TWI727828B - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
TWI727828B
TWI727828B TW109120132A TW109120132A TWI727828B TW I727828 B TWI727828 B TW I727828B TW 109120132 A TW109120132 A TW 109120132A TW 109120132 A TW109120132 A TW 109120132A TW I727828 B TWI727828 B TW I727828B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
region
layer
metal
top surface
Prior art date
Application number
TW109120132A
Other languages
Chinese (zh)
Other versions
TW202201538A (en
Inventor
洪偉哲
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109120132A priority Critical patent/TWI727828B/en
Application granted granted Critical
Publication of TWI727828B publication Critical patent/TWI727828B/en
Publication of TW202201538A publication Critical patent/TW202201538A/en

Links

Images

Abstract

Provided is a semiconductor device including a dielectric layer, a first via, a second via, a first barrier layer, and a second barrier layer. The dielectric layer has a first region and a second region. The first via is disposed in the dielectric layer in the first region. The second via is disposed in the dielectric layer in the second region. The first barrier layer lines a sidewall and a bottom surface of the first via. The second barrier layer lines a sidewall and a bottom surface of the second via. The first and second barrier layers each has an upper portion and a lower portion. The upper portion has a nitrogen doping concentration greater than a nitrogen doping concentration of the lower portion. A method of manufacturing a semiconductor device is also provided.

Description

半導體元件及其製造方法Semiconductor element and its manufacturing method

本發明是有關於一種半導體元件及其製造方法。The present invention relates to a semiconductor element and its manufacturing method.

隨著半導體技術的進步,目前的積體晶片包括數以萬計的半導體元件。所述半導體元件可包括主動元件(例如電晶體、二極體等)、被動元件(例如電容器、電阻器等)或其組合。金屬-絕緣體-金屬(Metal-insulator-metal,MIM)結構是一種常見的被動元件,此種被動元件常整合到積體晶片的後段製程(back-end-of-the-line,BEOL)的金屬內連線中,以與前段製程(front-end-of-the-line,FEOL)中的電晶體電性連接。With the advancement of semiconductor technology, current integrated wafers include tens of thousands of semiconductor components. The semiconductor element may include an active element (for example, a transistor, a diode, etc.), a passive element (for example, a capacitor, a resistor, etc.), or a combination thereof. Metal-insulator-metal (MIM) structure is a common passive component, which is often integrated into the back-end-of-the-line (BEOL) metal of the integrated chip In the internal wiring, it is electrically connected with the transistor in the front-end-of-the-line (FEOL).

然而,在定義MIM結構時,會因過蝕刻(over-etch)而損耗經暴露的介層窗及/或阻障層,進而造成弱點(weak point)。在此情況下,在進行後續BEOL的熱處理時,介層窗下方的銅層會沿著此弱點而產生銅爆發(volcano)缺陷,進而影響半導體元件的可靠度與良率。However, when the MIM structure is defined, the exposed via and/or barrier layer will be lost due to over-etching, thereby causing a weak point. In this case, during the subsequent BEOL heat treatment, the copper layer under the via window will produce copper volcano defects along this weak point, thereby affecting the reliability and yield of the semiconductor device.

本發明提供一種半導體元件及製造方法,其藉由氮化處理強化裝襯在介層窗的側壁上的阻障層的阻擋強度,以避免銅爆發缺陷問題產生,進而提升元件的可靠度與良率。The present invention provides a semiconductor device and a manufacturing method. The barrier strength of a barrier layer lined on the sidewall of a via is strengthened by nitriding, so as to avoid the occurrence of copper burst defects, thereby improving the reliability and quality of the device. rate.

本發明提供一種半導體元件包括:介電層、第一介層窗、第二介層窗、第一阻障層以及第二阻障層。介電層具有第一區與第二區。第一介層窗配置在第一區的介電層中。第二介層窗配置在第二區的介電層中。第一阻障層裝襯在第一介層窗的側壁與底面。第二阻障層裝襯在第二介層窗的側壁與底面。第二阻障層具有上部與下部。上部的氮摻雜濃度大於下部的氮摻雜濃度。The present invention provides a semiconductor device including: a dielectric layer, a first via window, a second via window, a first barrier layer and a second barrier layer. The dielectric layer has a first area and a second area. The first via is disposed in the dielectric layer of the first region. The second via is disposed in the dielectric layer of the second region. The first barrier layer is lined on the sidewall and the bottom surface of the first via. The second barrier layer is lined on the sidewall and bottom surface of the second via. The second barrier layer has an upper portion and a lower portion. The upper nitrogen doping concentration is greater than the lower nitrogen doping concentration.

本發明提供一種半導體元件的製造方法,包括:在介電層中形成多個介層窗;對介電層與多個介層窗進行氮化處理,以使介電層的頂部的氮摻雜濃度大於介電層的底部的氮摻雜濃度;在介電層與多個介層窗上形成金屬-絕緣體-金屬(MIM)堆疊;以及圖案化金屬-絕緣體-金屬堆疊,以形成金屬-絕緣體-金屬結構。The present invention provides a method for manufacturing a semiconductor element, which includes: forming a plurality of vias in a dielectric layer; nitriding the dielectric layer and the plurality of vias to dope nitrogen on the top of the dielectric layer The concentration is greater than the nitrogen doping concentration at the bottom of the dielectric layer; a metal-insulator-metal (MIM) stack is formed on the dielectric layer and a plurality of via windows; and the metal-insulator-metal stack is patterned to form a metal-insulator -Metal structure.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention will be explained more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various different forms and should not be limited to the embodiments described herein. The thickness of the layers and regions in the drawing will be exaggerated for clarity. The same or similar reference numerals indicate the same or similar elements, and the following paragraphs will not repeat them one by one.

本發明第一實施例提供一種半導體元件1(如圖1I所示)的製造流程,詳細步驟如圖1A至圖1I所示。首先,請參照圖1A,提供初始結構,其包括:基底100、隔離結構101、閘極結構110、120、接觸窗115、125、介電層130、132、導體層134、136以及介電層140、142。具體來說,基底100包括第一區R1與第二區R2。在一些實施例中,第一區R1為晶胞區,而第二區R2為周邊區。第一區R1可具有排列成記憶體陣列的多個記憶胞。第二區R2可具有周邊電路。The first embodiment of the present invention provides a manufacturing process of a semiconductor device 1 (as shown in FIG. 1I), and the detailed steps are shown in FIGS. 1A to 1I. First, referring to FIG. 1A, an initial structure is provided, which includes: a substrate 100, an isolation structure 101, a gate structure 110, 120, contact windows 115, 125, a dielectric layer 130, 132, a conductor layer 134, 136, and a dielectric layer 140, 142. Specifically, the substrate 100 includes a first region R1 and a second region R2. In some embodiments, the first region R1 is a unit cell region, and the second region R2 is a peripheral region. The first region R1 may have a plurality of memory cells arranged in a memory array. The second region R2 may have peripheral circuits.

閘極結構110配置在第一區R1的基底100上。在一些實施例中,閘極結構110包括閘介電層112、閘電極114以及頂蓋層116。閘電極114配置在閘介電層112與頂蓋層116之間。一對間隙壁118配置在閘極結構110的側壁上。另外,閘極結構120配置在第二區R2的基底100上。在一些實施例中,閘極結構120包括閘介電層122、閘電極124以及頂蓋層126。閘電極124配置在閘介電層122與頂蓋層126之間。一對間隙壁128配置在閘極結構120的側壁上。在一些實施例中,間隙壁118、128包括單層結構或是多層結構。另外,隔離結構101配置在基底100中,以分隔閘極結構110、120以及/或其他電晶體。The gate structure 110 is disposed on the substrate 100 in the first region R1. In some embodiments, the gate structure 110 includes a gate dielectric layer 112, a gate electrode 114 and a cap layer 116. The gate electrode 114 is disposed between the gate dielectric layer 112 and the cap layer 116. A pair of spacers 118 are arranged on the side walls of the gate structure 110. In addition, the gate structure 120 is disposed on the substrate 100 in the second region R2. In some embodiments, the gate structure 120 includes a gate dielectric layer 122, a gate electrode 124 and a cap layer 126. The gate electrode 124 is disposed between the gate dielectric layer 122 and the cap layer 126. A pair of spacers 128 are arranged on the side walls of the gate structure 120. In some embodiments, the spacers 118 and 128 include a single-layer structure or a multi-layer structure. In addition, the isolation structure 101 is disposed in the substrate 100 to separate the gate structures 110 and 120 and/or other transistors.

如圖1A所示,初始結構還包括蝕刻停止層102與介電層104。蝕刻停止層102共形地覆蓋基底100與閘極結構110、120。介電層104配置在蝕刻停止層102上。在一些實施例中,介電層104可視為層間介電(ILD)層。蝕刻停止層102與介電層104具有不同介電材料。舉例來說,蝕刻停止層102的材料包括氮化矽,而介電層104的材料包括高密度電漿(HDP)氧化物。在一些實施例中,蝕刻停止層102可包括單層結構或是多層結構。接觸窗115、125穿過介電層104與蝕刻停止層102,並分別藉由矽化物層113、123與基底100中的摻雜區(例如是S/D區)電性連接。As shown in FIG. 1A, the initial structure further includes an etch stop layer 102 and a dielectric layer 104. The etch stop layer 102 conformally covers the substrate 100 and the gate structures 110 and 120. The dielectric layer 104 is disposed on the etch stop layer 102. In some embodiments, the dielectric layer 104 may be regarded as an interlayer dielectric (ILD) layer. The etch stop layer 102 and the dielectric layer 104 have different dielectric materials. For example, the material of the etch stop layer 102 includes silicon nitride, and the material of the dielectric layer 104 includes high density plasma (HDP) oxide. In some embodiments, the etch stop layer 102 may include a single-layer structure or a multi-layer structure. The contact windows 115 and 125 pass through the dielectric layer 104 and the etch stop layer 102, and are electrically connected to the doped regions (such as S/D regions) in the substrate 100 through the silicide layers 113 and 123, respectively.

介電層130、132與導體層134、136分別配置在介電層104上。在一些實施例中,介電層132可視為金屬間介電(IMD)層。介電層130可用以當作蝕刻停止層,其具有與介電層132不同的介電材料。舉例來說,介電層130的材料包括氮化矽,而介電層132的材料包括TEOS氧化物。導體層134、136內埋在介電層130、132中,以分別與接觸窗115、125電性連接。在一些實施例中,導體層134、136可以是線路層。導體層134、136的材料包括金屬材料,例如是銅層。The dielectric layers 130 and 132 and the conductor layers 134 and 136 are respectively disposed on the dielectric layer 104. In some embodiments, the dielectric layer 132 can be regarded as an intermetal dielectric (IMD) layer. The dielectric layer 130 can be used as an etch stop layer, and it has a different dielectric material from the dielectric layer 132. For example, the material of the dielectric layer 130 includes silicon nitride, and the material of the dielectric layer 132 includes TEOS oxide. The conductor layers 134 and 136 are embedded in the dielectric layers 130 and 132 to be electrically connected to the contact windows 115 and 125 respectively. In some embodiments, the conductor layers 134, 136 may be circuit layers. The material of the conductor layers 134 and 136 includes a metal material, such as a copper layer.

如圖1A所示,介電層140、142配置在介電層130、132與導體層134、136上。在一些實施例中,下方的介電層140用以當作蝕刻停止層,其具有與上方的介電層142不同的介電材料。舉例來說,介電層140的材料包括SiCN,而介電層142的材料包括HDP氧化物。As shown in FIG. 1A, the dielectric layers 140 and 142 are disposed on the dielectric layers 130 and 132 and the conductor layers 134 and 136. In some embodiments, the lower dielectric layer 140 is used as an etch stop layer, which has a different dielectric material from the upper dielectric layer 142. For example, the material of the dielectric layer 140 includes SiCN, and the material of the dielectric layer 142 includes HDP oxide.

請參照圖1B,在介電層140、142中形成第一開口12與第二開口14。第一開口12位於第一區R1的介電層140、142中,且暴露出導體層134的部分頂面。第二開口14位於第二區R2的介電層140、142中,且暴露出導體層136的部分頂面。1B, a first opening 12 and a second opening 14 are formed in the dielectric layers 140 and 142. The first opening 12 is located in the dielectric layers 140 and 142 of the first region R1 and exposes part of the top surface of the conductive layer 134. The second opening 14 is located in the dielectric layers 140 and 142 of the second region R2 and exposes part of the top surface of the conductive layer 136.

請參照圖1C,形成阻障材料144,以共形地覆蓋第一開口12與第二開口14並延伸覆蓋介電層142的頂面。在一些實施例中,阻障材料144包括Ti、TiN、Ta、TaN或其組合,其可藉由化學氣相沉積法(CVD)或物理氣相沉積法(PVD)來形成。接著,在阻障材料144上形成導體材料146。導體材料146填滿第一開口12與第二開口14並延伸覆蓋介電層142的頂面。在一些實施例中,導體材料146包括金屬材料(例如鎢),其可藉由CVD或PVD來形成。1C, a barrier material 144 is formed to conformally cover the first opening 12 and the second opening 14 and extend to cover the top surface of the dielectric layer 142. In some embodiments, the barrier material 144 includes Ti, TiN, Ta, TaN, or a combination thereof, which can be formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Next, a conductive material 146 is formed on the barrier material 144. The conductive material 146 fills the first opening 12 and the second opening 14 and extends to cover the top surface of the dielectric layer 142. In some embodiments, the conductive material 146 includes a metal material (such as tungsten), which can be formed by CVD or PVD.

請參照圖1D,進行平坦化製程,移除部分導體材料146與部分阻障材料144,以在第一開口12中形成第一阻障層154與第一介層窗156,並在第二開口14中形成第二阻障層164與第二介層窗166。具體來說,第一阻障層154裝襯在第一介層窗156的側壁與底面,以分隔第一介層窗156與介電層140、142。於此,所謂的「裝襯(lines)」是指共形地覆蓋。也就是說,第一阻障層154共形地覆蓋第一介層窗156的側壁與底面。另一方面,第二阻障層164裝襯在第二介層窗166的側壁與底面,以分隔第二介層窗166與介電層140、142。在一些實施例中,平坦化製程可以是化學機械研磨(CMP)製程。在平坦化製程之後,第一阻障層154的頂面、第一介層窗156的頂面、第二阻障層164的頂面、第二介層窗166的頂面以及介電層142的頂面可視為共平面。1D, a planarization process is performed to remove part of the conductive material 146 and part of the barrier material 144 to form a first barrier layer 154 and a first via 156 in the first opening 12, and in the second opening A second barrier layer 164 and a second via 166 are formed in 14. Specifically, the first barrier layer 154 lines the sidewalls and the bottom surface of the first via 156 to separate the first via 156 from the dielectric layers 140 and 142. Here, the so-called "lines" refers to conformal coverage. In other words, the first barrier layer 154 conformally covers the sidewall and bottom surface of the first via 156. On the other hand, the second barrier layer 164 lines the sidewall and bottom surface of the second via 166 to separate the second via 166 from the dielectric layers 140 and 142. In some embodiments, the planarization process may be a chemical mechanical polishing (CMP) process. After the planarization process, the top surface of the first barrier layer 154, the top surface of the first via 156, the top surface of the second barrier layer 164, the top surface of the second via 166, and the dielectric layer 142 The top surface can be regarded as coplanar.

請參照圖1E,對第一阻障層154、第一介層窗156、第二阻障層164、第二介層窗166以及介電層142進行氮化處理16。在一些實施例中,氮化處理16包括進行電漿氮化製程。電漿氮化製程包括通入含氮氣體,例如是N 2、NH 3或其組合。電漿氮化製程的製程溫度可介於300°C至400°C之間,例如350°C;電漿氮化製程的製程時間可介於30秒至300秒之間,例如30秒。在進行氮化處理16之後,如區域10的放大圖2所示,介電層142分成底部142a與頂部142b,而第二阻障層164也分成下部164a與上部164b。底部142a環繞下部164a,而頂部142b環繞上部164b。在一些實施例中,介電層142的頂部142b的氮摻雜濃度大於介電層142的底部142a的氮摻雜濃度。介電層142的頂部142b的氮摻雜濃度(N1)與介電層142的底部142a的氮摻雜濃度(N2)的比(N1/N2)可介於1至3間。第二阻障層164的上部164b的氮摻雜濃度大於第二阻障層164的下部164a的氮摻雜濃度。第二阻障層164的上部164b的氮摻雜濃度(N3)與第二阻障層164的下部164a(N4)的比(N3/N4)可介於2至10之間。相似地,第一阻障層154也分成下部與上部(未繪示),其中第一阻障層154的上部的氮摻雜濃度也大於第一阻障層154的下部的氮摻雜濃度。值得注意的是,氮化處理16可強化第二阻障層164的上部164b的阻擋強度,以避免後續圖案化MIM堆疊時產生弱點,進而降低銅爆發缺陷的發生。 1E, the first barrier layer 154, the first via 156, the second barrier layer 164, the second via 166, and the dielectric layer 142 are nitridated 16. In some embodiments, the nitriding treatment 16 includes performing a plasma nitriding process. The plasma nitriding process includes passing a nitrogen-containing gas, such as N 2 , NH 3 or a combination thereof. The process temperature of the plasma nitriding process may be between 300°C and 400°C, such as 350°C; the process time of the plasma nitridation process may be between 30 seconds and 300 seconds, such as 30 seconds. After the nitriding treatment 16, as shown in the enlarged view of the region 10, the dielectric layer 142 is divided into a bottom portion 142a and a top portion 142b, and the second barrier layer 164 is also divided into a bottom portion 164a and an upper portion 164b. The bottom portion 142a surrounds the lower portion 164a, and the top portion 142b surrounds the upper portion 164b. In some embodiments, the nitrogen doping concentration of the top 142 b of the dielectric layer 142 is greater than the nitrogen doping concentration of the bottom 142 a of the dielectric layer 142. The ratio (N1/N2) of the nitrogen doping concentration (N1) of the top 142b of the dielectric layer 142 to the nitrogen doping concentration (N2) of the bottom 142a of the dielectric layer 142 may be between 1 and 3. The nitrogen doping concentration of the upper portion 164b of the second barrier layer 164 is greater than the nitrogen doping concentration of the lower portion 164a of the second barrier layer 164. The ratio (N3/N4) of the nitrogen doping concentration (N3) of the upper portion 164b of the second barrier layer 164 to the lower portion 164a (N4) of the second barrier layer 164 (N3/N4) may be between 2-10. Similarly, the first barrier layer 154 is also divided into a lower part and an upper part (not shown), wherein the nitrogen doping concentration of the upper part of the first barrier layer 154 is also greater than the nitrogen doping concentration of the lower part of the first barrier layer 154. It is worth noting that the nitriding treatment 16 can strengthen the barrier strength of the upper portion 164b of the second barrier layer 164, so as to avoid weak points during subsequent patterning of the MIM stack, thereby reducing the occurrence of copper burst defects.

如圖2所示,介電層142的頂部142b具有高度H1。在一些實施例中,高度H1可介於5 nm至15 nm之間。但本發明不以此為限,在其他實施例中,高度H1可藉由改變氮化處理16的處理時間來調整。舉例來說,當氮化處理16的處理時間增加,高度H1也會隨之增加。另外,第二阻障層164的上部164b具有高度H2。在一些實施例中,高度H2可介於5 nm至15 nm之間。雖然圖2所示的高度H1與高度H2相同,但本發明不以此為限,在其他實施例中,高度H1可不同於高度H2。舉例來說,第二阻障層164的上部164b的高度H2大於介電層142的頂部142b的高度H1。在此情況下,介電層142的部分底部142a亦環繞第二阻障層164的部分上部164b。As shown in FIG. 2, the top 142b of the dielectric layer 142 has a height H1. In some embodiments, the height H1 may be between 5 nm and 15 nm. However, the present invention is not limited to this. In other embodiments, the height H1 can be adjusted by changing the processing time of the nitriding process 16. For example, when the processing time of the nitriding 16 increases, the height H1 will also increase. In addition, the upper portion 164b of the second barrier layer 164 has a height H2. In some embodiments, the height H2 may be between 5 nm and 15 nm. Although the height H1 and the height H2 shown in FIG. 2 are the same, the present invention is not limited thereto. In other embodiments, the height H1 may be different from the height H2. For example, the height H2 of the upper portion 164b of the second barrier layer 164 is greater than the height H1 of the top portion 142b of the dielectric layer 142. In this case, a portion of the bottom portion 142a of the dielectric layer 142 also surrounds a portion of the upper portion 164b of the second barrier layer 164.

在本實施例中,第二阻障層164可以是雙層結構,例如Ti層與TiN層。在氮化處理16之後,如區域20的放大圖3所示,下部164a包括接觸介電層142的Ti層164a1與接觸第二介層窗166的TiN層164a2;而上部164b包括接觸介電層142的Ti層164b1與接觸第二介層窗166的TiN層164b2。上部164b的Ti層164b1的氮摻雜濃度可大於下部164a的Ti層164a1的氮摻雜濃度。從另一角度來看,上部164b的Ti層164b1可被摻雜為TiN層,而下部164a的Ti層164a1仍維持為Ti層。另外,上部164b的TiN層164b2的氮摻雜濃度也可大於下部164a的TiN層164a2的氮摻雜濃度。In this embodiment, the second barrier layer 164 may have a double-layer structure, such as a Ti layer and a TiN layer. After the nitriding process 16, as shown in the enlarged view of area 20, the lower part 164a includes a Ti layer 164a1 contacting the dielectric layer 142 and a TiN layer 164a2 contacting the second via 166; and the upper part 164b includes a contact dielectric layer The Ti layer 164b1 of 142 and the TiN layer 164b2 of the second via 166 contact. The nitrogen doping concentration of the Ti layer 164b1 of the upper part 164b may be greater than the nitrogen doping concentration of the Ti layer 164a1 of the lower part 164a. From another perspective, the Ti layer 164b1 of the upper part 164b can be doped as a TiN layer, while the Ti layer 164a1 of the lower part 164a is still maintained as a Ti layer. In addition, the nitrogen doping concentration of the TiN layer 164b2 of the upper part 164b may also be greater than the nitrogen doping concentration of the TiN layer 164a2 of the lower part 164a.

請參照圖1F,在介電層142、第一介層窗156以及第二介層窗166上形成金屬-絕緣體-金屬(MIM)堆疊200。具體來說,MIM堆疊200包括兩個金屬層202、206以及夾置在金屬層202、206之間的絕緣層204。在一些實施例中,金屬層202、206的材料可包括Ti、TiN或其組合。舉例來說,金屬層202、206可以是雙層結構,例如是Ti層與位於Ti層上的TiN層。1F, a metal-insulator-metal (MIM) stack 200 is formed on the dielectric layer 142, the first via 156, and the second via 166. Specifically, the MIM stack 200 includes two metal layers 202 and 206 and an insulating layer 204 sandwiched between the metal layers 202 and 206. In some embodiments, the material of the metal layers 202, 206 may include Ti, TiN, or a combination thereof. For example, the metal layers 202 and 206 may have a double-layer structure, such as a Ti layer and a TiN layer on the Ti layer.

請參照圖1F與圖1G,圖案化MIM堆疊200,以在第一區R1上形成MIM結構210。MIM結構210形成在第一介層窗156上,以與第一介層窗156電性連接。第二介層窗166則是外露於MIM結構210。在本實施例中,在圖案化MIM堆疊200的過程中,為了完全移除第二區R2上的MIM堆疊200,介電層142、第二阻障層164以及第二介層窗166會進一步地被凹蝕,使得第二區R2的介電層142的頂面142t2低於第一區R1的介電層142的頂面142t1,且第二介層窗166的頂面166t低於第一介層窗156的頂面156t。值得注意的是,經氮摻雜的第二阻障層164可有效阻擋圖案化MIM堆疊200所使用的含有氯(Cl)的蝕刻劑,進而避免第二阻障層164的損耗。因此,在進行後續BEOL的熱處理時,第二介層窗166下方的導體層136便不會沿著第二阻障層164而產生銅爆發缺陷,進而提升本發明之半導體元件的可靠度與良率。在一些實施例中,第二阻障層164的頂面164t可與第二介層窗166的頂面166t、第二區R2的介電層142的頂面142t2齊平。1F and 1G, the MIM stack 200 is patterned to form the MIM structure 210 on the first region R1. The MIM structure 210 is formed on the first via 156 to be electrically connected to the first via 156. The second interlayer window 166 is exposed from the MIM structure 210. In this embodiment, in the process of patterning the MIM stack 200, in order to completely remove the MIM stack 200 on the second region R2, the dielectric layer 142, the second barrier layer 164, and the second via 166 are further The ground is etched so that the top surface 142t2 of the dielectric layer 142 in the second region R2 is lower than the top surface 142t1 of the dielectric layer 142 in the first region R1, and the top surface 166t of the second via 166 is lower than the first region R1. The top surface 156t of the via 156. It is worth noting that the nitrogen-doped second barrier layer 164 can effectively block the chlorine (Cl)-containing etchant used in the patterned MIM stack 200, thereby avoiding the loss of the second barrier layer 164. Therefore, during the subsequent BEOL heat treatment, the conductor layer 136 under the second via 166 will not produce copper burst defects along the second barrier layer 164, thereby improving the reliability and quality of the semiconductor device of the present invention. rate. In some embodiments, the top surface 164t of the second barrier layer 164 may be flush with the top surface 166t of the second via 166 and the top surface 142t2 of the dielectric layer 142 of the second region R2.

在一些實施例中,MIM結構210可以是記憶體結構、電容器結構、電阻結構或其組合。所述記憶體結構包括電阻式隨機存取記憶體(RRAM)、磁阻式隨機存取記憶體(MRAM)、相變隨機存取記憶體(PCRAM)、鐵電隨機存取記憶體(FeRAM)或其組合。舉例來說,當MIM結構210為RRAM,絕緣層204是可以透過電壓的施予改變其自身電阻的可變電阻層。絕緣層204可包括高介電常數(high k)的介電材料,例如是選自由TiO 2、NiO、HfO、HfO 2、ZrO、ZrO 2、Ta 2O 5、ZnO、WO 3、CoO及Nb 2O 5所組成的群組中之至少一者的氧化物材料。 In some embodiments, the MIM structure 210 may be a memory structure, a capacitor structure, a resistance structure, or a combination thereof. The memory structure includes resistive random access memory (RRAM), magnetoresistive random access memory (MRAM), phase change random access memory (PCRAM), ferroelectric random access memory (FeRAM) Or a combination. For example, when the MIM structure 210 is an RRAM, the insulating layer 204 is a variable resistance layer that can change its own resistance through the application of voltage. The insulating layer 204 may include a high-k dielectric material, for example, selected from TiO 2 , NiO, HfO, HfO 2 , ZrO, ZrO 2 , Ta 2 O 5 , ZnO, WO 3 , CoO, and Nb At least one oxide material in the group consisting of 2 O 5.

請參照圖1H,在MIM結構210與介電層142上形成介電層172。在一些實施例中,介電層172的材料包括HDP氧化物。接著,在介電層172中分別形成介層窗176、186。介層窗176穿過部分介電層172以著陸(land)在MIM結構210上。阻障層174裝襯在介層窗176的側壁與底面,以分隔介層窗176與介電層172。另一方面,介層窗186(亦可稱為第三介層窗)穿過介電層172以著陸在第一介層窗156上。阻障層184裝襯在介層窗186的側壁與底面,以分隔介層窗186與介電層172。1H, a dielectric layer 172 is formed on the MIM structure 210 and the dielectric layer 142. In some embodiments, the material of the dielectric layer 172 includes HDP oxide. Then, vias 176 and 186 are formed in the dielectric layer 172, respectively. The via 176 penetrates a portion of the dielectric layer 172 to land on the MIM structure 210. The barrier layer 174 lines the sidewalls and the bottom surface of the via 176 to separate the via 176 and the dielectric layer 172. On the other hand, the via 186 (also referred to as a third via) penetrates the dielectric layer 172 to land on the first via 156. The barrier layer 184 lines the sidewalls and the bottom surface of the via 186 to separate the via 186 from the dielectric layer 172.

請參照圖1I,在介電層172與介層窗176、186上形成介電層190、192。在一些實施例中,介電層192可視為金屬間介電(IMD)層。介電層190可用以當作蝕刻停止層,其具有與介電層192不同的介電材料。舉例來說,介電層190的材料包括氮化矽,而介電層192的材料包括TEOS氧化物。接著,在介電層190、192中分別形成導體層194、196,以完成半導體元件1。導體層194、196內埋在介電層190、192中,以分別與介層窗176、186電性連接。在一些實施例中,導體層194、196可以是線路層。導體層194、196的材料包括金屬材料,例如是銅層。Referring to FIG. 1I, dielectric layers 190 and 192 are formed on the dielectric layer 172 and the via windows 176 and 186. In some embodiments, the dielectric layer 192 can be regarded as an inter-metal dielectric (IMD) layer. The dielectric layer 190 can be used as an etch stop layer, which has a different dielectric material from the dielectric layer 192. For example, the material of the dielectric layer 190 includes silicon nitride, and the material of the dielectric layer 192 includes TEOS oxide. Next, conductor layers 194 and 196 are respectively formed in the dielectric layers 190 and 192 to complete the semiconductor device 1. The conductor layers 194 and 196 are embedded in the dielectric layers 190 and 192 to be electrically connected to the via windows 176 and 186, respectively. In some embodiments, the conductor layers 194, 196 may be circuit layers. The material of the conductor layers 194 and 196 includes a metal material, such as a copper layer.

請參照圖4,第二實施例的半導體元件2與第一實施例的半導體元件1基本上相似。上述兩者主要不同之處在於:半導體元件2的MIM結構220具有彎曲的側壁220s。如圖4所示,MIM結構220的側壁220s沿著基底100朝上的方向漸縮(taper)。在一些實施例中,MIM結構220的下部寬度以及/或下部面積可大於MIM結構220的上部寬度以及/或上部面積。4, the semiconductor device 2 of the second embodiment is basically similar to the semiconductor device 1 of the first embodiment. The main difference between the above two is that the MIM structure 220 of the semiconductor device 2 has curved sidewalls 220s. As shown in FIG. 4, the sidewall 220s of the MIM structure 220 tapers along the upward direction of the substrate 100. In some embodiments, the lower width and/or lower area of the MIM structure 220 may be greater than the upper width and/or upper area of the MIM structure 220.

綜上所述,本發明實施例藉由氮化處理強化裝襯在介層窗的側壁上的阻障層的阻擋強度,以避免後續圖案化MIM堆疊時產生弱點,進而降低銅爆發缺陷的發生。因此,本發明實施例可有效提升半導體元件的可靠度與良率。In summary, the embodiment of the present invention strengthens the barrier strength of the barrier layer lined on the sidewall of the via by nitriding, so as to avoid weak points during subsequent patterning of the MIM stack, thereby reducing the occurrence of copper burst defects . Therefore, the embodiments of the present invention can effectively improve the reliability and yield of semiconductor devices.

1、2:半導體元件 10、20:區域 12:第一開口 14:第二開口 16:氮化處理 100:基底 101:隔離結構 102:蝕刻停止層 104、130、132、140、142、172、190、192:介電層 110、120:閘極結構 112、122:閘介電層 113、123:矽化物層 114、124:閘電極 115、125:接觸窗 116、126:頂蓋層 118、128:間隙壁 134、136、194、196:導體層 142t1、142t2、156t、164t、166t:頂面 142a:底部 142b:頂部 144:阻障材料 146:導體材料 154:第一阻障層 156:第一介層窗 164:第二阻障層 164a:下部 164a1:Ti層 164a2:TiN層 164b:上部 164b1:Ti層 164b2:TiN層 166:第二介層窗 174、184:阻障層 176、186:介層窗 200:金屬-絕緣體-金屬(MIM)堆疊 202、206:金屬層 204:絕緣層 210、220:MIM結構 220s:側壁 R1:第一區 R2:第二區 1, 2: Semiconductor components 10, 20: area 12: The first opening 14: second opening 16: Nitriding treatment 100: base 101: Isolation structure 102: etch stop layer 104, 130, 132, 140, 142, 172, 190, 192: Dielectric layer 110, 120: Gate structure 112, 122: gate dielectric layer 113, 123: Silicide layer 114, 124: gate electrode 115, 125: contact window 116, 126: top cover layer 118, 128: Clearance wall 134, 136, 194, 196: conductor layer 142t1, 142t2, 156t, 164t, 166t: top surface 142a: bottom 142b: top 144: Barrier Material 146: Conductor material 154: The first barrier layer 156: First Interlayer Window 164: second barrier layer 164a: lower part 164a1: Ti layer 164a2: TiN layer 164b: upper part 164b1: Ti layer 164b2: TiN layer 166: The second interlayer window 174, 184: barrier layer 176, 186: Interlayer window 200: metal-insulator-metal (MIM) stack 202, 206: metal layer 204: Insulation layer 210, 220: MIM structure 220s: sidewall R1: Zone 1 R2: Zone 2

圖1A至圖1I是依照本發明第一實施例的一種半導體元件的製造流程的剖面示意圖。 圖2是圖1E的區域的放大圖。 圖3是圖2的區域的另一實施例的放大圖。 圖4是依照本發明第二實施例的一種半導體元件的剖面示意圖。 1A to 1I are schematic cross-sectional views of a manufacturing process of a semiconductor device according to a first embodiment of the present invention. Fig. 2 is an enlarged view of the area of Fig. 1E. Fig. 3 is an enlarged view of another embodiment of the area of Fig. 2. 4 is a schematic cross-sectional view of a semiconductor device according to a second embodiment of the invention.

1:半導體元件 1: Semiconductor components

100:基底 100: base

101:隔離結構 101: Isolation structure

102:蝕刻停止層 102: etch stop layer

104、130、132、140、142、172、190、192:介電層 104, 130, 132, 140, 142, 172, 190, 192: Dielectric layer

110、120:閘極結構 110, 120: Gate structure

112、122:閘介電層 112, 122: gate dielectric layer

113、123:矽化物層 113, 123: Silicide layer

114、124:閘電極 114, 124: gate electrode

115、125:接觸窗 115, 125: contact window

116、126:頂蓋層 116, 126: top cover layer

118、128:間隙壁 118, 128: Clearance wall

134、136、194、196:導體層 134, 136, 194, 196: conductor layer

154:第一阻障層 154: The first barrier layer

156:第一介層窗 156: First Interlayer Window

164:第二阻障層 164: second barrier layer

166:第二介層窗 166: The second interlayer window

174、184:阻障層 174, 184: barrier layer

176、186:介層窗 176, 186: Interlayer window

202、206:金屬層 202, 206: metal layer

204:絕緣層 204: Insulation layer

210:MIM結構 210: MIM structure

R1:第一區 R1: Zone 1

R2:第二區 R2: Zone 2

Claims (13)

一種半導體元件,包括:介電層,具有第一區與第二區;第一介層窗,配置在所述第一區的所述介電層中;第二介層窗,配置在所述第二區的所述介電層中;第一阻障層,裝襯在所述第一介層窗的側壁與底面;以及第二阻障層,裝襯在所述第二介層窗的側壁與底面,其中所述第一阻障層與所述第二阻障層各自具有上部與下部,所述上部的氮摻雜濃度大於所述下部的氮摻雜濃度。 A semiconductor device includes: a dielectric layer having a first region and a second region; a first via window configured in the dielectric layer in the first region; a second via window configured in the dielectric layer In the dielectric layer in the second region; a first barrier layer lining the sidewall and bottom surface of the first via; and a second barrier layer lining on the second via The sidewall and the bottom surface, wherein the first barrier layer and the second barrier layer each have an upper portion and a lower portion, and the nitrogen doping concentration of the upper portion is greater than the nitrogen doping concentration of the lower portion. 如請求項1所述的半導體元件,其中所述介電層包括:底部,環繞所述第二阻障層的所述下部;以及頂部,環繞所述第二阻障層的所述上部,其中所述頂部的氮摻雜濃度大於所述底部的氮摻雜濃度。 The semiconductor element according to claim 1, wherein the dielectric layer includes: a bottom portion surrounding the lower portion of the second barrier layer; and a top portion surrounding the upper portion of the second barrier layer, wherein The nitrogen doping concentration at the top is greater than the nitrogen doping concentration at the bottom. 如請求項1所述的半導體元件,更包括:金屬-絕緣體-金屬(MIM)結構,配置在所述第一介層窗上;以及第三介層窗,配置在所述第二介層窗上。 The semiconductor device according to claim 1, further comprising: a metal-insulator-metal (MIM) structure, which is arranged on the first via; and a third via, which is arranged on the second via on. 如請求項3所述的半導體元件,其中所述第二介層窗的頂面低於所述第一介層窗的頂面,且所述第二區的所述介電層的頂面低於所述第一區的所述介電層的頂面。 The semiconductor device according to claim 3, wherein the top surface of the second via is lower than the top surface of the first via, and the top surface of the dielectric layer in the second region is lower On the top surface of the dielectric layer in the first region. 如請求項3所述的半導體元件,其中所述第二區的所述介電層的頂面與所述第二阻障層的頂面實質上共平面。 The semiconductor device according to claim 3, wherein the top surface of the dielectric layer of the second region and the top surface of the second barrier layer are substantially coplanar. 一種半導體元件的製造方法,包括:在介電層中形成多個介層窗;對所述介電層與所述多個介層窗進行氮化處理,以使所述介電層的頂部的氮摻雜濃度大於所述介電層的底部的氮摻雜濃度;在所述介電層與所述多個介層窗上形成金屬-絕緣體-金屬(MIM)堆疊;以及圖案化所述金屬-絕緣體-金屬堆疊,以形成金屬-絕緣體-金屬結構。 A method for manufacturing a semiconductor element includes: forming a plurality of vias in a dielectric layer; nitriding the dielectric layer and the plurality of vias, so that the top of the dielectric layer The nitrogen doping concentration is greater than the nitrogen doping concentration at the bottom of the dielectric layer; forming a metal-insulator-metal (MIM) stack on the dielectric layer and the plurality of via windows; and patterning the metal -Insulator-metal stack to form a metal-insulator-metal structure. 如請求項6所述的半導體元件的製造方法,其中進行所述氮化處理包括進行電漿氮化製程,所述電漿氮化製程包括通入含氮氣體,所述含氮氣體包括N2、NH3或其組合。 The method for manufacturing a semiconductor device according to claim 6, wherein performing the nitriding treatment includes performing a plasma nitriding process, and the plasma nitriding process includes passing a nitrogen-containing gas, and the nitrogen-containing gas includes N 2 , NH 3 or a combination thereof. 如請求項6所述的半導體元件的製造方法,其中所述介電層具有第一區與第二區,所述第一區為晶胞區,而所述第二區為周邊區。 The method for manufacturing a semiconductor device according to claim 6, wherein the dielectric layer has a first region and a second region, the first region is a unit cell region, and the second region is a peripheral region. 如請求項8所述的半導體元件的製造方法,其中在所述介電層中形成所述多個介層窗包括:在所述第一區的所述介電層中形成第一開口;在所述第二區的所述介電層中形成第二開口;共形形成阻障材料,以覆蓋所述第一開口與所述第二開口;在所述阻障材料上形成導體材料,以填滿所述第一開口與所 述第二開口並覆蓋所述介電層的頂面;以及進行平坦化製程,以在所述第一開口中形成第一介層窗,並在所述第二開口中形成第二介層窗,其中第一阻障層裝襯在所述第一介層窗的側壁與底面,而第二阻障層裝襯在所述第二介層窗的側壁與底面。 The method of manufacturing a semiconductor element according to claim 8, wherein forming the plurality of via windows in the dielectric layer includes: forming a first opening in the dielectric layer in the first region; A second opening is formed in the dielectric layer of the second region; a barrier material is conformally formed to cover the first opening and the second opening; a conductive material is formed on the barrier material to Fill up the first opening and the The second opening covers the top surface of the dielectric layer; and a planarization process is performed to form a first via in the first opening and a second via in the second opening , Wherein the first barrier layer is lined on the sidewall and bottom surface of the first via window, and the second barrier layer is lined on the sidewall and bottom surface of the second via window. 如請求項9所述的半導體元件的製造方法,其中在進行所述氮化處理之後,所述第一阻障層與所述第二阻障層各自包括上部與下部,所述介電層的所述底部環繞所述下部,所述介電層的所述頂部環繞所述上部,且所述上部的氮摻雜濃度大於所述下部的氮摻雜濃度。 The method for manufacturing a semiconductor device according to claim 9, wherein after the nitridation treatment, the first barrier layer and the second barrier layer each include an upper portion and a lower portion, and the dielectric layer The bottom portion surrounds the lower portion, the top portion of the dielectric layer surrounds the upper portion, and the nitrogen doping concentration of the upper portion is greater than the nitrogen doping concentration of the lower portion. 如請求項9所述的半導體元件的製造方法,其中在圖案化所述金屬-絕緣體-金屬堆疊之後,進一步凹蝕所述第二介層窗,使得所述第二介層窗的頂面低於所述第一介層窗的頂面。 The method for manufacturing a semiconductor device according to claim 9, wherein after patterning the metal-insulator-metal stack, the second via is further etched so that the top surface of the second via is low On the top surface of the first via. 如請求項9所述的半導體元件的製造方法,其中在圖案化所述金屬-絕緣體-金屬堆疊之後,所述金屬-絕緣體-金屬結構形成在所述第一介層窗上,而所述第二介層窗外露於所述金屬-絕緣體-金屬結構。 The method for manufacturing a semiconductor element according to claim 9, wherein after patterning the metal-insulator-metal stack, the metal-insulator-metal structure is formed on the first via, and the second The second interlayer window is exposed outside the metal-insulator-metal structure. 如請求項8所述的半導體元件的製造方法,其中在圖案化所述金屬-絕緣體-金屬堆疊之後,進一步凹蝕所述第二區的所述介電層,使得所述第二區的所述介電層的頂面低於所述第一區的所述介電層的頂面。 The method for manufacturing a semiconductor device according to claim 8, wherein after patterning the metal-insulator-metal stack, the dielectric layer of the second region is further etched so that all the dielectric layer of the second region The top surface of the dielectric layer is lower than the top surface of the dielectric layer in the first region.
TW109120132A 2020-06-16 2020-06-16 Semiconductor device and method of manufacturing the same TWI727828B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109120132A TWI727828B (en) 2020-06-16 2020-06-16 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109120132A TWI727828B (en) 2020-06-16 2020-06-16 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI727828B true TWI727828B (en) 2021-05-11
TW202201538A TW202201538A (en) 2022-01-01

Family

ID=77036675

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120132A TWI727828B (en) 2020-06-16 2020-06-16 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI727828B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW419831B (en) * 1999-06-17 2001-01-21 Chi Mei Optoelectronics Corp Method of forming bus of TFT array
TW200727452A (en) * 2005-09-13 2007-07-16 Taiwan Semiconductor Mfg Co Ltd MIM capacitor integrated into the damascene structure and method of making thereof
TW201904003A (en) * 2017-06-08 2019-01-16 南韓商三星電子股份有限公司 Semiconductor device with metal via

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW419831B (en) * 1999-06-17 2001-01-21 Chi Mei Optoelectronics Corp Method of forming bus of TFT array
TW200727452A (en) * 2005-09-13 2007-07-16 Taiwan Semiconductor Mfg Co Ltd MIM capacitor integrated into the damascene structure and method of making thereof
TW201904003A (en) * 2017-06-08 2019-01-16 南韓商三星電子股份有限公司 Semiconductor device with metal via

Also Published As

Publication number Publication date
TW202201538A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
US10622305B2 (en) Interconnection structures for semiconductor devices and methods of fabricating the same
US7884409B2 (en) Semiconductor device and method of fabricating the same
US6737694B2 (en) Ferroelectric memory device and method of forming the same
US7332764B2 (en) Metal-insulator-metal (MIM) capacitor and method of fabricating the same
TW201729443A (en) Resistive RAM structure and method of fabrication thereof
US10825894B2 (en) MIM capacitor and method of manufacturing the same
KR100703970B1 (en) Semiconductor integrated circuit apparatus and method of fabricating the same
KR100835409B1 (en) Method for manufacturing damascene mim type capacitor of semiconductor device
US9112006B2 (en) Semiconductor device and fabricating method of the same
US11152305B1 (en) Semiconductor device and method of manufacturing the same
JPH11317500A (en) Semiconductor device having capacitive element, and manufacture thereof
US7199001B2 (en) Method of forming MIM capacitor electrodes
KR100415537B1 (en) Method for fabrication of semiconductor device
JP2009200154A (en) Semiconductor device and manufacturing method thereof
TWI727828B (en) Semiconductor device and method of manufacturing the same
TWI773492B (en) Integrated circuit
CN113838833B (en) Semiconductor device and method for manufacturing the same
KR20030019273A (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100517911B1 (en) Semiconductor fabrication method capable of preventing misalign between bottom electrode and storage node contact and oxidation of diffusion barrier layer
US20230354724A1 (en) Resistive memory structure and manufacturing method thereof
US20230067987A1 (en) Semiconductor devices having a wiring provided with a protective layer
JP2001156270A (en) Semiconductor integrated-circuit device and its manufacturing method
JP5532725B2 (en) Semiconductor device
JP2010040775A (en) Semiconductor device and manufacturing method thereof
JP2006253194A (en) Semiconductor device and manufacturing method thereof