TWI728728B - Smart grid system and power management method thereof - Google Patents

Smart grid system and power management method thereof Download PDF

Info

Publication number
TWI728728B
TWI728728B TW109106985A TW109106985A TWI728728B TW I728728 B TWI728728 B TW I728728B TW 109106985 A TW109106985 A TW 109106985A TW 109106985 A TW109106985 A TW 109106985A TW I728728 B TWI728728 B TW I728728B
Authority
TW
Taiwan
Prior art keywords
conversion device
slave
power
main control
duty signal
Prior art date
Application number
TW109106985A
Other languages
Chinese (zh)
Other versions
TW202135414A (en
Inventor
陳信宏
蔡宗翰
林信晃
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109106985A priority Critical patent/TWI728728B/en
Application granted granted Critical
Publication of TWI728728B publication Critical patent/TWI728728B/en
Publication of TW202135414A publication Critical patent/TW202135414A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

A smart grid system includes a current measurement unit, and plural power conversion devices coupled to the AC grid. The current measurement unit measures a total current flowed through the AC grid, thereby providing a measured current value. The power conversion devices include a master power conversion device and plural slave power conversion devices. The master power conversion device is configured to control an output power of the master power conversion device according to the measured current value and to provide a first duty signal. A first one of the slave power conversion devices which is coupled with the master power conversion device controls an output power of the first one of the slave power conversion devices according to the first duty signal. The master power conversion device and the slave power conversion devices are communicated via a daisy chain manner.

Description

智慧電網系統及其功率管理方法Smart grid system and its power management method

本揭露實施例是有關於一種智慧電網系統,且特別是有關於一種智慧電網系統及其功率管理方法。The embodiment of the disclosure relates to a smart grid system, and particularly relates to a smart grid system and a power management method thereof.

習知的智慧電網中,用戶端與電力網供電端之間的電力買賣需要監控系統(例如遠端監控系統(Remote Control System,RCS)),從而使得用戶端的電源轉換裝置能夠接受電力公司的電力調控。上述的監控系統需要先接收由功率錶(power meter)所量測得之主幹線的電氣資訊,並對其進行解析完畢後,再對應地透過通訊的方式(例如RS-485通訊或無線保真(WiFi)等等)傳送命令給用戶端的每個電源轉換裝置,從而使得用戶端之電源轉換裝置能夠發出符合需求的能量。然而,有些使用者僅為自用而沒有賣電的需求,仍需要監控系統以避免轉換裝置在沒有接受電力公司的管控下,不小心供電至電力網,但由於上述對每個電源轉換裝置通訊過程期間會有不可避免之傳輸、等待、接收、輪詢(Polling)等時間延遲,因此很可能會因為無法即時反應而未能在所規定的時間內調控能量,從而違反現行的法規需求。In the conventional smart grid, the power purchase and sale between the user end and the power supply end of the power grid requires a monitoring system (such as a remote control system (RCS)), so that the power conversion device at the user end can accept the power control of the power company . The above-mentioned monitoring system needs to receive the electrical information of the main line measured by the power meter, and analyze it, and then use the corresponding communication method (such as RS-485 communication or wireless fidelity). (WiFi), etc.) Send commands to each power conversion device on the user side, so that the power conversion device on the user side can emit energy that meets the demand. However, some users do not need to sell electricity for their own use, and still need a monitoring system to prevent the conversion device from accidentally supplying power to the power grid without being under the control of the power company. However, due to the above-mentioned communication process for each power conversion device There will be unavoidable transmission, waiting, receiving, polling and other time delays. Therefore, it is likely that the energy cannot be regulated within the specified time due to the inability to respond immediately, thereby violating the current regulatory requirements.

本揭露之目的在於提出一種智慧電網系統,應用於負載與交流電網。所述智慧電網系統包括:電流量測單元以及多個轉換裝置。所述電流量測單元用以量測流經所述交流電網的總電流以提供電流量測值。所述多個轉換裝置耦接所述交流電網且用以對所述負載供電。所述多個轉換裝置包括:主控轉換裝置以及多個從屬轉換裝置。所述主控轉換裝置用以接收所述電流量測值且根據所述電流量測值來控制所述主控轉換裝置的輸出功率且提供第一占空訊號。與所述主控轉換裝置耦接之所述多個從屬轉換裝置的第一者用以接收所述第一占空訊號且根據所述第一占空訊號來控制所述多個從屬轉換裝置的第一者的輸出功率。所述主控轉換裝置與所述多個從屬轉換裝置之間係以菊鏈方式進行通訊。The purpose of this disclosure is to propose a smart grid system that is applied to loads and AC power grids. The smart grid system includes: a current measurement unit and a plurality of conversion devices. The current measurement unit is used to measure the total current flowing through the AC power grid to provide a current measurement value. The plurality of conversion devices are coupled to the AC power grid and used to supply power to the load. The multiple conversion devices include: a master conversion device and a plurality of slave conversion devices. The main control conversion device is used for receiving the current measurement value and controlling the output power of the main control conversion device according to the current measurement value and providing a first duty signal. The first of the plurality of slave conversion devices coupled to the master conversion device is used for receiving the first duty signal and controlling the plurality of slave conversion devices according to the first duty signal The output power of the first. The master conversion device and the plurality of slave conversion devices communicate in a daisy chain manner.

在一些實施例中,上述多個從屬轉換裝置的第一者還用以根據所述第一占空訊號來提供第二占空訊號。In some embodiments, the first of the plurality of slave conversion devices is further used to provide a second duty signal according to the first duty signal.

在一些實施例中,上述多個從屬轉換裝置的第二者用以接收所述第二占空訊號且根據所述第二占空訊號來控制所述多個從屬轉換裝置的第二者的輸出功率。In some embodiments, the second one of the plurality of slave conversion devices is used to receive the second duty signal and control the output of the second one of the plurality of slave conversion devices according to the second duty signal power.

在一些實施例中,上述多個轉換裝置的每一者包括:用以接收直流電源的直流輸入端口、用以輸出交流電的交流輸出端口以及微控制器單元。所述微控制器單元用以至少根據所述直流電源來控制所述交流電。In some embodiments, each of the plurality of conversion devices includes: a DC input port for receiving DC power, an AC output port for outputting AC power, and a microcontroller unit. The microcontroller unit is used to control the AC power at least according to the DC power supply.

在一些實施例中,上述多個轉換裝置的每一者更包括電流量測端口。所述主控轉換裝置的所述電流量測端口用以接收所述電流量測值。In some embodiments, each of the plurality of conversion devices further includes a current measurement port. The current measurement port of the main control conversion device is used for receiving the current measurement value.

在一些實施例中,上述主控轉換裝置的所述微控制器單元用以根據所述直流電源與所述電流量測值來控制所述主控轉換裝置的所述交流輸出端口所輸出的所述交流電。In some embodiments, the microcontroller unit of the above-mentioned main control conversion device is used to control all the output from the AC output port of the main control conversion device according to the DC power supply and the current measurement value. Said alternating current.

在一些實施例中,上述多個轉換裝置之每一者更包括輸入/輸出端口。所述主控轉換裝置的所述輸入/輸出端口用以提供所述第一占空訊號。所述多個從屬轉換裝置的第一者的所述輸入/輸出端口用以接收所述第一占空訊號且用以提供所述第二占空訊號。In some embodiments, each of the above-mentioned multiple conversion devices further includes an input/output port. The input/output port of the master conversion device is used to provide the first duty signal. The input/output port of the first one of the plurality of slave conversion devices is used for receiving the first duty signal and used for providing the second duty signal.

在一些實施例中,上述多個從屬轉換裝置的第一者的所述微控制器單元用以根據所述直流電源與所述第一占空訊號來控制所述多個從屬轉換裝置的第一者的所述交流輸出端口所輸出的所述交流電。In some embodiments, the microcontroller unit of the first one of the plurality of slave conversion devices is used to control the first of the plurality of slave conversion devices according to the DC power source and the first duty signal. The alternating current output from the alternating current output port of the person.

在一些實施例中,上述主控轉換裝置係根據所述電流量測值來判斷所述總電流的流向,且所述主控轉換裝置根據所述總電流的流向來控制所述主控轉換裝置的輸出功率且提供所述第一占空訊號。In some embodiments, the above-mentioned main control conversion device determines the flow direction of the total current according to the current measurement value, and the main control conversion device controls the main control conversion device according to the flow direction of the total current And provide the first duty signal.

在一些實施例中,上述主控轉換裝置係藉由判斷所述電流量測值是否小於電流設定值來控制所述主控轉換裝置的輸出功率且提供所述第一占空訊號。In some embodiments, the above-mentioned main control conversion device controls the output power of the main control conversion device and provides the first duty signal by determining whether the current measurement value is less than the current setting value.

本揭露之目的在於另提出一種智慧電網系統的功率管理方法,包括:量測流經交流電網的總電流以提供電流量測值;藉由與所述交流電網耦接的多個轉換裝置的主控轉換裝置來接收所述電流量測值,其中所述主控轉換裝置根據所述電流量測值來控制所述主控轉換裝置的輸出功率且提供第一占空訊號;以及藉由與所述主控轉換裝置耦接的所述多個轉換裝置的多個從屬轉換裝置的第一者來接收所述第一占空訊號,其中所述多個從屬轉換裝置的第一者根據所述第一占空訊號來控制所述多個從屬轉換裝置的第一者的輸出功率。所述多個轉換裝置用以對負載供電。所述主控轉換裝置與所述多個從屬轉換裝置之間係以菊鏈方式進行通訊。The purpose of this disclosure is to provide another power management method for a smart grid system, including: measuring the total current flowing through the AC power grid to provide a current measurement value; The control conversion device receives the current measurement value, wherein the main control conversion device controls the output power of the main control conversion device according to the current measurement value and provides a first duty signal; and The first of the plurality of slave conversion devices of the plurality of conversion devices coupled to the master conversion device receives the first duty signal, wherein the first of the plurality of slave conversion devices is based on the first A duty signal is used to control the output power of the first of the plurality of slave conversion devices. The multiple conversion devices are used to supply power to the load. The master conversion device and the plurality of slave conversion devices communicate in a daisy chain manner.

在一些實施例中,上述多個從屬轉換裝置的第一者根據所述第一占空訊號來提供第二占空訊號。In some embodiments, the first of the plurality of slave conversion devices provides a second duty signal according to the first duty signal.

在一些實施例中,上述智慧電網系統的功率管理方法更包括:藉由所述多個從屬轉換裝置的第二者來接收所述第二占空訊號,其中所述多個從屬轉換裝置的第二者根據所述第二占空訊號來控制所述多個從屬轉換裝置的第二者的輸出功率。In some embodiments, the power management method of the above-mentioned smart grid system further includes: receiving the second duty signal by a second of the plurality of slave conversion devices, wherein the first of the plurality of slave conversion devices Both control the output power of the second one of the plurality of slave conversion devices according to the second duty signal.

在一些實施例中,上述主控轉換裝置係根據所述電流量測值來判斷所述總電流的流向,且所述主控轉換裝置根據所述總電流的流向來控制所述主控轉換裝置的輸出功率且提供所述第一占空訊號。In some embodiments, the above-mentioned main control conversion device determines the flow direction of the total current according to the current measurement value, and the main control conversion device controls the main control conversion device according to the flow direction of the total current And provide the first duty signal.

在一些實施例中,當所述總電流的流向流往所述負載,所述主控轉換裝置增加所述第一占空訊號的占空比;當所述總電流的流向非流往所述負載,所述主控轉換裝置減少所述第一占空訊號的占空比。In some embodiments, when the direction of the total current flows to the load, the main control conversion device increases the duty cycle of the first duty signal; when the direction of the total current flows to the load Load, the main control conversion device reduces the duty cycle of the first duty signal.

在一些實施例中,在增加或減少所述第一占空訊號的占空比之後,所述主控轉換裝置再次判斷所述總電流的流向;當所述總電流的流向流往所述負載,所述主控轉換裝置不調整所述第一占空訊號的占空比;當所述總電流的流向非流往所述負載,所述主控轉換裝置減少第一占空訊號的占空比。In some embodiments, after increasing or decreasing the duty cycle of the first duty signal, the main control conversion device again determines the flow direction of the total current; when the flow direction of the total current flows to the load The main control conversion device does not adjust the duty ratio of the first duty signal; when the total current does not flow to the load, the main control conversion device reduces the duty of the first duty signal ratio.

在一些實施例中,上述主控轉換裝置係藉由判斷所述電流量測值是否小於電流設定值來控制所述主控轉換裝置的輸出功率且提供所述第一占空訊號。In some embodiments, the above-mentioned main control conversion device controls the output power of the main control conversion device and provides the first duty signal by determining whether the current measurement value is less than the current setting value.

在一些實施例中,當所述電流量測值小於所述電流設定值,所述主控轉換裝置增加所述第一占空訊號的占空比;當所述電流量測值不小於所述電流設定值,所述主控轉換裝置減少所述第一占空訊號的占空比。In some embodiments, when the current measurement value is less than the current setting value, the main control conversion device increases the duty cycle of the first duty signal; when the current measurement value is not less than the The current setting value, the main control conversion device reduces the duty ratio of the first duty signal.

在一些實施例中,上述在增加或減少所述第一占空訊號的占空比之後,所述主控轉換裝置再次判斷所述電流量測值是否小於所述電流設定值;當所述電流量測值小於所述電流設定值,所述主控轉換裝置不調整所述第一占空訊號的占空比;當所述電流量測值不小於所述電流設定值,所述主控轉換裝置減少所述第一占空訊號的占空比。In some embodiments, after the above-mentioned increase or decrease of the duty ratio of the first duty signal, the main control conversion device again determines whether the current measurement value is less than the current setting value; when the current When the measured value is less than the current setting value, the main control conversion device does not adjust the duty ratio of the first duty signal; when the current measurement value is not less than the current setting value, the main control conversion The device reduces the duty cycle of the first duty signal.

在一些實施例中,上述多個從屬轉換裝置的第一者判斷所述第一占空訊號的占空比是否減少;當所述第一占空訊號的占空比減少,所述多個從屬轉換裝置的第一者減少所述多個從屬轉換裝置的第一者的輸出功率;當所述第一占空訊號的占空比未減少,所述多個從屬轉換裝置的第一者判斷所述多個從屬轉換裝置的第一者的輸出功率是否達到所述多個從屬轉換裝置的第一者的自身最大功率;當所述多個從屬轉換裝置的第一者的輸出功率達到所述自身最大功率,所述多個從屬轉換裝置的第一者不調整所述多個從屬轉換裝置的第一者的輸出功率;當所述多個從屬轉換裝置的第一者的輸出功率未達到所述自身最大功率,所述多個從屬轉換裝置的第一者增加所述多個從屬轉換裝置的第一者的輸出功率。 In some embodiments, the first of the plurality of slave conversion devices determines whether the duty cycle of the first duty signal decreases; when the duty cycle of the first duty signal decreases, the plurality of slave conversion devices The first of the conversion devices reduces the output power of the first of the plurality of slave conversion devices; when the duty cycle of the first duty signal does not decrease, the first of the plurality of slave conversion devices determines Whether the output power of the first of the plurality of slave conversion devices reaches its own maximum power of the first of the plurality of slave conversion devices; when the output power of the first of the plurality of slave conversion devices reaches the own maximum power Maximum power, the first of the plurality of slave conversion devices does not adjust the output power of the first of the plurality of slave conversion devices; when the output power of the first of the plurality of slave conversion devices does not reach the For its own maximum power, the first of the plurality of slave conversion devices increases the output power of the first of the plurality of slave conversion devices.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more obvious and understandable, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。關於本文中所使用之『第一』、『第二』、『第三』、…等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 The embodiments of the present invention are discussed in detail below. However, it can be understood that the embodiments provide many applicable concepts, which can be implemented in various specific contents. The discussed and disclosed embodiments are for illustrative purposes only, and are not intended to limit the scope of the present invention. Regarding the "first", "second", "third", etc. used in this text, it does not specifically refer to the order or sequence, but only distinguishes elements or operations described in the same technical terms.

圖1係根據本揭露的實施例之智慧電網系統100的架構示意圖。智慧電網系統100包括:交流電網110、電流量測單元120、負載130、轉換裝置140 0、140 1、140 2以及直流電源裝置150 0、150 1、150 2FIG. 1 is a schematic diagram of the architecture of a smart grid system 100 according to an embodiment of the disclosure. The smart grid system 100 includes: an AC power grid 110, a current measuring unit 120, a load 130, conversion devices 140 0 , 140 1 , 140 2, and DC power supply devices 150 0 , 150 1 , 150 2 .

如圖1所示,轉換裝置140 0、140 1、140 2耦接交流電網110且耦接負載130。在本揭露的實施例中,負載130可用以表示一般家用負載或任何接受交流電的負載。如圖1所示,轉換裝置140 0、140 1、140 2分別耦接直流電源裝置150 0、150 1、150 2,在本揭露的實施例中,每個直流電源裝置150 0、150 1、150 2可包括再生電源、二次電池或其它可提供直流電源的裝置。在本揭露的實施例中,轉換裝置140 0、140 1、140 2分別自直流電源裝置150 0、150 1、150 2接收直流電源且輸出交流電至負載130。 As shown in FIG. 1, the conversion devices 140 0 , 140 1 , and 140 2 are coupled to the AC power grid 110 and to the load 130. In the embodiment of the present disclosure, the load 130 can be used to represent a general household load or any load that accepts AC power. As shown in FIG. 1, the conversion devices 140 0 , 140 1 , and 140 2 are respectively coupled to the DC power supply devices 150 0 , 150 1 , and 150 2. In the embodiment of the disclosure, each of the DC power supply devices 150 0 , 150 1 , 150 2 may include regenerative power sources, secondary batteries, or other devices that can provide DC power sources. In the disclosed embodiment, the conversion devices 140 0 , 140 1 , and 140 2 respectively receive DC power from the DC power supply devices 150 0 , 150 1 , and 150 2 and output AC power to the load 130.

如圖1所示,電流量測單元120耦接於交流電網110與轉換裝置140 0之間。在本揭露的實施例中,電流量測單元120可為比流器(Current Transformer,CT)或霍爾感測器(Hall Sensor),用以量測流經交流電網110的總電流,以提供電流量測值(意即,流經主幹線的電流值)至轉換裝置140 0。在本揭露的實施例中,還可依據電流量測單元120所提供之電流量測值得知流經交流電網110的總電流的流向。 As shown in FIG. 1, the current measuring unit 120 is coupled between the AC power grid 110 and the conversion device 140 0 . In the disclosed embodiment, the current measuring unit 120 may be a current transformer (CT) or a Hall sensor (Hall Sensor), which is used to measure the total current flowing through the AC power grid 110 to provide The current measurement value (that is, the current value flowing through the main line) is sent to the conversion device 140 0 . In the embodiment of the present disclosure, the direction of the total current flowing through the AC power grid 110 can also be obtained according to the current measurement value provided by the current measurement unit 120.

轉換裝置140 0、140 1、140 2包括主控(Master)轉換裝置140 0以及從屬(Slave)轉換裝置140 1、140 2。圖2a係根據本揭露的實施例之智慧電網系統100的主控轉換裝置140 0的架構示意圖。圖2b係根據本揭露的實施例之智慧電網系統100的從屬轉換裝置140 1的架構示意圖。圖2c係根據本揭露的實施例之智慧電網系統100的從屬轉換裝置140 2的架構示意圖。 The conversion devices 140 0 , 140 1 , and 140 2 include a master (Master) conversion device 140 0 and a slave (Slave) conversion device 140 1 , 140 2 . FIG. 2a is a schematic structural diagram of the master conversion device 140 0 of the smart grid system 100 according to an embodiment of the disclosure. Figure 2b slave system architecture diagram of the conversion apparatus of the present disclosure smart grid system 100 according to an embodiment of the 1401's. FIG. 2c is a schematic structural diagram of the slave conversion device 140 2 of the smart grid system 100 according to an embodiment of the disclosure.

需注意的是,上述的從屬(Slave)轉換裝置140 1、140 2之數目可隨不同的應用情境而不同,並不限於兩個。 It should be noted that the number of the aforementioned slave conversion devices 140 1 and 140 2 may vary with different application scenarios, and is not limited to two.

如圖2a、圖2b、圖2c所示,主控轉換裝置140 0以及從屬轉換裝置140 1、140 2之每一者可包含直流轉換器11(DC-to-DC converter)、逆變器12(DC-to-AC converter)、感測器13、斷路器14、微控制單元15、通訊單元16、通訊端口17、電流/電壓量測單元18、輸入/輸出(Input/Output,I/O)端口I/O 1、I/O 2以及電流量測端口CT。 As shown in FIGS. 2a, 2b, and 2c, each of the master conversion device 140 0 and the slave conversion devices 140 1 and 140 2 may include a DC-to-DC converter 11 (DC-to-DC converter) and an inverter 12 (DC-to-AC converter), sensor 13, circuit breaker 14, micro control unit 15, communication unit 16, communication port 17, current/voltage measurement unit 18, input/output (Input/Output, I/O ) Port I/O 1 , I/O 2, and current measurement port CT.

主控轉換裝置140 0以及從屬轉換裝置140 1、140 2之每一者還包含直流輸入端口IN與交流輸出端口OUT。主控轉換裝置140 0以及從屬轉換裝置140 1、140 2的直流輸入端口IN分別設置於直流電源裝置150 0、150 1、150 2與直流轉換器11之間,主控轉換裝置140 0以及從屬轉換裝置140 1、140 2自直流輸入端口IN分別接收直流電源裝置150 0、150 1、150 2所輸出的直流電源。交流輸出端口OUT則是設置於斷路器14與交流電網110之間,主控轉換裝置140 0以及從屬轉換裝置140 1、140 2自交流輸出端口OUT輸出交流電至交流電網110。 Each of the master conversion device 140 0 and the slave conversion devices 140 1 and 140 2 further includes a DC input port IN and an AC output port OUT. The DC input ports IN of the master conversion device 140 0 and the slave conversion devices 140 1 , 140 2 are respectively arranged between the DC power supply devices 150 0 , 150 1 , 150 2 and the DC converter 11, the master conversion device 140 0 and the slave converters 11 The conversion devices 140 1 and 140 2 respectively receive the DC power output from the DC power supply devices 150 0 , 150 1 , and 150 2 from the DC input port IN. The AC output port OUT is set between the circuit breaker 14 and the AC power grid 110, and the master conversion device 140 0 and the slave conversion devices 140 1 and 140 2 output AC power to the AC power grid 110 from the AC output port OUT.

直流轉換器11用以自直流輸入端口IN接收直流電源並進行轉換以輸出經轉換後的直流電源,例如作為將直流電源升壓之用的直流轉換器。逆變器12用以將直流轉換器11所輸出之經轉換後的直流電源轉換為交流電。感測器13用以感測逆變器12所輸出的交流電。斷路器14用以確認其對應的轉換裝置(140 0、140 1或140 2)可正常輸出經逆變器12所轉換後的交流電時,才將斷路器14導通投入,使得交流電由交流輸出端口OUT輸出且併入交流電網110。 The DC converter 11 is used for receiving DC power from the DC input port IN and performing conversion to output the converted DC power, for example, as a DC converter for boosting the DC power. The inverter 12 is used to convert the converted DC power output from the DC converter 11 into AC power. The sensor 13 is used to sense the alternating current output by the inverter 12. The circuit breaker 14 is used to confirm that its corresponding conversion device (140 0 , 140 1 or 140 2 ) can normally output the alternating current converted by the inverter 12, and then the circuit breaker 14 is turned on and put into operation, so that the alternating current is passed from the AC output port OUT is output and integrated into the AC power grid 110.

電流/電壓量測單元18用以量測轉換裝置(140 0、140 1或140 2)內部需要量測的電流/電壓。電流/電壓量測單元18將量測到的電流/電壓傳送至微控制單元15。微控制單元15根據所接收到的電流/電壓,對其進行乘法運算以得到功率資訊。 The current/voltage measuring unit 18 is used to measure the current/voltage that needs to be measured inside the conversion device (140 0 , 140 1 or 140 2 ). The current/voltage measurement unit 18 transmits the measured current/voltage to the micro-control unit 15. The micro-control unit 15 multiplies the received current/voltage to obtain power information.

微控制單元15可以是微控制器(Micro Control Unit,MCU)、微處理器(Micro Processor Unit,MPU)、特殊應用積體電路(Application-specific integrated circuit,ASIC)或系統單晶片(System on a Chip,SoC)的其中一者。The micro control unit 15 may be a microcontroller (Micro Control Unit, MCU), a microprocessor (Micro Processor Unit, MPU), an application-specific integrated circuit (ASIC), or a system on a chip (System on a chip). Chip, SoC) one of them.

於習知的智慧電網系統中,會透過通訊單元16將計算所得到的功率資訊(亦可包含電流與電壓資訊)通過通訊端口17以無線(wireless)形式(例如無線保真(WiFi))或有線(wired)形式(例如RS-485或CAN bus)的通訊方式連接監控系統,進而與管理中心(例如為民營或國營的電力公司或電力事業機構)進行通訊,以供管理中心進行電力調度或電力管理之依據,實現智慧電網系統之電力資訊的掌握、整合與管理。然而,在僅為自用而沒有賣電的需求應用下,此架構通訊方式之過程期間會有不可避免之傳輸、等待、接收、輪詢(Polling)等時間延遲,因此很可能會因為無法即時反應而未能在所規定的時間內調控能量,從而違反現行的法規需求。In the conventional smart grid system, the calculated power information (which may also include current and voltage information) is transmitted through the communication unit 16 in a wireless (wireless) form (such as wireless fidelity (WiFi)) or via the communication port 17. Wired (such as RS-485 or CAN bus) communication methods are connected to the monitoring system, and then communicate with the management center (such as private or state-owned power companies or power utilities) for the management center to perform power dispatch or The basis of power management is to realize the mastery, integration and management of power information in the smart grid system. However, in applications that require only self-use without selling electricity, there will be unavoidable transmission, waiting, receiving, polling and other time delays during the process of this architecture communication method, so it is likely to be unable to respond immediately And fail to regulate the energy within the stipulated time, thus violating the current regulatory requirements.

圖3係根據本揭露的實施例之智慧電網系統100的通訊方式的示意圖。如圖3所示,主控轉換裝置140 0以及從屬轉換裝置140 1、140 2之間係以菊鏈(daisy chain)方式進行通訊,換言之,主控轉換裝置140 0以及從屬轉換裝置140 1、140 2係透過輸入/輸出端口I/O 1、I/O 2來以菊鏈方式逐一串接。請一併參考圖2a、圖2b、圖2c與圖3,在本揭露的實施例中,主控轉換裝置140 0的電流量測端口CT用以接收電流量測單元120所量測到的電流量測值。主控轉換裝置140 0的微控制單元15用以根據直流電源裝置150 0輸出的直流電源與電流量測單元120輸出的電流量測值來控制主控轉換裝置140 0的交流輸出端口OUT所輸出的交流電,換言之,主控轉換裝置140 0的微控制單元15用以根據直流電源裝置150 0輸出的直流電源與電流量測單元120輸出的電流量測值來控制主控轉換裝置140 0的輸出功率。此外,主控轉換裝置140 0的微控制單元15還用以根據電流量測單元120輸出的電流量測值來透過輸入/輸出端口I/O 2提供第一占空(Duty)訊號給與主控轉換裝置140 0之通訊方式為串聯耦接之從屬轉換裝置140 1FIG. 3 is a schematic diagram of the communication mode of the smart grid system 100 according to an embodiment of the disclosure. As shown in FIG. 3, the master conversion device 140 0 and the slave conversion devices 140 1 and 140 2 communicate in a daisy chain manner. In other words, the master conversion device 140 0 and the slave conversion devices 140 1 , The 140 2 is serially connected one by one in a daisy chain through the input/output ports I/O 1 and I/O 2. Please refer to FIGS. 2a, 2b, 2c, and 3 together. In the disclosed embodiment, the current measurement port CT of the main control conversion device 140 0 is used to receive the current measured by the current measurement unit 120 Measured value. The micro-control unit 15 of the main control conversion device 140 0 is used to control the output of the AC output port OUT of the main control conversion device 140 0 according to the DC power output by the DC power supply device 150 0 and the current measurement value output by the current measurement unit 120 AC, in other words, the micro control unit 1400 of the main switching means 15 for outputting to the main control means according to current measurement value converter 120 outputs the output of the DC power supply 1500 a DC power supply device and the current measuring unit 1400 power. In addition, the micro-control unit 15 of the master conversion device 140 0 is also used to provide a first duty signal to the master through the input/output port I/O 2 according to the current measurement value output by the current measurement unit 120. The communication mode of the control conversion device 140 0 is the slave conversion device 140 1 coupled in series.

從屬轉換裝置140 1的輸入/輸出端口I/O 1用以接收主控轉換裝置140 0所提供之第一占空訊號,且從屬轉換裝置140 1的微控制單元15用以根據直流電源裝置150 1輸出的直流電源與第一占空訊號來控制從屬轉換裝置140 1的交流輸出端口OUT所輸出的交流電,換言之,從屬轉換裝置140 1的微控制單元15用以根據直流電源裝置150 1輸出的直流電源與第一占空訊號來控制從屬轉換裝置140 1的輸出功率。此外,從屬轉換裝置140 1的微控制單元15還用以根據第一占空訊號來透過輸入/輸出端口I/O 2提供第二占空訊號給與從屬轉換裝置140 1之通訊方式為串聯耦接之從屬轉換裝置140 2The input/output port I/O 1 of the slave conversion device 140 1 is used to receive the first duty signal provided by the master conversion device 140 0 , and the micro-control unit 15 of the slave conversion device 140 1 is used to respond to the DC power supply device 150 a DC power output to the first duty control signal to the slave device converting alternating current AC output OUT of the output 1401, in other words, the slave converter 1401 to the micro control unit 15 according to the output of the DC power supply 150 1 DC power source and a first duty signal to control the output power of the slave converter 1401 is. In addition, the micro-control unit 15 of the slave conversion device 140 1 is also used to provide a second duty signal to the slave conversion device 140 1 through the input/output port I/O 2 according to the first duty signal. The communication method with the slave conversion device 140 1 is series coupling. Connected to the slave conversion device 140 2 .

從屬轉換裝置140 2的輸入/輸出端口I/O 1用以接收從屬轉換裝置140 1所提供之第二占空訊號,且從屬轉換裝置140 2的微控制單元15用以根據第二占空訊號來控制從屬轉換裝置140 2的交流輸出端口OUT所輸出的交流電,換言之,從屬轉換裝置140 2的微控制單元15用以根據第二占空訊號來控制從屬轉換裝置140 2的輸出功率。 Slave converter 1402 input / output port I / O 1 slave converter means for receiving a second duty signal provided by 1401, and the slave converter 1402 in the micro control unit 15 according to a second duty signal slave control means for converting alternating current AC 1402 output from the output port OUT is, in other words, the slave converter 1402 of the micro control unit 15 for controlling the output power of the slave converter 1402 according to a second duty signal.

在本揭露的實施例中,上述的第一占空訊號與第二占空訊號為使用脈衝寬度調變(Pulse Width Modulation,PWM)對方波進行調製所產生之占空比(Duty Ratio或Duty Cycle)為0%~100%的方波訊號。在本揭露的實施例中,第一占空訊號的占空比越大,則從屬轉換裝置140 1的輸出功率也越大。換言之,當主控轉換裝置140 0增加其所提供的第一占空訊號的占空比,則從屬轉換裝置140 1的輸出功率也隨之增加;當主控轉換裝置140 0減少其所提供的第一占空訊號的占空比,則從屬轉換裝置140 1的輸出功率也隨之減少。在本揭露的實施例中,第二占空訊號的占空比越大,則從屬轉換裝置140 2的輸出功率也越大。換言之,當從屬轉換裝置140 1增加其所提供的第二占空訊號的占空比,則從屬轉換裝置140 2的輸出功率也隨之增加;當從屬轉換裝置140 1減少其所提供的第二占空訊號的占空比,則從屬轉換裝置140 2的輸出功率也隨之減少。然而,占空比與輸出功率的趨勢並不限於此,亦可設定相反的配置,例如占空比越大,則輸出功率隨之減少。 In the disclosed embodiment, the above-mentioned first duty signal and second duty signal are the duty ratio (Duty Ratio or Duty Cycle) generated by using Pulse Width Modulation (PWM) to modulate the square wave. ) Is a square wave signal from 0% to 100%. In an embodiment of the present disclosure, the greater the duty cycle of the first duty signal, the output power of the slave converter 1401 is also greater. In other words, when the master conversion device 140 0 increases the duty ratio of the first duty signal provided by it, the output power of the slave conversion device 140 1 also increases; when the master conversion device 140 0 reduces the duty ratio of the first duty signal provided by it, the output power of the slave conversion device 140 1 also increases; With the duty ratio of the first duty signal, the output power of the slave conversion device 140 1 is also reduced accordingly. In an embodiment of the present disclosure, the second duty ratio greater duty signal, the output power of the slave converter 1402 is also greater. In other words, when the slave conversion device 140 1 increases the duty cycle of the second duty signal provided by it, the output power of the slave conversion device 140 2 also increases; when the slave conversion device 140 1 decreases the second duty cycle provided by the slave conversion device 140 1 With the duty ratio of the duty signal, the output power of the slave conversion device 140 2 is also reduced accordingly. However, the trend of duty cycle and output power is not limited to this, and the opposite configuration can also be set. For example, the larger the duty cycle, the output power will decrease accordingly.

與習知的智慧電網系統相比較,本揭露的實施例之智慧電網系統100不需要另外設置監控系統來對主幹線的電氣資訊進行監控及透過通訊對每個轉換裝置進行電力調控,因此本揭露的實施例之智慧電網系統100不需要配置複雜的周邊線路,不僅能夠降低安裝裝置的成本、也能夠降低維護裝置的人力與時間成本,更能夠因為減少密集的線路配置而降低電磁干擾的機率,進而減少傳輸功率的耗損,以達到節省人力與時間、簡化周邊線路、降低電磁干擾以及降低硬體成本之目的。Compared with the conventional smart grid system, the smart grid system 100 of the embodiment of the present disclosure does not require an additional monitoring system to monitor the electrical information of the main line and to control the power of each conversion device through communication. Therefore, the present disclosure The smart grid system 100 of this embodiment does not need to configure complicated peripheral lines, which can not only reduce the cost of installing the device, but also reduce the labor and time cost of maintaining the device, and it can also reduce the probability of electromagnetic interference due to the reduction of intensive line configuration. In turn, the loss of transmission power is reduced, so as to save manpower and time, simplify peripheral circuits, reduce electromagnetic interference, and reduce hardware costs.

另外,與習知的智慧電網系統相比較,本揭露的實施例之智慧電網系統100並非透過監控系統以無線保真(WiFi)、RS-485或CAN bus等等的通訊方式對每個轉換裝置傳送命令,本揭露的實施例之智慧電網系統100的主控轉換裝置140 0以及從屬轉換裝置140 1、140 2之間係以菊鏈(daisy chain)方式進行通訊且以菊鏈方式透過輸入/輸出端口I/O 1、I/O 2來傳輸命令(第一占空訊號、第二占空訊號),菊鏈通訊方式為各自獨立,且所傳輸之命令的能量為前一台轉換裝置所提供,避免不必要的傳輸、等待、接收、輪詢(Polling)等時間延遲。具體而言,本揭露的實施例之智慧電網系統100具有相對較少的時間延遲,從而能夠即時反應且能夠在所規定的時間內調控能量,以符合現行的法規需求。 In addition, compared with the conventional smart grid system, the smart grid system 100 of the disclosed embodiment does not use a monitoring system to communicate with each conversion device by means of wireless fidelity (WiFi), RS-485, or CAN bus, etc. To send commands, the master conversion device 140 0 and the slave conversion devices 140 1 , 140 2 of the smart grid system 100 of the embodiment of the present disclosure communicate in a daisy chain manner and through input/ The output ports I/O 1 and I/O 2 are used to transmit commands (the first duty signal, the second duty signal). The daisy-chain communication method is independent, and the energy of the transmitted command is determined by the previous conversion device. Provide, avoid unnecessary transmission, waiting, receiving, polling and other time delays. Specifically, the smart grid system 100 of the embodiment of the present disclosure has a relatively small time delay, so that it can respond instantly and regulate energy within a specified time to meet current regulatory requirements.

圖4係根據本揭露的實施例之智慧電網系統100的功率管理方法1000的流程圖。請一併參照圖1與圖4,功率管理方法1000包含步驟1100-1400。於步驟1100,智慧電網系統100的電流量測單元120量測流經交流電網110的總電流以提供電流量測值。於步驟1200,主控轉換裝置140 0自電流量測單元120接收電流量測值,且主控轉換裝置140 0根據電流量測值來控制主控轉換裝置140 0的輸出功率且提供第一占空訊號至與主控轉換裝置140 0之通訊方式為串聯耦接的從屬轉換裝置140 1。於步驟1300,從屬轉換裝置140 1自主控轉換裝置140 0接收第一占空訊號,且從屬轉換裝置140 1根據第一占空訊號來控制從屬轉換裝置140 1的輸出功率且提供第二占空訊號至與從屬轉換裝置140 1之通訊方式為串聯耦接的從屬轉換裝置140 2。於步驟1400,從屬轉換裝置140 2自從屬轉換裝置140 1接收第二占空訊號,且從屬轉換裝置140 2根據第二占空訊號來控制從屬轉換裝置140 2的輸出功率。 FIG. 4 is a flowchart of a power management method 1000 of the smart grid system 100 according to an embodiment of the disclosure. Please refer to FIG. 1 and FIG. 4 together, the power management method 1000 includes steps 1100-1400. In step 1100, the current measurement unit 120 of the smart grid system 100 measures the total current flowing through the AC power grid 110 to provide a current measurement value. In step 1200, 1400 from the current measuring unit 120 receives the measured value of the master current conversion means and switching means 1400 to the master control of the control means output power converter 1400 according to a first current measurement values and provides accounting The communication mode from the empty signal to the master conversion device 140 0 is the slave conversion device 140 1 coupled in series. In step 1300, the slave converter 1401 converts autonomous control means 1400 receives the first duty signal, and the slave converter 1401 converting apparatus according to a first slave control duty signal output 1401 and a second duty The communication mode of the signal to the slave conversion device 140 1 is the slave conversion device 140 2 coupled in series. In step 1400, the slave converter 1402 since 1402 to control the switching means according to a second slave signal output duty slave converter 1402 genus converting apparatus 1401 receives the second duty signal, and.

圖5係根據本揭露的實施例之智慧電網系統100的主控轉換裝置140 0以及從屬轉換裝置140 1的功率調控方式之第一應用例的流程圖。如圖5所示,於步驟2100,智慧電網系統100的主控轉換裝置140 0自電流量測單元120接收電流量測值,且主控轉換裝置140 0根據電流量測值來判斷流經交流電網110的總電流的流向。接著,於步驟2200,主控轉換裝置140 0根據判斷流經交流電網110的總電流的流向是否流往負載130,如果交流電網110的總電流流往負載可以理解為所有轉換裝置所提供的功率尚不足以供負載使用。當主控轉換裝置140 0判斷流經交流電網110的總電流的流向流往負載130,則進入步驟2300;當主控轉換裝置140 0判斷流經交流電網110的總電流的流向非流往負載130,則進入步驟2400。於步驟2300,主控轉換裝置140 0增加主控轉換裝置140 0的輸出功率,且主控轉換裝置140 0增加第一占空訊號的占空比從而使得從屬轉換裝置140 1的輸出功率增加,且接著進入步驟2500。於步驟2400,主控轉換裝置140 0減少主控轉換裝置140 0的輸出功率,且主控轉換裝置140 0減少第一占空訊號的占空比從而使得從屬轉換裝置140 1的輸出功率減少,且接著進入步驟2500。於步驟2500,主控轉換裝置140 0再次自電流量測單元120接收電流量測值,且主控轉換裝置140 0再次根據電流量測值來判斷流經交流電網110的總電流的流向。接著,於步驟2600,主控轉換裝置140 0再次根據判斷流經交流電網110的總電流的流向是否流往負載130,當主控轉換裝置140 0判斷流經交流電網110的總電流的流向流往負載130,則主控轉換裝置140 0不調整第一占空訊號的占空比,如此反覆執行整個流程圖;當主控轉換裝置140 0判斷流經交流電網110的總電流的流向非流往負載130,則回到步驟2400。 5 is a flowchart of a first application example of the power control method of the master conversion device 140 0 and the slave conversion device 140 1 of the smart grid system 100 according to the embodiment of the disclosure. As shown in FIG. 5, in step 2100, the main control conversion device 140 0 of the smart grid system 100 receives the current measurement value from the current measurement unit 120, and the main control conversion device 140 0 determines the current flow through the AC according to the current measurement value. The direction of the total current flow of the grid 110. Next, in step 2200, the main control conversion device 140 0 determines whether the total current flowing through the AC power grid 110 flows to the load 130. If the total current of the AC power grid 110 flows to the load, it can be understood as the power provided by all conversion devices. Not enough for the load. When the main control conversion device 140 0 determines that the direction of the total current flowing through the AC power grid 110 flows to the load 130, step 2300 is entered; when the main control conversion device 140 0 determines that the direction of the total current flowing through the AC power grid 110 does not flow to the load 130, go to step 2400. In step 2300, the master switching means 1400 increases the output power of the master switching means 1400, and the master converter 1400 increases the first duty so that the duty cycle of the slave empty signal conversion means 1401 increases the output power, And then go to step 2500. In step 2400, the master unit 1400 converts the output power of the master to reduce the conversion means 1400, and the main switching means 1400 reduces the duty cycle of the first account so that the slave empty signal converting means reduces the output power of 140 1, And then go to step 2500. In step 2500, the main control conversion device 140 0 receives the current measurement value from the current measurement unit 120 again, and the main control conversion device 140 0 again determines the direction of the total current flowing through the AC power grid 110 based on the current measurement value. Next, in step 2600, the main control conversion device 140 0 again determines whether the total current flowing through the AC power grid 110 flows to the load 130. When the main control conversion device 140 0 determines the flow direction of the total current flowing through the AC power grid 110 To load 130, the main control conversion device 140 0 does not adjust the duty ratio of the first duty signal, and the entire flow chart is executed repeatedly; when the main control conversion device 140 0 determines that the total current flowing through the AC grid 110 is not flowing To load 130, go back to step 2400.

具體而言,本揭露的實施例之智慧電網系統100的主控轉換裝置140 0與從屬轉換裝置140 1的功率調控方式之第一應用例為轉換裝置所輸出的交流電僅流向負載130而不流向交流電網110的應用例,意即,為自我調控而不賣電給電力公司的應用方式。於此第一應用例中,主控轉換裝置140 0係根據流經交流電網110的總電流的流向來控制主控轉換裝置140 0的輸出功率,且主控轉換裝置140 0係根據流經交流電網110的總電流的流向來調整第一占空訊號的占空比,以調控從屬轉換裝置140 1的輸出功率。 Specifically, the first application example of the power control method of the master conversion device 140 0 and the slave conversion device 140 1 of the smart grid system 100 of the present disclosure is that the AC power output by the conversion device only flows to the load 130 and does not flow to The application example of the AC grid 110 means an application method that does not sell electricity to the power company for self-regulation. Application of this first embodiment, the master system conversion apparatus 1400 according to the total flow of current through the AC grid 110 to the main control means outputs the power converter 1400, the converter 1400 and the master exchange system according flowing The flow of the total current of the power grid 110 adjusts the duty ratio of the first duty signal to regulate the output power of the slave conversion device 140 1.

圖6係根據本揭露的實施例之智慧電網系統100的主控轉換裝置140 0以及從屬轉換裝置140 1的功率調控方式之第二應用例的流程圖。如圖6所示,於步驟3100,智慧電網系統100的主控轉換裝置140 0自電流量測單元120接收電流量測值,且主控轉換裝置140 0判斷電流量測值是否小於電流設定值,其中所述電流設定值例如為由操作人員所應用情境所設定之電流閥值或透過任何裝置傳送至主控轉換裝置的電流閥值。接著,於步驟3200,當主控轉換裝置140 0判斷電流量測值小於電流設定值,則進入步驟3300;當主控轉換裝置140 0判斷電流量測值不小於電流設定值,則進入步驟3400。於步驟3300,主控轉換裝置140 0增加主控轉換裝置140 0的輸出功率,且主控轉換裝置140 0增加第一占空訊號的占空比從而使得從屬轉換裝置140 1的輸出功率增加,且接著進入步驟3500。於步驟3400,主控轉換裝置140 0減少主控轉換裝置140 0的輸出功率,且主控轉換裝置140 0減少第一占空訊號的占空比從而使得從屬轉換裝置140 1的輸出功率減少,且接著進入步驟3500。於步驟3500,主控轉換裝置140 0再次自電流量測單元120接收電流量測值,且主控轉換裝置140 0再次判斷電流量測值是否小於電流設定值。接著,於步驟3600,當主控轉換裝置140 0判斷電流量測值小於電流設定值,則主控轉換裝置140 0不調整第一占空訊號的占空比;當主控轉換裝置140 0判斷電流量測值不小於電流設定值,則回到步驟3400。 6 is a flowchart of a second application example of the power control method of the master conversion device 140 0 and the slave conversion device 140 1 of the smart grid system 100 according to the embodiment of the present disclosure. As shown in FIG. 6, in step 3100, the main control conversion device 140 0 of the smart grid system 100 receives the current measurement value from the current measurement unit 120, and the main control conversion device 140 0 determines whether the current measurement value is less than the current setting value. , Wherein the current setting value is, for example, a current threshold value set by an operating personnel's application situation or a current threshold value transmitted to the main control conversion device through any device. Then, in step 3200, when the main control conversion device 140 0 determines that the current measurement value is less than the current setting value, then step 3300 is entered; when the main control conversion device 140 0 determines that the current measurement value is not less than the current setting value, then step 3400 is entered . In step 3300, the master switching means 1400 increases the output power of the master switching means 1400, and the master converter 1400 increases the first duty so that the duty cycle of the slave empty signal conversion means 1401 increases the output power, And then enter step 3500. In step 3400, the master converting means 1400 reduces the output power of the master switching means 1400, and the main switching means 1400 reduces the duty cycle of the first account so that the slave empty signal converting means reduces the output power of 140 1, And then enter step 3500. In step 3500, the main control conversion device 140 0 receives the current measurement value from the current measurement unit 120 again, and the main control conversion device 140 0 again determines whether the current measurement value is less than the current setting value. Next, in step 3600, when the main control conversion device 140 0 determines that the current measurement value is less than the current setting value, the main control conversion device 140 0 does not adjust the duty ratio of the first duty signal; when the main control conversion device 140 0 determines If the current measurement value is not less than the current setting value, go back to step 3400.

具體而言,本揭露的實施例之智慧電網系統100的主控轉換裝置140 0與從屬轉換裝置140 1的功率調控方式之第二應用例為透過設定電流設定值來限制智慧電網系統100輸出至交流電網的能量,換言之,第二應用例允許轉換裝置所輸出的交流電可流向交流電網110的應用例,意即,為自我調控而賣電給電力公司的應用方式。於此第二應用例中,主控轉換裝置140 0係藉由判斷電流量測值是否小於電流設定值來控制主控轉換裝置140 0的輸出功率,且主控轉換裝置140 0係藉由判斷電流量測值是否小於電流設定值來調整第一占空訊號的占空比,以調控從屬轉換裝置140 1的輸出功率。第二應用例與與第一應用例差別僅在於電流設定值的不同,第一應用例設定電流設定值以避免電流輸出至交流電網,而第二應用例可依據需求提高電流設定值,允許電流輸出至交流電網。 Specifically, the second application example of the power control method of the master conversion device 140 0 and the slave conversion device 140 1 of the smart grid system 100 of the present disclosure is to limit the output of the smart grid system 100 to the The energy of the AC power grid, in other words, the second application example allows the AC power output by the conversion device to flow to the AC power grid 110, that is, the application method of selling electricity to the power company for self-regulation. Application of this second embodiment, the master system conversion apparatus 1400 is determined by the measured current value is less than the current set value to the main control means outputs the power converter 1400, the converter 1400 and the host system is determined by current measurement value is smaller than a first current set value representing the duty cycle is adjusted empty signals, means to regulate the output power of the slave converter 1401 is. The second application example differs from the first application example only in the current setting value. The first application example sets the current setting value to avoid output of current to the AC grid, while the second application example can increase the current setting value according to the demand and allow the current Output to AC grid.

圖7係根據本揭露的實施例之智慧電網系統100的從屬轉換裝置140 1和/或140 2的自身功率調控方式之應用例的流程圖。如圖7所示,於步驟4100,智慧電網系統100的從屬轉換裝置判斷所接收到的占空訊號的占空比是否減少。舉例而言,從屬轉換裝置140 1判斷所接收到的第一占空訊號的占空比是否減少。舉另一例而言,從屬轉換裝置140 2判斷所接收到的第二占空訊號的占空比是否減少。接著,於步驟4200,當從屬轉換裝置判斷所接收到的占空訊號的占空比減少,則進入步驟4300;當從屬轉換裝置判斷所接收到的占空訊號的占空比未減少,則進入步驟4400。於步驟4300,從屬轉換裝置減少其輸出功率。舉例而言,當從屬轉換裝置140 1判斷所接收到的第一占空訊號的占空比減少時,從屬轉換裝置140 1減少從屬轉換裝置140 1的輸出功率且從屬轉換裝置140 1減少第二占空訊號的占空比。舉另一例而言,當從屬轉換裝置140 2判斷所接收到的第二占空訊號的占空比減少時,從屬轉換裝置140 2減少從屬轉換裝置140 2的輸出功率。於步驟4400,從屬轉換裝置判斷其輸出功率是否達到其自身最大功率,且接著進入步驟4500。舉例而言,從屬轉換裝置140 1判斷從屬轉換裝置140 1的輸出功率是否達到從屬轉換裝置140 1的自身最大功率。舉另一例而言,從屬轉換裝置140 2判斷從屬轉換裝置140 2的輸出功率是否達到從屬轉換裝置140 2的自身最大功率。於步驟4500,當從屬轉換裝置判斷其輸出功率達到其自身最大功率,則從屬轉換裝置不調整其輸出功率;當從屬轉換裝置判斷其輸出功率未達到其自身最大功率,則進入步驟4600。於步驟4600,從屬轉換裝置增加其輸出功率。舉例而言,當從屬轉換裝置140 1判斷從屬轉換裝置140 1的輸出功率未達到從屬轉換裝置140 1的自身最大功率時,從屬轉換裝置140 1增加從屬轉換裝置140 1的輸出功率且從屬轉換裝置140 1增加第二占空訊號的占空比。舉另一例而言,當從屬轉換裝置140 2判斷從屬轉換裝置140 2的輸出功率未達到從屬轉換裝置140 2的自身最大功率時,從屬轉換裝置140 2 增加從屬轉換裝置140 2的輸出功率。 FIG. 7 is a flowchart of an application example of the self-power control method of the slave conversion device 140 1 and/or 140 2 of the smart grid system 100 according to the embodiment of the disclosure. As shown in FIG. 7, in step 4100, the slave conversion device of the smart grid system 100 determines whether the duty cycle of the received duty signal is reduced. For example, the slave conversion device 140 1 determines whether the duty cycle of the received first duty signal is decreased. For another example, the slave conversion device 140 2 determines whether the duty cycle of the received second duty signal decreases. Then, in step 4200, when the slave conversion device determines that the duty cycle of the received duty signal has decreased, it proceeds to step 4300; when the slave conversion device determines that the duty cycle of the received duty signal has not decreased, it enters Step 4400. In step 4300, the slave conversion device reduces its output power. For example, when the slave converter 1401 determines whether the received first signal representing the duty cycle is decreased empty, slave converter 1401 to reduce the output power of the slave converter and the slave converter 1401 to decrease the second device 1401 The duty cycle of the duty signal. For another example, when the slave conversion device 140 2 determines that the duty ratio of the received second duty signal is decreased, the slave conversion device 140 2 reduces the output power of the slave conversion device 140 2. In step 4400, the slave conversion device determines whether its output power has reached its own maximum power, and then proceeds to step 4500. For example, the slave converter 1401 determines whether the output power of the slave converter 1401 itself reaches the maximum power conversion apparatus 1401 is the slave. For another example, the slave converter 1402 determines whether the output power of the slave converter 1402 converting means slave itself reaches the maximum power of 1402. In step 4500, when the slave conversion device determines that its output power reaches its own maximum power, the slave conversion device does not adjust its output power; when the slave conversion device determines that its output power does not reach its own maximum power, step 4600 is entered. In step 4600, the slave conversion device increases its output power. When For example, when the slave converter 1401 determines the output power of the slave converter 1401 does not reach the maximum power of the slave converter 1401 itself, the slave converter 1401 to increase the output power of the slave converter 1401 and slave converter 140 1 Increase the duty cycle of the second duty signal. When For another example, when the slave converter 1402 determines the output power of the slave converter 1402 itself does not reach the maximum power conversion device 140 slave 2, slave converter 1402 to increase the output power of the slave converter 1402 is.

具體而言,本揭露的實施例之智慧電網系統100的從屬轉換裝置140 1和/或140 2的自身功率調控方式之應用例描述了從屬轉換裝置140 1/140 2係根據其所接收到第一/第二占空訊號的占空比以及其自身最大功率來調控其輸出功率。 Specifically, the application example of the self-power control method of the slave conversion device 140 1 and/or 140 2 of the smart grid system 100 in the embodiment of the present disclosure describes that the slave conversion device 140 1 /140 2 is based on the received first The duty cycle of the first/second duty signal and its own maximum power regulate its output power.

值得一提的是,在本揭露的實施例中,為了符合現行的法規需求,需要在一定的時間內降低轉換裝置的輸出功率使得能量不往交流電網輸送,因此本揭露的實施例之智慧電網系統允許以相對較慢的速度來調升轉換裝置的輸出功率,且轉換裝置的輸出功率之調升可以是所有的轉換裝置的輸出功率一起同時上升也可以是各個轉換裝置的輸出功率於不同時點個別上升,然而,為了符合現行的法規需求,會要求以相對較快的速度來一起同時調降所有的轉換裝置的輸出功率,以即時地調降轉換裝置的輸出功率。本揭露的實施例之智慧電網系統透過上述機制使得自身電網達到平衡。It is worth mentioning that in the embodiment of the present disclosure, in order to comply with the current regulatory requirements, the output power of the conversion device needs to be reduced within a certain period of time so that energy is not transmitted to the AC power grid. Therefore, the smart grid of the embodiment of the present disclosure is The system allows the output power of the conversion device to be increased at a relatively slow speed, and the increase of the output power of the conversion device can be that the output power of all the conversion devices increase at the same time, or the output power of each conversion device is at different time points. Individual increases. However, in order to comply with current regulatory requirements, it is required to simultaneously reduce the output power of all the conversion devices at a relatively fast speed, so as to reduce the output power of the conversion devices in real time. The smart grid system of the embodiment of the present disclosure balances its own grid through the above-mentioned mechanism.

綜上,本揭露提出一種智慧電網系統以及智慧電網系統的功率管理方法,透過一台主控轉換裝置來根據流經交流電網的總電流的電流量測值來作為進行電力調度或電力管理之依據,以調整各個轉換裝置的輸出功率,從而實現智慧電網系統之電力資訊的掌握、整合與管理,且同時能夠為了符合現行的法規需求。In summary, this disclosure proposes a smart grid system and a power management method for the smart grid system. A master control conversion device is used to use the current measurement value of the total current flowing through the AC grid as the basis for power dispatch or power management. , In order to adjust the output power of each conversion device, so as to realize the mastery, integration and management of the power information of the smart grid system, and at the same time to meet the current regulatory requirements.

以上概述了數個實施例的特徵,因此熟習此技藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。The features of several embodiments are summarized above, so those who are familiar with the art can better understand the aspect of the present disclosure. Those who are familiar with this art should understand that they can easily use the present disclosure as a basis to design or modify other processes and structures, thereby achieving the same goals and/or the same advantages as the embodiments described herein. . Those who are familiar with this technique should also understand that these equivalent constructions do not depart from the spirit and scope of this disclosure, and they can make various changes, substitutions and alterations without departing from the spirit and scope of this disclosure.

100:智慧電網系統 110:交流電網 120:電流量測單元 130:負載 140 0,140 1,140 2:轉換裝置 150 0,150 1,150 2:直流電源裝置 1000:功率管理方法 1100~1400,2100~2600,3100~3600,4100~4600:步驟 11:直流轉換器 12:逆變器 13:感測器 14:斷路器 15:微控制單元 16:通訊單元 17:通訊端口 18:電流/電壓量測單元 IN:直流輸入端口 OUT:交流輸出端口 I/O 1,I/O 2:輸入/輸出端口 CT:電流量測端口 100: Smart grid system 110: AC power grid 120: Current measurement unit 130: Load 140 0 , 140 1 , 140 2 : Conversion device 150 0 , 150 1 , 150 2 : DC power supply device 1000: Power management method 1100~1400, 2100~2600, 3100~3600, 4100~4600: Step 11: DC converter 12: Inverter 13: Sensor 14: Circuit breaker 15: Micro control unit 16: Communication unit 17: Communication port 18: Current/voltage Measurement unit IN: DC input port OUT: AC output port I/O 1 , I/O 2 : Input/output port CT: Current measurement port

從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸都可任意地增加或減少。 From the following detailed description in conjunction with the accompanying drawings, a better understanding of the aspect of the present disclosure can be obtained. It should be noted that, according to industry standard practice, each feature is not drawn to scale. In fact, in order to make the discussion clearer, the size of each feature can be increased or decreased arbitrarily.

[圖1]係根據本揭露的實施例之智慧電網系統的架構示意圖。 [Figure 1] is a schematic diagram of the architecture of a smart grid system according to an embodiment of the disclosure.

[圖2a]係根據本揭露的實施例之智慧電網系統的主控轉換裝置的架構示意圖。 [Figure 2a] is a schematic diagram of the architecture of the master conversion device of the smart grid system according to the embodiment of the disclosure.

[圖2b]與[圖2c]係根據本揭露的實施例之智慧電網系統的從屬轉換裝置的架構示意圖。 [Fig. 2b] and [Fig. 2c] are schematic diagrams of the structure of the slave conversion device of the smart grid system according to the embodiment of the disclosure.

[圖3]係根據本揭露的實施例之智慧電網系統的通訊方式的示意圖。 [Fig. 3] is a schematic diagram of the communication mode of the smart grid system according to the embodiment of the disclosure.

[圖4]係根據本揭露的實施例之智慧電網系統的功率管理方法的流程圖。 [Fig. 4] is a flowchart of a power management method of a smart grid system according to an embodiment of the disclosure.

[圖5]係根據本揭露的實施例之智慧電網系統的主控轉換裝置以及從屬轉換裝置的功率調控方式之第一應用例的流程圖。 [Fig. 5] is a flowchart of the first application example of the power control method of the master conversion device and the slave conversion device of the smart grid system according to the embodiment of the present disclosure.

[圖6]係根據本揭露的實施例之智慧電網系統的主控轉換裝置以及從屬轉換裝置的功率調控方式之第二應用例的流程圖。 [Fig. 6] is a flowchart of a second application example of the power control method of the master conversion device and the slave conversion device of the smart grid system according to the embodiment of the disclosure.

[圖7]係根據本揭露的實施例之智慧電網系統的從屬轉換裝置的自身功率調控方式之應用例的流程圖。 [Fig. 7] is a flowchart of an application example of the self-power control method of the slave conversion device of the smart grid system according to the embodiment of the disclosure.

100:智慧電網系統 100: Smart grid system

110:交流電網 110: AC grid

120:電流量測單元 120: Current measurement unit

130:負載 130: load

1400,1401,1402:轉換裝置 140 0 ,140 1 ,140 2 : Conversion device

1500,1501,1502:直流電源裝置 150 0 ,150 1 ,150 2 : DC power supply device

Claims (20)

一種智慧電網系統,應用於一負載與一交流電網,包括: 一電流量測單元,用以量測流經該交流電網的一總電流以提供一電流量測值;及 複數個轉換裝置,耦接該交流電網且用以對該負載供電,其中該些轉換裝置包括: 一主控轉換裝置,用以接收該電流量測值且根據該電流量測值來控制該主控轉換裝置的輸出功率且提供一第一占空訊號;及 複數個從屬轉換裝置,其中與該主控轉換裝置耦接之該些從屬轉換裝置的一第一者用以接收該第一占空訊號且根據該第一占空訊號來控制該些從屬轉換裝置的該第一者的輸出功率; 其中該主控轉換裝置與該些從屬轉換裝置之間係以菊鏈方式進行通訊。 A smart grid system applied to a load and an AC power grid, including: A current measurement unit for measuring a total current flowing through the AC grid to provide a current measurement value; and A plurality of conversion devices are coupled to the AC power grid and used to supply power to the load, wherein the conversion devices include: A main control conversion device for receiving the current measurement value and controlling the output power of the main control conversion device according to the current measurement value and providing a first duty signal; and A plurality of slave conversion devices, wherein a first of the slave conversion devices coupled to the master conversion device is used for receiving the first duty signal and controlling the slave conversion devices according to the first duty signal The output power of the first person; The master conversion device and the slave conversion devices communicate in a daisy chain manner. 如請求項1所述之智慧電網系統,其中該些從屬轉換裝置的該第一者還用以根據該第一占空訊號來提供一第二占空訊號。The smart grid system according to claim 1, wherein the first of the slave conversion devices is further used to provide a second duty signal according to the first duty signal. 如請求項2所述之智慧電網系統,其中該些從屬轉換裝置的一第二者用以接收該第二占空訊號且根據該第二占空訊號來控制該些從屬轉換裝置的該第二者的輸出功率。The smart grid system according to claim 2, wherein a second of the slave conversion devices is used to receive the second duty signal and control the second of the slave conversion devices according to the second duty signal The output power of the person. 如請求項2所述之智慧電網系統,其中每一該些轉換裝置包括: 一直流輸入端口,用以接收一直流電源; 一交流輸出端口,用以輸出一交流電;及 一微控制器單元,用以至少根據該直流電源來控制該交流電。 The smart grid system according to claim 2, wherein each of the conversion devices includes: A DC input port for receiving DC power; An AC output port for outputting an AC power; and A microcontroller unit is used to control the AC power at least according to the DC power supply. 如請求項4所述之智慧電網系統,其中每一該些轉換裝置更包括一電流量測端口,其中該主控轉換裝置的該電流量測端口用以接收該電流量測值。The smart grid system according to claim 4, wherein each of the conversion devices further includes a current measurement port, and the current measurement port of the master conversion device is used to receive the current measurement value. 如請求項4所述之智慧電網系統,其中該主控轉換裝置的該微控制器單元用以根據該直流電源與該電流量測值來控制該主控轉換裝置的該交流輸出端口所輸出的該交流電。The smart grid system according to claim 4, wherein the microcontroller unit of the main control conversion device is used to control the output of the AC output port of the main control conversion device according to the DC power source and the current measurement value The alternating current. 如請求項4所述之智慧電網系統,其中每一該些轉換裝置更包括一輸入/輸出端口,其中該主控轉換裝置的該輸入/輸出端口用以提供該第一占空訊號,其中該些從屬轉換裝置的該第一者的該輸入/輸出端口用以接收該第一占空訊號且用以提供該第二占空訊號。The smart grid system according to claim 4, wherein each of the conversion devices further includes an input/output port, wherein the input/output port of the master conversion device is used to provide the first duty signal, wherein the The input/output port of the first one of the slave conversion devices is used for receiving the first duty signal and used for providing the second duty signal. 如請求項4所述之智慧電網系統,其中該些從屬轉換裝置的該第一者的該微控制器單元用以根據該直流電源與該第一占空訊號來控制該些從屬轉換裝置的該第一者的該交流輸出端口所輸出的該交流電。The smart grid system according to claim 4, wherein the microcontroller unit of the first one of the slave conversion devices is used to control the slave conversion devices according to the DC power source and the first duty signal The AC output from the AC output port of the first. 如請求項1所述之智慧電網系統,其中該主控轉換裝置係根據該電流量測值來判斷該總電流的流向,且該主控轉換裝置根據該總電流的流向來控制該主控轉換裝置的輸出功率且提供該第一占空訊號。The smart grid system according to claim 1, wherein the main control conversion device determines the flow direction of the total current according to the current measurement value, and the main control conversion device controls the main control conversion according to the flow direction of the total current The output power of the device and the first duty signal are provided. 如請求項1所述之智慧電網系統,其中該主控轉換裝置係藉由判斷該電流量測值是否小於一電流設定值來控制該主控轉換裝置的輸出功率且提供該第一占空訊號。The smart grid system according to claim 1, wherein the main control conversion device controls the output power of the main control conversion device and provides the first duty signal by determining whether the measured current value is less than a current setting value . 一種智慧電網系統的功率管理方法,包括: 量測流經一交流電網的一總電流以提供一電流量測值; 藉由與該交流電網耦接的複數個轉換裝置的一主控轉換裝置來接收該電流量測值,其中該主控轉換裝置根據該電流量測值來控制該主控轉換裝置的輸出功率且提供一第一占空訊號;及 藉由與該主控轉換裝置耦接的該些轉換裝置的複數個從屬轉換裝置的一第一者來接收該第一占空訊號,其中該些從屬轉換裝置的該第一者根據該第一占空訊號來控制該些從屬轉換裝置的該第一者的輸出功率; 其中該些轉換裝置用以對一負載供電,其中該主控轉換裝置與該些從屬轉換裝置之間係以菊鏈方式進行通訊。 A power management method for a smart grid system includes: Measure a total current flowing through an AC power grid to provide a current measurement value; A main control conversion device of a plurality of conversion devices coupled to the AC power grid receives the current measurement value, wherein the main control conversion device controls the output power of the main control conversion device according to the current measurement value and Provide a first occupancy signal; and The first duty signal is received by a first of the plurality of slave conversion devices of the conversion devices coupled with the master conversion device, wherein the first of the slave conversion devices is based on the first Duty signal to control the output power of the first one of the slave conversion devices; The conversion devices are used to supply power to a load, and the master conversion device and the slave conversion devices communicate in a daisy chain manner. 如請求項11所述之智慧電網系統的功率管理方法,其中該些從屬轉換裝置的該第一者根據該第一占空訊號來提供一第二占空訊號。The power management method of the smart grid system according to claim 11, wherein the first one of the slave conversion devices provides a second duty signal according to the first duty signal. 如請求項12所述之智慧電網系統的功率管理方法,更包括: 藉由該些從屬轉換裝置的一第二者來接收該第二占空訊號,其中該些從屬轉換裝置的該第二者根據該第二占空訊號來控制該些從屬轉換裝置的該第二者的輸出功率。 The power management method of the smart grid system as described in claim 12 further includes: The second duty signal is received by a second one of the slave conversion devices, wherein the second one of the slave conversion devices controls the second duty signal of the slave conversion devices according to the second duty signal The output power of the person. 如請求項11所述之智慧電網系統的功率管理方法,其中該主控轉換裝置係根據該電流量測值來判斷該總電流的流向,且該主控轉換裝置根據該總電流的流向來控制該主控轉換裝置的輸出功率且提供該第一占空訊號。The power management method of the smart grid system according to claim 11, wherein the main control conversion device determines the flow direction of the total current according to the current measurement value, and the main control conversion device controls the flow direction according to the total current The main control converts the output power of the device and provides the first duty signal. 如請求項14所述之智慧電網系統的功率管理方法,其中 當該總電流的流向流往該負載,該主控轉換裝置增加該第一占空訊號的占空比; 當該總電流的流向非流往該負載,該主控轉換裝置減少該第一占空訊號的占空比。 The power management method of the smart grid system according to claim 14, wherein When the total current flows to the load, the main control conversion device increases the duty ratio of the first duty signal; When the total current does not flow to the load, the main control conversion device reduces the duty ratio of the first duty signal. 如請求項15所述之智慧電網系統的功率管理方法,其中 在增加或減少該第一占空訊號的占空比之後,該主控轉換裝置再次判斷該總電流的流向; 當該總電流的流向流往該負載,該主控轉換裝置不調整該第一占空訊號的占空比; 當該總電流的流向非流往該負載,該主控轉換裝置減少該第一占空訊號的占空比。 The power management method of a smart grid system according to claim 15, wherein After increasing or decreasing the duty ratio of the first duty signal, the main control conversion device judges the flow direction of the total current again; When the total current flows to the load, the main control conversion device does not adjust the duty ratio of the first duty signal; When the total current does not flow to the load, the main control conversion device reduces the duty ratio of the first duty signal. 如請求項12所述之智慧電網系統的功率管理方法,其中該主控轉換裝置係藉由判斷該電流量測值是否小於一電流設定值來控制該主控轉換裝置的輸出功率且提供該第一占空訊號。The power management method of the smart grid system according to claim 12, wherein the main control conversion device controls the output power of the main control conversion device by determining whether the current measurement value is less than a current setting value and provides the second A duty signal. 如請求項17所述之智慧電網系統的功率管理方法,其中 當該電流量測值小於該電流設定值,該主控轉換裝置增加該第一占空訊號的占空比; 當該電流量測值不小於該電流設定值,該主控轉換裝置減少該第一占空訊號的占空比。 The power management method of a smart grid system according to claim 17, wherein When the current measurement value is less than the current setting value, the main control conversion device increases the duty ratio of the first duty signal; When the current measurement value is not less than the current setting value, the main control conversion device reduces the duty ratio of the first duty signal. 如請求項18所述之智慧電網系統的功率管理方法,其中 在增加或減少該第一占空訊號的占空比之後,該主控轉換裝置再次判斷該電流量測值是否小於該電流設定值; 當該電流量測值小於該電流設定值,該主控轉換裝置不調整該第一占空訊號的占空比; 當該電流量測值不小於該電流設定值,該主控轉換裝置減少該第一占空訊號的占空比。 The power management method of the smart grid system according to claim 18, wherein After increasing or decreasing the duty cycle of the first duty signal, the main control conversion device again determines whether the current measurement value is less than the current setting value; When the current measurement value is less than the current setting value, the main control conversion device does not adjust the duty ratio of the first duty signal; When the current measurement value is not less than the current setting value, the main control conversion device reduces the duty ratio of the first duty signal. 如請求項17所述之智慧電網系統的功率管理方法,其中 該些從屬轉換裝置的該第一者判斷該第一占空訊號的占空比是否減少; 當該第一占空訊號的占空比減少,該些從屬轉換裝置的該第一者減少該些從屬轉換裝置的該第一者的輸出功率; 當該第一占空訊號的占空比未減少,該些從屬轉換裝置的該第一者判斷該些從屬轉換裝置的該第一者的輸出功率是否達到該些從屬轉換裝置的該第一者的一自身最大功率; 當該些從屬轉換裝置的該第一者的輸出功率達到該自身最大功率,該些從屬轉換裝置的該第一者不調整該些從屬轉換裝置的該第一者的輸出功率; 當該些從屬轉換裝置的該第一者的輸出功率未達到該自身最大功率,該些從屬轉換裝置的該第一者增加該些從屬轉換裝置的該第一者的輸出功率。 The power management method of a smart grid system according to claim 17, wherein The first one of the slave conversion devices judges whether the duty cycle of the first duty signal decreases; When the duty cycle of the first duty signal decreases, the first of the slave conversion devices reduces the output power of the first of the slave conversion devices; When the duty cycle of the first duty signal does not decrease, the first of the slave conversion devices determines whether the output power of the first of the slave conversion devices reaches the first of the slave conversion devices的一 Maximum power of oneself; When the output power of the first of the slave conversion devices reaches the maximum power of its own, the first of the slave conversion devices does not adjust the output power of the first of the slave conversion devices; When the output power of the first of the slave conversion devices does not reach the maximum power of its own, the first of the slave conversion devices increases the output power of the first of the slave conversion devices.
TW109106985A 2020-03-04 2020-03-04 Smart grid system and power management method thereof TWI728728B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109106985A TWI728728B (en) 2020-03-04 2020-03-04 Smart grid system and power management method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109106985A TWI728728B (en) 2020-03-04 2020-03-04 Smart grid system and power management method thereof

Publications (2)

Publication Number Publication Date
TWI728728B true TWI728728B (en) 2021-05-21
TW202135414A TW202135414A (en) 2021-09-16

Family

ID=77036290

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106985A TWI728728B (en) 2020-03-04 2020-03-04 Smart grid system and power management method thereof

Country Status (1)

Country Link
TW (1) TWI728728B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201325005A (en) * 2011-12-08 2013-06-16 Chung Shan Inst Of Science Intelligent control inverter power supply system applied in reducing contract capacity
US9871380B1 (en) * 2013-03-15 2018-01-16 Cyboenergy, Inc. Methods and apparatus to protect solar power plants
US9899841B2 (en) * 2014-12-04 2018-02-20 Cyboenergy, Inc. Smart and grid-flexible power inverters
CN107925246A (en) * 2015-08-14 2018-04-17 光城公司 Multiple inverter power control systems in energy production system
CN107947227A (en) * 2017-11-16 2018-04-20 神华集团有限责任公司 Direction control device, photovoltaic power generation equipment, micro-grid system and control method
TWM579410U (en) * 2019-01-08 2019-06-11 台達電子工業股份有限公司 Power conversion apparatus and smart grid system having the same
CN110445380A (en) * 2019-07-26 2019-11-12 成都芯源系统有限公司 Multiphase switch converter containing daisy chain structure and sequence number distribution method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201325005A (en) * 2011-12-08 2013-06-16 Chung Shan Inst Of Science Intelligent control inverter power supply system applied in reducing contract capacity
US9871380B1 (en) * 2013-03-15 2018-01-16 Cyboenergy, Inc. Methods and apparatus to protect solar power plants
US9899841B2 (en) * 2014-12-04 2018-02-20 Cyboenergy, Inc. Smart and grid-flexible power inverters
CN107925246A (en) * 2015-08-14 2018-04-17 光城公司 Multiple inverter power control systems in energy production system
CN107947227A (en) * 2017-11-16 2018-04-20 神华集团有限责任公司 Direction control device, photovoltaic power generation equipment, micro-grid system and control method
TWM579410U (en) * 2019-01-08 2019-06-11 台達電子工業股份有限公司 Power conversion apparatus and smart grid system having the same
CN110445380A (en) * 2019-07-26 2019-11-12 成都芯源系统有限公司 Multiphase switch converter containing daisy chain structure and sequence number distribution method thereof

Also Published As

Publication number Publication date
TW202135414A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN102714414B (en) Regulate the partial power that each phase via multi-phase AC grid flows
US10498167B2 (en) Multi-port power delivery
TW201310855A (en) System for charging the battery of at least one electric vehicle, charger and method
JP3223740U (en) Smart grid system and power conversion device thereof
CN103493323A (en) Control of dynamic bus voltage in an intermediate bus architecture power system
KR20160081067A (en) Low Voltage DC Distribution System and Distribution Method thereof
KR102181321B1 (en) Power conversion apparatus
TWI728728B (en) Smart grid system and power management method thereof
TW201201004A (en) Server power supply system
CN101614358B (en) Solar LED streetlight for responding power data in real time
JP7014362B2 (en) Smart grid system and its power management method
JP2012143083A (en) Vehicle charger
JP7242238B2 (en) Power converter and distributed power supply system
WO2018180889A1 (en) Power conversion device, power conversion system, and dc power supply device
CN111316522B (en) Method based on voltage sag in power transmission system
KR101149315B1 (en) Integrated power supply for substation
JP6646790B1 (en) DC power network system, DC / DC converter device and control method therefor
EP3681010A1 (en) Smart grid integration system and method of processing power information thereof
KR20190030893A (en) Motor Load Simulator and Control Method with Power Regeneration Function
JP6898454B2 (en) Power management method and power management device
AU2019100747A4 (en) Power Conversion Apparatus and Smart Grid System Having the Same
CN111049384A (en) Low-power-consumption power conversion circuit for control panel
US11581797B2 (en) Multiple outputs universal serial bus travel adaptor and control method thereof
CN108536074A (en) The management method and system of unibus equipment
Juan et al. Design and realization of a bi-directional DC/DC power storage converter's control system