TWI726327B - Computed tomography system and operating method thereof - Google Patents
Computed tomography system and operating method thereof Download PDFInfo
- Publication number
- TWI726327B TWI726327B TW108119290A TW108119290A TWI726327B TW I726327 B TWI726327 B TW I726327B TW 108119290 A TW108119290 A TW 108119290A TW 108119290 A TW108119290 A TW 108119290A TW I726327 B TWI726327 B TW I726327B
- Authority
- TW
- Taiwan
- Prior art keywords
- predetermined area
- attenuation coefficient
- image data
- coefficient value
- scan data
- Prior art date
Links
- 238000011017 operating method Methods 0.000 title abstract description 5
- 238000002591 computed tomography Methods 0.000 title abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 36
- 238000003325 tomography Methods 0.000 claims description 31
- 238000003384 imaging method Methods 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 5
- 238000007596 consolidation process Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000002583 angiography Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/04—Positioning of patients; Tiltable beds or the like
- A61B6/0407—Supports, e.g. tables or beds, for the body or parts of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/04—Positioning of patients; Tiltable beds or the like
- A61B6/0487—Motor-assisted positioning
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本揭示文件係關於一種斷層掃描系統及其操作方法,特別是一種能夠批次計算不同參數設定的衰減係數的斷層掃描系統及操作方法。The document of this disclosure relates to a tomography system and an operation method thereof, in particular to a tomography system and an operation method that can calculate attenuation coefficients of different parameter settings in batches.
在斷層掃描(computed tomography, CT)系統中,是以水假體的衰減係數作為其他待測物的基準計算出亨氏單位值,因此需要先得出水假體的衰減係數以利後續使用。由於斷層掃描系統的設定參數通常較為複雜,傳統的操作方法中,使用者需要不同設定參數的衰減係數時,每更改一次就需要重新將操作流程執行過一次才能得出更改後的設定參數的水假體衰減係數,如此將會耗費大量時間及人力。In the computed tomography (CT) system, the attenuation coefficient of the water prosthesis is used as the benchmark for other test objects to calculate the Heinz unit value. Therefore, the attenuation coefficient of the water prosthesis needs to be obtained for subsequent use. Since the setting parameters of the tomography system are usually complex, in the traditional operation method, when the user needs the attenuation coefficient of different setting parameters, each time the user needs to perform the operation process again to obtain the changed setting parameters. The attenuation coefficient of the prosthesis will consume a lot of time and manpower.
本揭示內容的一實施例中,一種斷層掃描系統之操作方法包含下列操作:透過使用者介面接收複數個第一造影參數組;根據第一造影參數組批次掃描假體而獲得複數個第一掃描資料組;選擇自第一掃描資料組之其中一者進行快速重建程序而獲得初步影像資料;透過使用者介面選擇至少一預定區域;批次重建第一掃描資料組而獲得複數個第一影像資料;根據對應的至少一預定區域批次計算出第一影像資料的各自的第一衰減係數值。In an embodiment of the present disclosure, an operating method of a tomography system includes the following operations: receiving a plurality of first radiographic parameter sets through a user interface; scanning prostheses in batches according to the first radiographic parameter set to obtain a plurality of first radiographic parameters. Scan data set; select one of the first scan data sets to perform a quick reconstruction process to obtain preliminary image data; select at least one predetermined area through the user interface; rebuild the first scan data set in batches to obtain a plurality of first images Data; the respective first attenuation coefficient values of the first image data are calculated according to the corresponding at least one predetermined area batch.
本揭示內容的另一實施例中,一種斷層掃描系統包含使用者介面、斷層掃描裝置及處理裝置。使用者介面用以接收複數個第一造影參數組。斷層掃描裝置用以根據第一造影參數組批次掃描假體而獲得複數個第一掃描資料組。處理裝置用以選擇自第一掃描資料組之其中一者進行快速重建程序而獲得初步影像資料,批次重建第一掃描資料組而獲得複數個第一影像資料,並根據對應的至少一預定區域批次計算出第一影像資料各自的第一衰減係數值。In another embodiment of the present disclosure, a tomography system includes a user interface, a tomography device, and a processing device. The user interface is used for receiving a plurality of first contrast parameter sets. The tomography device is used to scan the prosthesis in batches according to the first imaging parameter set to obtain a plurality of first scan data sets. The processing device is used to select one of the first scan data sets to perform a rapid reconstruction process to obtain preliminary image data, to reconstruct the first scan data sets in batches to obtain a plurality of first image data, and to obtain a plurality of first image data according to the corresponding at least one predetermined area The first attenuation coefficient values of the first image data are calculated in batches.
綜上所述,透過上述斷層掃描系統及其操作方法即可批次計算出不同造影參數組的衰減係數,以利後續使用者計算其他待測物時使用。In summary, the attenuation coefficients of different imaging parameter groups can be calculated in batches through the above-mentioned tomography system and its operation method, so that the subsequent users can use it when calculating other objects to be tested.
在本文中所使用的用詞『包含』、『具有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。The terms "include", "have" and so on used in this article are all open terms, meaning "including but not limited to". In addition, the "and/or" used in this article includes any one of one or more of the related listed items and all combinations thereof.
於本文中,當一元件被稱為『連結』或『耦接』時,可指『電性連接』或『電性耦接』。『連結』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本揭示文件。In this text, when an element is referred to as "connection" or "coupling", it can refer to "electrical connection" or "electrical coupling". "Link" or "Coupling" can also be used to indicate the coordinated operation or interaction between two or more components. In addition, although terms such as “first”, “second”, etc. are used herein to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless the context clearly indicates, the terms do not specifically refer to or imply the order or sequence, nor are they used to limit the present disclosure.
請參考第1圖,第1圖繪示根據本揭示文件之一實施例的斷層掃描系統100的功能方塊圖。斷層掃描系統100包含使用者介面110、斷層掃描裝置120及處理裝置130。使用者介面110用以接收複數個第一造影參數組,使用者介面110提供使用者輸入造影的參數設定,使用者可以輸入複數個造影參數組,每個造影參數組各自包含複數個參數種類及其分級,例如濾器(分級例如0.5mm Al, 0.2mm Cu)、放射光源管電壓(分級例如70kVp, 80kVp)、造影模式解析度(分級例如44.9µm, 22.5µm, 9µm)、偵檢器像素合併模式(binning mode,分級例如1x1、2x2或4x4)等不限於此。複數個第一造影參數組為前述參數種類的分級的排列組合。於本實施例中,其中一個第一造影參數組例如為濾器為0.5mm Al、放射光源管電壓為70kVp、造影模式解析度為44.9µm及偵檢器像素合併模式為2x2,另一個第一造影參數組例如為0.5mm Al、放射光源管電壓為80kVp、造影模式解析度為22.5µm及偵檢器像素合併模式為2x2。斷層掃描裝置120用以根據複數個第一造影參數組批次掃描假體以而獲得複數個第一掃描資料組,每個第一掃描資料組包含複數個掃描資料,如不同角度的投影(projections),於此實施例中假體以水假體做為例子,本揭示文件不以此為限。於此實施例中,使用者不需等待一個第一造影參數組進行假體掃描後,再手動輸入下一個第一造影參數組,避免耗費使用者過多操作時間。Please refer to FIG. 1. FIG. 1 illustrates a functional block diagram of the
處理裝置130用以選擇自複數個第一掃描資料組之其中一者進行快速重建程序而獲得初步影像資料,於一實施例中,快速重建程序例如自被選擇的其一第一掃描資料組中擷取部分掃描資料進行重建,以較短時間獲得初步影像資料。處理裝置130用以接收初步影像資料的至少一預定區域,以及批次重建複數個第一掃描資料組而獲得複數個第一影像資料,並根據對應的至少一預定區域批次計算出複數個第一影像資料各自的第一衰減係數值。The
在一實施例中,使用者介面110更用以提供使用者在初步影像資料上選擇至少一個預定區域,使用者可以藉由使用者介面110在初步影像資料上圈選預定區域的數量,調整預定區域的大小及預定區域的位置。In one embodiment, the
處理裝置130批次重建複數個第一掃描資料組而獲得複數個第一影像資料,進而批次計算出複數個第一影像資料各自的第一衰減係數值。於本實施例中,一第一掃描資料組經過重建程序而產生一第一影像資料(3D斷層掃描影像),本實施例將複數個第一掃描資料組依序自動進行重建程序而獲得各自的第一影像資料(重建後影像),省去使用者手動操作多次的重建程序。接著,根據對應的該至少一預定區域批次計算出該些第一影像資料各自的第一衰減係數值,於本實施例中,每個第一影像資料的預定區域皆依據初步影像資料所選定的預定區域數量、大小及位置來自動圈選,於一實施例中,每個第一衰減係數值的計算方式是計算每個第一影像資料的預定區域中的像素值之平均值。據此,批次計算出該些第一影像資料的第一衰減係數值,換言之,根據本揭示文件,批次建立出複數個第一造影參數組及其各自對應的第一衰減係數值,作為衰減係數資料庫。The
於一實施例中,斷層掃描系統100更包含儲存裝置140,儲存裝置140用以記錄預定區域的數量、預定區域的大小及預定區域的位置以利後續步驟使用,儲存裝置140更用以儲存衰減係數資料庫,衰減係數資料庫包含複數個第一造影參數組及所對應的第一衰減係數值,且每個第一影像資料的第一衰減係數值係在其所對應的第一造影參數組經過掃描及重建後所獲得。In one embodiment, the
當使用者掃描其他待測物時,例如其他物品、生物等,使用者藉由使用者介面110輸入第二造影參數組後,斷層掃描裝置120根據第二造影參數組掃描待測物而獲得第二掃描資料組。處理裝置130會重建第二掃描資料組而獲得第二影像資料,計算出第二影像資料的第二衰減係數值,配對出與第二造影參數組相同條件之第一造影參數組的第一衰減係數值,並根據所對應的第一衰減係數值,將第二衰減係數值轉換為待測物之亨氏單位值(Hounsfield units, HU)。When the user scans other objects to be tested, such as other objects, creatures, etc., after the user inputs the second imaging parameter set through the
例如,使用者掃描老鼠時,輸入合適的造影參數組,斷層掃描裝置120根據造影參數組掃描老鼠獲得老鼠的掃描資料組,處理裝置130將老鼠的掃描資料組進行重建程序而獲得老鼠影像資料,計算出老鼠影像資料的衰減係數值,接著自儲存裝置140紀錄的衰減係數資料庫配對出與掃描老鼠使用的造影參數組相同條件的水假體的第一造影參數組所對應的第一衰減係數值。使用者獲得水假體的衰減係數值後,可更進一步地利用水假體的衰減係數與老鼠的衰減係數值計算出老鼠的亨氏單位值,公式如下。For example, when the user scans a mouse, he inputs a suitable radiographic parameter set, the
公式中,HU待測物為待測物的亨氏單位值,μ待測物為待測物的衰減係數值,在此實施例中,μ待測物為老鼠的衰減係數值。μ水假體為水假體的衰減係數值。In the formula, the HU test object is the Heinz unit value of the test object, and the μ test object is the attenuation coefficient value of the test object. In this embodiment, the μ test object is the attenuation coefficient value of the mouse. The μ water prosthesis is the attenuation coefficient value of the water prosthesis.
請參考第2圖,第2圖繪示根據本揭示文件之一實施例的操作方法200的流程圖。操作方法200包含步驟S210、步驟S220、步驟S230、步驟S240、步驟S250及步驟S260,為使第2圖所示之操作方法200易於理解,請同時參考第1圖。Please refer to FIG. 2. FIG. 2 is a flowchart of an
步驟S210中,透過使用者介面110接收複數個第一造影參數組。使用者介面110提供使用者輸入複數個造影參數組,使用者可以輸入多組造影參數,每組造影參數各自包含複數個造影參數種類,輸入後執行步驟S220。In step S210, a plurality of first contrast parameter sets are received through the
步驟S220中,根據第一造影參數組批次掃描假體以產生對應於第一造影參數組的複數個第一掃描資料組。在此實施例中,假體以水假體作為例子說明, 本揭示文件不以此為限。In step S220, the prostheses are scanned in batches according to the first contrast parameter set to generate a plurality of first scan data sets corresponding to the first contrast parameter set. In this embodiment, the prosthesis is described with a water prosthesis as an example, and this disclosure is not limited to this.
步驟S230中,自複數個第一掃描資料組中選擇其中一者進行快速重建程序而獲得初步影像資料。步驟S240,透過使用者介面110選擇初步影像資料中的至少一預定區域,預定區域的選擇可以根據實際應用而有所不同。選擇後,執行步驟S250,批次重建複數個第一掃描資料組而獲得複數個第一影像資料。步驟S260,根據對應的至少一預定區域批次計算出該些第一影像資料各自的第一衰減係數值。In step S230, one of the plurality of first scan data sets is selected to perform a fast reconstruction process to obtain preliminary image data. In step S240, at least one predetermined area in the preliminary image data is selected through the
請同時參考第2圖及第3圖,第3圖繪示根據本揭示文件之一實施例的操作方法的部分流程圖。第3圖包含步驟S241、步驟S242、步驟S243、步驟S244、步驟S261及步驟S262。在第2圖的步驟S240中更包含步驟S241、步驟S242及步驟S243。當使用者於步驟S240中藉由使用者介面110選擇初步影像資料的預定區域時,可更進一步地選擇預定區域的數量(步驟S241),調整預定區域的大小(步驟S242)及移動預定區域的位置(步驟S243)。決定好預定區域之後,在步驟S244中,透過儲存裝置140,紀錄使用者所選取的預定區域數量、預定區域大小及預定區域位置。步驟S260更包含步驟S261,處理裝置130會使用與初步影像資料相對應的預定區域數量、預定區域大小及預定區域位置,批次計算出複數個第一影像資料的第一衰減係數值,計算第一衰減係數值的方式可以是計算其第一影像資料所有預定區域的像素值之平均值。計算出複數個第一影像資料的第一衰減係數值之後,在步驟S262,透過儲存裝置140儲存衰減係數資料庫,衰減係數資料庫包含複數個第一造影參數組及所對應的第一衰減係數值。Please refer to FIG. 2 and FIG. 3 at the same time. FIG. 3 shows a partial flowchart of an operation method according to an embodiment of the present disclosure. Figure 3 includes step S241, step S242, step S243, step S244, step S261, and step S262. Step S240 in FIG. 2 further includes step S241, step S242, and step S243. When the user selects the predetermined area of the preliminary image data through the
請參考第4圖,第4圖根據本揭示文件之另一實施例的操作方法300的流程圖,為使第4圖所示之操作方法300易於理解,請同時參考第1圖。操作方法300包含步驟S310、步驟S320、步驟S330、步驟S340、步驟S350及步驟S360。Please refer to FIG. 4, which is a flowchart of an
在步驟S310中,當使用者需要其他物品的衰減係數值時,使用者可以透過使用者介面110輸入第二造影參數組。步驟S320,斷層掃描裝置120根據第二造影參數組掃描待測物而獲得第二掃描資料。步驟S330,處理裝置130會重建第二掃描資料而獲得第二影像資料。步驟S340,處理裝置130計算出第二影像資料的第二衰減係數值,第二衰減係數值的計算方法可以與第一衰減係數值相同,例如,與初步影像資料或第一影像資料相對應的預定區域數量、預定區域大小及預定區域位置之預定區域像素平均值。In step S310, when the user needs the attenuation coefficient value of other items, the user can input the second contrast parameter set through the
步驟S350,獲得第二衰減係數值之後,處理裝置130會配對出與第二造影參數組相同條件之第一造影參數組的第一衰減係數值。例如,第二造影參數組的偵檢器像素合併模式為2x2,則處理裝置130會配對出同樣像素合併模式為2x2的第一造影參數組之第一衰減係數值。步驟S360,根據所對應的第一衰減係數值,將第二衰減係數值轉換為待測物之亨氏單位值,公式如上述。In step S350, after the second attenuation coefficient value is obtained, the
於一實施例中,處理裝置130配對第一造影參數組之第一衰減係數值時,處理裝置130根據第二造影參數組自第3圖的步驟S262中儲存裝置140所儲存的衰減係數資料庫中配對出相同條件的第一造影參數組所對應的第一衰減係數值。In one embodiment, when the
請參考第5圖,第5圖繪示根據本揭示文件之一實施例透過使用者介面於初步影像資料中選擇的預定區域示意圖。第5圖於初步影像資料中包含5個預定區域PA,預定區域PA的數量、大小及位置不以此實施例為限,可以根據實際需求而有所調整。使用者於第2圖的步驟S240中可以選擇至少一預定區域PA,於第3圖的步驟S241、步驟S242及步驟S243中可以選擇預定區域PA的數量、大小及位置。於此實施例中,預定區域PA的數量為5個,大小及位置如第5圖所示。Please refer to FIG. 5. FIG. 5 is a schematic diagram of a predetermined area selected from the preliminary image data through a user interface according to an embodiment of the present disclosure. Fig. 5 includes five predetermined areas PA in the preliminary image data. The number, size, and location of the predetermined areas PA are not limited to this embodiment, and can be adjusted according to actual needs. The user can select at least one predetermined area PA in step S240 in FIG. 2, and the number, size, and location of the predetermined area PA in steps S241, S242, and S243 in FIG. In this embodiment, the number of predetermined areas PA is five, and the size and position are as shown in FIG. 5.
藉由斷層掃描系統及其操作方法,使用者可以先把需要的複數個造影參數組輸入,斷層掃描系統即可批次計算出對應造影參數組的假體衰減係數值,後續使用者掃描其他待測物時,系統即可配對相同的造影參數組之假體衰減係數值,快速計算出其他待測物的亨氏單位值,大幅節省使用者操作上的時間。With the tomography system and its operating method, the user can first input the required multiple imaging parameter groups, the tomography system can calculate the attenuation coefficient of the prosthesis corresponding to the imaging parameter group in batches, and then the user scans other waiting groups. When measuring the object, the system can match the attenuation coefficient values of the prosthesis of the same angiographic parameter group, and quickly calculate the Heinz unit value of other objects to be measured, which greatly saves the user's operation time.
此外,隨著系統使用時間的增加,系統將會儲存越來越多不同的造影參數組之假體衰減係數值,當使用者需要多種待測物的不同造影參數組之亨氏單位值時,即可藉由過往已獲得的造影參數組之假體衰減係數值快速換算多種待測物的亨氏單位值。In addition, as the use time of the system increases, the system will store more and more different contrast parameter sets of the prosthesis attenuation coefficient values. When the user needs the Heinz unit values of different contrast parameter sets for multiple test objects, that is The value of the attenuation coefficient of the prosthesis of the angiographic parameter set obtained in the past can be quickly converted into the Heinz unit value of a variety of objects to be measured.
100‧‧‧斷層掃描系統
110‧‧‧使用者介面
120‧‧‧斷層掃描裝置
130‧‧‧處理裝置
140‧‧‧儲存裝置
200、300‧‧‧操作方法
PA‧‧‧預定區域
S210、S220、S230、S240、S241、S242、S243、S244、S250、S260、S261、S262、S310、S320、S330、S340、S350、S360‧‧‧步驟100‧‧‧
第1圖繪示根據本揭示文件之一實施例的斷層掃描系統的功能方塊圖。 第2圖繪示根據本揭示文件之一實施例的操作方法的流程圖。 第3圖繪示根據本揭示文件之一實施例的操作方法的部分流程圖。 第4圖繪示根據本揭示文件之另一實施例的操作方法的流程圖。 第5圖繪示根據本揭示文件之一實施例透過使用者介面於初步影像資料中選擇的預定區域示意圖。FIG. 1 is a functional block diagram of a tomography system according to an embodiment of the present disclosure. Figure 2 shows a flowchart of an operating method according to an embodiment of the present disclosure. FIG. 3 shows a partial flowchart of an operation method according to an embodiment of the present disclosure. FIG. 4 shows a flowchart of an operation method according to another embodiment of the present disclosure. FIG. 5 is a schematic diagram of a predetermined area selected from the preliminary image data through the user interface according to an embodiment of the present disclosure.
200‧‧‧操作方法 200‧‧‧Operation method
S210、S220、S230、S240、S250、S260‧‧‧步驟 S210, S220, S230, S240, S250, S260‧‧‧Step
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862703445P | 2018-07-26 | 2018-07-26 | |
US62/703,445 | 2018-07-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202008062A TW202008062A (en) | 2020-02-16 |
TWI726327B true TWI726327B (en) | 2021-05-01 |
Family
ID=69329011
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108118927A TWI703327B (en) | 2018-07-26 | 2019-05-31 | Method of generating abnormal message and detection system |
TW108119290A TWI726327B (en) | 2018-07-26 | 2019-06-04 | Computed tomography system and operating method thereof |
TW108119263A TWI703394B (en) | 2018-07-26 | 2019-06-04 | Imaging system capable of supporting-bed anti-crash mechanism and anti-crash method for using the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108118927A TWI703327B (en) | 2018-07-26 | 2019-05-31 | Method of generating abnormal message and detection system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108119263A TWI703394B (en) | 2018-07-26 | 2019-06-04 | Imaging system capable of supporting-bed anti-crash mechanism and anti-crash method for using the same |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN110755105B (en) |
TW (3) | TWI703327B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110742639B (en) * | 2019-10-25 | 2023-09-05 | 上海联影医疗科技股份有限公司 | Scanning system configuration method, scanning system configuration device, computer equipment and readable storage medium |
JP7460426B2 (en) * | 2020-03-31 | 2024-04-02 | 住友重機械工業株式会社 | X-ray CT device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017053869A1 (en) * | 2015-09-25 | 2017-03-30 | Loma Linda University Medical Center | Particle radiation computed tomography using partial scans |
CN107427274A (en) * | 2014-02-21 | 2017-12-01 | 三星电子株式会社 | Tomographic apparatus and method for reconstructing tomographic image thereof |
TW201817286A (en) * | 2016-10-28 | 2018-05-01 | 行政院原子能委員會核能硏究所 | Automatic exposure control system for a digital X-ray imaging device and method thereof |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6456684B1 (en) * | 1999-07-23 | 2002-09-24 | Inki Mun | Surgical scanning system and process for use thereof |
TW200734967A (en) * | 2006-03-14 | 2007-09-16 | Innovision Labs Co Ltd | Passive and interactive real-time image recognition software method |
JP2008011960A (en) * | 2006-07-04 | 2008-01-24 | Toshiba Corp | Mechanism for recognizing console-attaching position |
JP4738270B2 (en) * | 2006-07-14 | 2011-08-03 | 株式会社日立メディコ | Surgery support device |
US8355552B2 (en) * | 2007-06-20 | 2013-01-15 | The Trustees Of Columbia University In The City Of New York | Automated determination of lymph nodes in scanned images |
US8180126B2 (en) * | 2007-08-13 | 2012-05-15 | University Of Maryland, Baltimore | Detecting meniscal tears in non-invasive scans |
WO2009135081A2 (en) * | 2008-04-30 | 2009-11-05 | Board Of Regents, The University Of Texas System | Integrated patient bed system |
CA2646939C (en) * | 2008-06-04 | 2015-06-23 | Imris Inc. | Patient support table for use in magnetic resonance imaging |
CN101650320A (en) * | 2008-08-14 | 2010-02-17 | 台达电子工业股份有限公司 | Optical detection equipment and method |
CN101813642A (en) * | 2009-12-31 | 2010-08-25 | 苏州和君科技发展有限公司 | Microscopy CT imaging device with three-free degree motion control and correcting method thereof |
CN101916443B (en) * | 2010-08-19 | 2012-10-17 | 中国科学院深圳先进技术研究院 | Processing method and system of CT image |
JP6116899B2 (en) * | 2012-01-16 | 2017-04-19 | 東芝メディカルシステムズ株式会社 | Medical image diagnostic apparatus and control program |
CN109008972A (en) * | 2013-02-01 | 2018-12-18 | 凯内蒂科尔股份有限公司 | The motion tracking system of real-time adaptive motion compensation in biomedical imaging |
JP6294008B2 (en) * | 2013-05-22 | 2018-03-14 | キヤノンメディカルシステムズ株式会社 | X-ray computed tomography apparatus, reconstruction processing method, and reconstruction processing program |
CN104414677A (en) * | 2013-08-29 | 2015-03-18 | 上海西门子医疗器械有限公司 | Movement control system and movement control method for examining table bed board and medical equipment |
JP6521648B2 (en) * | 2014-02-26 | 2019-05-29 | タカラテレシステムズ株式会社 | X-ray imaging device |
TWM488975U (en) * | 2014-03-17 | 2014-11-01 | Taiwan Caretech Corp | Tomography device with anti-collision function |
JP6381966B2 (en) * | 2014-05-14 | 2018-08-29 | キヤノンメディカルシステムズ株式会社 | Medical diagnostic imaging equipment |
CN204331035U (en) * | 2015-01-07 | 2015-05-13 | 江西科技学院 | A kind of shipping anti-collision distance measuring equipment |
KR101689473B1 (en) * | 2015-07-08 | 2016-12-26 | (의료)길의료재단 | Protective capsule to reduce radiation exposure during CT scanning |
CN106137235A (en) * | 2016-07-26 | 2016-11-23 | 中国科学院深圳先进技术研究院 | C-arm X-ray machine, control system and medical image system |
DE102016221222A1 (en) * | 2016-10-27 | 2018-05-03 | Siemens Healthcare Gmbh | A method of operating a collision protection system for a medical surgical device, medical surgical device, computer program and data carrier |
CN108113697A (en) * | 2016-11-29 | 2018-06-05 | 北京东软医疗设备有限公司 | Control method, control device and the executive device of medical imaging equipment protective door |
CN108201448A (en) * | 2016-12-16 | 2018-06-26 | 西门子(深圳)磁共振有限公司 | X-ray detector anticollision device, collision-prevention device, method and its proximity sensor |
CN108236474B (en) * | 2016-12-27 | 2021-04-27 | 台达电子工业股份有限公司 | Radiography scanning device, bed and bed positioning device |
CN106725570B (en) * | 2016-12-30 | 2019-12-20 | 上海联影医疗科技有限公司 | Imaging method and system |
CN107961031A (en) * | 2017-12-15 | 2018-04-27 | 深圳先进技术研究院 | The anticollision device, collision-prevention device and avoiding collision of moving parts in a kind of medical imaging devices |
CN108042152A (en) * | 2017-12-21 | 2018-05-18 | 首都医科大学附属复兴医院 | CT ray automatic protective systems |
CN108042153A (en) * | 2017-12-21 | 2018-05-18 | 首都医科大学附属复兴医院 | Radiate automatic protective system and its control method |
CN107928702A (en) * | 2017-12-21 | 2018-04-20 | 首都医科大学附属复兴医院 | Tomoscan radiation protecting systems |
-
2019
- 2019-05-31 CN CN201910470914.7A patent/CN110755105B/en active Active
- 2019-05-31 TW TW108118927A patent/TWI703327B/en active
- 2019-06-04 TW TW108119290A patent/TWI726327B/en active
- 2019-06-04 TW TW108119263A patent/TWI703394B/en active
- 2019-06-04 CN CN201910481727.9A patent/CN110772273B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107427274A (en) * | 2014-02-21 | 2017-12-01 | 三星电子株式会社 | Tomographic apparatus and method for reconstructing tomographic image thereof |
WO2017053869A1 (en) * | 2015-09-25 | 2017-03-30 | Loma Linda University Medical Center | Particle radiation computed tomography using partial scans |
TW201817286A (en) * | 2016-10-28 | 2018-05-01 | 行政院原子能委員會核能硏究所 | Automatic exposure control system for a digital X-ray imaging device and method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI703327B (en) | 2020-09-01 |
TWI703394B (en) | 2020-09-01 |
TW202008062A (en) | 2020-02-16 |
TW202007970A (en) | 2020-02-16 |
CN110755105B (en) | 2023-12-08 |
CN110755105A (en) | 2020-02-07 |
TW202008061A (en) | 2020-02-16 |
CN110772273B (en) | 2023-10-17 |
CN110772273A (en) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Artifact correction in low‐dose dental CT imaging using Wasserstein generative adversarial networks | |
CN102293662B (en) | Method for determining radiation attenuation in a positron emission tomography scanner | |
JP5543448B2 (en) | High efficiency computed tomography | |
JP5918374B2 (en) | X-ray CT apparatus and X-ray CT image processing method | |
TWI726327B (en) | Computed tomography system and operating method thereof | |
JP6470837B2 (en) | X-ray CT apparatus and sequential correction parameter determination method | |
CN106780641B (en) | Low-dose X-ray CT image reconstruction method | |
CN108292430A (en) | The method for carrying out Automatic Optimal is generated for the quantitative figure in being imaged to functional medicine | |
US20230252607A1 (en) | 3d-cnn processing for ct image noise removal | |
Niu et al. | Iterative reconstruction for sparse-view x-ray CT using alpha-divergence constrained total generalized variation minimization | |
Hu et al. | Image reconstruction from few-view CT data by gradient-domain dictionary learning | |
Yu et al. | Image reconstruction for few-view computed tomography based on ℓ0 sparse regularization | |
WO2016063170A1 (en) | Start image for spectral image iterative reconstruction | |
JP2020534539A5 (en) | ||
Mouton et al. | A novel intensity limiting approach to metal artefact reduction in 3D CT baggage imagery | |
JP2016137050A (en) | Medical image processing device, medical image processing method, and medical image diagnostic device | |
CN108113694B (en) | Generating high resolution CT images with spectral information | |
Abascal et al. | Investigation of different sparsity transforms for the PICCS algorithm in small-animal respiratory gated CT | |
Tan et al. | Sharpness preserved sinogram synthesis using convolutional neural network for sparse-view CT imaging | |
Kudo et al. | Metal artifact reduction in CT using fault-tolerant image reconstruction | |
Guhathakurta et al. | Reducing Computed Tomography Reconstruction and Beam Hardening Artefacts by Data Fusion | |
Liu et al. | Fast alternating projection methods for constrained tomographic reconstruction | |
Je et al. | Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging | |
Vilar et al. | X-ray microtomography system for small and light samples using a flat panel detector | |
CN112396700A (en) | Computer-implemented method and medium for deriving 3D image data for a reconstructed volume |