TW201828126A - Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system - Google Patents

Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system Download PDF

Info

Publication number
TW201828126A
TW201828126A TW106103364A TW106103364A TW201828126A TW 201828126 A TW201828126 A TW 201828126A TW 106103364 A TW106103364 A TW 106103364A TW 106103364 A TW106103364 A TW 106103364A TW 201828126 A TW201828126 A TW 201828126A
Authority
TW
Taiwan
Prior art keywords
semiconductor
material transfer
production line
semiconductor material
machine
Prior art date
Application number
TW106103364A
Other languages
Chinese (zh)
Other versions
TWI661326B (en
Inventor
楊凱珽
柯力仁
沈香吟
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW106103364A priority Critical patent/TWI661326B/en
Publication of TW201828126A publication Critical patent/TW201828126A/en
Application granted granted Critical
Publication of TWI661326B publication Critical patent/TWI661326B/en

Links

Abstract

The present disclosure provides a semiconductor equipment throughput simulation method, including: respectively obtaining process information of a plurality of semiconductor equipment; respectively obtaining specification information of a plurality of semiconductor transfer device; building a production line selecting from the semiconductor equipment and the semiconductor transfer devices; and performing a simulation of the production line on a processor by using the process and specification information of the selected semiconductor equipment and semiconductor transfer devices.

Description

半導體機台產能模擬方法及半導體機台產能模擬系統Semiconductor machine capacity production simulation method and semiconductor machine capacity simulation system

本揭露係有關於半導體之領域,尤指一種半導體機台產能模擬方法及半導體機台產能模擬系統。The disclosure relates to the field of semiconductors, and more particularly to a semiconductor machine capacity simulation method and a semiconductor machine capacity simulation system.

目前全球市場迫使大量產品的製造商以低價提供高品質的產品。因此,重要的是要提高良率及製程效率,以便將生產成本降至最低。此種情況尤其發生在半導體製造的領域,這是因為該領域將尖端技術(cutting edge technology)與大量生產技術結合。因此,半導體製造商之目標在於減少原料及消耗品的耗用且同時提高製程工具的使用率。後者方面是尤其重要的,這是因為需要有成本相當高且代表了總生產成本的主要部分之現代半導體工具設備。The global market currently forces manufacturers of a large number of products to provide high quality products at low prices. Therefore, it is important to increase yield and process efficiency to minimize production costs. This is especially the case in the field of semiconductor manufacturing because it combines cutting edge technology with mass production technology. Therefore, the goal of semiconductor manufacturers is to reduce the consumption of raw materials and consumables while increasing the use of process tools. The latter aspect is particularly important because of the need for modern semiconductor tooling equipment that is relatively costly and represents a major part of the total production cost.

有鑑於此,本發明的目的在於提供一種生產線上半導體機台產能模擬的方法以及相關系統,可減少計算時間,且可最佳化生產線排程,以達到產能最佳化的目的。In view of this, the object of the present invention is to provide a method and a related system for simulating the capacity of a semiconductor machine on a production line, which can reduce the calculation time and optimize the production line schedule to achieve the purpose of optimizing the production capacity.

本揭露的一些實施例係提供一種半導體機台產能模擬方法,包括:分別取得複數個半導體機台的製程資訊;分別取得複數個半導體材料傳載裝置的規格資訊;從該些半導體機台和該些半導體材料傳載裝置中分別選擇一部分以建立一生產線模型;以及利用所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在一處理器上進行該生產線模型的模擬。Some embodiments of the present disclosure provide a semiconductor device capacity simulation method, including: separately obtaining process information of a plurality of semiconductor devices; respectively obtaining specification information of a plurality of semiconductor material transfer devices; and the semiconductor devices and the semiconductor device Selecting a part of each of the semiconductor material transfer devices to establish a production line model; and using the selected semiconductor machine and the process information and specification information corresponding to the semiconductor material transfer devices to be performed on one processor Simulation of the production line model.

本揭露的一些實施例係提供一種半導體機台產能模擬方法,包括:分別取得一生產線的複數個半導體機台的製程配方操作時間;分別取得該生產線的複數個半導體材料傳載裝置的規格資訊;以及依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在一處理器上進行該生產線的模擬。Some embodiments of the present disclosure provide a method for simulating a capacity of a semiconductor machine, comprising: respectively obtaining a process recipe operation time of a plurality of semiconductor machines of a production line; respectively obtaining specification information of a plurality of semiconductor material transfer devices of the production line; And performing simulation of the production line on a processor according to process schedule and specification information of the process recipes corresponding to the semiconductor devices and the semiconductor material transfer devices.

本揭露的一些實施例係提供一種半導體機台產能模擬系統,包括:一資料庫,包含複數個半導體機台模型和複數個半導體材料傳載裝置模型,其中該些半導體機台模型包含製程資訊,該些半導體材料傳載裝置模型包含規格資訊;一編輯介面,用來讓一使用者依據需要,從該資料庫中的該些半導體機台模型和該些半導體材料傳載裝置模型中分別選擇一部分來建立一生產線模型:以及一計算單元,用來依據該編輯介面中之該生產線模型,來呼叫該資料庫中之該些半導體機台模型和該些半導體材料傳載裝置模型,以進行該生產線模型的模擬。Some embodiments of the present disclosure provide a semiconductor machine capacity simulation system, including: a database including a plurality of semiconductor machine models and a plurality of semiconductor material transfer device models, wherein the semiconductor machine models include process information, The semiconductor material transfer device model includes specification information; an editing interface for allowing a user to select a part of the semiconductor machine model and the semiconductor material transfer device models in the database as needed; Establishing a production line model: and a computing unit for calling the semiconductor machine models and the semiconductor material transfer device models in the database according to the production line model in the editing interface to perform the production line Model simulation.

本揭露所提出的半導體機台產能模擬方法以及相關半導體機台產能模擬系統,可以依據使用者自行定義的半導體機台和半導體材料傳載裝置的組合,來快速的模擬整條完整的生產線。The semiconductor machine capacity simulation method and related semiconductor machine capacity simulation system proposed by the disclosure can quickly simulate a complete production line according to a user-defined combination of a semiconductor machine and a semiconductor material transfer device.

【00013】 本揭露提供了數個不同的實施方法或實施例,可用於實現本發明的不同特徵。為簡化說明起見,本揭露也同時描述了特定零組件與佈置的範例。請注意提供這些特定範例的目的僅在於示範,而非予以任何限制。舉例而言,在以下說明第一特徵如何在第二特徵上或上方的敘述中,可能會包括某些實施例,其中第一特徵與第二特徵為直接接觸,而敘述中也可能包括其他不同實施例,其中第一特徵與第二特徵中間另有其他特徵,以致於第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種範例可能使用重複的參考數字和/或文字註記,以使文件更加簡單化和明確,這些重複的參考數字與註記不代表不同的實施例與配置之間的關聯性。 【00014】 另外,本揭露在使用與空間相關的敘述詞彙,如“在...之下”,“低”,“下”,“上方”,“之上”,“下”,“頂”,“底”和類似詞彙時,為便於敘述,其用法均在於描述圖示中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖示中所顯示的角度方向外,這些空間相對詞彙也用來描述該裝置在使用中以及操作時的可能角度和方向。該裝置的角度方向可能不同(旋轉90度或其它方位),而在本揭露所使用的這些空間相關敘述可以同樣方式加以解釋。 【00015】 儘管本揭露提出廣範圍的數值範圍與餐數係約略值,然而特定範例中所提出的數值係盡可能精準。然而,任何數值本質包含在個別測試量測中得到之標準偏差所造成的一些必要誤差。同樣地,如本文所使用,「約」一詞通常係指給定值或範圍的10%、5%、1%、或0.5%之內。或者,當該技藝中具有通常技術者考量時,「約」一詞係指平均值之可接受的標準誤差。除了在操作/工作範例中,或是除非特別說明,否則例如材料的量、時間期間、溫度、操作條件、量的比例、以及本文所揭露之類似者之所有的數值範圍、數量、值、以及百分比應被理解為在所有例子中受到該詞「約」的修飾。據此,除非有相反的指示,否則本揭露與所附之申請專利範圍所提供的數值參數係約略值,並且可視需要而改變。至少,應至少根據報導的有效位數以及應用習知的進位技術而解讀每一個數值參數。本文中,範圍可表示為從一端點至另一端點或是在兩端點之間。除非特別聲明,否則本文所揭露的所有範圍包含端點。 【00016】 積體電路的製造過程通常係在自動化或半自動化廠房中,經過許多的製程步驟來完成。其中必須經過的製程步驟的數目及類型係取決於所要製造的積體電路的功能及規格。積體電路的一般流程可包括複數個微影(photolithography)步驟,用以將特定裝置層的電路圖案成像在光阻層(resist)中,然後圖案化該光阻層,以便形成光阻遮罩(resist mask),以供在以諸如蝕刻或離子植入製程等的製程建構所考慮的裝置層時作進一步的處理。因此,以一層接著另一層之方式,根據所指定的各層特定微影遮罩而執行複數個製程步驟。例如,複雜的CPU需要幾百個製程步驟,且必須在指定的製程範圍(process margin)內執行每一製程步驟,以便滿足所考慮的裝置之規格。 【00017】 通常可將特定半導體機台之特定製程參數設定值稱為製程配方(recipe),或簡單地稱為配方。因此,可能需要大量的不同之製程配方,以在製造不同類型的積體電路時,將該等不同之製程配方施加到該等半導體機台。由於經常需要快速的改變製程配方以應付多變的製程,所以必須頻繁地改變半導體機台之順序以及製程配方。此外,半導體機台之間的半導體材料傳載裝置,如機械手臂和半導體機台之間的組合亦可能需要隨時改變以提升產能。 【00018】 由於各個半導體機台和半導體材料傳載裝置的供應商所提供的模擬系統通常沒有提供使用者太大的彈性,造成使用者無法任意依實際需求調整半導體機台和半導體材料傳載裝置的各個參數,且各供應商之間多有相容性的問題,具有彼此整合不易的缺點。因此本揭露提出一種半導體機台產能模擬方法以及相關半導體機台產能模擬系統,可以依據使用者自行定義的半導體機台和半導體材料傳載裝置的組合,來快速的模擬整條完整的生產線。 【00019】 圖1為本揭露的半導體機台產能模擬系統100的一實施例的示意圖。半導體機台產能模擬系統100包含有一資料庫102、一編輯介面104以及一計算單元106。資料庫102包含複數個半導體機台模型和複數個半導體材料傳載裝置模型,可供使用者選取。在本實施例中,使用者可依據一生產線的需要,透過編輯介面104來從該些半導體機台和該些半導體材料傳載裝置中分別選擇一部分,以組合成對應該生產線的一生產線模型。而計算單元106則會依據編輯介面104中之該生產線模型,來呼叫資料庫102中之該些半導體機台和該些半導體材料傳載裝置的資訊以進行該生產線模型的模擬。 【00020】 關於資料庫102、編輯介面104以及計算單元106的細節,請參考圖2以及圖3。圖2為本揭露的半導體機台產能模擬系統100的資料庫102以及編輯介面104的一實施例的示意圖。圖1中的半導體機台產能模擬系統100的資料庫102在圖2中包含一半導體材料傳載裝置資料庫1022、一半導體機台資料庫1024以及一排程模組資料庫1026。半導體材料傳載裝置資料庫1022包含任何用來傳送、負載、控制半導體材料(如晶圓)的裝置的規格資訊。在一實施例中,半導體材料傳載裝置資料庫1022包含了機械手臂的規格資訊,例如夾取時間,移動速度等。舉例來說,半導體材料傳載裝置資料庫1022包含的機械手臂可以是任意類型的機械手臂,例如單一機械手臂或是雙變換機械手臂,3軸或是4軸機械手臂等等;此外,半導體材料傳載裝置資料庫1022包含的機械手臂可以是適用於任何環境下的機械手臂,例如大氣機械手臂或是真空機械手臂。在另一實施例中,半導體材料傳載裝置資料庫102除了機械手臂的規格資訊外,還包含了用以提供高精密度的定位功能的晶圓定位儀的規格資訊,例如定位所需的時間。在另一實施例中,半導體材料傳載裝置資料庫102還包含了天車系統的規格資訊,例如天車系統的運送速度等。 【00021】 在一實施例中,半導體機台資料庫1024包含了任何用來對半導體材料如晶圓進行處理的設備。舉例來說,在一實施例中,半導體機台資料庫1024包含了用於晶圓的塗佈設備、顯影設備、蝕刻設備、清洗設備、熱處理設備、測量設備、曝光設備、存放設備等的製程資訊,例如特定製程之參數設定值(包含製程配方)及相對應的處理時間。使用者可依據一生產線的需要,透過編輯介面104,將該生產線所需要用到的半導體材料傳載裝置和半導體機台分別從半導體材料傳載裝置資料庫1022和半導體機台資料庫1024中找出來,加以設定參數並放置在編輯介面104的畫面中,如圖2所示的圖形化介面,以構成一生產線模型,然而本發明不以此為限,在其他實施例中,亦可以用其他的介面表現方式,例如文字化介面。 【00022】 在本實施例中,圖2中的編輯介面104的底圖可以具有複數條X方向和Y方向的格線,該些X方向和Y方向的格線構成複數個方格,其中該些X方向的格線彼此等距,距離為dY,dY乘上一特定比例即為實際的距離;該些Y方向的格線彼此亦等距,距離為dX,dX乘上該特定比例亦為實際的距離。使用者可以據以依據實際上該生產線中每一半導體機台的位置和相對距離來編輯介面104中的該生產線模型。以正確的在半導體機台產能模擬系統100中計算晶圓在不同半導體機台之間運送所需的時間。 【00023】 在使用者建構並設定完成包含半導體材料傳載裝置資料庫1022和半導體機台資料庫1024的硬體後,還需要設定有關排程的資訊。在半導體晶圓廠的生產線上,晶片的製造可大略分為兩個時期:操作時間(run time)及待機時間(queue time)。操作時間,乃是指產品在機器上實行的時間;在半導體晶圓廠中,即為一片晶片自進入機台至完成該施行的步驟後離開機台的時間。當第一批產品正在一機台上實行一步驟時,欲實行該步驟的第二批產品必須先行等待,等第一批產品完成後,第二批產品才能進入此機台來實行該步驟,這個第二批產品等待上一批產品完成該步驟的時間,即為待機時間。而在每批產品之間,因為半導體材料傳載裝置往往為共用,通常不可能完美的銜接,因此待機時間還需要加上等待半導體材料傳載裝置的時間。 【00024】 圖2中的排程模組資料庫1026亦屬於資料庫102的內容之一,排程模組資料庫1026中包含了多種不同的排程方式,可靈活的設定在特定的半導體材料傳載裝置對應特定的半導體機台的場合,例如一般串聯式的晶圓取放,或是為了節省時間預先提取晶圓,或是在排程中加入半導體機台清洗時間的因素,或是多個同樣的半導體機台的連續取放、超車等的設定。藉由從排程模組資料庫1026選擇適當的排程,將可以減少待機時間。 【00025】 圖3為本揭露的半導體機台產能模擬系統100的計算單元106的一實施例的示意圖。圖1中的半導體機台產能模擬系統100的計算單元106在圖3中包含一死結防止單元1062以及一多重執行序(multi-thread)執行單元1026。在一實施例中,在使用者透過編輯介面104,將該生產線所需要用到的半導體材料傳載裝置模型和半導體機台模型分別從半導體材料傳載裝置資料庫1022和半導體機台資料庫1024中找出來,加以設定參數並從排程模組資料庫1026選擇適當的排程的當下,編輯介面104可以即時地將使用者所設定的生產線模型傳送至死結防止單元1062。死結防止單元1062可以線上對該生產線模型進行初步的驗證,若有明顯會發生衝突或可預測的死結的情況時,對使用者進行提示。在其他實施例中,死結防止單元1062還可以提供使用者較優化的設置。上述死結防止單元1062的提示時機,亦可以是在使用者已完成整個生產線模型的設置時而非即時的提示。 【00026】 在通過死結防止單元1062,且使用者已完成整個生產線模型的設置後,多重執行序執行單元1064可以針對該生產線模型中每一半導體材料傳載裝置和每一半導體機台建立一獨立的執行序。例如在圖3中的編輯介面104包含兩個半導體材料傳載裝置模型與一個半導體機台模型,執行序甲對應左邊的半導體材料傳載裝置模型(例如第一機器手臂),執行序乙對應中間的半導體機台模型(例如晶圓盒載具),執行序丙對應右邊的半導體材料傳載裝置模型(例如第二機器手臂)。執行序甲~丙分別在同一時間軸的基礎上進行獨立的模擬,實線箭頭表示運行中,虛線箭頭則表示執行序之間的溝通。在本實施例中,執行序甲所對應的第一機器手臂在時間點B開始啟動,並在時間點C將晶圓傳送到執行序乙所對應的晶圓盒載具,執行序丙所對應的第二機器手臂在時間點A開始啟動,並等到時間點D將晶圓從晶圓盒載具中取出。 【00027】 本實施例中的多重執行序執行單元1064可以以高於半導體機台和半導體材料傳載裝置真實操作速度的較快速度來進行模擬,以節省時間,在某些實施例中,多重執行序執行單元1064的模擬速度可以是真實操作速度的30~100倍。在某些實施例中,多重執行序執行單元1064可以透過特定的演算法,來幫助使用者得到改善該生產線模型的產能的方法,或是在不影響產能的前提下,降低成本的方法,例如改變排程的設定,或是改變半導體機台及/或半導體材料傳載裝置的配置。 【00028】 圖4為本揭露的半導體機台產能模擬系統應用在一混合接合(Hybrid Bonding)生產線400的一實施例的示意圖。混合接合生產線400係由一使用者設置於本揭露的半導體機台產能模擬系統100的編輯介面104中,包含了一載埠(load port)402、一儲存腔室404、一表面處理機台406、一清潔槽408、一預接合處理機台410、一退火處理機台412。混合接合生產線400可依使用者的設定,設置在大氣環境中,或亦可設置在氮氣環境中;使用者可以直接使用載埠402、儲存腔室404、表面處理機台406、清潔槽408、預接合處理機台410、退火處理機台412等的預設參數和配方等的細節,亦可透過編輯介面104來自行編輯。編輯介面104可依實際的比例顯示上述所選取的機台與輪廓,並可以清楚的看出機台所佔的面積與彼此的相對位置。在某些實施例中,編輯介面104亦可顯示所選取的機台更精細的樣貌以增進使用者的理解,例如以上視圖的視角顯示所選取的機台的實際外型,但本發明不以此為限。 【00029】 載埠402係用來在半導體製造過程中存放複數個半導體晶圓,具有可自動開關的艙門。如圖所示,載埠402內包含至少三個晶圓傳送盒(Front Opening Unified Pod)402a~402c。晶圓傳送盒402a係用來存放複數個第一半導體晶圓;晶圓傳送盒402b係用來存放複數個第二半導體晶圓;晶圓傳送盒402c則係用來存放完成處理(即將第一半導體晶圓和第二半導體晶圓預接合得到的第三半導體晶圓組)的複數個第三半導體晶圓組。機器手臂403a係用來以串聯式的方法將複數個第一半導體晶圓送進儲存腔室404中,即確認儲存腔室404可用時,才開始將複數個第一半導體晶圓送進儲存腔室404中;機器手臂403b係用來以串聯式的方法將複數個第二半導體晶圓送進儲存腔室404中。儲存腔室404可以係具有正壓並填充惰性氣體的密閉腔室。 【00030】 機器手臂405係用來將儲存腔室404中的晶圓依序送進表面處理機台406,機器手臂405會提前從儲存腔室404中分別夾取一片第一半導體晶圓與一片第二半導體晶圓,等待表面處理機台406可用時,便會將上述兩片半導體晶圓一次送入。在本實施例中,表面處理機台406會以電漿來對第一半導體晶圓和第二半導體晶圓進行半導體晶圓表面的活化(activation)處理,例如使用包含氫氣的氣體來產生電漿,但不以此為限。 【00031】 機器手臂407係用來將表面處理機台406中完成表面活化處理的晶圓以串聯式的方式送進清潔槽408,清潔槽408可將半導體晶圓上的雜質洗去。機器手臂409會將清潔完成後的半導體晶圓送進預接合處理機台410以對第一半導體晶圓和第二半導體晶圓進行接合處理並得到上述第三半導體晶圓組,在一實施例中,預接合處理機台410係操作在大約30Mpa以下的壓力以及攝氏約100~500度充滿氮氣的環境中。機器手臂411會將接合完成後的第三半導體晶圓組傳送至退火處理機台412,例如以攝氏約300~400度的溫度進行退火處理,且待完成退火處理後,由機器手臂411傳送回載埠402的晶圓傳送盒402c存放。 【00032】 本揭露的一些實施例提供一種半導體機台產能模擬方法,包括:分別取得複數個半導體機台的製程資訊;分別取得複數個半導體材料傳載裝置的規格資訊;從該些半導體機台和該些半導體材料傳載裝置中分別選擇一部分以建立一生產線模型;以及利用所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在一處理器上進行該生產線模型的模擬。 【00033】 本揭露的一些實施例提供一種半導體機台產能模擬方法,包括:分別取得一生產線的複數個半導體機台的製程配方操作時間;分別取得該生產線的複數個半導體材料傳載裝置的規格資訊;以及依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在一處理器上進行該生產線的模擬。 【00034】 本揭露的一些實施例提供一種半導體機台產能模擬系統,包括:一資料庫,包含複數個半導體機台模型和複數個半導體材料傳載裝置模型,其中該些半導體機台模型包含製程資訊,該些半導體材料傳載裝置模型包含規格資訊;一編輯介面,用來讓一使用者依據需要,從該資料庫中的該些半導體機台模型和該些半導體材料傳載裝置模型中分別選擇一部分來建立一生產線模型:以及一計算單元,用來依據該編輯介面中之該生產線模型,來呼叫該資料庫中之該些半導體機台模型和該些半導體材料傳載裝置模型,以進行該生產線模型的模擬。 【00035】 前述內容概述一些實施方式的特徵,因而熟知此技藝之人士可更加理解本揭露之各方面。熟知此技藝之人士應理解可輕易使用本揭露作為基礎,用於設計或修飾其他製程與結構而實現與本申請案所述之實施例具有相同目的與/或達到相同優點。熟知此技藝之人士亦應理解此均等架構並不脫離本揭露揭示內容的精神與範圍,並且熟知此技藝之人士可進行各種變化、取代與替換,而不脫離本揭露之精神與範圍。[00013] The present disclosure provides several different implementations or embodiments that can be used to implement different features of the present invention. For simplicity of explanation, the present disclosure also describes examples of specific components and arrangements. Please note that these specific examples are provided for demonstration purposes only and are not intended to be limiting. For example, in the following description of how the first feature is on or above the second feature, certain embodiments may be included, where the first feature is in direct contact with the second feature, and the description may include other differences Embodiments wherein there are other features in between the first feature and the second feature such that the first feature is not in direct contact with the second feature. In addition, various examples in the disclosure may use repeated reference numerals and/or text annotations to make the document more simplistic and clear, and such repeated reference numerals and annotations do not represent an association between different embodiments and configurations. [00014] In addition, the disclosure uses spatially related narrative vocabulary such as "under", "low", "lower", "above", "above", "down", "top" For the purposes of the description, the <RTI ID=0.0> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; In addition to the angular orientations shown in the figures, these spatial relative terms are also used to describe the possible angles and directions of the device in use and during operation. The angular orientation of the device may vary (rotating 90 degrees or other orientations), and the spatially related descriptions used in this disclosure may be interpreted in the same manner. [00015] Although the present disclosure proposes a wide range of numerical values and approximate number of meals, the numerical values set forth in the specific examples are as accurate as possible. However, any numerical nature contains some of the necessary errors caused by the standard deviations obtained in individual test measurements. Similarly, as used herein, the term "about" generally refers to within 10%, 5%, 1%, or 0.5% of a given value or range. Alternatively, the term "about" refers to an acceptable standard error of the average when considered by one of ordinary skill in the art. Except in the operating/working examples, or unless otherwise stated, such as the amount of material, time period, temperature, operating conditions, proportions of quantities, and all numerical ranges, quantities, values, and The percentage should be understood as being modified by the word "about" in all cases. Accordingly, the numerical parameters set forth in the disclosure and the appended claims are intended to be a At a minimum, each numerical parameter should be interpreted at least in terms of the number of significant digits reported and the well-known carry technique. In this context, a range can be expressed as from one end to another or between two ends. Unless otherwise stated, all ranges disclosed herein are inclusive of the endpoints. [00016] The manufacturing process of integrated circuits is usually done in an automated or semi-automated plant, and is done through a number of process steps. The number and type of process steps that must be passed depend on the function and specifications of the integrated circuit to be fabricated. The general flow of the integrated circuit may include a plurality of photolithography steps for imaging a circuit pattern of a particular device layer in a photoresist layer, and then patterning the photoresist layer to form a photoresist mask. Resist mask for further processing when constructing the device layer under consideration in processes such as etching or ion implantation processes. Thus, a plurality of process steps are performed in a layer-by-layer manner in accordance with the specified lithographic masks for each layer. For example, a complex CPU requires hundreds of process steps and each process step must be performed within a specified process margin to meet the specifications of the device under consideration. [00017] The specific process parameter settings for a particular semiconductor machine can generally be referred to as a recipe, or simply as a recipe. Therefore, a large number of different process recipes may be required to apply the different process recipes to the semiconductor machines when manufacturing different types of integrated circuits. Since it is often necessary to quickly change the process recipe to cope with the changing process, the order of the semiconductor machines and the process recipe must be changed frequently. In addition, the combination of semiconductor material transfer devices between semiconductor machines, such as robotic arms and semiconductor machines, may also need to be changed at any time to increase throughput. [00018] Since the analog systems provided by the suppliers of semiconductor machines and semiconductor material transfer devices usually do not provide too much flexibility for the user, the user cannot adjust the semiconductor machine and the semiconductor material transfer device according to actual needs. The various parameters, and the compatibility problems between the various suppliers, have the disadvantage that they are not easy to integrate with each other. Therefore, the present disclosure proposes a semiconductor machine capacity simulation method and a related semiconductor machine capacity simulation system, which can quickly simulate a complete production line according to a user-defined combination of a semiconductor machine and a semiconductor material transfer device. [00019] FIG. 1 is a schematic diagram of an embodiment of a semiconductor machine capacity simulation system 100 of the present disclosure. The semiconductor machine capacity simulation system 100 includes a database 102, an editing interface 104, and a computing unit 106. The database 102 includes a plurality of semiconductor machine models and a plurality of semiconductor material transfer device models for selection by a user. In this embodiment, the user can select a part of the semiconductor machine and the semiconductor material transfer devices through the editing interface 104 according to the needs of a production line to form a production line model corresponding to the production line. The computing unit 106, according to the production line model in the editing interface 104, calls the semiconductor devices in the database 102 and the information of the semiconductor material transfer devices to perform simulation of the production line model. [00020] For details of the database 102, the editing interface 104, and the computing unit 106, please refer to FIG. 2 and FIG. 2 is a schematic diagram of an embodiment of a database 102 and an editing interface 104 of the semiconductor machine capacity simulation system 100 of the present disclosure. The database 102 of the semiconductor machine capacity simulation system 100 of FIG. 1 includes a semiconductor material transfer device database 1022, a semiconductor machine database 1024, and a scheduling module database 1026 in FIG. The semiconductor material transfer device library 1022 contains specifications for any device used to transfer, load, and control semiconductor materials such as wafers. In one embodiment, the semiconductor material transfer device database 1022 contains specification information of the robot arm, such as the gripping time, the moving speed, and the like. For example, the semiconductor material transfer device database 1022 can include any type of robot arm, such as a single robot arm or a double-transformation robot arm, a 3-axis or 4-axis robot arm, and the like; The robotic arm contained in the carrier device database 1022 can be a robotic arm suitable for use in any environment, such as an atmospheric robotic arm or a vacuum robotic arm. In another embodiment, in addition to the specification information of the robot arm, the semiconductor material transfer device database 102 includes specification information of the wafer locator for providing high-precision positioning function, such as time required for positioning. . In another embodiment, the semiconductor material transfer device database 102 further includes specification information of the crane system, such as the transport speed of the crane system. [00021] In one embodiment, semiconductor machine library 1024 includes any device for processing semiconductor materials such as wafers. For example, in one embodiment, the semiconductor machine library 1024 includes processes for coating equipment, developing equipment, etching equipment, cleaning equipment, heat treatment equipment, measuring equipment, exposure equipment, storage equipment, and the like for wafers. Information, such as parameter settings for a specific process (including process recipes) and corresponding processing times. The semiconductor material transfer device and the semiconductor machine required for the production line can be found from the semiconductor material transfer device database 1022 and the semiconductor machine database 1024 through the editing interface 104 according to the needs of a production line. Then, the parameters are set and placed in the screen of the editing interface 104, such as the graphical interface shown in FIG. 2, to form a production line model. However, the present invention is not limited thereto, and in other embodiments, other The interface representation, such as the textual interface. In this embodiment, the base map of the editing interface 104 in FIG. 2 may have a plurality of grid lines in the X direction and the Y direction, and the grid lines in the X direction and the Y direction constitute a plurality of squares, wherein the The grid lines in the X direction are equidistant from each other, the distance is dY, and dY is multiplied by a specific ratio, which is the actual distance; the grid lines in the Y direction are also equidistant from each other, and the distance is dX, and dX is multiplied by the specific ratio. Actual distance. The user can edit the line model in the interface 104 based on the actual position and relative distance of each semiconductor machine in the production line. The time required for the wafer to be transported between different semiconductor machines is calculated correctly in the semiconductor machine capacity simulation system 100. [00023] After the user constructs and sets up the hardware including the semiconductor material transfer device database 1022 and the semiconductor machine database 1024, it is also necessary to set information about the schedule. In a semiconductor fab production line, wafer fabrication can be roughly divided into two phases: run time and queue time. The operation time refers to the time when the product is executed on the machine; in the semiconductor fab, it is the time when a wafer leaves the machine after entering the machine to the step of completing the execution. When the first batch of products is being implemented on a machine, the second batch of products to be implemented must wait before the first batch of products is completed, and the second batch of products can enter the machine to implement the step. This second batch of products waits for the last batch of products to complete the step, which is the standby time. Between each batch of products, because the semiconductor material transfer devices are often shared, it is usually impossible to perfectly connect, so the standby time also needs to wait for the time of waiting for the semiconductor material transfer device. [00024] The scheduling module database 1026 in FIG. 2 also belongs to one of the contents of the database 102. The scheduling module database 1026 includes a plurality of different scheduling modes, which can be flexibly set in a specific semiconductor material. When the transfer device corresponds to a specific semiconductor machine, for example, a general serial wafer pick-and-place, or a method for saving the time to extract the wafer in advance, or adding a semiconductor machine cleaning time in the schedule, or more The setting of continuous pick-and-place, overtaking, etc. of the same semiconductor machine. By selecting the appropriate schedule from the scheduling module library 1026, the standby time can be reduced. [00025] FIG. 3 is a schematic diagram of an embodiment of a computing unit 106 of the semiconductor machine capacity simulation system 100 of the present disclosure. The computing unit 106 of the semiconductor machine capacity simulation system 100 of FIG. 1 includes a dead-end prevention unit 1062 and a multi-thread execution unit 1026 in FIG. In one embodiment, the semiconductor material transfer device model and the semiconductor machine model required for the production line are respectively passed from the semiconductor material transfer device database 1022 and the semiconductor machine database 1024 through the editing interface 104. Now, the editing interface 104 can instantly transmit the line model set by the user to the dead knot prevention unit 1062 by setting the parameters, setting the parameters and selecting the appropriate schedule from the scheduling module database 1026. The dead knot prevention unit 1062 can perform preliminary verification on the line model on the line, and prompt the user if there is a situation in which a conflict or a predictable dead knot is apparent. In other embodiments, the dead knot prevention unit 1062 can also provide a user-optimized setting. The prompt timing of the dead knot prevention unit 1062 may also be when the user has completed setting the entire production line model instead of an instant prompt. [00026] After passing through the dead knot prevention unit 1062, and the user has completed the setup of the entire production line model, the multiple execution sequence execution unit 1064 can establish an independent for each semiconductor material transfer device and each semiconductor machine in the production line model. The execution order. For example, the editing interface 104 in FIG. 3 includes two semiconductor material transfer device models and a semiconductor machine model, and the execution sequence corresponds to the left semiconductor material transfer device model (for example, the first robot arm), and the execution sequence B corresponds to the middle. The semiconductor machine model (such as a wafer cassette carrier), the execution sequence C corresponds to the semiconductor material carrier device model on the right (for example, the second robot arm). Execution of the sequence A to C respectively performs independent simulations on the same time axis, solid arrows indicate running, and dashed arrows indicate communication between execution sequences. In this embodiment, the first robot arm corresponding to the execution of the sequence A starts at the time point B, and at the time point C, the wafer is transferred to the wafer cassette carrier corresponding to the execution sequence B, and the execution sequence corresponds to The second robot arm starts at time point A and waits until time point D to remove the wafer from the wafer cassette carrier. [00027] The multiple execution sequence execution unit 1064 in this embodiment can perform simulations at a higher speed than the actual operating speed of the semiconductor machine and the semiconductor material transfer device to save time, in some embodiments, multiple The simulation speed of the execution sequence execution unit 1064 may be 30 to 100 times the actual operation speed. In some embodiments, the multiple execution execution unit 1064 can assist the user in obtaining a method for improving the productivity of the production line model through a specific algorithm, or a method of reducing the cost without affecting the production capacity, for example, Change the schedule settings or change the configuration of the semiconductor machine and/or semiconductor material transfer device. [00028] FIG. 4 is a schematic diagram of an embodiment of a semiconductor machine capacity simulation system of the present disclosure applied to a Hybrid Bonding production line 400. The hybrid bonding line 400 is disposed by a user in the editing interface 104 of the semiconductor machine capacity simulation system 100 of the present disclosure, and includes a load port 402, a storage chamber 404, and a surface treatment machine 406. A cleaning tank 408, a pre-bonding processing machine 410, and an annealing processing machine 412. The mixing and joining production line 400 can be set in the atmosphere according to the user's setting, or can be set in a nitrogen environment; the user can directly use the carrier 402, the storage chamber 404, the surface treatment machine 406, the cleaning tank 408, Details of preset parameters, recipes, and the like of the pre-joining processing machine 410, the annealing processing machine 412, and the like can also be edited through the editing interface 104. The editing interface 104 can display the selected machine table and contour according to the actual scale, and can clearly see the area occupied by the machine and the relative position of each other. In some embodiments, the editing interface 104 can also display a more detailed appearance of the selected machine to enhance the user's understanding. For example, the perspective of the above view shows the actual appearance of the selected machine, but the present invention does not. This is limited to this. [00029] The carrier 402 is used to store a plurality of semiconductor wafers in a semiconductor manufacturing process, and has a door that can be automatically switched. As shown, the magazine 402 contains at least three Front Opening Unified Pods 402a-402c. The wafer transfer cassette 402a is used to store a plurality of first semiconductor wafers; the wafer transfer cassette 402b is used to store a plurality of second semiconductor wafers; and the wafer transfer cassette 402c is used to store the completed processing (that is, the first a plurality of third semiconductor wafer sets of the third semiconductor wafer set obtained by pre-bonding the semiconductor wafer and the second semiconductor wafer. The robot arm 403a is used to feed a plurality of first semiconductor wafers into the storage chamber 404 in a series manner, that is, to confirm that the storage chamber 404 is available before starting to feed the plurality of first semiconductor wafers into the storage chamber. In chamber 404, robotic arm 403b is used to feed a plurality of second semiconductor wafers into storage chamber 404 in a tandem manner. The storage chamber 404 can be a closed chamber having a positive pressure and filled with an inert gas. [00030] The robot arm 405 is used to sequentially feed the wafers in the storage chamber 404 into the surface treatment machine 406, and the robot arm 405 advances a first semiconductor wafer and a piece from the storage chamber 404 in advance. The second semiconductor wafer, when the surface processing machine 406 is available, will feed the two semiconductor wafers at a time. In this embodiment, the surface processing machine 406 performs plasma activation of the first semiconductor wafer and the second semiconductor wafer by plasma, for example, using a gas containing hydrogen to generate a plasma. , but not limited to this. [00031] The robot arm 407 is used to feed the wafers that have been surface-activated in the surface treatment machine 406 into the cleaning tank 408 in a series manner, and the cleaning tank 408 can wash away impurities on the semiconductor wafer. The robot arm 409 feeds the cleaned semiconductor wafer into the pre-bonding processing machine 410 to bond the first semiconductor wafer and the second semiconductor wafer to obtain the third semiconductor wafer set, in an embodiment. The pre-joining processor stage 410 is operated in a pressure of about 30 MPa or less and a nitrogen-filled environment of about 100 to 500 degrees Celsius. The robot arm 411 transfers the bonded third semiconductor wafer set to the annealing machine stage 412, for example, annealing at a temperature of about 300 to 400 degrees Celsius, and is sent back by the robot arm 411 after the annealing process is completed. The wafer transfer cassette 402c of the cassette 402 is stored. [00032] Some embodiments of the present disclosure provide a semiconductor device capacity simulation method, including: separately obtaining process information of a plurality of semiconductor devices; respectively obtaining specification information of a plurality of semiconductor material transfer devices; and from the semiconductor devices And selecting a part of each of the semiconductor material transfer devices to establish a production line model; and using a process information and specification information corresponding to the selected semiconductor machine and the semiconductor material transfer devices to be used in a processor The simulation of the production line model was carried out. [00033] Some embodiments of the present disclosure provide a semiconductor machine capacity simulation method, including: respectively obtaining a process recipe operation time of a plurality of semiconductor machines of a production line; respectively obtaining specifications of a plurality of semiconductor material transfer devices of the production line Information; and performing simulation of the production line on a processor according to process schedule and specification information of the process recipes corresponding to the semiconductor machine and the semiconductor material transfer devices. [00034] Some embodiments of the present disclosure provide a semiconductor machine capacity simulation system, including: a database including a plurality of semiconductor machine models and a plurality of semiconductor material transfer device models, wherein the semiconductor machine models include processes Information, the semiconductor material transfer device model includes specification information; an editing interface for allowing a user to separately select from the semiconductor machine models and the semiconductor material transfer device models in the database according to requirements Selecting a portion to create a production line model: and a computing unit for calling the semiconductor machine models and the semiconductor material transfer device models in the database according to the production line model in the editing interface Simulation of the production line model. [00035] The foregoing has outlined the features of some embodiments, and those skilled in the art can understand the various aspects of the disclosure. Those skilled in the art will appreciate that the present disclosure can be readily utilized as a basis for designing or modifying other processes and structures to achieve the same objectives and/or the same advantages as the embodiments described herein. A person skilled in the art should understand that the present invention is not limited to the spirit and scope of the disclosure, and those skilled in the art can make various changes, substitutions and substitutions without departing from the spirit and scope of the disclosure.

100‧‧‧半導體機台產能模擬系統100‧‧‧Semiconductor machine capacity simulation system

102‧‧‧資料庫102‧‧‧Database

104‧‧‧編輯介面104‧‧‧Editing interface

106‧‧‧計算單元106‧‧‧Computation unit

1022‧‧‧半導體材料傳載裝置資料庫1022‧‧‧Semiconductor Material Transfer Device Database

1024‧‧‧半導體機台資料庫1024‧‧‧Semiconductor machine database

1026‧‧‧排程模組資料庫1026‧‧‧ Scheduling Module Database

1062‧‧‧死結防止單元1062‧‧‧ Dead knot prevention unit

400‧‧‧混合接合生產線400‧‧‧Mixed joint production line

402‧‧‧載埠402‧‧‧ contained

402a‧‧‧晶圓傳送盒402a‧‧‧ wafer transfer box

402b‧‧‧晶圓傳送盒402b‧‧‧ wafer transfer box

402c‧‧‧晶圓傳送盒402c‧‧‧ wafer transfer box

403a‧‧‧機器手臂403a‧‧‧Machine arm

403b‧‧‧機器手臂403b‧‧‧Machine arm

405‧‧‧機器手臂405‧‧‧Machine arm

407‧‧‧機器手臂407‧‧‧Machine arm

409‧‧‧機器手臂409‧‧‧Machine arm

411‧‧‧機器手臂411‧‧‧Machine arm

413‧‧‧機器手臂413‧‧‧Machine arm

404‧‧‧儲存腔室404‧‧‧Storage chamber

406‧‧‧表面處理機台406‧‧‧ surface treatment machine

408‧‧‧清潔槽408‧‧‧cleaning tank

410‧‧‧預接合處理機台410‧‧‧Pre-joining machine

412‧‧‧退火處理機台412‧‧‧ Annealing machine

為協助讀者達到最佳理解效果,建議在閱讀本揭露時同時參考附件圖示及其詳細文字敘述說明。請注意為遵循業界標準作法,本專利說明書中的圖式不一定按照正確的比例繪製。在某些圖式中,尺寸可能刻意放大或縮小,以協助讀者清楚了解其中的討論內容。In order to assist the reader to achieve the best understanding, it is recommended to refer to the attached figure and its detailed text description when reading this disclosure. Please note that in order to comply with industry standards, the drawings in this patent specification are not necessarily drawn to the correct scale. In some drawings, the dimensions may be deliberately enlarged or reduced to assist the reader in understanding the discussion.

圖1為本揭露的半導體機台產能模擬系統的一實施例的示意圖; 【00010】 圖2為本揭露的半導體機台產能模擬系統的資料庫以及編輯介面的一實施例的示意圖; 【00011】 圖3為本揭露的半導體機台產能模擬系統的計算單元的一實施例的示意圖;以及 【00012】 圖4為本揭露的半導體機台產能模擬系統應用在一混合接合生產線的一實施例的示意圖。1 is a schematic diagram of an embodiment of a semiconductor machine capacity simulation system according to the present disclosure; [00010] FIG. 2 is a schematic diagram of a data library and an editing interface of a semiconductor machine capacity simulation system according to the present disclosure; [00011] 3 is a schematic diagram of an embodiment of a computing unit of a semiconductor machine capacity simulation system according to the present disclosure; and [00012] FIG. 4 is a schematic diagram of an embodiment of a semiconductor machine capacity simulation system applied to a hybrid bonding production line. .

(無)(no)

Claims (10)

一種半導體機台產能模擬方法,包括: 分別取得複數個半導體機台的製程資訊; 分別取得複數個半導體材料傳載裝置的規格資訊; 從該些半導體機台和該些半導體材料傳載裝置中分別選擇一部分以建立一生產線模型;以及 利用所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在一處理器上進行該生產線模型的模擬。A semiconductor machine capacity simulation method includes: separately obtaining process information of a plurality of semiconductor machines; respectively obtaining specification information of a plurality of semiconductor material transfer devices; respectively, from the semiconductor devices and the semiconductor material transfer devices A part of the selection is made to establish a production line model; and the simulation of the production line model is performed on a processor by using the selected semiconductor machine and the process information and specification information corresponding to the semiconductor material transfer devices. 如申請專利範圍第1項的方法,其中利用所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在該處理器上進行該生產線模型的模擬包括: 設定該些半導體機台和該些半導體材料傳載裝置之間的排程資訊;以及 依據該排程資訊和所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在該處理器上進行該生產線模型的模擬。The method of claim 1, wherein the simulation of the production line model is performed on the processor by using the selected semiconductor machine and the process information and specification information corresponding to the semiconductor material transfer devices. : setting schedule information between the semiconductor devices and the semiconductor material transfer devices; and processing information corresponding to the selected semiconductor devices and the semiconductor material transfer devices according to the schedule information And specification information to simulate the line model on the processor. 如申請專利範圍第2項的方法,另包括: 利用該處理器改變該生產線模型,以得到具有高於該生產線模型的產能的另一生產線模型。The method of claim 2, further comprising: using the processor to change the line model to obtain another line model having a higher capacity than the line model. 如申請專利範圍第1項的方法,其中在該處理器上進行該生產線模型的模擬包括: 在該處理器上,以縮時的方式進行該生產線模型的模擬。The method of claim 1, wherein performing the simulation of the line model on the processor comprises: performing simulation of the line model on the processor in a time-reduced manner. 如申請專利範圍第1項的方法,其中利用所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在該處理器上進行該生產線模型的模擬包括: 利用所選擇之該些半導體機台和該些半導體材料傳載裝置所對應的製程資訊和規格資訊,來在該處理器上偵測該生產線模型是否會發生死結(deadlock)。The method of claim 1, wherein the simulation of the production line model is performed on the processor by using the selected semiconductor machine and the process information and specification information corresponding to the semiconductor material transfer devices. And using the selected semiconductor machine and the process information and specification information corresponding to the semiconductor material transfer devices to detect whether the production line model has a deadlock on the processor. 一種半導體機台產能模擬方法,包括: 分別取得一生產線的複數個半導體機台的製程配方操作時間; 分別取得該生產線的複數個半導體材料傳載裝置的規格資訊;以及 依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在一處理器上進行該生產線的模擬。A semiconductor machine capacity simulation method includes: obtaining process recipe operation time of a plurality of semiconductor machines of a production line respectively; obtaining specification information of a plurality of semiconductor material transfer devices of the production line respectively; and according to the semiconductor machines and The process recipe and specification information corresponding to the process recipes of the semiconductor material transfer devices are used to simulate the production line on a processor. 如申請專利範圍第6項的方法,其中依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在該處理器上進行該生產線的模擬包括: 依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在該處理器上偵測該生產線是否會發生死結。The method of claim 6, wherein the simulation of the production line on the processor according to the process schedule and specification information of the semiconductor machine and the semiconductor material transfer device includes: The processing time and specification information of the process recipes corresponding to the semiconductor devices and the semiconductor material transfer devices are used to detect whether the production line will be dead on the processor. 如申請專利範圍第6項的方法,其中依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在該處理器上進行該生產線的模擬包括: 依據該些半導體機台和該些半導體材料傳載裝置所對應的製程配方操作時間和規格資訊,來在該處理器上最佳化該生產線。The method of claim 6, wherein the simulation of the production line on the processor according to the process schedule and specification information of the semiconductor machine and the semiconductor material transfer device includes: The semiconductor package and the process recipe and specification information corresponding to the semiconductor material transfer devices are used to optimize the production line on the processor. 一種半導體機台產能模擬系統,包括: 一資料庫,包含複數個半導體機台模型和複數個半導體材料傳載裝置模型,其中該些半導體機台模型包含製程資訊,該些半導體材料傳載裝置模型包含規格資訊; 一編輯介面,用來讓一使用者依據需要,從該資料庫中的該些半導體機台模型和該些半導體材料傳載裝置模型中分別選擇一部分來建立一生產線模型:以及 一計算單元,用來依據該編輯介面中之該生產線模型,來呼叫該資料庫中之該些半導體機台模型和該些半導體材料傳載裝置模型,以進行該生產線模型的模擬。A semiconductor machine capacity simulation system includes: a database comprising a plurality of semiconductor machine models and a plurality of semiconductor material transfer device models, wherein the semiconductor machine models include process information, and the semiconductor material transfer device models Include specification information; an editing interface for allowing a user to select a part of the semiconductor machine model and the semiconductor material transfer device models in the database to establish a production line model as needed: The computing unit is configured to call the semiconductor machine models and the semiconductor material transfer device models in the database according to the production line model in the editing interface to perform simulation of the production line model. 如申請專利範圍第9項的系統,其中該計算單元包括: 一死結防止單元,用來分析該使用者所建立之該生產線模型是否會發生死結;以及 一計算單元,用來依據該使用者所選擇的該些半導體機台模型和該些半導體材料傳載裝置模型所對應的製程資訊和規格資訊,來對該生產線模型進行倍速模擬。The system of claim 9, wherein the calculating unit comprises: a dead knot preventing unit for analyzing whether the line model established by the user is dead knot; and a calculating unit for using the user unit The selected semiconductor machine model and the process information and specification information corresponding to the semiconductor material transfer device models are used to perform double speed simulation on the production line model.
TW106103364A 2017-01-26 2017-01-26 Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system TWI661326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106103364A TWI661326B (en) 2017-01-26 2017-01-26 Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106103364A TWI661326B (en) 2017-01-26 2017-01-26 Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system

Publications (2)

Publication Number Publication Date
TW201828126A true TW201828126A (en) 2018-08-01
TWI661326B TWI661326B (en) 2019-06-01

Family

ID=63960514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106103364A TWI661326B (en) 2017-01-26 2017-01-26 Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system

Country Status (1)

Country Link
TW (1) TWI661326B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728576B (en) * 2019-11-27 2021-05-21 台灣積體電路製造股份有限公司 Manufacturing method of semiconductor structure and computer-readable storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405157B1 (en) * 1998-05-13 2002-06-11 Nec Corporation Evaluation value computing system in production line simulator
US6711450B1 (en) * 2000-02-02 2004-03-23 Advanced Micro Devices, Inc. Integration of business rule parameters in priority setting of wafer processing
JP2005135280A (en) * 2003-10-31 2005-05-26 Fujitsu Ltd Production scheme planning method and device
DE102005009022A1 (en) * 2005-02-28 2006-09-07 Advanced Micro Devices, Inc., Sunnyvale Automatic throughput control system and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728576B (en) * 2019-11-27 2021-05-21 台灣積體電路製造股份有限公司 Manufacturing method of semiconductor structure and computer-readable storage medium

Also Published As

Publication number Publication date
TWI661326B (en) 2019-06-01

Similar Documents

Publication Publication Date Title
US7974724B2 (en) Product-related feedback for process control
CN107871194B (en) Scheduling method and device for production line equipment
US9852932B2 (en) Method for processing semiconductor wafer
TWI414917B (en) Automated throughput control system and method of operating the same
US8019467B2 (en) Scheduling method for processing equipment
TWI709187B (en) System, non-transitory computer readable medium and method for lot-tool assignment
CN105336652B (en) Chip transmission control method and system
US20030082837A1 (en) Method and apparatus for cascade control using integrated metrology
JP2005508090A5 (en)
US7650199B1 (en) End of line performance prediction
US7315765B1 (en) Automated control thread determination based upon post-process consideration
US20070004052A1 (en) Processing schedule creaitng method, coating and developing apparatus, pattern forming apparatus and processing system
CN108363362B (en) Semiconductor machine productivity simulation method and semiconductor machine productivity simulation system
US7120511B1 (en) Method and system for scheduling maintenance procedures based upon workload distribution
US6947803B1 (en) Dispatch and/or disposition of material based upon an expected parameter result
TWI661326B (en) Semiconductor equipment throughput simulation method and semiconductor equipment throughput simulation system
US10162341B2 (en) Method for sequencing a plurality of tasks performed by a processing system and a processing system for implementing the same
US20110218660A1 (en) Method and apparatus for automated fab control
TW200411450A (en) Secondary process controller for supplementing a primary process controller
US7296103B1 (en) Method and system for dynamically selecting wafer lots for metrology processing
US6618640B1 (en) Method and apparatus for using integrated remote identifier
US8239151B2 (en) Method and apparatus for analysis of continuous data using binary parsing
US6788988B1 (en) Method and apparatus using integrated metrology data for pre-process and post-process control
US6912436B1 (en) Prioritizing an application of correction in a multi-input control system
EP3511128B1 (en) Workpiece processing system