TWI728576B - Manufacturing method of semiconductor structure and computer-readable storage medium - Google Patents

Manufacturing method of semiconductor structure and computer-readable storage medium Download PDF

Info

Publication number
TWI728576B
TWI728576B TW108143246A TW108143246A TWI728576B TW I728576 B TWI728576 B TW I728576B TW 108143246 A TW108143246 A TW 108143246A TW 108143246 A TW108143246 A TW 108143246A TW I728576 B TWI728576 B TW I728576B
Authority
TW
Taiwan
Prior art keywords
simulation
units
event
semiconductor structure
parameter
Prior art date
Application number
TW108143246A
Other languages
Chinese (zh)
Other versions
TW202121080A (en
Inventor
粘群
張廣興
志強 吳
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW108143246A priority Critical patent/TWI728576B/en
Application granted granted Critical
Publication of TWI728576B publication Critical patent/TWI728576B/en
Publication of TW202121080A publication Critical patent/TW202121080A/en

Links

Images

Abstract

A manufacturing method of semiconductor structure is provided. The manufacturing method includes following operations. A predetermined process parameter is obtained. The semiconductor structure is divided into a plurality of units. A first parameter is distributed to a portion of the units and a second parameter is distributed to another portion of the units. A first simulation event and a second simulation event are obtained respectively. A process simulation is performed. The process simulation performs the first simulation event to the units having the first parameter and performs the second simulation event to the units having the second parameter. The predetermined process parameter is adjusted according to a simulation result. A process of the semiconductor structure is performed.

Description

半導體結構的製造方法及電腦可讀取記錄媒體Manufacturing method of semiconductor structure and computer readable recording medium

本揭示關於一種製造方法,特別關於一種半導體結構的製造方法及電腦可讀取記錄媒體。The present disclosure relates to a manufacturing method, in particular to a manufacturing method of a semiconductor structure and a computer readable recording medium.

晶圓製造廠可使用多個處理操作(operation)製造或完成半導體晶圓。該等處理操作與相關製造工具可涉及沉積、拋光、研磨、熱氧化、擴散、離子佈植、磊晶、蝕刻及微影等技術。在各操作中,可能使用量測工具以監控產品(如半導體晶圓)之品質及良率。A wafer fabrication plant can use multiple processing operations to manufacture or complete semiconductor wafers. Such processing operations and related manufacturing tools may involve deposition, polishing, grinding, thermal oxidation, diffusion, ion implantation, epitaxy, etching, and lithography techniques. In each operation, measurement tools may be used to monitor the quality and yield of products (such as semiconductor wafers).

本揭示之實施例揭示一種半導體結構的製造方法,包含:取得半導體結構之預設製程參數;將該半導體結構分為複數個單元;分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分;分別取得第一模擬事件及第二模擬事件;進行製程模擬,該製程模擬係針對具有該第一參數之該等單元,進行該第一模擬事件,以及針對具有該第二參數之該等單元,進行該第二模擬事件;依據模擬結果,調整預設製程參數;及進行半導體結構之製程。The embodiment of the present disclosure discloses a method for manufacturing a semiconductor structure, including: obtaining preset process parameters of the semiconductor structure; dividing the semiconductor structure into a plurality of units; allocating a first parameter to a part of the units, and allocating a second parameter In the other part of the units; obtain the first simulation event and the second simulation event respectively; perform process simulation, which is performed for the units with the first parameter, the first simulation event, and for the units with the first parameter The units of the second parameter perform the second simulation event; adjust the preset process parameters according to the simulation result; and perform the manufacturing process of the semiconductor structure.

本揭示之另一實施例揭示一種半導體結構的製造方法,包含:依據預設製程參數,進行該半導體結構之製程;取得製程參數;將該半導體結構分為複數個單元;分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分;根據該製程參數,分別取得第一模擬事件及第二模擬事件;進行製程模擬,該製程模擬係針對具有該第一參數之該等單元,進行該第一模擬事件,以及針對具有該第二參數之該等單元,進行該第二模擬事件;取得模擬結果;及依據該模擬結果,調整該預設製程參數。Another embodiment of the present disclosure discloses a method for manufacturing a semiconductor structure, including: performing a process of the semiconductor structure according to preset process parameters; obtaining process parameters; dividing the semiconductor structure into a plurality of units; and assigning a first parameter to the semiconductor structure. Equal part of the unit and assign the second parameter to the other part of the unit; obtain the first simulation event and the second simulation event respectively according to the process parameter; perform the process simulation, the process simulation is for the first parameter The units perform the first simulation event, and for the units with the second parameter, perform the second simulation event; obtain simulation results; and adjust the preset process parameters according to the simulation results.

本揭示之另一實施例揭示一種電腦可讀取記錄媒體,儲存至少一程式,當電腦載入該程式並執行後,可完成一種半導體製程的模擬方法,該模擬方法包含:取得半導體結構之預設製程參數;將該半導體結構分為複數個單元;分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分;根據該預設製程參數,分別取得第一模擬事件及第二模擬事件;進行製程模擬,該製程模擬係針對具有該第一參數之該等單元,進行該第一模擬事件,以及針對具有該第二參數之該等單元,進行該第二模擬事件;及取得模擬結果。Another embodiment of the present disclosure discloses a computer-readable recording medium that stores at least one program. After the computer loads and executes the program, a simulation method of a semiconductor manufacturing process can be completed. The simulation method includes: obtaining a semiconductor structure preview Set the process parameters; divide the semiconductor structure into a plurality of units; assign the first parameter to one part of the units, and assign the second parameter to the other part of the units; obtain the first simulation according to the preset process parameters Event and second simulation event; process simulation is performed for the units with the first parameter, the first simulation event is performed, and for the units with the second parameter, the second simulation is performed Events; and obtain simulation results.

以下揭示提供用於實施所提供標的物之不同特徵之許多不同實施例或實例。下文描述組件及配置之特定實例以簡化本揭示。此等僅為實例且不意欲為限制性的。例如,在下文描述中,一第一構件形成於一第二構件上方或上可包含其中第一構件及第二構件形成為直接接觸之實施例,且亦可包含其中額外構件可形成於第一構件與第二構件之間使得第一構件及第二構件可能未直接接觸之實施例。另外,本揭示可在各種實例中重複元件符號及/或字母。此重複係為簡單及清楚之目的,且本身不指定所論述之各種實施例及/或組態之間之一關係。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and configurations are described below to simplify the disclosure. These are only examples and are not intended to be limiting. For example, in the following description, a first member formed on or on a second member may include an embodiment in which the first member and the second member are formed in direct contact, and may also include an additional member formed on the first member. An embodiment in which the first member and the second member may not be in direct contact between the member and the second member. In addition, the present disclosure may repeat element symbols and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and does not itself specify one of the relationships between the various embodiments and/or configurations discussed.

下文詳細論述本揭示之實施例。然而,應暸解,本揭示提供可在各種各樣的特定背景內容中體現之許多適用發明概念。所論述之特定實施例僅為闡釋性的,且不限制本揭示之範疇。The embodiments of the present disclosure are discussed in detail below. However, it should be understood that the present disclosure provides many applicable inventive concepts that can be embodied in a variety of specific background content. The specific embodiments discussed are only illustrative and do not limit the scope of this disclosure.

此外,為便於描述,可在本文中使用空間相對術語(諸如「底下」、「下方」、「下」、「上方」、「上」、「下」、「左」、「右」及類似者)來描述一個元件或構件與另一(些)元件或構件之關係,如圖中所繪示。除圖中所描繪之定向之外,空間相對術語亦意欲涵蓋裝置在使用或操作中之不同定向。裝置可以其他方式定向(旋轉90度或成其他定向),且因此可同樣解釋本文中使用之空間相對描述符。將暸解,當一元件被稱作「連接至」或「耦合至」另一元件時,其可直接連接或耦合至另一元件,或可存在中介元件。In addition, for ease of description, spatially relative terms (such as "bottom", "below", "below", "above", "up", "below", "left", "right" and the like can be used in this text ) To describe the relationship between one element or component and another element or component(s), as shown in the figure. In addition to the orientations depicted in the figures, spatially relative terms are also intended to cover different orientations of the device in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations), and therefore the spatial relative descriptors used in this article can also be interpreted. It will be understood that when an element is referred to as being “connected to” or “coupled to” another element, it can be directly connected or coupled to the other element, or intervening elements may be present.

半導體裝置的製造方法可能包括多個操作。該等操作與相關製造工具或設備可能涉及沉積、拋光、研磨、熱氧化、擴散、離子佈植、磊晶、蝕刻及微影等技術。在各種技術相關的操作中,都可能因為不同條件而造成結構參數的偏離。例如在沉積、磊晶或蝕刻製程中,由於材料特性、製程條件或其它因素等可能產出結構(例如形狀)隨機的偏離。The manufacturing method of the semiconductor device may include multiple operations. These operations and related manufacturing tools or equipment may involve deposition, polishing, grinding, thermal oxidation, diffusion, ion implantation, epitaxy, etching and lithography techniques. In various technology-related operations, structural parameters may deviate due to different conditions. For example, during deposition, epitaxy, or etching processes, random deviations of structures (for example, shapes) may occur due to material properties, process conditions, or other factors.

本揭示提供一種半導體結構的製造方法以解決上述問題。本揭示之半導體結構的製造方法可以將半導體結構分為多個單元,並分配不同或相同參數至各個單元,對應不同的參數,對各個單元以不同模擬事件進行製程模擬。藉由模擬結果,可以預測半導體結構的形狀,藉此可以調整修正製程參數以減輕參數(例如幾何參數(形狀))偏離的問題。The present disclosure provides a method for manufacturing a semiconductor structure to solve the above-mentioned problems. The semiconductor structure manufacturing method of the present disclosure can divide the semiconductor structure into a plurality of units, and assign different or the same parameters to each unit, corresponding to different parameters, and perform process simulation on each unit with different simulation events. Based on the simulation results, the shape of the semiconductor structure can be predicted, so that the process parameters can be adjusted and corrected to alleviate the problem of deviation of parameters (such as geometric parameters (shape)).

圖1為說明在根據本揭示的一些實施例中之半導體結構的製造方法100之流程圖。FIG. 1 is a flowchart illustrating a manufacturing method 100 of a semiconductor structure in some embodiments according to the present disclosure.

請參照圖1所示,在一些實施例中,半導體結構的製造方法100包含操作102、操作104、操作106、操作108、操作110、操作112及操作114。Referring to FIG. 1, in some embodiments, a method 100 for manufacturing a semiconductor structure includes operation 102, operation 104, operation 106, operation 108, operation 110, operation 112, and operation 114.

圖2A為說明在一些實施例中之根據本揭示的半導體結構200之某個階段之俯視圖。半導體結構200可以包括但不限於,例如矽基板。在矽基板之例子中,半導體結構200可進一步包括其他半導體材料,諸如矽鍺、碳化矽或砷化鎵。在本實施例中,半導體結構200包含矽之p-型半導體基板(P-基板)或n型半導體基板(N-基板)。替代地,半導體結構200包括另一元素型半導體,諸如鍺;化合物半導體,其包括碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、及/或銻化銦;合金半導體,其包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、及/或GaInAsP;或其組合。在其他替代實施例中,半導體結構200可包括摻雜磊晶層、梯度半導體層及/或在不同種類之另一半導體層上方之半導體層,諸如在矽鍺層上之矽層。FIG. 2A is a top view illustrating a certain stage of the semiconductor structure 200 according to the present disclosure in some embodiments. The semiconductor structure 200 may include, but is not limited to, for example, a silicon substrate. In the example of a silicon substrate, the semiconductor structure 200 may further include other semiconductor materials, such as silicon germanium, silicon carbide, or gallium arsenide. In this embodiment, the semiconductor structure 200 includes a silicon p-type semiconductor substrate (P-substrate) or an n-type semiconductor substrate (N-substrate). Alternatively, the semiconductor structure 200 includes another elemental semiconductor, such as germanium; compound semiconductors, including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide; alloy semiconductors, It includes SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP; or a combination thereof. In other alternative embodiments, the semiconductor structure 200 may include a doped epitaxial layer, a graded semiconductor layer, and/or a semiconductor layer above another semiconductor layer of a different kind, such as a silicon layer on a silicon germanium layer.

圖2B為圖2A所示在虛線方框中之半導體結構200沿A-A直線之剖面示意圖。請參照圖1、2A及2B所示,在操作102中,可取得半導體結構200之預設製程參數。在半導體結構200中,例如但不限於半導體材料可以形成反應表面204。半導體材料可以包括例如半導體結構200在磊晶製程或薄膜沉積製程中,生長增加的結晶相材料,或者在半導體結構200蝕刻製程中,進行蝕刻的半導體材料。在某些實施例中,半導體材料可以例如包括矽、鍺或者其他晶格結構匹配的材料。在某些實施例中,反應表面204可以由半導體材料的分子202來形成。值得一提的是,反應表面204可以利用原子、晶格單元或者其他進行反應的基本單元來形成。FIG. 2B is a schematic cross-sectional view of the semiconductor structure 200 shown in FIG. 2A in a dashed box along the line A-A. Please refer to FIGS. 1, 2A, and 2B. In operation 102, the preset process parameters of the semiconductor structure 200 can be obtained. In the semiconductor structure 200, for example, but not limited to, a semiconductor material may form the reaction surface 204. The semiconductor material may include, for example, a crystalline phase material that is grown to increase in the semiconductor structure 200 during an epitaxial process or a thin film deposition process, or a semiconductor material that is etched during an etching process of the semiconductor structure 200. In some embodiments, the semiconductor material may include, for example, silicon, germanium, or other materials with matching lattice structure. In some embodiments, the reactive surface 204 may be formed of molecules 202 of semiconductor material. It is worth mentioning that the reaction surface 204 can be formed using atoms, lattice units or other basic units for reaction.

在某些實施例中,可使用電腦或伺服器等執行圖1所示之方法之部分或全部操作。例如但不限於可使用模擬器執行圖1所示之方法之部分或全部操作。多個模擬方式可應用於執行圖1所示之方法之部分或全部操作。例如但不限於可使用晶格動力學蒙地卡羅(Lattice Kinetic Monte Carlo)模式,在此模式下,半導體結構200之反應表面204上的各分子202可能以的球形方式顯示。In some embodiments, a computer or a server can be used to perform part or all of the operations of the method shown in FIG. 1. For example, but not limited to, a simulator can be used to perform part or all of the operations of the method shown in FIG. 1. Multiple simulation methods can be applied to perform part or all of the operations of the method shown in FIG. 1. For example, but not limited to, the Lattice Kinetic Monte Carlo mode can be used. In this mode, the molecules 202 on the reaction surface 204 of the semiconductor structure 200 may be displayed in a spherical manner.

在某些實施例中,可以進行製程模擬的製程例如但不限於,包括磊晶製程、薄膜沉積製程及蝕刻製程。因此,半導體結構200之預設製程參數例如但不限於,包括沉積、磊晶或蝕刻等製程之預設參數。例如,沉積製程之成長速度、磊晶製程之成長速度、磊晶製程之氣體濃度、蝕刻製程之蝕刻速度等預設參數。In some embodiments, the processes that can be simulated include, but are not limited to, an epitaxial process, a thin film deposition process, and an etching process. Therefore, the preset process parameters of the semiconductor structure 200 include, but are not limited to, preset process parameters such as deposition, epitaxy, or etching. For example, preset parameters such as the growth rate of the deposition process, the growth rate of the epitaxial process, the gas concentration of the epitaxial process, and the etching rate of the etching process.

圖3為說明在一些實施例中之根據本揭示的半導體結構200之如圖2B之反應表面204之俯視示意圖。請參照圖1及圖3所示,在操作104中,將半導體結構200分為複數個單元2021。在某些實施例中,該等單元2021例如以圖2B所示之分子202為單位來區分。在另外一些實施例中,該等單元2021也可利用原子、晶格單元或者其他進行反應的基本單元來區分,其非用於限制本揭示。3 is a schematic top view illustrating the reaction surface 204 of FIG. 2B of the semiconductor structure 200 according to the present disclosure in some embodiments. 1 and 3, in operation 104, the semiconductor structure 200 is divided into a plurality of units 2021. In some embodiments, the units 2021 are distinguished by, for example, the molecule 202 shown in FIG. 2B as a unit. In some other embodiments, the units 2021 can also be distinguished by atoms, lattice units or other basic units for reaction, which are not intended to limit the present disclosure.

圖4為說明在一些實施例中之根據本揭示的半導體結構200之如圖3之反應表面204之俯視示意圖。請參照圖1及圖4所示,在操作106中,分配參數1於該等單元2021之一部分、分配參數2於該等單元2021之一部分、分配參數3於該等單元2021之一部分,以及分配參數4於該等單元2021之另一部分。值得一提的是,本實施例以參數1、參數2、參數3以及參數4為例做說明,但其並非限制性。在某些實施例中,亦可包更多或更少之參數。4 is a schematic top view illustrating the reaction surface 204 of FIG. 3 of the semiconductor structure 200 according to the present disclosure in some embodiments. 1 and 4, in operation 106, parameter 1 is allocated to a part of the units 2021, parameter 2 is allocated to a part of the units 2021, parameter 3 is allocated to a part of the units 2021, and allocated Parameter 4 is in another part of these units 2021. It is worth mentioning that, in this embodiment, parameter 1, parameter 2, parameter 3, and parameter 4 are taken as examples for description, but it is not restrictive. In some embodiments, more or fewer parameters can also be included.

參數分配可藉由,例如但不限於,針對半導體結構200之反應表面204不同位置資訊分配或給定(assign)與參數相關之屬性。The parameter assignment can be achieved by, for example, but not limited to, information assignment for different positions of the reaction surface 204 of the semiconductor structure 200 or assigning attributes related to the parameter.

需注意的是,參數的數量與半導體結構所具有的模擬事件相關,可由使用者進行設定。例如,包含參數的次系統(subsystem)數量若為K,則參數i的選擇則為1≦i≦K。亦即,該等單元2021所被分配的參數可為1、2…K。在某些實施例中,參數之數量可以對應於使用者預設之同時進行計算(平行運算)之群組的數量,例如預設將該等單元2021分為4個群組平行運算,則參數的數量即為4個,預設將該等單元2021分為K個群組平行運算,則參數的數量即為K個其非限制性。再者,參數的分配可以經由均勻的亂數產生(Random Number Generating, RNG)方程式,從包含所有次系統的參數集合來均勻產生。It should be noted that the number of parameters is related to the simulated events of the semiconductor structure and can be set by the user. For example, if the number of subsystems including the parameter is K, the selection of the parameter i is 1≦i≦K. That is, the parameters allocated to the units 2021 can be 1, 2...K. In some embodiments, the number of parameters may correspond to the number of groups for simultaneous calculation (parallel operation) preset by the user. For example, the unit 2021 is preset to be divided into 4 groups for parallel operation, then the parameter The number of is 4, and it is preset that the units 2021 are divided into K groups for parallel operation, and the number of parameters is K, which is non-limiting. Furthermore, the allocation of parameters can be uniformly generated from the parameter set of all sub-systems through the uniform random number generation (Random Number Generating, RNG) equation.

另一方面,由於參數的數量與模擬事件的數量相關,因此,若參數的數量較少(即K較小),則各個參數所分配的模擬事件則較多,若參數的數量較多(即K較大),則各個參數所分配的模擬事件則較少,以下會進行說明。On the other hand, since the number of parameters is related to the number of simulation events, if the number of parameters is small (that is, K is small), the simulation events assigned to each parameter are more. If the number of parameters is large (that is, K is larger), the simulated events assigned to each parameter are less, which will be explained below.

在操作108中,分別取得第一模擬事件及第二模擬事件。第一模擬事件及第二模擬事件分別包含例如複數個可能發生的模擬事件之一。第一模擬事件及第二模擬事件例如可以包含原子吸附事件、表面鈍化事件或原子脫附事件等,其非限制性。In operation 108, the first simulation event and the second simulation event are obtained respectively. The first simulation event and the second simulation event respectively include, for example, one of a plurality of simulation events that may occur. The first simulation event and the second simulation event may include, for example, an atomic adsorption event, a surface passivation event, or an atomic desorption event, which is not limited.

需注意的是,第一模擬事件及第二模擬事件的取得例如是經由機率來決定。例如,各個可能發生的模擬事件具有各自的發生機率,因此在取得可能發生的模擬事件時,發生機率高的模擬事件可能優先被取得作為第一模擬事件或第二模擬事件。在某些實施例中,模擬事件的機率例如可由以下公式計算取得,其非限制性。

Figure 02_image001
It should be noted that the acquisition of the first simulation event and the second simulation event is determined by probability, for example. For example, each simulation event that may occur has its own probability of occurrence. Therefore, when obtaining a simulation event that may occur, a simulation event with a high probability of occurrence may be first obtained as the first simulation event or the second simulation event. In some embodiments, the probability of a simulated event can be calculated by the following formula, which is not limiting.
Figure 02_image001

p為與反應氣體壓力、分子質量或黏滯係數等相關之參數,

Figure 02_image003
為反應物之反應之活化壁障(activation barrier),k為波茲曼常數,T為溫度。 p is a parameter related to reaction gas pressure, molecular mass or viscosity coefficient, etc.,
Figure 02_image003
It is the activation barrier of the reaction of the reactant, k is the Boltzmann constant, and T is the temperature.

在某些實施例中,第一模擬事件及第二模擬事件的取得可以同時進行。換言之,可以同時進行計算可能發生的模擬事件的發生機率,並取得第一模擬事件及第二模擬事件。另外,本實施例以第一模擬事件及第二模擬事件為例做說明,但其並非限制性。在某些實施例中,亦可包含更多或更少模擬事件。In some embodiments, the acquisition of the first simulation event and the second simulation event can be performed at the same time. In other words, it is possible to simultaneously calculate the occurrence probability of possible simulation events, and obtain the first simulation event and the second simulation event. In addition, this embodiment takes the first simulation event and the second simulation event as examples for description, but it is not restrictive. In some embodiments, more or fewer simulated events may also be included.

在操作110中,進行製程模擬。製程模擬係針對具有參數1之該等單元2021,進行第一模擬事件,以及針對具有參數2之該等單元2021,進行第二模擬事件。在某些實施例中,更針對具有參數3之該等單元2021,進行第三模擬事件,針對具有參數4之該等單元2021,進行第四模擬事件。在某些實施例中,該等模擬事件為不同的模擬事件。再者,如上所述,參數的數量與模擬事件的數量相關,若參數的數量較少(即平行運算的群組較少),各個參數所分配的模擬事件較多時,由於各個單元2021所分配的模擬事件較多,因此運算時間可能會較長,但因可進行選擇的模擬事件較多,可以使製程模擬的準確度上升。另一方面,若參數的數量較多(即平行運算的群組較多),各個參數所分配的模擬事件較少時,由於各個單元2021所分配的模擬事件較少,因此運算時間可能會較短,但因可進行選擇的模擬事件較少,則可能使製程模擬的準確度下降(即系統失真)。需注意的是,參數的數量與需進行之模擬事件的數量相關,但製程模擬的準確度並非以參數數量多寡為唯一考量。例如,亦可考量依重要性調整不同模擬事件之發生機率。In operation 110, a process simulation is performed. In the process simulation, the first simulation event is performed for the units 2021 with parameter 1, and the second simulation event is performed for the units 2021 with parameter 2. In some embodiments, the third simulation event is performed for the units 2021 with the parameter 3, and the fourth simulation event is performed for the units 2021 with the parameter 4. In some embodiments, the simulated events are different simulated events. Furthermore, as mentioned above, the number of parameters is related to the number of simulation events. If the number of parameters is small (that is, there are fewer parallel operation groups) and there are more simulation events assigned to each parameter, the number of simulation events in each unit 2021 There are more simulation events allocated, so the calculation time may be longer, but because there are more simulation events that can be selected, the accuracy of the process simulation can be increased. On the other hand, if the number of parameters is large (that is, there are more groups of parallel operations) and the simulated events allocated to each parameter are less, since each unit 2021 allocates fewer simulated events, the calculation time may be longer. Short, but because there are fewer simulation events that can be selected, the accuracy of the process simulation may decrease (that is, the system is distorted). It should be noted that the number of parameters is related to the number of simulation events to be performed, but the accuracy of the process simulation is not the only consideration based on the number of parameters. For example, you can also consider adjusting the probability of occurrence of different simulated events based on their importance.

在某些實施例中,進行製程模擬前,可以先判斷製程模擬是否有衝突(conflict)事件。衝突事件例如包括進行第一模擬事件之該等單元2021其中之一與進行第二模擬事件之該等單元2021其中之一之間的距離為特定距離。特定距離例如是0以上及該等單元2021之間的最小距離的10倍以下,其非限制性。特定距離為0例如表示二單元2021彼此連接。單元2021之間的最小距離例如表示二單元2021雖然沒有連接,但彼此鄰接至反應影響範圍內。In some embodiments, before the process simulation is performed, it can be determined whether there is a conflict event in the process simulation. The conflict event includes, for example, that the distance between one of the units 2021 performing the first simulation event and one of the units 2021 performing the second simulation event is a certain distance. The specific distance is, for example, 0 or more and 10 times or less of the minimum distance between the units 2021, which is non-limiting. The specific distance of 0, for example, means that the two units 2021 are connected to each other. The minimum distance between the units 2021, for example, means that although the two units 2021 are not connected, they are adjacent to each other within the reaction influence range.

在某些實施例中,若判斷為製程模擬是有衝突事件,則取消位在特定距離內之該等單元2021其中之一的第一模擬事件或第二模擬事件。換言之,若第一模擬事件及第二模擬事件在特定距離內無法同時進行或同時進行會造成誤差時,則取消第一模擬事件或第二模擬事件其中之一,並重新選擇新的模擬事件取代被取消的第一模擬事件或第二模擬事件。In some embodiments, if it is determined that the process simulation is a conflict event, the first simulation event or the second simulation event of one of the units 2021 located within a certain distance is cancelled. In other words, if the first simulation event and the second simulation event cannot be performed at the same time within a certain distance or will cause an error, cancel one of the first simulation event or the second simulation event, and select a new simulation event to replace it. The first simulation event or the second simulation event that was cancelled.

在某些實施例中,進行製程模擬可以同時針對具有參數1、參數2、參數3及參數4之該等單元2021分別進行第一模擬事件、第二模擬事件、第三模擬事件及第四模擬事件。In some embodiments, the process simulation can simultaneously perform the first simulation event, the second simulation event, the third simulation event, and the fourth simulation for the units 2021 with parameter 1, parameter 2, parameter 3, and parameter 4, respectively. event.

圖5為說明在一些實施例中之根據本揭示的半導體結構200之某個階段沿如圖2A之A-A直線之剖面示意圖。在某些實施例中,經過製程模擬,對如圖4之該等單元2021進行各種模擬事件後,可以取得預設模擬時間後之半導體結構200的中間模擬結果。預設模擬時間可以依使用者設定而定,並非限制性。如圖5所示,中間模擬結果例如為新分子206形成於半導體結構200上,以形成新的反應表面208。FIG. 5 is a cross-sectional schematic diagram illustrating a certain stage of the semiconductor structure 200 according to the present disclosure in some embodiments along the line A-A of FIG. 2A. In some embodiments, after process simulation, after various simulation events are performed on the units 2021 as shown in FIG. 4, the intermediate simulation result of the semiconductor structure 200 after a preset simulation time can be obtained. The preset simulation time can be set by the user and is not restrictive. As shown in FIG. 5, the intermediate simulation result is, for example, that new molecules 206 are formed on the semiconductor structure 200 to form a new reaction surface 208.

在某些實施例中,可以根據中間模擬結果,分別修正第一模擬事件及第二模擬事件之發生機率。在某些實施例中,模擬事件的發生機率的修正可以同時進行。例如,在新的反應表面208的情況下,分子202與分子206之間可能產生新的模擬事件,或者分子202之模擬事件的發生機率也可能因分子206而需要進行調整修正。換言之,若中間模擬結果之半導體結構200與預期結果或者實際結果有差異,可以調整第一模擬事件及第二模擬事件之發生機率,例如調高或調低第一模擬事件或第二模擬事件之發生機率。更進一步來說,第一模擬事件及第二模擬事件係由各個可能發生的模擬事件所具有機率高低來決定,因此根據模擬結果,可以修正被取得作為第一模擬事件或第二模擬事件之模擬事件的發生機率,以使得模擬事件的取得種類更符合要求。In some embodiments, the probability of occurrence of the first simulation event and the second simulation event can be corrected respectively according to the intermediate simulation results. In some embodiments, the correction of the probability of occurrence of the simulated event can be carried out at the same time. For example, in the case of a new reaction surface 208, a new simulated event may be generated between the molecule 202 and the molecule 206, or the probability of occurrence of the simulated event of the molecule 202 may also need to be adjusted and corrected due to the molecule 206. In other words, if the semiconductor structure 200 of the intermediate simulation result is different from the expected result or the actual result, the occurrence probability of the first simulation event and the second simulation event can be adjusted, for example, the first simulation event or the second simulation event can be adjusted up or down. Probability of occurrence. Furthermore, the first simulation event and the second simulation event are determined by the probability of each possible simulation event. Therefore, according to the simulation results, the simulation obtained as the first simulation event or the second simulation event can be corrected. The probability of occurrence of the event, so that the type of simulated event is more in line with the requirements.

在某些實施例中,依據修正後之第一模擬事件及第二模擬事件之發生機率,可以再進行下一預設模擬時間的製程模擬。亦即,隨著半導體結構200在製程過程中的改變(例如由反應表面204改變至反應表面208),不同模擬事件的發生機率也會改變。因此,再次進行操作108及操作110,直到符合結束的預設條件(例如預設模擬次數或預設結束時間等),以取得模擬結果。In some embodiments, based on the corrected occurrence probability of the first simulation event and the second simulation event, the process simulation for the next preset simulation time can be performed. That is, as the semiconductor structure 200 changes during the manufacturing process (for example, from the reaction surface 204 to the reaction surface 208), the probability of occurrence of different simulation events will also change. Therefore, operation 108 and operation 110 are performed again until the preset condition for ending (for example, the preset number of simulations or the preset end time, etc.) is met to obtain the simulation result.

請參照圖1所示,在操作112中,依據模擬結果,調整預設製程參數。在某些實施例中,若模擬結果之半導體結構200與預期結果或者實際結果有差異,則可以調整預設製程參數,以使得實際製程結果能更符合要求。Referring to FIG. 1, in operation 112, the preset process parameters are adjusted according to the simulation result. In some embodiments, if the simulation result of the semiconductor structure 200 is different from the expected result or the actual result, the preset process parameters can be adjusted to make the actual process result more in line with the requirements.

在操作114中,進行半導體結構之製程。在某些實施例中,根據調整後之預設製程參數,可以進行實際的半導體結構之製程,例如但不限於,磊晶製程、薄膜沉積製程及蝕刻製程等。In operation 114, the manufacturing process of the semiconductor structure is performed. In some embodiments, the actual semiconductor structure manufacturing process can be performed according to the adjusted preset process parameters, such as, but not limited to, an epitaxial process, a thin film deposition process, and an etching process.

例如,在某些實施例中,當在半導體結構中形成源極/汲極區時,可經由選擇性磊晶製程成長源極/汲極區。源極或汲極材料可包括,例如但不限於矽、矽鍺或其他適合之材料(例如與通道區的晶格常數不同之材料)。磊晶成長製程可採用前驅物,例如但不限於矽烷、二氯矽烷、鍺烷、或類似物。For example, in some embodiments, when the source/drain regions are formed in the semiconductor structure, the source/drain regions can be grown through a selective epitaxial process. The source or drain material may include, for example, but not limited to, silicon, silicon germanium, or other suitable materials (for example, a material with a different lattice constant from the channel region). The epitaxial growth process can use precursors, such as but not limited to silane, dichlorosilane, germane, or the like.

因此,藉由本揭示之半導體結構的製造方法可以將欲成長之源極/汲極區分為多個單元,並分配不同或相同參數至各個單元,對應不同的參數,對各個單元以不同模擬事件進行製程模擬。藉由模擬結果,可以預測源極/汲極區的形狀,藉此可以調整修正製程參數(例如成長時間等)以減輕參數(例如幾何參數(形狀))形狀偏離的問題。Therefore, with the manufacturing method of the semiconductor structure of the present disclosure, the source/drain electrode to be grown can be divided into multiple units, and different or the same parameters can be assigned to each unit, corresponding to different parameters, and different simulation events can be performed on each unit. Process simulation. Based on the simulation results, the shape of the source/drain regions can be predicted, so that the process parameters (such as growth time, etc.) can be adjusted and corrected to alleviate the problem of shape deviation of the parameters (such as geometric parameters (shape)).

又,在某些實施例中,例如在化學氣相沉積製程中,在氣體進入反應器之前混合多種氣體,以在反應器發生化學反應及作為反應之目的,使固體材料沉積在基板上之處。或者,在某些實施例中,例如在物理氣相沉積中,利用電漿濺射轟擊,原子或分子藉由高能粒子轟擊而從靶材材料中噴射出,以使得噴射出的原子或分子可凝結在基板上,成為薄膜。或者,在某些實施例中,例如在原子層沉積是氣相化學製程中,利用表面控制生長機制提供幾乎沒有(或沒有)小孔的緻密薄膜。Moreover, in some embodiments, for example, in a chemical vapor deposition process, a variety of gases are mixed before the gas enters the reactor to cause a chemical reaction in the reactor and for the purpose of the reaction to deposit solid materials on the substrate. . Or, in some embodiments, such as in physical vapor deposition, plasma sputtering bombardment is used, and atoms or molecules are ejected from the target material by high-energy particle bombardment, so that the ejected atoms or molecules can be It condenses on the substrate and becomes a thin film. Alternatively, in some embodiments, for example, when atomic layer deposition is a gas phase chemical process, a surface-controlled growth mechanism is used to provide a dense film with few (or no) pores.

同樣的,藉由本揭示之半導體結構的製造方法可以將基板上欲沉積之處分為多個單元,並分配不同或相同參數至各個單元,對應不同的參數,對各個單元以不同模擬事件進行製程模擬。藉由模擬結果,可以預測欲沉積之處的形狀,藉此可以調整修正製程參數(例如材料濃度等)以減輕參數(例如幾何參數(形狀))形狀偏離的問題。Similarly, with the semiconductor structure manufacturing method of the present disclosure, the site to be deposited on the substrate can be divided into multiple units, and different or the same parameters can be assigned to each unit, corresponding to different parameters, and the process simulation can be performed on each unit with different simulation events. . With the simulation results, the shape of the place to be deposited can be predicted, so that the process parameters (such as material concentration, etc.) can be adjusted and corrected to alleviate the problem of the deviation of the parameters (such as geometric parameters (shape)).

又,在某些實施例中,例如在蝕刻製程中,藉由本揭示之半導體結構的製造方法可以將基板上欲蝕刻之處分為多個單元,並分配不同或相同參數至各個單元,對應不同的參數,對各個單元以不同模擬事件進行製程模擬。藉由模擬結果,可以預測欲蝕刻之處的形狀,藉此可以調整修正製程參數(例如蝕刻劑濃度等)以減輕參數(例如幾何參數(形狀))形狀偏離的問題。其中,蝕刻製程可以包括乾蝕刻(dry etching)製程、濕蝕刻(wet etching)製程或其他蝕刻製程。Moreover, in some embodiments, for example, in the etching process, the semiconductor structure manufacturing method of the present disclosure can divide the area to be etched on the substrate into multiple units, and assign different or the same parameters to each unit, corresponding to different Parameter, process simulation for each unit with different simulation events. Based on the simulation results, the shape of the place to be etched can be predicted, so that the process parameters (such as etchant concentration, etc.) can be adjusted and corrected to alleviate the problem of shape deviation of the parameters (such as geometric parameters (shape)). The etching process may include a dry etching process, a wet etching process or other etching processes.

綜上所述,本揭示之半導體結構的製造方法可以將半導體結構(例如反應表面)分為多個單元,並分配不同或相同參數至各個單元,對應不同的參數,對各個單元以不同模擬事件進行製程模擬。藉由模擬結果,可以預測半導體結構的形狀,藉此可以調整修正製程參數以減輕參數(例如幾何參數(形狀))形狀偏離的問題。In summary, the semiconductor structure manufacturing method of the present disclosure can divide the semiconductor structure (such as the reaction surface) into multiple units, and assign different or the same parameters to each unit, corresponding to different parameters, and different simulation events for each unit Carry out process simulation. Based on the simulation results, the shape of the semiconductor structure can be predicted, so that the process parameters can be adjusted and corrected to alleviate the problem of the shape deviation of the parameters (such as geometric parameters (shape)).

再者,本揭示之半導體結構的製造方法可以針對反應表面上的複數個單元同時進行例如以下的操作:取得模擬事件、進行模擬事件及模擬事件之發生機率的修正。藉此,可以降低製程模擬的耗時及運算資源的需求。又,在某些實施例中,可以將在特定距離的衝突事件取消,藉此可以減輕相鄰單元間之緩衝區域,因模擬時可能因彼此重疊而未計算或重複計算,進而產生模擬結果的誤差等問題。Furthermore, the manufacturing method of the semiconductor structure of the present disclosure can simultaneously perform the following operations for a plurality of units on the reaction surface: obtaining a simulated event, performing a simulated event, and correcting the probability of occurrence of the simulated event. In this way, the time-consuming and computing resource requirements of process simulation can be reduced. In addition, in some embodiments, conflicting events at a specific distance can be cancelled, thereby reducing the buffer area between adjacent units. Because the simulation may overlap with each other and not calculate or repeat calculations, the simulation results may be generated. Errors and other issues.

圖6為說明在根據本揭示的另一些實施例中之半導體結構的製造方法600之流程圖。請參照圖6所示,在一些實施例中,半導體結構的製造方法600包含操作602、操作604、操作606、操作608、操作610、操作612、操作614及操作616。FIG. 6 is a flowchart illustrating a method 600 of manufacturing a semiconductor structure in other embodiments according to the present disclosure. Referring to FIG. 6, in some embodiments, a method 600 for manufacturing a semiconductor structure includes operation 602, operation 604, operation 606, operation 608, operation 610, operation 612, operation 614, and operation 616.

在操作602中,依據預設製程參數,進行半導體結構之製程。在操作604中,取得製程參數。在操作606中,將半導體結構分為複數個單元。在操作608中,分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分。在操作610中,根據製程參數,分別取得第一模擬事件及第二模擬事件。在操作612中,進行製程模擬,製程模擬係針對具有第一參數之該等單元,進行第一模擬事件,以及針對具有第二參數之該等單元,進行第二模擬事件。在操作614中,取得模擬結果。在操作616中,依據模擬結果,調整預設製程參數。In operation 602, the manufacturing process of the semiconductor structure is performed according to preset process parameters. In operation 604, process parameters are obtained. In operation 606, the semiconductor structure is divided into a plurality of units. In operation 608, the first parameter is allocated to one part of the units, and the second parameter is allocated to another part of the units. In operation 610, the first simulation event and the second simulation event are respectively obtained according to the process parameters. In operation 612, a process simulation is performed. The process simulation performs a first simulation event for the units with the first parameter, and performs a second simulation event for the units with the second parameter. In operation 614, a simulation result is obtained. In operation 616, the preset process parameters are adjusted according to the simulation result.

圖6之製造方法600與圖1之製造方法100的差異在於,製造方法600先依據預設製程參數進行半導體結構之製程,再取得製程中或製程後之半導體結構的製程參數,而後再依據實際製程中或製程後之製程參數進行模擬。其中,模擬操作之過程已於圖2A、圖2B、圖3、圖4及圖5中詳述,於此不再贅述。The difference between the manufacturing method 600 of FIG. 6 and the manufacturing method 100 of FIG. 1 is that the manufacturing method 600 first performs the process of the semiconductor structure according to the preset process parameters, and then obtains the process parameters of the semiconductor structure during or after the process, and then according to the actual Simulate the process parameters during or after the process. Among them, the simulation operation process has been described in detail in FIG. 2A, FIG. 2B, FIG. 3, FIG. 4, and FIG. 5, and will not be repeated here.

因此,製造方法600可藉由製程中或製程後之製程參數來進行模擬,藉此可以依據實際情況調整修正預設製程參數以減輕參數(例如幾何參數(形狀))形狀偏離的問題。Therefore, the manufacturing method 600 can be simulated by the process parameters during or after the process, so that the preset process parameters can be adjusted and corrected according to the actual situation to alleviate the problem of the shape deviation of the parameters (such as geometric parameters (shape)).

在本揭示之某些實施例中可以利用一種電腦可讀取記錄媒體,儲存至少一程式,當電腦載入程式並執行後,可完成半導體製程的模擬方法。上述模擬方法係與如圖1、圖2A、圖2B、圖3、圖4、圖5及圖6所述之製造方法100及製造方法600相同,於此不再贅述。In some embodiments of the present disclosure, a computer-readable recording medium can be used to store at least one program. After the computer loads and executes the program, the simulation method of the semiconductor manufacturing process can be completed. The above-mentioned simulation method is the same as the manufacturing method 100 and the manufacturing method 600 described in FIG. 1, FIG. 2A, FIG. 2B, FIG. 3, FIG. 4, FIG. 5, and FIG.

在某些實施例中,提供一種半導體結構的製造方法包含:取得半導體結構之預設製程參數;將半導體結構分為複數個單元;分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分;根據預設製程參數,分別取得第一模擬事件及第二模擬事件;進行製程模擬,製程模擬係針對具有第一參數之該等單元,進行第一模擬事件,以及針對具有第二參數之該等單元,進行第二模擬事件;取得模擬結果;及依據模擬結果,進行半導體結構之製程。In some embodiments, providing a method for manufacturing a semiconductor structure includes: obtaining preset process parameters of the semiconductor structure; dividing the semiconductor structure into a plurality of units; assigning a first parameter to a part of the units, and assigning a second parameter In the other part of the units; obtain the first simulation event and the second simulation event respectively according to the preset process parameters; perform the process simulation, which performs the first simulation event for the units with the first parameters, and For the units with the second parameters, perform a second simulation event; obtain a simulation result; and according to the simulation result, perform a manufacturing process of the semiconductor structure.

在另一些實施例中,提供一種半導體結構的製造方法包含:依據預設製程參數,進行半導體結構之製程;取得製程參數;將半導體結構分為複數個單元;分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分;根據製程參數,分別取得第一模擬事件及第二模擬事件;進行製程模擬,製程模擬係針對具有第一參數之該等單元,進行第一模擬事件,以及針對具有第二參數之該等單元,進行第二模擬事件;取得模擬結果;及依據模擬結果,調整預設製程參數。In other embodiments, a method for manufacturing a semiconductor structure is provided, which includes: performing a process of the semiconductor structure according to preset process parameters; obtaining process parameters; dividing the semiconductor structure into a plurality of units; allocating the first parameter among the units Part of the unit, and assign the second parameter to the other part of the units; obtain the first simulation event and the second simulation event respectively according to the process parameters; perform the process simulation. The process simulation is performed for the units with the first parameter. A simulation event, and for the units with the second parameter, a second simulation event is performed; the simulation result is obtained; and the preset process parameters are adjusted according to the simulation result.

在另一些實施例中,提供一種電腦可讀取記錄媒體,儲存至少一程式,當電腦載入程式並執行後,可完成一種半導體製程的模擬方法,模擬方法包含:取得半導體結構之預設製程參數;將半導體結構分為複數個單元;分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分;根據預設製程參數,分別取得第一模擬事件及第二模擬事件;進行製程模擬,製程模擬係針對具有第一參數之該等單元,進行該第一模擬事件,以及針對具有第二參數之該等單元,進行該第二模擬事件;及取得模擬結果。In some other embodiments, a computer-readable recording medium is provided that stores at least one program. After the computer loads and executes the program, a simulation method of a semiconductor manufacturing process can be completed. The simulation method includes: obtaining a preset manufacturing process of a semiconductor structure Parameters; divide the semiconductor structure into a plurality of units; assign the first parameter to one part of the units, and assign the second parameter to the other part of the units; obtain the first simulation event and the second simulation event respectively according to the preset process parameters Simulation event; process simulation, process simulation is performed for the units with the first parameter, perform the first simulation event, and for the units with the second parameter, perform the second simulation event; and obtain the simulation result.

上文概括數個實施例之特徵,使得熟習此項技術者可更佳理解本揭示之態樣。熟習此項技術者應暸解,其等可容易使用本揭示作為設計或修改其他程序及結構之一基礎以實行本文中介紹之實施例之相同目的及/或達成相同優點。熟習此項技術者亦應認識到,此等等效構造不脫離本揭示之精神及範疇,且其等可在本文中作出各種改變、替換及更改而不脫離本揭示之精神及範疇。The features of several embodiments are summarized above, so that those familiar with the art can better understand the aspect of the present disclosure. Those familiar with the art should understand that they can easily use the present disclosure as a basis for designing or modifying other programs and structures to implement the same purpose and/or achieve the same advantages of the embodiments described herein. Those familiar with the art should also realize that these equivalent structures do not depart from the spirit and scope of the present disclosure, and various changes, substitutions and alterations can be made in this text without departing from the spirit and scope of the present disclosure.

100、600:製造方法 102、104、106、108、110、112、114、602、604、606、608、610、612、614、616:操作 200:半導體結構 202、206:分子 204、208:反應表面 2021:單元100, 600: Manufacturing method 102, 104, 106, 108, 110, 112, 114, 602, 604, 606, 608, 610, 612, 614, 616: Operation 200: semiconductor structure 202, 206: Molecule 204, 208: reaction surface 2021: unit

在結合附圖閱讀時,自以下[實施方式]最佳理解本揭示之態樣。應注意,根據產業中之標準實踐,各種構件未按比例繪製。事實上,為清楚論述,各個構件之尺寸可任意增大或減小。 圖1為說明在根據本揭示的一些實施例中之半導體結構的製造方法之流程圖。 圖2A為說明在一些實施例中之根據本揭示的半導體結構之某個階段之俯視圖。 圖2B為圖2A所示在虛線方框中之半導體結構沿A-A直線之剖面示意圖。 圖3為說明在一些實施例中之根據本揭示的半導體結構之如圖2B之反應表面之俯視示意圖。 圖4為說明在一些實施例中之根據本揭示的半導體結構之如圖3之反應表面之俯視示意圖。 圖5為說明在一些實施例中之根據本揭示的半導體結構之某個階段沿如圖2A之A-A直線之剖面示意圖。 圖6為說明在根據本揭示的另一些實施例中之半導體結構的製造方法之流程圖。 When reading in conjunction with the drawings, the aspect of this disclosure is best understood from the following [Embodiments]. It should be noted that according to standard practice in the industry, the various components are not drawn to scale. In fact, for the sake of clarity, the size of each component can be increased or decreased arbitrarily. FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor structure in some embodiments according to the present disclosure. FIG. 2A is a top view illustrating a certain stage of the semiconductor structure according to the present disclosure in some embodiments. 2B is a schematic cross-sectional view of the semiconductor structure shown in FIG. 2A in a dashed box along the line A-A. 3 is a schematic top view illustrating the reaction surface of FIG. 2B of the semiconductor structure according to the present disclosure in some embodiments. 4 is a schematic top view illustrating the reaction surface of FIG. 3 of the semiconductor structure according to the present disclosure in some embodiments. FIG. 5 is a cross-sectional schematic diagram illustrating a certain stage of the semiconductor structure according to the present disclosure in some embodiments along the line A-A in FIG. 2A. FIG. 6 is a flowchart illustrating a method of manufacturing a semiconductor structure in other embodiments according to the present disclosure.

100:製造方法 100: manufacturing method

102、104、106、108、110、112、114:操作 102, 104, 106, 108, 110, 112, 114: Operation

Claims (10)

一種半導體結構的製造方法,包含: 取得半導體結構之預設製程參數; 將該半導體結構分為複數個單元; 分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分; 分別取得第一模擬事件及第二模擬事件; 進行製程模擬,該製程模擬係針對具有該第一參數之該等單元,進行該第一模擬事件,以及針對具有該第二參數之該等單元,進行該第二模擬事件; 依據模擬結果,調整該預設製程參數;及 進行該半導體結構之製程。 A method for manufacturing a semiconductor structure, including: Obtain the preset process parameters of the semiconductor structure; Divide the semiconductor structure into a plurality of units; Allocate the first parameter to one part of the units, and allocate the second parameter to the other part of the units; Obtain the first simulation event and the second simulation event respectively; Performing a process simulation, the process simulation performing the first simulation event for the units with the first parameter, and performing the second simulation event for the units with the second parameter; According to the simulation results, adjust the preset process parameters; and Perform the manufacturing process of the semiconductor structure. 如請求項1之製造方法,更包含: 判斷該製程模擬是否有衝突(conflict)事件。 Such as the manufacturing method of claim 1, further including: Determine whether there is a conflict event in the process simulation. 如請求項2之製造方法,其中該衝突事件包括進行該第一模擬事件之該等單元其中之一與進行該第二模擬事件之該等單元其中之一之間的距離為特定距離。Such as the manufacturing method of claim 2, wherein the conflict event includes a distance between one of the units performing the first simulation event and one of the units performing the second simulation event is a specific distance. 如請求項3之製造方法,其中若判斷為是,則取消位在該特定距離內之該等單元其中之一的該第一模擬事件或該第二模擬事件。For example, the manufacturing method of claim 3, wherein if the judgment is yes, cancel the first simulation event or the second simulation event of one of the units located within the specific distance. 一種半導體結構的製造方法,包含: 依據預設製程參數,進行該半導體結構之製程; 取得製程參數; 將該半導體結構分為複數個單元; 分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分; 根據該製程參數,分別取得第一模擬事件及第二模擬事件; 進行製程模擬,該製程模擬係針對具有該第一參數之該等單元,進行該第一模擬事件,以及針對具有該第二參數之該等單元,進行該第二模擬事件; 取得模擬結果;及 依據該模擬結果,調整該預設製程參數。 A method for manufacturing a semiconductor structure, including: Perform the manufacturing process of the semiconductor structure according to the preset process parameters; Obtain process parameters; Divide the semiconductor structure into a plurality of units; Allocate the first parameter to one part of the units, and allocate the second parameter to the other part of the units; According to the process parameters, the first simulation event and the second simulation event are obtained respectively; Performing a process simulation, the process simulation performing the first simulation event for the units with the first parameter, and performing the second simulation event for the units with the second parameter; Obtain simulation results; and According to the simulation result, the preset process parameters are adjusted. 如請求項5之製造方法,更包含: 判斷該製程模擬是否有衝突(conflict)事件。 Such as the manufacturing method of claim 5, which further includes: Determine whether there is a conflict event in the process simulation. 如請求項6之製造方法,其中該衝突事件包括進行該第一模擬事件之該等單元其中之一與進行該第二模擬事件之該等單元其中之一之間的距離為特定距離。Such as the manufacturing method of claim 6, wherein the conflict event includes a distance between one of the units performing the first simulation event and one of the units performing the second simulation event is a specific distance. 如請求項5之製造方法,其中更包括: 依據調整後之該預設製程參數,進行該半導體結構之該製程。 Such as the manufacturing method of claim 5, which further includes: According to the adjusted preset process parameters, the process of the semiconductor structure is performed. 一種電腦可讀取記錄媒體,儲存至少一程式,當電腦載入該程式並執行後,可完成一種半導體製程的模擬方法,該模擬方法包含: 取得半導體結構之預設製程參數; 將該半導體結構分為複數個單元; 分配第一參數於該等單元之一部分,以及分配第二參數於該等單元之另一部分; 分別取得第一模擬事件及第二模擬事件; 進行製程模擬,該製程模擬係針對具有該第一參數之該等單元,進行該第一模擬事件,以及針對具有該第二參數之該等單元,進行該第二模擬事件;及 取得模擬結果。 A computer can read a recording medium and store at least one program. When the computer loads and executes the program, a simulation method of a semiconductor manufacturing process can be completed. The simulation method includes: Obtain the preset process parameters of the semiconductor structure; Divide the semiconductor structure into a plurality of units; Allocate the first parameter to one part of the units, and allocate the second parameter to the other part of the units; Obtain the first simulation event and the second simulation event respectively; Performing a process simulation that performs the first simulation event for the units with the first parameter, and performs the second simulation event for the units with the second parameter; and Obtain simulation results. 如請求項9之記錄媒體,更包含: 判斷該製程模擬是否有衝突(conflict)事件。 For example, the recording medium of claim 9 further includes: Determine whether there is a conflict event in the process simulation.
TW108143246A 2019-11-27 2019-11-27 Manufacturing method of semiconductor structure and computer-readable storage medium TWI728576B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108143246A TWI728576B (en) 2019-11-27 2019-11-27 Manufacturing method of semiconductor structure and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108143246A TWI728576B (en) 2019-11-27 2019-11-27 Manufacturing method of semiconductor structure and computer-readable storage medium

Publications (2)

Publication Number Publication Date
TWI728576B true TWI728576B (en) 2021-05-21
TW202121080A TW202121080A (en) 2021-06-01

Family

ID=77036259

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108143246A TWI728576B (en) 2019-11-27 2019-11-27 Manufacturing method of semiconductor structure and computer-readable storage medium

Country Status (1)

Country Link
TW (1) TWI728576B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW563218B (en) * 2000-09-15 2003-11-21 Advanced Micro Devices Inc Adaptive sampling method for improved control in semiconductor manufacturing
TW200405184A (en) * 2002-06-07 2004-04-01 Praesagus Inc Characterization and reduction of variation for integrated circuits
TW201828126A (en) * 2017-01-26 2018-08-01 台灣積體電路製造股份有限公司 Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system
TW201921136A (en) * 2017-08-14 2019-06-01 荷蘭商Asml荷蘭公司 Method and apparatus to determine a patterning process parameter
TW201937304A (en) * 2017-12-22 2019-09-16 荷蘭商Asml荷蘭公司 Patterning process improvement involving optical aberration
TW201940988A (en) * 2018-01-31 2019-10-16 荷蘭商Asml荷蘭公司 Method to label substrates based on process parameters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW563218B (en) * 2000-09-15 2003-11-21 Advanced Micro Devices Inc Adaptive sampling method for improved control in semiconductor manufacturing
TW200405184A (en) * 2002-06-07 2004-04-01 Praesagus Inc Characterization and reduction of variation for integrated circuits
TW201828126A (en) * 2017-01-26 2018-08-01 台灣積體電路製造股份有限公司 Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system
TW201921136A (en) * 2017-08-14 2019-06-01 荷蘭商Asml荷蘭公司 Method and apparatus to determine a patterning process parameter
TW201937304A (en) * 2017-12-22 2019-09-16 荷蘭商Asml荷蘭公司 Patterning process improvement involving optical aberration
TW201940988A (en) * 2018-01-31 2019-10-16 荷蘭商Asml荷蘭公司 Method to label substrates based on process parameters

Also Published As

Publication number Publication date
TW202121080A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP5830026B2 (en) How to improve the performance of a substrate carrier
US8524581B2 (en) GaN epitaxy with migration enhancement and surface energy modification
JP2013513236A5 (en)
JP2011249764A (en) Method and device for forming amorphous silicon film
US8548787B2 (en) Simulating a chemical reaction phenomenon in a semiconductor process
US9082729B2 (en) Combinatorial method for solid source doping process development
TWI728576B (en) Manufacturing method of semiconductor structure and computer-readable storage medium
US11610825B2 (en) Method for calibrating temperature in chemical vapor deposition
US8785303B2 (en) Methods for depositing amorphous silicon
US7972944B2 (en) Process simulation method, semiconductor device manufacturing method, and process simulator
CN112864042A (en) Method for manufacturing semiconductor structure and computer readable storage medium
JP7072059B2 (en) Silicon electron emitter design
Ceriotti et al. Diffusion and desorption of Si H 3 on hydrogenated H: Si (100)−(2× 1) from first principles
CN104867821A (en) Method for reducing particle defect in silicon germanium source and drain region epitaxial process
CN102044468A (en) Method for grinding surface of shallow trench isolation structure
KR20200119575A (en) Calculation method of phase diagram for solid solution considering strain energy
US20140256119A1 (en) Cyclic epitaxial deposition and etch processes
Šebera et al. FTIR Measurement of the Hydrogenated Si (100) Surface: The Structure-Vibrational Interpretation by Means of Periodic DFT Calculation
Baer et al. The effect of etching and deposition processes on the width of spacers created during self-aligned double patterning
Zaumseil et al. Preparation and characterization of Ge epitaxially grown on nano-structured periodic Si pillars and bars on Si (001) substrate
Kleinschmidt et al. Atomic surface structure of MOVPE-prepared GaP (1 1 1) B
Vanraes et al. Assessing neutral transport mechanisms in aspect ratio dependent etching by means of experiments and multiscale plasma modeling
JP7303971B1 (en) Method for manufacturing semiconductor device having superjunction structure
US11282707B2 (en) Method and system of estimating wafer crystalline orientation
Holtgrewe et al. Tuning the Conductivity of Metallic Nanowires by Hydrogen Adsorption