一電腦系統執行時,使得如申請專利範圍第1項至第12項之一之該等裝置執行如申請專利範圍第17項之該等方法步驟。
100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600‧‧‧探針
110‧‧‧懸臂
115‧‧‧正面
120、150、170、220‧‧‧測量尖端
125‧‧‧背面
130‧‧‧扣接區域
225、830、1850‧‧‧尖端
230‧‧‧偵測結構
240‧‧‧帶電粒子束
250、300、450、490、550、590、700、720、740、760、1700、1800、2000、2200、2605‧‧‧圖示
260‧‧‧二次帶電粒子
270‧‧‧二次電子(SE)
280‧‧‧入口開口
290‧‧‧偵測系統
400‧‧‧樣品
410、460、470、570、710‧‧‧雙頭箭頭
480‧‧‧二次電子(SE)信號
530‧‧‧偵測結構
533、536‧‧‧層
560‧‧‧箭頭
580‧‧‧背向散射電子(BSE)信號
770‧‧‧平均距離
780‧‧‧曲線或振動
810‧‧‧懸臂
820‧‧‧開口
840、2415‧‧‧帶電粒子束
850‧‧‧表面
1030‧‧‧偵測結構
1040‧‧‧電子束
1130‧‧‧偵測結構
1140‧‧‧電子束
1150、1250‧‧‧側向位移
1160‧‧‧自由末端
1230‧‧‧偵測結構
1240、1260‧‧‧標記
1330、1530‧‧‧偵測結構
1340、1360‧‧‧矩形元件
1380‧‧‧曲線
1505‧‧‧局部圖像
1555‧‧‧局部圖像
1605‧‧‧局部圖像
1630‧‧‧偵測結構
1655‧‧‧局部圖像
1690‧‧‧偵測結構
1710‧‧‧掃描式電子顯微鏡
1715、1725、1735、1745、1765‧‧‧連接
1720‧‧‧探針驅動器
1730‧‧‧延遲單元
1740‧‧‧偏轉產生器
1750‧‧‧信號處理單元
1780‧‧‧掃描
1810、2425‧‧‧樣品台
1820‧‧‧支撐件
1830、1870‧‧‧坐標系統
1840‧‧‧奈米操縱器
1860‧‧‧處理頭
1910‧‧‧四漸變壓電致動器
1920‧‧‧圓柱
1930‧‧‧出口開口
2010‧‧‧樣品
2020‧‧‧基板
2030‧‧‧吸收圖案元件
2040‧‧‧犧牲尖端
2050‧‧‧粒子
2140、2340‧‧‧電子束
2150‧‧‧前驅物氣體
2160‧‧‧連接材料
2250‧‧‧箭頭
2350‧‧‧蝕刻氣體
2400、2500、2600、2700‧‧‧裝置
2410‧‧‧掃描式粒子顯微鏡
2412‧‧‧電子源
2417‧‧‧圓柱
2420‧‧‧位置
2422‧‧‧樣品
2427‧‧‧偵測器
2430‧‧‧控制裝置
2435‧‧‧第三偵測器
2437‧‧‧監視器
2440‧‧‧電腦系統
2445‧‧‧供應容器
2446、2451、2456‧‧‧控制閥
2447、2452、2457‧‧‧氣體饋線系統
2448、2453、2458‧‧‧噴嘴
2450‧‧‧供應容器
2455‧‧‧供應容器
2460‧‧‧真空腔室
2462‧‧‧泵浦系統
2465‧‧‧反應腔室
2470‧‧‧掃描式探針顯微鏡
2475‧‧‧測量頭
2480‧‧‧夾持裝置
2505‧‧‧部分
2510‧‧‧透鏡
2515‧‧‧波束光學單元
2520‧‧‧雷射系統
2530‧‧‧偏轉反射鏡
2540‧‧‧光偵測器
2550‧‧‧光指示器系統
2560、2570‧‧‧光
2580‧‧‧窗口
2590‧‧‧出口開口
2610‧‧‧光學輻射
2620‧‧‧光學輻射
2630‧‧‧偵測結構
2650‧‧‧光學光指示器系統
2660‧‧‧交互作用區域
2670‧‧‧透鏡
2800‧‧‧流程圖
2805、2810、2815、2820、2825、2835、2845、2850、2855、2860、2910、2950‧‧‧步驟
2830‧‧‧決策區塊
2840‧‧‧步驟
2865‧‧‧區塊
2900‧‧‧流程圖
2920‧‧‧步驟
2930‧‧‧步驟
2940‧‧‧步驟
下列實施方式參照所附圖式說明目前本發明之較佳示例性具體實施例,其中:圖1示意性顯示帶有懸臂、測量尖端、及扣接區域的探針;圖2藉由包含一探針(帶有一偵測區域及一偵測結構)的第一示例性具體實施例,示意性再現剖面圖;圖3例示該二次電子產出率為激發電子束與偵測器之間角度之函數;圖4在該上側局部圖像(圖示450)中,藉由在樣品表面上方振動的探針例示示意剖面圖(前述探針具有偵測區域),並在該下側局部圖像(圖示490)中,闡明該偵測區域在該上側局部圖像之探針之振動期間之極值位置,以及該相關聯二次電子信號;圖5在該上側局部圖像(圖示550)中再現圖4之上側局部圖像,其中該探針包含一偵測結構之一第二示例性具體實施例,並在該下側局部圖像(圖示590)中,用符號表示該偵測結構在該上側局部圖像之探針之振動期間之極值位置,以及該等相關聯背向散射電子;圖6再現該二次電子產出率δ及該背向散射係數η為該原子序數之函數;圖7示意性呈現探針接近樣品表面之程序之時間分佈狀況,以及相關聯二次電子信號;圖8藉由在樣品上方的探針例示示意剖面圖,其中該探針之 懸臂具有偵測區域及用於通過帶電粒子束的開口;圖9藉由在樣品上方的探針呈現示意剖面圖,其中該探針之懸臂具有偵測結構之第二示例性具體實施例及用於通過帶電粒子束的開口;圖10藉由具有曲面偵測區域的探針再現示意剖面圖;圖11在該左側局部圖像中,藉由探針例示示意剖面圖(前述探針具有形式為標記的偵測結構之又一示例性具體實施例),並在該右側局部圖像中,闡明該探針在其偏轉之情況下之圖像中該標記之側向偏移;圖12再現圖11,其中該偵測結構以高度不同的兩個標記之形式體現;圖13在該下側局部圖像中,指定形式為沿著該探針之縱軸在彼此有距離處關於該縱軸橫向設置的兩個區域元件的偵測結構之又一示例性具體實施例,並在該上側局部圖像中,呈現在這兩個區域元件上方的帶電粒子束沿著該探針之縱軸進行線掃描之情況下的測量信號;圖14再現該探針之測量尖端碰觸該探針之表面時的圖13;圖15示意性例示形式為矩形元件的偵測結構之各種示例性具體實施例之側視圖和前視圖;圖16示意性闡明與探針之各種測量尖端組合的偵測結構之進一步示例性具體實施例之側視圖和前視圖;圖17藉由用於掃描式粒子顯微鏡的信號處理單元,以及其到掃描式探針顯微鏡之探針驅動器及到用於該掃描式粒子顯微鏡之帶電粒子束的掃描信號之產生器的該等連接,例示剖面圖;圖18示意性例示奈米操縱器,其坐標系統關於該樣品台之坐標系統旋轉;圖19示意性顯示使用四漸變壓電致動器,在掃描式電子顯微鏡之線圈之出口開口與樣品之間定位探針並使其偏轉; 圖20藉由附接到探針之測量尖端且在存在於光罩上的粒子附近定位於掃描式電子顯微鏡之圓柱之出口開口下方的犧牲尖端,再現示意剖面圖;圖21示意性闡明圖20之粒子透過執行局部沉積製程連接到該犧牲尖端的方式;圖22示意性例示從該光罩去除連接到該犧牲尖端的粒子之程序;圖23示意性再現透過執行局部蝕刻製程將該粒子與該犧牲尖端分離的方式;圖24藉由掃描式電子顯微鏡與原子力顯微鏡之組合例示剖面圖;圖25藉由掃描式電子顯微鏡與原子力顯微鏡之組合顯示剖面圖,其中用於偵測該原子力顯微鏡之探針之偏轉的光指示器系統之輻射在該掃描式電子顯微鏡之圓柱中部分引導;圖26藉由掃描式粒子顯微鏡、掃描式探針顯微鏡、及光指示系統之組合呈現示意剖面圖,其中該光指示器系統具有設置於該探針上的反射結構,前述反射結構以不同於零的角度設置於該掃描式探針顯微鏡之探針上;圖27藉由掃描式電子顯微鏡與奈米操縱器(其以關於該樣品法線旋轉的方式設置於該掃描式電子顯微鏡之圓柱中)之組合呈現剖面圖;圖28使用圖24至圖26之該等裝置之一,再現樣品之處理流程之流程圖;以及圖29例示用於依據本發明的方法的流程圖。
用於檢測及/或處理樣品的依據本發明的裝置及依據本發明的方法之目前較佳具體實施例,以下使用光微影成像圖罩之範例更詳細解說。然而,使用依據本發明的該等裝置及依據本發明的方法不受限於以下所討論該等範例。而是,這些一般可用於檢測及/或處理光微影成像元件。特別是,本申請案中所說明該等裝置和方法可用於分析及/或修改帶有該奈米範圍內的結構的高度敏感樣品。舉例來說,依據本發明的該等裝置及依據本發明的方法可能用於檢測及/或修改生物樣品。
圖1示意性呈現用於掃描式探針顯微鏡的探針100之範例。示例性探針100包含一彎折樑110或一槓桿臂110。如該技術領域中的慣例,彎折樑110以下稱作懸臂110。探針100之懸臂110在一個末端(該自由末端)具有測量尖端120。測量尖端120施加於探針100之懸臂110之背面125。以下,與測量尖端120相對的面稱作探針100之正面115或頂面115。在圖1之範例中,測量尖端120包含一細長薄尖端,其具有一小曲率半徑,該尖端體現成分析一樣品表面(例如一圖罩或一晶圓)。在與測量尖端120相對的末端或該自由末端,探針100之懸臂110具有扣接區域130。借助於扣接區域130,探針100可連接到併入掃描式探針顯微鏡之測量頭中的壓電致動器(圖1中未例示)。
探針100之懸臂110可透過移動扣接區域130移動。特別是,懸臂110可激發以振動。為此目的,探針100之扣接區域130(如以上已說明)可連接到可激發懸臂110例如在探針100之共振頻率或附近振動的壓電致動器(圖1中未再現)。懸臂110之振動模式可在測量尖端120接近樣品之表面期間使用,及/或用於在粒子之區域中感測樣品。
以下,該用語「樣品」(sample)包含元件,其在其表面中至少一者上具有尺寸在該微米及/或奈米範圍內的結構元件。該等結構元件包含結構,其為所預期;以及結構元件,其不應存在於一樣品上,例如粒子。特別是,樣品可能包含光微影成像元件。光微影成像元件包含光微影成像 圖罩、晶圓、及/或模板,其用於奈米壓印技術。
懸臂110可能具有雙漸變結構,即包含兩個互連層,其彼此疊置,前述各層表現出不同熱膨脹性質(圖1中未例示)。依該具體實施例而定,由於將能量沉積於前述懸臂中,因此懸臂110可朝向或遠離該樣品表面彎折。舉例來說,能量可透過用雷射束照射局部引入懸臂110中。又,可能將電阻附接到懸臂110,以透過局部加熱使該懸臂朝向或遠離該樣品表面彎折(圖1中未顯示)。
如以上已解說,探針100可藉由扣接區域130連接到例如形式為壓電致動器的致動器(圖1中未例示)。該壓電致動器可使探針100之懸臂110偏轉。特別是,該壓電致動器可使測量尖端120在樣品表面之方向上移動。又,該壓電致動器可激發探針100之懸臂110振動。較佳為,該壓電致動器在探針100之共振頻率或附近激發懸臂110。懸臂110可包含一電阻元件,其用於使懸臂110朝向或遠離該圖罩之表面彎折。又,使探針100偏轉可使用附加光源,前述光源之光束在該掃描式粒子顯微鏡中部分引導。
又,可能由於靜電力及/或基於該逆壓電效應而使懸臂110偏轉。而且,磁場(磁致伸縮)可用於使懸臂110朝向該樣品表面或遠離該樣品表面移動。
探針100之懸臂110與測量尖端120相對之表面可提供有薄金屬反射層,以便提高懸臂110之表面對於用作光指示器的光束(圖1中未顯示)之反射率。
在該上側局部圖像中,圖2藉由帶有懸臂110和測量尖端220的探針200(其已相對於探針100之測量尖端120傾斜)顯示示意剖面圖。藉由測量尖端220之如此設置,帶電粒子束可感測測量尖端220之尖端225。特別是,該帶電粒子束可判定測量尖端220與樣品表面之間的接觸,及/或與存在於該樣品表面上的粒子的距離。
形式為偵測區域230的偵測結構230附接到探針200與背面125(測量尖端220設置於其上)相對之正面115。在圖2中所例示範例中,偵測區域230關於探針200之正面表面115(其與探針200之具有測量尖端220的背面表面125相對)具有約為40°之角度。在替代示例性具體實施例中。偵測區域230關於探針200之正面表面115具有在80°至88°之範圍內的角度。
探針200和偵測區域230可能具有整體具體實施例。然而,由發出能力針對該向前方向上的二次帶電粒子最佳化的材料製造偵測區域230具優勢。適合此目的者係原子具有高原子序數的材料,例如鎢、鋨、銦、鉑、或金。
圖2之圖示250以放大方式顯示帶電粒子束240入射到探針200之偵測區域230上。帶電粒子束240可包含一電子束及/或一離子束。在不失一般性的情況下,在下列觀察中為了簡化,帶電粒子束240受限於電子束240且二次帶電粒子260受限於二次電子260。對於入射到偵測區域230上的離子束,可類似進行下列觀察。
電子束240由於與偵測區域230之材料的交互作用而生成二次電子。該等二次電子包含散射或背向散射電子及二次電子(SE)。所生成該等二次電子具有寬廣能量頻譜。通常,該等二次電子之頻譜在數電子伏特(electron volt,eV)之範圍內具有峰值,接著係寬廣背景。由於能量守恆,二次電子之最大能量受到入射到偵測區域230上的電子束240之動能限制。
二次電子指稱動能在離開該偵測區域之後<50eV的所有二次電子。其最有可能的能量位於2至5eV之能量範圍內。由於其低動能及因此其在偵測區域230之材料中的低範圍,該等SE源自厚度為5nm至50nm的偵測區域230之薄表面層。該等SE由電子束240與偵測區域230之材料之原子殼層之非彈性交互作用產生。
所生成具有較大動能的二次電子稱為背向散射二次電子 (Backscattered secondary electron,BSE)或簡稱為背向散射電子(Backscattered electron,BE)。該BSE之寬廣頻譜係關於電子束240之電子,其由於偵測區域230之材料中的許多散射程序而已失去其一些動能。來自偵測區域230的出射表面之直徑及該BSE之穿透深度依偵測區域230之材料及電子束240之能量而定。兩者皆位於微米數量級。
下列考量係關於SE,即動能<50eV的二次電子。如圖2之圖示250中所闡明,SE可透過偵測區域230在該向前方向及在該向後方向上發出。若該等SE 260透過偵測區域230之表面(一次帶電粒子束240入射到其上)發出,則其在該向前方向上離開偵測區域230。相反地,若該等SE 270透過偵測區域230之表面(其與一次帶電粒子束240之入射區域相對)發出,則其在該向後方向上離開偵測區域230。
偵測區域230之材料組成物以該向前方向上所發出該等二次電子(SE)260之發出速率最大化且該向後方向上所發出該等二次電子270之發出速率最小化的方式選擇。為此目的,對於偵測區域230選擇具有高原子序數的材料具優勢。
該二次電子產出率或SE產出率δ定義為電子束240所發出二次電子之數量與一次電子之數量之商數。該SE產出率對入射到該偵測區域上之角度之相關性,透過下列公式大致說明(參見A.G.Libinson:「低激發時二次電子發出之傾斜相關性」(Tilt dependence of the secondary electron emission at low excitation),《Scanning》期刊第21冊,23-26頁(1998年)):
Figure 108121315-A0202-12-0026-1
其中δSE(0)表示垂直入射到樣品上的電子束之SE產出率;θ表示該樣品相對於該水平定向之旋轉角度,即θ=90°說明該電子束掠入射到該樣品上;且η表示通常在0.8至1.2之範圍內的材料與能量相關係數。
偵測區域230關於入射電子束240之材料組成物、材料強度或材料厚度、及定向,可以對於帶電粒子束240之所預定電子能量該向前 方向上所發出SE 260之低雜訊且低失真SE信號從偵測區域230得到的方式,借助於該所指定公式最佳化。圖2中的上圖示示意性例示在該向前方向上,透過偵測區域230發出的該等SE 260之軌跡。該等SE 260入射到設計成偵測二次電子270的偵測系統290或偵測器290之入口開口280上。舉例來說,偵測器290可例如以Everhart-Thornley探測器之形式由閃爍器與光電倍增器組合而成。
圖2中示意性所例示電子束240、偵測器、SE 260、及偵測器之配置包含一SE偵測器290。也可能使用兩個或多個SE偵測器290偵測該等SE 260。
圖3中的圖示300顯示SE信號強度為入射電子束240與偵測區域230之間角度之函數。與圖2中所例示者不同,在此示例性具體實施例中,偵測區域230幾乎垂直探針200之平面或入射電子束240之波束軸,且該偵測區域僅具有小於10°之小角度。由於吸引(suction)電壓施加於偵測系統290,因此幾乎所有二次電子皆透過偵測系統290記錄。在圖3中所例示範例中,選擇電子束240之掠入射以便最佳化該SE產出率之角度相關性。如從以上所指定公式顯而易見,在該所指定小角度範圍內,該SE產出率δ如所預期比線性略強提高。
圖4之上側局部圖像(或圖示450)顯示圖2之探針200,其在樣品400(例如光微影成像元件400)上方振動。探針200之振動透過雙頭箭頭410符號表示。探針200繞著垂直該紙平面的軸振動。圖4中的圖示450之快照顯示探針200與樣品400之間最接近時的探針200或其測量尖端220。用於激發探針100、200振動的各種選項,皆在圖1之上下文中說明。
圖4中的下側局部圖像(或圖示490)闡明探針200之偵測區域230在這兩個極值點(即探針200之測量尖端220之移動方向之逆向點)之定向。在藉由雙頭箭頭460符號表示的偵測區域230之設置中,該偵測區域具有與圖2之探針200實質上相同的對準。在此配置中,該SE產出率 由於方程式1中所指定角度相關性而很高。如圖4中的圖示490中所指定,SE偵測器290之SE信號具有最大值。
在例示於雙頭箭頭470上方的設置中,偵測區域230已由於探針200之偏轉而實質上旋轉到該水平方向上。在偵測區域230之此位置上,該SE產出率由於其角度相關性而很低。因此,透過該偵測系統記錄的二次電子之數量比以上所解說配置者低許多。
圖5之上側局部圖像中的圖示550,示意性呈現具有偵測結構530的探針500之第二示例性具體實施例。就像在圖4中,探針500在樣品400上方振動。這再次透過雙頭箭頭410闡明。在圖5中所例示範例中,偵測結構530包含一矩形結構530,其帶有兩個層,其該等材料具有不同原子序數。
首先,圖6呈現該二次電子產出率δ為該原子序數或質子數之函數。對於該SE產出率δ的測量資料來自D.B.Wittry:「Optique des rayons X et microanalyse」(編輯R.Castaing、P.Deschamps、J.Philibert),Hermann出版社,法國巴黎,185頁(1966年)。其次,圖6再現背向散射電子的背向散射係數η為該原子序數之函數。對於該背向散射係數η的測量資料已取自該投稿「X光光學與微量分析」(X-Ray Optics and Microanalysis),K.F.J.Heinrich,《第4屆X光光學與微量分析國際會議論文集》(Proc.4th Internat.Congress on X-Ray Optics and Microanalysis),編輯R.Castaing、P.Deschamps、及J.Philibert,Hermann出版社,法國巴黎,1509頁(1966年)。該SE產出率δ及該等背向散射電子(BSE)的係數兩者皆隨著該原子序數之函數而變化。較佳為,為了判定探針500之偏轉之目的,將原子序數相距盡可能遠的材料用於偵測結構530。舉例來說,對於由碳(Z=6)與鉭(Z=73)、鎢(Z=74)、錸(Z=75)、鋨(Z=76)、銦(Z=77)、鉑(Z=78)、及金(Z=79)之該等金屬之一製成的偵測結構530之組合,該等背向散射係數之商數顯著大於5。
返回參照圖5中的圖示550,電子束240導向到偵測結構530之一個層上。透過偵測結構530發出的電子束240之該等電子,透過該等箭頭560闡明。在圖5中所例示快照中,探針500或其測量尖端220最接近樣品400。電子束240導向到偵測結構530具有低原子序數或質子數之層533。在一個振動週期之範疇內,電子束240穿過偵測結構530兩次,並在探針500與樣品400之間距離最大的逆向點在偵測結構530帶有該高原子序數之層536上導向。
圖5中的下側局部圖像(或圖示590)在這兩個極值點(即探針500之測量尖端220之移動方向之逆向點),用符號表示電子束240入射到探針500之偵測結構530上。在藉由雙頭箭頭560符號表示的電子束240與偵測結構530之間的配置中,電子束240入射到偵測結構530帶有高原子序數之層536上,且透過電子束240之該等所發出電子560造成的BSE信號具有最大值。如圖5中的圖示550之上下文中所解說,探針500之測量尖端220此時與樣品400具有最大距離。
透過雙頭箭頭570闡明時,電子束240在偵測結構530之層533(其材料具有低原子序數)上導向。該電子束透過層533發出之該等電子560之背向散射係數η很小,且BSE偵測器僅登記低信號。此時探針500之測量尖端220與樣品400之距離為最小值。
圖7中的圖示700示意性顯示探針200、500接近樣品400之程序,如圖2之上下文中所解說,前述接近透過用電子束240照射偵測區域230或偵測結構530並用偵測器290偵測該等二次電子260,或透過偵測該等背向散射或所發出電子560監測。為了清楚表示,圖7之該等圖示720、740、及760中已省略偵測區域230或偵測結構530及電子束240。
圖示720表示探針200、500之自由振盪。探針200、500之無阻礙振動透過圖示720中的雙頭箭頭710符號表示。實線770呈現探針200、500之測量尖端220與樣品400之表面之平均距離之時間曲線。曲 線或振動780顯示偵測器290之SE信號480或該等背向散射電子560之BSE信號580為時間之函數。通常,探針200、500之無阻礙振動之頻率在10Hz至10MHz之範圍內。在圖7中所例示範例中,該振動頻率在45kHz。通常,該探針之自由振動之幅度在5nm至5μm之範圍內。在圖7之範例中,該振動幅度約為200nm。
圖7中的圖示740呈現其中測量尖端220與樣本400之間的平均距離以線性方式減小的配置,即探針200、500降低到樣品400上。探針200、500之振動幅度變得小於平均距離770的兩倍後,探針200、500立即開始在每個振動週期期間皆落到樣品400之表面上。在振動週期期間,測量尖端220與樣品400接觸期間的時間部分隨著探針200、500之測量尖端220與樣品400之表面之間的平均距離消失而增加。在振動週期期間,曲線780之幅度在測量尖端220與樣品400接觸後立即開始減小。若探針200、500之測量尖端220不再從樣品400之表面舉離,則SE信號480或BSE信號580由於實質上不再有該SE產出率之角度相關性方面的改變而消失,並因此不再有每單位時間所偵測到該等二次電子260方面的改變。
圖7中的圖示760最後闡明其中探針200、500之測量尖端220不再從樣品400之表面舉離的狀態。
圖8藉由帶有懸臂810和測量尖端220(其就像在圖2、圖4、圖5、及圖7中遠離探針800之扣接區域130斜向指向放置)的探針800示意性顯示剖面圖。探針800之懸臂810具有偵測區域230。又,探針800之懸臂810具有開口820,電子束840通過其可掃描或供應樣品400在測量尖端220之尖端830之區域中之表面850。與先前該等示例性具體實施例中所說明者不同,聚焦電子束840用於掃描樣品表面850。為了偵測透過樣品400發出的該等SE 260和背向散射電子(BSE)560之目的,可使用設置於該掃描式粒子顯微鏡之圓柱中的偵測器290或第二偵測器(圖8中未顯示)。
樣品400(例如光微影成像圖罩400)可電絕緣或至少包含電 絕緣區域。在用帶電粒子束(例如電子束840)照射期間,電絕緣區域可能以靜電方式充電。結果,透過電子束840生成的圖像失真。憑藉探針800未施加於懸臂810之自由末端而是施加於在測量尖端220之尖端830之區域中具有開口820的懸臂810之測量尖端220和偵測區域230,探針800之懸臂810可在很大程度上屏蔽樣品表面850之靜電充電,並因此避免樣品400之成像失真。為了使探針800能夠用作電屏蔽元件,探針800之懸臂810有必要具有導電具體實施例。
而且,若懸臂810以可施加電壓的方式設計,則如此可利用於用掃描式探針顯微鏡之探針800檢測帶靜電樣品400。樣品400之靜電充電可透過將電壓施加於探針800之懸臂810在很大程度上補償。如此有助於透過探針800無風險感測樣品400。若未補償樣品400之靜電充電,則電弧作用可能在測量尖端220之尖端830與樣品400之間出現,結果測量尖端220及/或樣品400可受損或甚至損壞無法修復。
圖9再現圖8,其中該唯一差異在於探針900具有偵測結構530,而非偵測區域230。該等探針800和900之功能係耦合到其定位及測量尖端220,並獨立於用於偵測探針800和900之偏轉的偵測結構230、530。據此,關於圖8的該等解說同樣適用於圖9。
圖10再現探針1000,其具有形式為曲面偵測區域1030的偵測結構之第三示例性具體實施例。如透過方程式(1)表達,該SE產出率δ(θ)與電子束240入射到探針200之偵測區域230上的角度θ深切非線性相關。儘管該等二次電子260之信號之如此非線性,但探針200之移動可在閉合控制迴路中調控於該z方向上(即該垂直方向上)。
為了簡化探針200之z移動之閉合迴路控制,偵測結構可以儘管探針200之偏轉或振動,但電子束1040大致總是以相同角度或以大致相同角度撞擊曲面偵測區域1030的方式彎曲。這意指偵測區域1030之曲率再現探針1000在電子束240之入射區域中之偏轉軌跡。結果,由於在很 大程度上所補償該SE產出率之角度相關性,在透過偵測器290測量到的探針1000之偏轉與該SE信號之間出現接近線性關係。然而,由於以曲面偵測區域1030之形式體現偵測結構,入射電子束1040在探針1000之縱向方向上的曲面偵測區域1030上方之平移不變性必須放棄。
圖11闡明偵測結構之又一示例性具體實施例,其使得可能借助於電子束1140(一般來說借助於帶電粒子束1140)偵測掃描式探針顯微鏡之探針1100之偏轉。在圖11中所例示範例中,偵測結構1130具有形式為尖端的標記1130,其施加於與探針1100之懸臂110之測量尖端120相對的表面上。在圖11之範例中,標記1130扣接於與探針1100之懸臂110之自由末端1160相距的距離與測量尖端120實質上相同之處。然而,這不是標記1130之功能的先決條件。然而,將標記1130附接到懸臂110之自由末端1160附近具優勢,因為如此在使探針1100之懸臂110偏轉時,最大化該所偵測到標記1130之改變。為了最大化標記1130透過電子束1140生成之圖像之對比,若將不同材料用於標記1130而非用於探針1100之懸臂110則具優勢。
圖11中的右側局部圖像示意性顯示由於探針1100之偏轉而使探針1100之標記1130之側向位移1150。在用電子束1140成像期間,可能從標記1130之側向位移1150判定探針1100之偏轉。與使用該等偵測區域230、1030查明該偏轉不同,電子束1140較佳為為了透過掃描式電子顯微鏡成像標記1130之目的,以聚焦方式在探針1100具有標記1130之區域上方引導。
圖12呈現探針1200,其具有形式為兩個標記1240和1260的偵測結構1230。這兩個標記1240和1260再次以尖端之形式體現,不過前述尖端具有不同高度。在圖12之範例中,該等標記1240和1260沿著探針1200上的一條線附接,前述線垂直探針1200之縱軸。如此設置不是該等標記1240和1260之功能的先決條件,不過其在由於探針1200在其透過 電子束1140成像期間之偏轉而該等標記1240和1260之側向位移之情況下,簡化該等測量信號之評估。
圖12之右側局部圖像再現不同高度之這兩個標記1240和1260之側向位移1250。對照圖11中所指定僅帶有一個標記1130的示例性具體實施例,帶有這兩個標記1240和1260的探針1200允許為了在這兩個標記1240和1260之圖像中判定探針1200之偏轉之目的而執行不同測量。如此與圖11中的探針1100相比,提高判定探針1200之偏轉之測量準確度。
圖13再現偵測結構1330之又一示例性具體實施例,其使得可能借助於電子束(一般來說借助於帶電粒子束)偵測掃描式探針顯微鏡之探針1300之偏轉。就像在後續圖14中,該電子束並未在圖13中例示。在圖13中所指定範例中,偵測結構1330具有兩個矩形元件1340和1360,其施加於與探針1300之懸臂110之測量尖端220相對的表面115(或頂面115)。該等矩形元件1340、1360延伸於探針1300之寬度之較大部分上方。該等矩形元件1340、1360之該等表面法線實質上平行探針1300之縱軸或懸臂110。在圖13之範例中,這兩個矩形元件1340、1360具有不同高度。然而,此性質對其作為偵測結構1330的功能而言並非必要。又,具有任何薄形或片形結構的元件1340和1360皆可用於生成偵測結構1330。
較佳為,該矩形(一般來說片形元件1340、1360)具有與懸臂110或其表面不同的材料組成物。結果,電子束之該等電子除了該布局對比之外還生成材料對比。對於該等矩形或片形元件1340、1360,帶有高原子序數的材料較佳。如此若使用背向散射電子偵測形式為該等元件1340和1360的偵測結構1330,則特別是適用。然而,也可能透過沉積碳將該等矩形或片形元件1340、1360生成為最大部分。在此具體實施例中,二次電子可用於偵測形式為該等元件1340和1360的偵測結構1330。電子束或帶電粒子束在探針1300之縱軸方向上進行線掃描足以偵測這兩個元件1340和1360。
圖13中的上側局部圖像呈現在偵測結構1320之這兩個元件1340、1360上方進行線掃描之情況下的測量信號。如以上已解說,二次電子260及/或背向散射電子560可用於偵測偵測結構1330。該電子束在線掃描期間感測偵測結構1330之該等元件1340和1360時,該測量信號之曲線1380在每種情況下皆顯示峰值。在圖13中的上側局部圖像中,由於該等矩形或片形元件1340和1360之材料組成物實質上相同,因此這兩個峰具有實質上相同的高度。然而,這不是偵測結構1330之功能的先決條件。而是,偵測結構1330之這兩個元件1340和1360可由不同材料製造。
圖13中的下側局部圖像顯示振動探針1300在其過零(zero crossing)期間之快照。圖14再現探針1300之測量尖端220最接近樣品400時的圖13。在掃描式探針顯微鏡之大多數操作模式中,測量尖端220此時皆與樣品400之表面850機械接觸。由於探針1300或其懸臂110之曲率,電子束在懸臂110之縱向方向上進行線掃描偵測這兩個元件1340和1360之間的表觀間隔(比圖13中小)。因此,偵測結構1330允許偵測探針1300之偏轉,並因此用掃描式探針顯微鏡之探針1300檢測及/或處理樣品400。偵測結構1330之優勢在於,由於這兩個矩形或片形元件1340和1360而無需基準測量。
圖15中的兩個左下側局部圖像1505顯示該等已討論探針500和1300之側視圖。兩個右下側局部圖像1555再現該等探針500和1300之前視圖。此外,左上側局部圖像1505呈現探針1500之側視圖,且右上側局部圖像1555呈現探針1500之前視圖,其中偵測結構1530在探針1500之正面表面115上。偵測結構1530具有延伸於探針1500之大部分寬度上方的矩形元件。偵測結構1530之矩形元件朝向該頂部逐漸變細。如以上在圖13之上下文中已解說,若探針1500之偵測結構1530與探針1500之懸臂110之材料組成物方面有差異,則具優勢。與圖13中的偵測結構1330不同,圖15之形式為單個矩形元件的偵測結構1530需要基準測量,以便 從透過偵測結構1530造成的SE及/或BSE電子之測量信號之峰值之位移偵測探針1500之偏轉。
圖16闡明偵測結構1630和1690之進一步示例性具體實施例。與圖15相似,左側局部圖像1605呈現側視圖,且右側局部圖像1655提供該等探針1600、1640、及1670之前視圖。在該上側局部圖像之探針1600之情況下,測量尖端150與該等測量尖端220不同,指向探針1600之夾持板130。矩形偵測結構1630施加於與測量尖端150相同的表面125。如此配置與先前所討論該等探針200、500、800、900、1000、1100、1200、1300、1500之該等具體實施例相比,簡化探針1600之生產。由於以一定角度放置偵測結構1630,在探針1600之縱向方向上進行線掃描產出二次及/或背向散射電子之測量信號之寬廣最大值。該測量信號之寬度隨著探針1600之振動頻率而週期性變化。
在該等中央局部圖像1605和1655中再現的配置中,在該等上側局部圖像中再現的偵測結構1630沉積於探針1640之懸臂110上。於是,用於探針1640的測量尖端170沉積於偵測結構1630上。與該等測量尖端220和150不同,測量尖端170實質上垂直直立於探針1640之懸臂110之背面表面125上。就像對於探針1600,測量尖端170和偵測結構1630對於探針1640附接於探針1640之懸臂110之下面125上,從而簡化探針1640之生產。而且,由於懸臂110之下面125與樣品400之表面850具有很大距離,因此探針1640之配置具優勢。
圖16中的該等下側局部圖像1605和1655再次呈現探針1670之示例性具體實施例,其中測量尖端220附接到探針1670之懸臂110之背面125。在正面115上,探針1670之懸臂110具有桿形偵測結構1690。代替桿形偵測結構1690,探針1670可具有以其他形式體現的偵測結構。舉例來說,偵測結構1690可以圓柱形之形式或以圓錐形形式體現(圖16中未例示)。而且,可能用任何形體體現偵測結構1690。與偵測結構1630不同, 偵測結構1690藉由在探針1670之懸臂110之正面115上方進行平面掃描成像。
圖17中的圖示1700藉由可用於在掃描程序期間測量探針800、900、1670之振動之激發的裝置示意性顯示剖面圖。該裝置之核心係信號處理單元1750。經由連接1765,該信號處理單元接收掃描式電子顯微鏡1710之測量資料。信號處理單元1750藉助等效時間取樣(Equivalent time sampling,ETS)放慢掃描式電子顯微鏡1710之測量資料。這意指探針800、900、1670之測量信號以比探針800、900、1670之振動頻率低許多的頻率記錄。為此目的,信號處理單元1750具有閘控積分器及/或箱車型平均器(boxcar averager)。
探針驅動器1720經由連接1715激發探針500、800、900、1000、1100、1200、1300、1500、1600、1640、1670振動。在圖17中所例示範例中,這係探針1200。探針驅動器1720經由連接1725將該激發頻率轉送到延遲單元1730。延遲單元1730經由連接1735將觸發信號轉送到偏轉產生器1740,前述偏轉產生器經由連接1745控制電子束1140在偵測結構1230上方該等標記1240、1260上方之掃描1780。
通常,掃描式探針顯微鏡會以該壓電致動器之坐標系統與樣品台1810之坐標系統關於彼此對準的方式建構。然而,由於在組合掃描式粒子顯微鏡與掃描式探針顯微鏡或奈米操縱器時的空間受限,因此這時常不可能。圖18中的圖示1800顯示帶有用於夾持樣品400的支撐件1820的樣品台1810。樣品台1810之坐標系統透過參考標記1830表示。樣品400透過奈米操縱器1840之處理頭1860之尖端1850處理。由於該掃描式粒子顯微鏡所致的有限空間(圖18中未例示),奈米操縱器1840之坐標系統1870相對於樣品台1810之坐標系統1830旋轉。為了在這兩個坐標系統1830和1870之間執行快速坐標變換,奈米操縱器1840之控制單元可能配備特定應用積體電路(ASIC),舉例來說,其可在10μs內在該等坐標系統1830和1870 之間執行坐標變換。在替代性具體實施例中,該等坐標系統1830和1870之間的坐標變換可藉助類比電子元件執行。在這兩種具體實施例中,用於該坐標變換的變換時間足夠短,以便不延遲或實質上不延遲在閉合控制迴路中操作的探針之控制信號。
圖19顯示在組合掃描式粒子顯微鏡與掃描式探針顯微鏡之情況下,在最佳可能範圍內利用該有限空間量的又一選項。通常,掃描式探針顯微鏡之探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670會借助於管狀壓電致動器定位。舉例來說,圖18中的奈米操縱器1840之處理頭1860同樣具有管狀壓電致動器。然而,若這些器具應與掃描式探針顯微鏡組合,則該管狀對於在奈米操縱器1840或掃描式探針顯微鏡中使用不具優勢。如圖19中所闡明,掃描式粒子顯微鏡之圓柱1920將樣品400與該圓柱之出口開口1930之間的空間限制成數公釐。若使用四漸變壓電致動器1910而非管狀壓電致動器,則樣品400與圓柱1920之間的空間可以最佳方式利用。
圖20闡明在這兩個顯微鏡之該等交互作用區域在該樣品上重疊的附加條件下,在組合掃描式粒子顯微鏡與掃描式探針顯微鏡或奈米操縱器1840的裝置之該等加重空間條件下處理樣品。在圖20中的圖示2000中,該樣品係包含一基板2020及吸收圖案元件2030的光微影成像圖罩2010。妨害圖罩2010之該等成像性質的粒子2050存在於圖罩2010之基板2020上。掃描式粒子顯微鏡之圓柱1920之出口開口1930示意性例示於圖罩2010上方。
在圖20中所例示範例中,犧牲尖端2040已沉積(圖20中未例示)於探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670之測量尖端120、150、170、220上或奈米操縱器1840之尖端1850上。犧牲尖端2040可能已在測量尖端120、150、170、220或尖端1850上前驅物氣體之供應下,借助於帶電粒子束(例如電子束)沉積。 含碳前驅物氣體或金屬羰基可用作前驅物氣體。
圖21重複圖20在犧牲尖端2040已定位於粒子2050附近或其上之後之配置。為了清楚表示,圓柱1920已從圖21省略。前驅物氣體2150在犧牲尖端2040之該等定位程序完成之後,在粒子2050之區域中提供。這透過圖21中的虛線箭頭闡明。此外,電子束2140在粒子2050之區域中提供,前述電子束觸發材料2160在粒子2050及犧牲尖端2040之尖端上之局部沉積程序。
在粒子2050已連接到測量尖端2040之尖端之後,透過移動探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670或奈米操縱器1840將粒子2050從圖罩2010之基板2020去除。圖22中的圖示2200透過箭頭2250例示此步驟。
已沉積於測量尖端120、150、170、220或尖端1850上的犧牲尖端2040之優勢在於,從圖罩2010去除的粒子2050可在電子束引致蝕刻(EBIE)製程中從犧牲尖端2040去除。圖23闡明藉助電子束2340和蝕刻氣體2350(透過該虛線箭頭符號表示)從犧牲尖端2040去除粒子2050。
在完成該EBIE製程之後,僅略經修改的犧牲尖端2040可用於去除進一步粒子。在從犧牲尖端2040去除粒子2050之前,粒子2050之材料組成物可透過用電子束2340照射並在能量分散偵測器中分析粒子2050所發出X光輻射判定。
圖24藉由裝置2400之幾個重要組件(藉助其可檢測及/或處理樣品400或光微影成像元件2010)顯示示意剖面圖。可安裝帶有偵測結構230、530、1030、1130、1230、1330、1530、1630、1690的探針200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670,並在裝置2400中使用。裝置2400包含一經修改掃描式粒子顯微鏡2410,其形式為一掃描式電子顯微鏡(SEM)2410:以及一掃描式探針顯微鏡2470,其形式為一原子力顯微鏡(AFM)2470。
在圖24之SEM 2410中,電子槍2412生成電子束2415,其透過設置於圓柱2417中的該等成像元件(圖24中未例示)作為聚焦電子束導向到樣品2422(可能包含該樣品400)上的位置2420或圖罩2010上。樣品2422設置於樣品台2425(或台)上。又,SEM 2410之圓柱2417之該等成像元件可在樣品2422上方掃描電子束2415。樣品2422可使用SEM 2410之電子束2415檢測。又,電子束2415可用於引致粒子束所引致沉積製程及/或EBIE製程。又,SEM 2410之電子束2415可用於分析粒子2050。而且,電子束2415可用於感測掃描式探針顯微鏡2470之探針200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670。
透過樣品2422從電子束2415背向散射的該等電子,以及在樣品2422中透過電子束2415生成的該等二次電子,透過偵測器2427登記。又,偵測器2427在掃描施加於探針1100、1200、1670的(該等)標記1130、1240、1260、1690時識別該等所生成二次電子。設置於電子圓柱2417中的偵測器2427稱作「透鏡內偵測器」(in lens detector)。在各種具體實施例中,偵測器2427皆可安裝於圓柱2417中。偵測器2427也可用於偵測從樣品2422或探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670或施加於探針200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670的偵測結構230、530、1030、1130、1230、1330、1530、1630、1690背向散射的電子。偵測器2427透過裝置2400之控制裝置2430控制。又,裝置2400含有圖2之偵測系統290。偵測系統290同樣透過控制裝置2430控制。
裝置2400含有第三偵測器2435。第三偵測器2435設計成偵測特別是該X光區域中的電磁輻射。結果,偵測器2435有助於分析透過電子束2415激發的粒子2050,以便判定前述粒子之材料組成物。在分析粒子2050期間,樣品台2425降低且/或樣品2422從電子束2415之波束方向去除。偵測器2435同樣透過控制裝置2430控制。
為了引致沉積製程或EBIE製程以及為了分析粒子2050,控制裝置2430及/或電腦系統2440可設定電子束2415之該等參數。再者,裝置2400之控制裝置2430接收偵測器2427之測量資料。控制裝置2430可從該測量資料產生圖像,前述圖像在監視器2437上表示。又,控制裝置2430可從偵測系統290之二次電子260接收測量資料,並在電腦系統2440之監視器2437上顯示前述測量資料。而且,控制裝置2430可能含有ASIC,其可在樣品台2425之坐標系統與探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670之坐標系統之間執行快速(<10μs)坐標變換。而且,電腦系統2440或該控制單元可能含有信號處理單元1750,其將探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670之振動之激發與電子束2415之掃描彼此匹配。
如以上已解說,經修改SEM 2410之電子束2415可用於引致電子束所引致沉積製程和EBIE製程。為了執行這些製程之目的,圖24之示例性掃描式電子顯微鏡2410具有三個不同供應容器2445、2450、及2455。
第一供應容器2445存放第一前驅物氣體(例如六羰基鉻(Cr(CO)6)等金屬羰基)或含碳前驅物氣體(例如芘)。進一步含碳前驅物氣體在以上指定。借助於存放於第一供應容器2445中的前驅物氣體,犧牲尖端2040或連接材料2160可在局部化學反應中沉積於犧牲尖端2040及/或粒子2050上,其中SEM 2410之電子束2415用作能量供應器,以便在應沉積材料的位置分裂存放於第一供應容器2445中的前驅物氣體。這意指組合供應電子束2415與前驅物氣體2150導致為了局部沉積犧牲尖端2040及/或連接材料2160而執行電子束所引致沉積(EBID)製程。經修改SEM 2410與第一供應容器2445組合形成沉積裝置。
電子束2415可聚焦於數奈米之點直徑上。結果,EBID製程允許局部沉積連接材料2160(其中空間解析度在該低兩位數奈米範圍 內)。
在圖24中所例示裝置2400中,第二供應容器2450存放蝕刻氣體2350,其使得可能進行局部電子束所引致蝕刻(EBIE)製程。粒子2050可借助於電子束所引致蝕刻製程從犧牲尖端2040去除。蝕刻氣體2350可包含例如二氟化氙(XeF2)、氯(Cl2)、氧(O2)、臭氧(O3)、水蒸汽(H2O)、過氧化氫(H2O2)、一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、硝酸(HNO3)、氨(NH3)、或六氟化硫(SF6)。所以,經修改SEM 2410與第二供應容器2450組合形成分離裝置。
添加劑氣體可存放於第三供應容器2455中,前述添加劑氣體必要時能夠添加到蝕刻氣體2350(在第二供應容器2450中保持可用)或前驅物氣體2150(存放於第一供應容器2445中)。或者,第三供應容器2455可存放第二前驅物氣體或第二蝕刻氣體。
在圖24中所例示掃描式電子顯微鏡2410中,該等供應容器2445、2450、及2455之每個皆具有其自身控制閥2446、2451、及2456,以便監視或控制每單位時間所提供對應氣體量,即在電子束2415入射到樣品2422上之位置2420的氣體體積流量。該等控制閥2446、2451、及2456透過控制裝置2430控制和監視。藉此,可能設定在處理位置2420(用於在寬廣範圍內執行EBID及/或EBIE製程)所提供一種或多種氣體之該等分壓條件。
再者,在圖24中的示例性SEM 2410中,每個供應容器2445、2450、及2455皆具有其自身氣體饋線系統2447、2452、及2457,其在樣品2422上電子束2415之入射點2420附近的末端為噴嘴2448、2453、及2458。
該等供應容器2445、2450、及2455可具有其自身溫度設定元件及/或控制元件,其同時允許冷卻和加熱該等對應供應容器2445、2450、及2455。這使得可能存放並特別是以該各自最佳溫度提供該前驅物 氣體及/或(該等)蝕刻氣體2350(圖24中未顯示)。
控制裝置2430可控制該等供應容器2445、2450、2455之該等溫度設定元件和該等溫度控制元件。在該EBID和該EBIE處理製程期間,該等供應容器2445、2450、及2455之該等溫度設定元件可進一步用於藉由選擇適當溫度,設定存放於其中的一種或多種前驅物氣體2150之蒸汽壓。
裝置2400可能包含一個以上的供應容器2445,以便存放兩種或多種前驅物氣體2150。又,裝置2400可能包含一個以上的供應容器2450,以便存放兩種或多種蝕刻氣體2350。
圖24中所例示掃描式電子顯微鏡2410可在環境條件下或在真空腔室2460中操作。實行該等EBID和EBIE製程需要真空腔室2460中相對於該環境壓力的負壓。為此目的,圖24中的SEM 2410包含一泵浦系統2462,其用於產生並用於維持真空腔室2460中所需負壓。採用閉合控制閥2446、2451、及2456,殘餘氣體壓力<10-4Pa在真空腔室2460中達成。泵浦系統2462可包含隔開的泵浦系統,其用於真空腔室2460用於提供SEM 2410之電子束2415之上側部分,以及用於下側部分2465或反應腔室2465(圖24中未顯示)。
此外,圖24中所例示示例性裝置2400包含一掃描式探針顯微鏡2470,其在該裝置2400中以一掃描力顯微鏡(Scanning force microscope,SFM)2470或一原子力顯微鏡(AFM)2470之形式體現。掃描式探針顯微鏡2470可收納該等探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670。而且,AFM 2470可用於檢測光罩2010並/或分析粒子2050。
掃描式探針顯微鏡2470之測量頭2475在圖24之裝置2400中例示。測量頭2475包含一夾持裝置2480。測量頭2475藉助夾持裝置2480扣接到裝置2400之框架(圖24中未顯示)。形式為四漸變壓電致動器1910(其 有助於在三個空間方向(圖24中未例示)上移動壓電致動器1910之自由末端)的壓電致動器附接到測量頭2475之夾持裝置2480。探針200扣接到壓電致動器1910之自由末端。然而,四漸變壓電致動器1910也可收納該等探針100、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670(圖24中未顯示)。探針200之懸臂110之自由末端具有測量尖端220及形式為偵測區域230的偵測結構230。
如透過圖24中的箭頭符號表示,樣品台2425可透過定位系統2427相對於AFM 2470之測量頭2475及/或電子束2415之入射點2420在三個空間方向上移動。在圖24中的範例中,定位系統2427以複數微操縱器或位移元件之形式體現。樣品台2425在該樣品平面中(即在垂直電子束2415之波束方向的xy平面中)之移動,可透過兩個干涉儀(圖24中未顯示)控制。在替代性具體實施例中,定位系統2427可能還含有壓電致動器(圖24中未例示)。定位系統2427透過控制裝置2430之信號控制。在替代性具體實施例中,控制裝置2430未移動樣品台2425,而是移動AFM 2470之測量頭2475之夾持裝置2480。再者,控制裝置2430可能在高度(z方向)上進行樣品2422或圖罩2010之粗略定位,且測量頭2475之壓電致動器1910可能進行AFM 2470之精確高度設定。控制裝置2430可以係裝置2400之電腦系統2440之一部分。
AFM 2470可用於相對於粒子2050定位該等探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670。又,AFM 2470可用於藉由移動將載有粒子2050的探針200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670從光微影成像圖罩2010去除。
圖25藉由同樣可用於檢測及/或處理光微影成像元件的裝置2500顯示剖面圖。與裝置2400不同,裝置2500進行而未改變掃描式探針顯微鏡2470之探針100。代替就像在圖24中的電子束2415,裝置2500使 用光指示器系統2550偵測掃描式探針顯微鏡2470之探針100之偏轉。電子源2412(或更一般來說粒子源)生成電子束2415或帶電粒子束。該波束光學單元之這兩個部分2505和2515將電子束2415聚焦於透鏡2510之出口開口2590上。在圖24之上下文中所解說的偵測器2427位於裝置2500之圓柱1920中。
以下說明在掃描式電子顯微鏡2410上所進行以便部分引導掃描式電子顯微鏡之圓柱1920內的光指示器系統2550的該等修飾例。該掃描式電子顯微鏡之圓柱1920包括一窗口2580,以便將光指示器系統2550之光學輻射耦合或解耦合到圓柱1920內的真空環境中。透鏡2510(其將圓柱1920內所引導輻射從圓柱1920解耦合或將透過探針100反射的光耦合到圓柱1920中)附接到圓柱1920之出口開口1930。
圖25中的示例性光指示器系統2550使用雷射系統2520(例如半導體雷射)經由偏轉反射鏡2530和透鏡2510將光2560通過窗口2580轉向到探針100之懸臂110上。透過探針100或探針100之懸臂110之頂面115反射的光2570透過透鏡2510收集,並經由偏轉反射鏡2530和窗口2580轉向到光偵測器2540上。舉例來說,光偵測器2540可體現為四象限光二極體。為了防止透過圓柱1920內所散射電子的靜電充電,光學窗口2580、偏轉反射鏡2530、及透鏡2510可塗佈光學上透明且導電層,例如氧化銦錫層。
圖26中的圖示2605藉由光學光指示器系統2650(其允許將掃描式粒子顯微鏡2410和掃描式探針顯微鏡2470與重疊的交互作用區域2660組合而對這兩個工具2410和2470之功能沒有負面影響)之第二示例性具體實施例之一些組件示意性顯示剖面圖。該掃描式粒子顯微鏡透過掃描式電子顯微鏡2410之波束光學單元之下側部分2515闡明。電子束2415在波束光學單元2515之輸出1930或圓柱1920離開掃描式粒子顯微鏡2410,且前述電子束入射到交互作用區域2660中的樣品400上。
掃描式探針顯微鏡2470之探針2600定位於圓柱1920下方,前述探針之測量尖端220同樣與交互作用區域2660中的樣品400交互作用。反射元件2630以相對於懸臂110之表面不同於零的角度附接到探針2600(探針2600之正面115上)。光指示器系統2650之光源(圖26中未例示)經由透鏡2670將光或光學輻射2610輻射到反射元件2630上。反射元件2630將光學輻射2620通過光指示器系統2650之透鏡2670反射到光指示器系統2650之偵測系統(在圖26中同樣省略)上。反射元件2630可能包含一反射鏡。然而,反射元件2630也可能具有曲面形式,所以,除了反射光學輻射2610之外,還成像所反射輻射2620。
反射元件2630可能相對於探針2600之懸臂110之表面115以50°至85°範圍的角度設置。在圖26中所呈現範例中,反射元件2630具有約75°之角度。反射元件2630可能包含一金屬塗層,例如一金、銀、或鋁塗層。
圖27藉由組合掃描式電子顯微鏡1710、2410與奈米操縱器1840以及用於X光輻射的能量分散偵測器2435的裝置2700顯示示意剖面圖。掃描式電子顯微鏡1710、2410之圓柱1920相對於裝置2700中的樣品法線傾斜,以便為了使用奈米操縱器1840處理樣品400而提供更多空間。裝置2700之該等組件已在圖17和圖24之討論之上下文中解說。
圖28中的流程圖2800提供可擇一藉助裝置2400和2700在樣品400上執行的處理流程之概況。該方法開始於步驟2805。在第一步驟2810中,掃描式電子顯微鏡2410切換成力測量模式;即電子束240、1040定位於探針200、500、1000之偵測區域230、530上,或電子束1140在探針1100、1200、1670之(該等)標記1130、1240、1260或該等偵測結構1130、1230、1690上方掃描。也可能在該等探針1300、1500、1600、1640之該等偵測結構1330、1530、1630、1690上方的線掃描中掃描該電子束。
於是,在步驟2815中,使探針100、200、500、800、900、 1000、1100、1200、1300、1500、1600、1640、1670之測量尖端120、150、170、220接近樣品400;在該程序中,探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670之偏轉借助於電子束240、1140監視。一旦該接近程序完成,在步驟2820中,掃描式電子顯微鏡2410之電子束即聚焦於樣品400上,且在步驟2825中,測量尖端120、150、170、220之該等周圍環境之圖像透過掃描樣品400記錄。
在決策區塊2830中,對於樣品400之處理流程是否受到力控制(即電子束240導向到探針200、800、1000之偵測區域230、1030或探針1100、1200之標記1130、1240、1260上)或受到圖像控制(即電子束840在該程序期間在樣品400上方掃描)作出決策。
若使用該力控制模式,則在步驟2835中,掃描式電子顯微鏡2410切換回該力測量模式。在步驟2840中,樣品400透過探針200、800、900、1000之測量尖端220處理。在樣品400之處理2840期間,粒子2050可例如在樣品400上位移及/或可從樣品400去除,如在圖20至圖22之上下文中所解說。在步驟2845中,樣品400透過電子束840重新掃描,以便查看該處理流程是否成功。在步驟2860中,該所得到SEM圖像透過裝置2400、2500、2700之監視器2437顯示。
若在決策區塊2830中關於以圖像控制方式監視該處理流程作出決策,則在步驟2850中,該掃描式電子顯微鏡切換成該成像模式,即電子束840在該處理流程期間在樣品400上方掃描。在步驟2855中,樣品400之處理執行,且在步驟2860中,完成該處理流程之後所記錄樣品400之圖像在裝置2400、2500、或2700之監視器2437上顯示。最後,該處理流程結束於區塊2865。
最後,圖29中的流程圖2900示意性顯示將粒子2050從光微影成像元件400、2010移動之程序之基本步驟。該方法開始於步驟2910。在步驟2920中,可相對於樣品400或光微影成像元件2010移動的探針100、 200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670定位於要移動的粒子2050附近。在下一個步驟2930中,為了在該定位期間判定探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670之偏轉之目的,使用掃描式粒子顯微鏡2410之帶電粒子束240、1140、在掃描式粒子顯微鏡2410中至少部分引導的光指示器系統2550、2650、或包含設置於一探針2600上的一反射結構2630的光指示器系統2650(前述反射結構以不同於零的角度設置於探針2600之正面115上)。於是,在步驟2940中,粒子2050透過相對於樣品400、2010移動探針100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670移動。最後,該方法結束於步驟2950。
110‧‧‧懸臂
115‧‧‧正面
125‧‧‧背面
200‧‧‧探針
220‧‧‧測量尖端
230‧‧‧偵測結構
240‧‧‧帶電粒子束
400‧‧‧樣品
410、460、470‧‧‧雙頭箭頭
450、490‧‧‧圖示
480‧‧‧二次電子(SE)信號

Claims (21)

  1. 一種用於檢測及/或處理樣品的裝置,該裝置包含:a.一掃描式粒子顯微鏡(2410),其用於提供可在該樣品(400、2010)之一表面上導向的一帶電粒子束(840);以及b.一掃描式探針顯微鏡(2470),其帶有一可偏轉探針(200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600);c.其中一偵測結構(230、530、1030、1130、1230、1330、1530、1630、1690、2630)附接到該可偏轉探針(200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600);d.其中通過將該帶電粒子束(840)定位在該偵測結構上,適配該裝置以確定該可偏轉探針的偏轉。
  2. 如申請專利範圍第1項所述之裝置,其中該掃描式粒子顯微鏡(2410)配置成執行下列群組之至少一個要素:在該偵測結構(1330、1530、1630)上方執行該帶電粒子束之一線掃描,以及在該偵測結構(1130、1230、1690)上方掃描該帶電粒子束(1140)。
  3. 如申請專利範圍第1項所述之裝置,其中該偵測結構(230、530、1030、1130、1230、1330、1530、1630、1690、2630)具有與該可偏轉探針(200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600)之材料組成物不同的一材料組成物。
  4. 如申請專利範圍第1項所述之裝置,其中該偵測結構(530、1130、1230、1530、1690)具有一圓柱形、圓錐形、桿形或n邊形結構,其中n
    Figure 108121315-A0305-02-0056-1
    3。
  5. 如申請專利範圍第1項所述之裝置,其中該偵測結構(530)包含至少兩種隔開的相鄰材料(533、536),其帶有不同原子序數。
  6. 如申請專利範圍第1項所述之裝置,其中該偵測結構(230、1030)包含一偵測區域(230、1030),其配置成最佳化帶電二次電子(260)及/或背向散射電子(560)之一發出。
  7. 如申請專利範圍第1項至第5項之一所述之裝置,其中該偵測結構(530、1330、1530、1630)包含至少一個區域元件(530、1330、1530、1630),且其中該區域元件(530、1330、1530、1630)之一法線向量實質上平行該可偏轉探針(500、1300、1500、1600)之縱軸導向。
  8. 如申請專利範圍第1項所述之裝置,其中該偵測結構(1330)包含至少兩個區域元件(1340、1360),其沿著該可偏轉探針(1300)之縱軸設置。
  9. 如申請專利範圍第1項所述之裝置,其中該偵測結構(1130、1230、1690)包含至少一個標記(1130、1240、1260、1690)。
  10. 如申請專利範圍第1項所述之裝置,更包含一光學光指示器系統(2650),其中該偵測結構(2630)包含一反射結構(2630),其配置成反射該光學光指示器系統(2650)之光學輻射,且其中該反射結構(2630)以相對於該可偏轉探針(2600)之一正面(115)不同於零的一角度設置。
  11. 如申請專利範圍第1項所述之裝置,其中該可偏轉探針 (800、900)具有一開口(820),該帶電粒子束(840)可通過該開口(820)導向到該樣品(400、2010)上的方式體現。
  12. 如申請專利範圍第1項所述之裝置,其中該可偏轉探針(200、500、800、900、1000、1100、1200、1500、1600、1670、2600)具有為了屏蔽及/或補償該樣品(400、2010)之一靜電荷之目的之一導電具體實施例。
  13. 一種用於檢測及/或處理樣品的裝置,該裝置包含:a.一掃描式粒子顯微鏡(2410),其用於提供可在該樣品(400、2010)之一表面上導向的一帶電粒子束(840);以及b.一掃描式探針顯微鏡(2470),其帶有一可偏轉探針(100)及用於偵測該可偏轉探針(100)之一偏轉的一光指示器系統(2550);c.其中該光指示器系統(2550)在該掃描式粒子顯微鏡(2410)之一圓柱(column)(1920、2417)中至少部分引導;d.其中通過將該帶電粒子束(840)定位在一偵測結構上,適配該裝置以確定該可偏轉探針的偏轉。
  14. 如申請專利範圍第13項所述之裝置,其中該掃描式粒子顯微鏡(2410)在其用於該帶電粒子束(840)的出口開口(1930)包含至少一個透鏡(2510),其用於帶有用於通過該帶電粒子束(840)的一開口(2590)的該光指示器系統(2550)。
  15. 如申請專利範圍第13項所述之裝置,其中該掃描式粒子顯微鏡(2410)包含該光指示器系統(2550)之一偏轉反射鏡(2530)及一窗口(2580)。
  16. 如申請專利範圍第13項所述之裝置,其中該光指示器系統(2550)設置於該掃描式粒子顯微鏡(2410)中之光學元件(2510、2530、2580)具有一光學上實質上透明且導電塗層。
  17. 如申請專利範圍第13項所述之裝置,更包含一偵測器(2435),其用於偵測X光輻射。
  18. 一種用於在一光微影成像樣品上移動粒子的方法,包括下列步驟:a.將可相對於該樣品(400、2010)移動的一探針(100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600)定位(2920)於要移動的粒子(2050)附近;b.為了在該定位期間判定該探針(100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600)之一偏轉之目的,使用(2930)一掃描式粒子顯微鏡(2410)之一帶電粒子束(240、1040、1140)、在該掃描式粒子顯微鏡(2410)中至少部分引導的一光指示器系統(2550)、或包含設置於該探針(2600)上的一反射結構(2630)的一光指示器系統(2650)(前述反射結構以不同於零的一角度設置於該探針(2600)之一表面(115)上);以及c.透過相對於該樣品(400、2010)移動該探針(100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600)移動(2940)該粒子(2050);d.其中通過將該帶電粒子束(840)定位在一偵測結構上,適配該裝置以確定該探針的偏轉。
  19. 如申請專利範圍第18項所述之方法,更包含下列步驟:使用該掃描式粒子顯微鏡(2410)之粒子束(840、2415)成像該樣品(400、2010)及/或該粒子(2050)。
  20. 如申請專利範圍第18項所述之方法,更包含下列步驟:將該探針(100、200、500、800、900、1000、1100、1200、1300、1500、1600、1640、1670、2600)連接到該粒子(2050)。
  21. 一種透過電腦系統執行的電腦程式,包含使用如申請專利範圍第1項至第17項中任一項所述之裝置;及執行如申請專利範圍第18項至第20項中任一項所述之方法的指令。
TW108121315A 2018-06-21 2019-06-19 用於檢測及/或處理樣品的裝置和方法 TWI729418B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018210098.5A DE102018210098B4 (de) 2018-06-21 2018-06-21 Vorrichtung und Verfahren zum Untersuchen und/oder zum Bearbeiten einer Probe
DE102018210098.5 2018-06-21

Publications (2)

Publication Number Publication Date
TW202001975A TW202001975A (zh) 2020-01-01
TWI729418B true TWI729418B (zh) 2021-06-01

Family

ID=67106005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121315A TWI729418B (zh) 2018-06-21 2019-06-19 用於檢測及/或處理樣品的裝置和方法

Country Status (6)

Country Link
US (2) US11262378B2 (zh)
KR (1) KR102475204B1 (zh)
CN (1) CN112534540A (zh)
DE (1) DE102018210098B4 (zh)
TW (1) TWI729418B (zh)
WO (1) WO2019243437A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210098B4 (de) 2018-06-21 2022-02-03 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Untersuchen und/oder zum Bearbeiten einer Probe
JP7426242B2 (ja) * 2020-01-14 2024-02-01 株式会社日本マイクロニクス 光プローブ、プローブカード、測定システムおよび測定方法
DE102020209638B3 (de) * 2020-07-30 2021-11-11 Carl Zeiss Smt Gmbh Verfahren und vorrichtung zum bestimmen einer ausrichtung einer fotomaske auf einem probentisch, der entlang zumindest einer achse verschiebbar und um zumindest eine achse drehbar ist
CN114088981B (zh) * 2021-10-21 2023-05-23 华南理工大学 一种侧壁扫描探针及其加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596494A2 (en) * 1992-11-06 1994-05-11 Hitachi, Ltd. Scanning probe microscope and method of control error correction
JP2984154B2 (ja) * 1992-10-06 1999-11-29 日本電子株式会社 原子間力顕微鏡
EP2023372A1 (en) * 2007-08-09 2009-02-11 Hitachi Ltd. Electrostatic Lens Unit
CN102084431A (zh) * 2008-06-06 2011-06-01 因菲尼泰西马有限公司 探针检测系统
WO2017186198A1 (en) * 2016-04-27 2017-11-02 Nenovision S.R.O. Method for characterization of a sample surface by using scanning electron microscope and scanning probe microscope
TW201809676A (zh) * 2016-08-08 2018-03-16 德商卡爾蔡司Smt有限公司 檢查樣品表面的掃描探針顯微鏡及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498767A1 (fr) 1981-01-23 1982-07-30 Cameca Micro-analyseur a sonde electronique comportant un systeme d'observation a double grandissement
JPH05107050A (ja) * 1991-10-16 1993-04-27 Olympus Optical Co Ltd カンチレバー変位検出装置
US5394741A (en) * 1990-07-11 1995-03-07 Olympus Optical Co., Ltd. Atomic probe microscope
TW285721B (zh) * 1994-12-27 1996-09-11 Siemens Ag
EP1085294B1 (en) * 1999-08-16 2001-12-05 Advantest Corporation System for inspecting and/or processing a sample
US6642517B1 (en) * 2000-01-25 2003-11-04 Veeco Instruments, Inc. Method and apparatus for atomic force microscopy
US6552340B1 (en) * 2000-10-12 2003-04-22 Nion Co. Autoadjusting charged-particle probe-forming apparatus
EP1293348B1 (en) * 2001-09-17 2006-12-27 Fuji Photo Film Co., Ltd. Image recording method and image recording apparatus
US6812460B1 (en) 2003-10-07 2004-11-02 Zyvex Corporation Nano-manipulation by gyration
EP1782037A2 (en) 2004-07-28 2007-05-09 Omniprobe, Inc. Strain detection for automated nano-manipulation
US8287653B2 (en) 2007-09-17 2012-10-16 Rave, Llc Debris removal in high aspect structures
KR101915333B1 (ko) * 2011-01-31 2018-11-05 인피니트시마 리미티드 적응 모드 스캐닝 탐침 현미경
JP5943524B2 (ja) 2011-05-31 2016-07-05 カール ツァイス エスエムエス ゲーエムベーハー 物体を検査するための装置及び方法
DE102013225936B4 (de) * 2013-12-13 2021-02-18 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Korrelieren von Abbildungen einer photolithographischen Maske
US9797922B2 (en) * 2014-07-22 2017-10-24 Angstrom Science, Inc. Scanning probe microscope head design
JP6556236B2 (ja) * 2014-07-22 2019-08-07 アングストローム サイエンス,インコーポレーテッドAngstrom Science,Inc. 走査型プローブ顕微鏡ヘッドの設計
JP6552383B2 (ja) 2014-11-07 2019-07-31 エフ・イ−・アイ・カンパニー 自動化されたtem試料調製
US10176967B2 (en) * 2017-02-23 2019-01-08 Hermes Microvision, Inc. Load lock system for charged particle beam imaging
DE102018210098B4 (de) 2018-06-21 2022-02-03 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Untersuchen und/oder zum Bearbeiten einer Probe
TWI756562B (zh) * 2019-02-28 2022-03-01 日商東芝股份有限公司 多電子束裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984154B2 (ja) * 1992-10-06 1999-11-29 日本電子株式会社 原子間力顕微鏡
EP0596494A2 (en) * 1992-11-06 1994-05-11 Hitachi, Ltd. Scanning probe microscope and method of control error correction
EP2023372A1 (en) * 2007-08-09 2009-02-11 Hitachi Ltd. Electrostatic Lens Unit
CN102084431A (zh) * 2008-06-06 2011-06-01 因菲尼泰西马有限公司 探针检测系统
WO2017186198A1 (en) * 2016-04-27 2017-11-02 Nenovision S.R.O. Method for characterization of a sample surface by using scanning electron microscope and scanning probe microscope
TW201809676A (zh) * 2016-08-08 2018-03-16 德商卡爾蔡司Smt有限公司 檢查樣品表面的掃描探針顯微鏡及方法

Also Published As

Publication number Publication date
CN112534540A (zh) 2021-03-19
DE102018210098B4 (de) 2022-02-03
KR20210021393A (ko) 2021-02-25
US11592461B2 (en) 2023-02-28
TW202001975A (zh) 2020-01-01
DE102018210098A1 (de) 2019-12-24
US11262378B2 (en) 2022-03-01
WO2019243437A3 (en) 2020-02-06
US20220178965A1 (en) 2022-06-09
WO2019243437A2 (en) 2019-12-26
US20210109126A1 (en) 2021-04-15
KR102475204B1 (ko) 2022-12-07

Similar Documents

Publication Publication Date Title
TWI729418B (zh) 用於檢測及/或處理樣品的裝置和方法
US11733186B2 (en) Device and method for analyzing a defect of a photolithographic mask or of a wafer
US11874598B2 (en) Method and apparatuses for disposing of excess material of a photolithographic mask
US11899359B2 (en) Method and apparatus for removing a particle from a photolithographic mask
TWI631343B (zh) 檢測帶電荷試件表面的方法及裝置
US11680963B2 (en) Method and apparatus for examining a measuring tip of a scanning probe microscope
US11650495B2 (en) Apparatus and method for determining a position of an element on a photolithographic mask
US11977097B2 (en) Methods and devices for extending a time period until changing a measuring tip of a scanning probe microscope