TWI724578B - 酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途 - Google Patents

酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途 Download PDF

Info

Publication number
TWI724578B
TWI724578B TW108137115A TW108137115A TWI724578B TW I724578 B TWI724578 B TW I724578B TW 108137115 A TW108137115 A TW 108137115A TW 108137115 A TW108137115 A TW 108137115A TW I724578 B TWI724578 B TW I724578B
Authority
TW
Taiwan
Prior art keywords
peptide
mir
acid
lipid
iri
Prior art date
Application number
TW108137115A
Other languages
English (en)
Other versions
TW202027796A (zh
Inventor
駱雨利
Original Assignee
國立陽明大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明大學 filed Critical 國立陽明大學
Publication of TW202027796A publication Critical patent/TW202027796A/zh
Application granted granted Critical
Publication of TWI724578B publication Critical patent/TWI724578B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

目前本發明提供了一種pH敏感型的脂質奈米粒子,係由脂質和/或聚合物的混合物所組成的一奈米粒子包括:一奈米粒核的表面,其包含:一亞胺-O’-methyl聚乙二醇(imine-omPEG),該亞胺是pH敏感的連接物;以及一聚乙二醇-胜肽(PEG-peptide),所述該胜肽係選自一RF胜肽、一K胜肽和一H胜肽,其中該RF胜肽是從α-螺旋胜肽庫中篩選的有效細胞穿透胜肽,該K胜肽是粒線體靶向胜肽,該H胜肽是癌症特異性鍵結胜肽;以及一脂質在該奈米粒核內部,其中該脂質奈米粒子包封一標靶製劑。

Description

酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途
本發明有關一種酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途。
當結腸或直腸內壁的健康細胞發生改變並不受控制地生長,形成稱為腫瘤的腫塊時,就會形成結腸直腸癌(Colorectal cancer,CRC)。用於結腸直腸癌的治療可選擇包括外科手術、放射療法、化學療法和標靶療法等治療組合,其中局限在結腸壁內的癌症可以通過手術治癒,而擴散的癌症通常無法有效治癒。在美國結腸直腸癌的五年存活率約為65%,在全球癌症好發率中,結腸直腸癌是第三大常見的癌症,約佔所有病例的10%,在2012年新增約有140萬例病例,以及694,000的死亡案例,而在發達國家中,這種情況更為普遍,發現有65%以上的人患有此病例。
頭頸癌泛指發生於頭頸部之癌症,包括口腔、鼻咽、口咽、喉、鼻竇或唾液腺等癌症,在2015年全球超過550萬人患有頭頸癌 (分別為:口腔癌240萬、喉嚨癌170萬和喉癌140萬案例),並導致379,000多人死亡(分別為:口腔癌146,000人、喉嚨癌127,400和喉癌105,900),頭頸癌是全球第七大最常見的癌症,也是第九大最常見的癌症死亡原因,在美國約有1%的人在一生中某個時候受到影響,男性受到的影響是女性的兩倍,診斷通常好發的年齡為55至65歲之間,在發達國家中於診斷後的平均5年存活率為42~64%。
愛萊諾迪肯(Irinotecan,以下簡稱:Iri)是水溶性喜樹鹼,為適用於晚期或轉移性結腸直腸癌的一線治療劑,愛萊諾迪肯(Iri)通過形成可裂解的藥物-DNA-拓撲異構酶I的複合物,該複合物可避免DNA鏈再連接而起作用,從而導致癌細胞的雙鏈DNA斷裂和細胞死亡,但是愛萊諾迪肯(Iri)明顯被腫瘤細胞中的P-醣蛋白(P-gp)和與多重抗藥性(MDR)相關的蛋白(MRP)排出,造成抗藥性,且其不良反應包括:腹瀉、噁心和嘔吐,通常發生在愛萊諾迪肯(Iri)治療的後期,該如何降低愛萊諾迪肯(Iriri)的抗藥性和減少其副作用是醫藥產業上緊迫需解決的問題。
微小核糖核酸(miRNA,以下簡稱:miRs)在調節訊息核糖核酸(mRNA)轉譯中扮演關鍵作用,其中hsa-miR-200c-3p的上調可通過抑制ZEB1/2、Snail和Slug來抑制上皮-間質轉化(EMT)和抑制轉移,此外,miR-200下調ZEB1和vimentin,並增加癌細胞對吉西他濱(用於化學療法的核苷類似物)的敏感性,但是單獨使 用微小核糖核酸-200(miR-200)作為單一抗癌劑是不夠的,此外微小核糖核酸(miRs)傳遞到細胞中還存在一些問題,包括:全身循環中的快速降解、免疫系統的快速檢出、細胞攝取較低和不易由核內體脫離。
再者,由於市售的奈米粒子包覆抗癌藥物與長鏈高分子聚乙二醇結合,致使包封於奈米粒子中的抗癌藥物釋放率降低、較差的內化作用以及無法區別正常細胞和癌細胞,因此迫切需要開發可標的到大腸癌和頭頸癌的有效治療劑的新醫藥組合物,以解決當前在抗藥性和副作用問題方面的治療方法。
為解決上述問題,本發明提供了一種pH敏感型的脂質奈米粒子,其中所述脂質奈米粒子裝載一標靶製劑。
此外因愛萊諾迪肯(Irinotecan)可能滲透並傷害正常粘膜組織和導致副作用,例如腹瀉和嘔吐;且微小核糖核酸(miRs)顯示出快速降解和細胞攝取不佳的缺點;有鑑於此,本發明提供了一種pH敏感且標靶腫瘤的遞送系統,該系統對愛萊諾迪肯(Iri)和微小核糖核酸(miRs)具有良好的滲透性,從而改善了晚期結腸直腸癌(CRC)和頭頸癌(HNC)的治療,在本發明中微脂體(Lip)和固體脂質奈米粒子(SLN)已成功地被穿透細胞的RF胜肽(RF peptide)、標靶腫瘤表現NG2的H胜肽(H peptide)和標靶粒線體的K胜肽(K peptide)所修飾。
本發明之主要目的在於提供一酸鹼敏感型脂質奈米粒子,包括:一奈米粒核的表面,其中該表面包含亞胺-O’-methyl聚乙二醇(以下將O’-methyl簡稱為om),該亞胺是pH敏感的連接物;一聚乙二醇-RF胜肽;其中該RF胜肽是一細胞穿透胜肽;一聚乙二醇-K胜肽,其中該K胜肽是粒線體標靶胜肽;一聚乙二醇-H胜肽,其中該H胜肽是癌症特異性結合胜肽;以及一標靶製劑置於該奈米粒核內,其中該奈米粒核由一脂質、一磷脂及表面活性劑組成。在本發明之一實施例中該酸鹼敏感型脂質奈米粒子,其中所述脂質係選自L-α-磷脂醯膽鹼(PC)、單硬脂酸甘油酯(monostearin)、單棕櫚酸甘油酯和單油酸甘油酯所組成之群組。
在本發明之一實施例中該酸鹼敏感型脂質奈米粒子,其中所述陽離子脂質包含1,2-二油醯基-3-三甲基銨丙烷(DOTAP)、1,2-二-O-十八碳烯基-3-三甲基銨丙烷(DOTMA)、陽離子吡啶鎓脂質(SAINT)、七足綱-6,9,28,31-四烯基-19-基4-(二甲基胺基)丁酸酯(MC3)或2,2-二亞油基-4-(2-二甲基胺基乙基)-[1,3]-二氧戊環(KC2)。
在本發明之一實施例中該酸鹼敏感型脂質奈米粒子,其中磷脂包含1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺(DSPE)、1,2-二棕櫚醯基-sn-甘油-3-磷酸乙醇胺(DPPE)、1,2-二油醯基-sn-甘油-3-磷酸乙醇胺(DOPE)。
在本發明之一實施例中之該酸鹼敏感型脂質奈米粒子,其中該奈米粒核也包含一表面活性劑,其中該表面活性劑係選自泊洛沙姆(Pluronics;Poloxamers)、聚山梨醇酯(Tweens)、山梨糖醇酯(Spans)、非離子聚氧乙烯表面活性劑(Brij)、聚乙二醇單硬脂酸酯(Myrj)、環糊精衍生物(cyclodextrin derivative)或殼聚醣衍生物(chitosan derivative)。
在本發明之一實施例中之該酸鹼敏感型脂質奈米粒子,其中所述標靶製劑係選自一微小核糖核酸(miRs)和一藥物所組成。
在本發明之一最佳實施例中之該酸鹼敏感型脂質奈米粒子,其中所述該微小核糖核酸(miRs)係為一hsa-miR抑制劑或相似物,該hsa-miR抑制劑或相似物係選自由hsa-miR-21抑制劑或has-miR-122-5p、hsa-miR-125b-5p、has-miR-136-5p、has-miR-139-5p、has-miR-200c-3p和has-miR-320a相似物所組成之群組。
在本發明之一最佳實施例中之該酸鹼敏感型脂質奈米粒子,其中所述該藥物係選自由愛萊諾迪肯(Irinotecan)、奧沙利鉑(oxaliplatin)、表柔比星(epirubicin)、阿黴素(doxorubicin)、阿法替尼(afatinib)和多西他賽(docetaxel)所組成之群組。
在本發明之一實施例中之該酸鹼敏感型脂質奈米粒子,其中所述脂質奈米粒子可以聚集在癌細胞處於pH 5~7的腫瘤微環境中。
在本發明之一最佳實施例中之該酸鹼敏感型脂質奈米粒子,其中所述癌細胞包括結腸直腸癌、頭頸癌或胰臟癌。
在本發明之一實施例中之該酸鹼敏感型脂質奈米粒子,其中所述之該RF胜肽係為SEQ.NO 1.(SEQ.NO 1 GLKKLARLFHKLLKLGC)。
在本發明之一實施例之該酸鹼敏感型脂質奈米粒子,其中所述之該K胜肽係為SEQ.NO 2.(SEQ.NO 2 CKLAKLAK)。
在本發明之一實施例之該酸鹼敏感型脂質奈米粒子,其中H胜肽係為神經膠質抗原2(NG2)蛋白聚醣結合胜肽。
在本發明之一實施例中之該酸鹼敏感型脂質奈米粒子,其中所述之該H胜肽係為SEQ.NO 3.(SEQ.NO 3 CTAASGVRSMH)。
本發明之另一主要目的在於提供一醫藥組合物,其包含:一有效量的多種脂質奈米粒子作為pH應答型脂質奈米粒子,其包含:一裝載有微小核糖核酸(miRs)的pH應答型奈米粒子,其中該脂質包括一甘油單酸酯、一磷脂和一表面活性劑的混合物,和一標靶製劑係為一微小核糖核酸(miRs);以及一裝載藥物的pH應答型奈米粒子,其中所述該脂質係為一脂質雙層,且所述標靶製劑係為一抗癌藥物。
在本發明之一實施例中,該醫藥組合物中所述該微小核 糖核酸(miRs)為一hsa-miR抑制劑或相似物,該hsa-miR抑制劑或相似物係選自由hsa-miR-21、has-miR-122-5p、hsa-miR-125b-5p、has-miR-136-5p、has-miR-139-5p、has-miR-200c-3p和has-miR-320a相似物所組成之群組。
在本發明之一實施例中,該醫藥組合物中所述抗癌藥係選自由愛萊諾迪肯(Irinotecan)、奧沙利鉑(oxaliplatin)、表柔比星(epirubicin)、阿黴素(doxorubicin)、阿法替尼(afatinib)和多西他賽(docetaxel)所組成之群組。
本發明之另一主要目的在於提供一種前述的酸鹼敏感型脂質奈米粒子用於製備治療癌症之藥物的應用,包括:一裝載有一微小核糖核酸(miRs)的pH應答型奈米粒子,其中所述該脂質係包括一甘油單酸酯、一磷脂和一表面活性劑的混合物和一標靶製劑係為一微小核糖核酸(miRs);以及一裝載藥物的pH應答型奈米粒子,其中所述該脂質係為脂質雙層,所述標靶製劑係為一抗癌藥。
在本發明之一實施例中,該酸鹼敏感型脂質的奈米粒子的應用,其中所述該癌症包括結腸直腸癌、頭頸癌或胰腺癌。
在本發明之一實施例中,該酸鹼敏感型脂質奈米粒子的應用,其中所述該抗癌藥係選自愛萊諾迪肯(Irinotecan)、奧沙利鉑(oxaliplatin)、表柔比星(epirubicin)、阿黴素(doxorubicin)、阿法替尼(afatinib)和多西他賽(docetaxel)所組成。
圖1A顯示了二硬脂醯基磷脂醯乙醇胺-亞胺-om聚乙二醇(簡稱:DSPE-imine-omPEG)共軛體的1H核磁共振光譜。
圖1B顯示了二硬脂醯基磷脂醯乙醇胺-聚乙二醇-順丁烯二亞醯胺(以下簡稱:DSPE-PEG-maleimide)鍵結到RF胜肽的結構和質譜儀,藉由質譜輔助激光解吸電離飛行時間質譜儀(MALDI-TOF mass spectrometer)檢測到DSPE-PEG-RF相對應的胜肽-共軛物結構。
圖1C顯示了DSPE-PEG-maleimide鍵結到K胜肽的結構和質譜儀,藉由質譜輔助激光解吸電離飛行時間質譜儀(MALDI-TOF mass spectrometer)檢測到DSPE-PEG-K相對應的胜肽-共軛物結構。
圖1D顯示了DSPE-PEG-maleimide鍵結到H胜肽的結構和質譜儀,藉由質譜輔助激光解吸電離飛行時間質譜儀(MALDI-TOF mass spectrometer)檢測到DSPE-PEG-H相對應的胜肽-共軛物結構。
圖2A分別顯示製備裝載微小核糖核酸-200(miR-200)的pH敏感修飾與肽胜修飾的固體脂質奈米粒子(SLN)之示意圖;第2B圖和製備包封愛萊諾迪肯(Iri)的pH敏感修飾與胜肽修飾的PEGylated脂質體(Lip)之示意圖。
圖3分別顯示包封了愛萊諾迪肯(Iri)的pH敏感修飾和胜 肽修飾的PEGylated脂質體(Lip),和包封了微小核糖核酸-200(miR-200)的固體脂質奈米粒子(SLN)設計示意圖。
圖4A顯示了各種配方的特性分析,如包封效率%和裝載容量%。
圖4B顯示了各種配方的特性分析:在與1%RNase或50%FBS培養24小時後,監測微小核糖核酸(miRs)樣品的血清保護測試,在第2-5泳道:未處理;第6-9泳道:處理1%RNase;第10-13泳道:處理50%FBS;第1和14泳道:RNA marker。
圖4C顯示各種配方的特性分析,Iri/omLip-RFKH的低溫透射電子顯微鏡(Cryo-TEM)影像,比例尺長度為100nm,每個組之n=3。
圖5A顯示各種配方的pH敏感修飾的曲線:在pH 6.5和7.4環境下有或沒有包封在omLip-RFKH中的愛萊諾迪肯(Iri)的體外釋放;藉由將DSPE-亞胺-PEG5000替換為DSPE-PEG5000(其為沒有pH敏感鍵結的PEG-DSPE)來製備Iri/PEG-Lip-RKH。
圖5B顯示了各種配方的pH敏感趨勢線:使用流式細胞儀測量各種配方的柔紅黴素(Daunorubicin,DNR;愛萊諾迪肯(Iri)的替代探針)在pH 6.5和7.4時細胞攝取到人結腸直腸癌HCT116細胞中的能力。
圖5C顯示了各種配方的FAM-miR-200轉染HCT116人結腸直腸癌細胞之效率%:通過流式細胞儀分析檢測在HCT116人結腸直腸癌細胞株的轉染效率%。*代表P<0.05。
圖6A顯示各種配方對紅血球細胞的細胞毒性,各種配方的溶血作用 (上圖),計算了從大鼠血細胞釋放的血紅蛋白(下圖)。*代表與CTR相比時P<0.05;†代表與Iri/Lip相比時P<0.05;‡代表與Iri/Lip-RFKH相比P時<0.05;NC代表不具標靶作用的miRNA。
圖6B顯示各種配方對IEC-6細胞株的細胞毒性,細胞活性通過磺胺多巴酚B(Sulforhodamine B,SRB)測定,在作用48小時時不同配方對IEC-6細胞的細胞毒性。*代表與CTR相比時P<0.05;†代表與Iri/Lip相比時P<0.05;‡代表與Iri/Lip-RFKH相比P時<0.05;NC代表不具標靶作用的miRNA。
圖6C顯示各種配方對HCT116人結腸直腸癌細胞株的細胞毒性,細胞活性通過磺胺多巴酚B(Sulforhodamine B,SRB)測定,在作用48小時時不同配方對HCT116細胞株的細胞毒性。*代表與CTR相比時P<0.05;†代表與Iri/Lip相比時P<0.05;‡代表與Iri/Lip-RFKH相比P時<0.05;NC代表不具標靶作用的miRNA。
圖7A顯示於48小時內使用Annexin V/碘化丙啶(PI)檢測法測定不同配方對HCT116細胞凋亡和壞死的細胞組群分佈影響。
圖7B顯示於48小時內不同配方對HCT116細胞凋亡、壞死和細胞死亡的相對百分比的影響。
圖7C顯示48小時內的不同配方對HCT116細胞凋亡相關路徑如p53、Bax、Bcl-2的mRNA表現及Bax/Bcl-2比例的變化。
圖7D顯示於48小時內藉由西方點墨法顯示不同配方對HCT116細胞凋亡相關途徑的蛋白質表現的影響。
圖7E顯示於48小時內的不同配方對HCT116細胞株凋亡相關途徑的 caspase-3、caspase-8、caspase-9活性值的影響。
圖8A顯示攜帶CT26的小鼠每週一次給予各種配方持續28天,在28天的治療結束時拍攝不同配方組之小鼠的IVIS影像,每組n=5;相對生物發光強度顯示在下面對照板中。*代表P<0.05;**代表P<0.01;***代表P<0.001。
圖8B顯示來自不同配方組的代表性小鼠的正電子發射電腦斷層掃描/電腦斷層攝影(PET/CT)影像。白色圓圈:代表腫瘤;黃色圓圈:代表膀胱;橙色圓圈:心。*代表P<0.05;**代表P<0.01;***代表P<0.001。
圖8C顯示攜帶CT-26之小鼠的腫瘤大小與時間的關係。*代表P<0.05;**代表P<0.01;***代表P<0.001。
圖8D顯示攜帶CT-26之小鼠的體重隨時間的變化。*代表P<0.05;**代表P<0.01;***代表P<0.001。
圖9A顯示在結腸直腸癌模型中不同配方組在最後治療後48小時的穀胺酸丙酮酸轉胺酶(GPT)的血清數值。
圖9B顯示在結腸直腸癌模型中不同配方組在最後治療後48小時的肌酐(CRE)的血清數值。
圖9C顯示在結腸直腸癌模型中不同配方組在最後治療後48小時的肌酸激酶-MB(CK-MB)的血清數值。
圖9D顯示在結腸直腸癌模型中不同配方組的最後處理後的小鼠組織之蘇木素-伊紅染色(H & E)染色的顯微照片。
圖10顯示不同配方組在攜帶CT26/tk-luc之小鼠中的生物分佈。用紫外分光光度計分析了不同配方組的愛萊諾迪肯(Iri)在攜帶有CT26之小鼠中的生 物分佈(*代表P<0.05;**代表P<0.01;***代表P<0.001),通過紫外分光光度計分析了不同配方組的愛萊諾迪肯(Iri)在攜帶CT26之小鼠中的生物分佈,結果表明沒有脂質體(Lip)包封的愛萊諾迪肯(Iri)主要分佈在肝、腎和腸中,但是在Iri/Lip-RFKH+miR-200/SLN-RFKH、Iri/omLip-RFKH+miR-200/omSLN-RFKH或Onivyde的配方組中的愛萊諾迪肯(Iri)主要在腫瘤組織中積累,特別是含pH敏感的om材質修飾的治療組效果效果最好,我們的發現進一步闡明這種腫瘤微環境可改變的組合治療,愛萊諾迪肯(Iri)和miR-200的優異腫瘤蓄積性主要歸因於其pH應答和標靶腫瘤的設計。
圖11顯示不同配方的愛萊諾迪肯(Iri)在帶有頭頸SAS腫瘤細胞的裸鼠中的生物分佈研究,使用紫外分光光度計分析了不同配方的愛萊諾迪肯(Iri)在帶有SAS的裸鼠中的生物分佈,(*代表P<0.05;**代表P<0.01;***代表P<0.001),檢測了不同配方的愛萊諾迪肯(Iri)在帶有SAS的裸鼠中的生物分佈,結果表明愛萊諾迪肯(Iri)溶液主要分佈在肝、腎和腸中,儘管如此結合在Iri/Lip-RFKH+miR-200/SLN-RFKH、Iri/omLip-RFKH+miR-200/omSLN-RFKH或Onivyde配方組中的愛萊諾迪肯(Iri)主要分佈在腫瘤組織中,尤其是對pH敏感的omLip組和omSLN組,我們進一步顯示這種於腫瘤可解離的生物材料具有優異的腫瘤蓄積性,可製備出專門用於將愛萊諾迪肯(Iri)和微小核糖核酸(miRs)遞送至頭頸癌(HNC)腫瘤部位的奈米粒子。
為了解決上述問題,本發明提供一種pH敏感型的脂質奈米粒子,其中所述脂質奈米粒子裝載一標靶藥物。
實施例1:二硬脂醯基磷脂醯乙醇胺-om聚乙二醇(以下簡稱:DSPE-omPEG)和二硬脂醯基磷脂醯乙醇胺-聚乙二醇-胜肽(以下簡稱:DSPE-PEG-peptide)的合成
分別藉由將二硬脂醯基磷脂醯乙醇胺-聚乙二醇-順丁烯二亞醯胺(以下簡稱:DSPE-PEG-maleimide)與胜肽RF、胜肽K和胜肽H的半胱胺酸殘基(cysteine residue)鍵結形成硫醚鍵(thioether bond)來合成1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-聚乙二醇-2000-胜肽RF(以下簡稱:DSPE-PEG-peptide RF)、1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-聚乙二醇-2000-胜肽K(以下簡稱:DSPE-PEG-peptide K)和1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺-聚乙二醇-2000-胜肽H(以下簡稱:DSPE-PEG-peptide H),再藉由質譜分析來確認DSPE-PEG-peptide的質量,這表明所示的胜肽已與DSPE-PEG鍵結(如圖1B~圖1D、圖2和圖3所示)。此外根據1H核磁共振光譜儀分析,在與om聚乙二醇(簡稱:omPEG)和二硬脂醯基磷脂醯乙醇胺(簡稱:DSPE)的光譜相比,二硬脂醯基磷脂醯乙醇胺-亞胺-om聚乙二醇(簡稱:DSPE-imine-omPEG)的光譜在9.33ppm處顯示出一個額外的峰值(如圖1A所示),此表明DSPE和omPEG之間已形成了pH-敏感型的亞胺鍵(pH-sensitive imine bond)。
此外這些奈米粒子的外部被pH敏感型之聚乙二醇層(pH-sensitive PEG layer)良好的包覆和屏蔽(如圖3所示)。
實施例2:多功能微脂體(liposomes,簡稱:Lip)和固體脂質奈米粒子(Solid lipid nanoparticles,簡稱:SLN)的特性分析
製備裝載愛萊諾迪肯(Iri)的微脂體(Lip)
通過薄膜水合法製備微脂體(Lip),簡而言之,將DSPC、膽固醇(cholesterol)、DSPE-PEG-peptide和DSPE-omPEG(摩爾比為1:0.1:0.1:0.1進行合成)溶於甲醇/二氯甲烷(比例為1:9),再除去有機溶劑後,將脂質薄膜懸浮於PBS中,將該混合物通過400nm,200nm和100nm大小的的膜濾器擠出,為了製備裝載藥物的微脂體(Lip),使用硫酸銨梯度法(ammonium sulfate gradient method)將愛萊諾迪肯(Iri)添加到空白微脂體(Lip)中以獲得裝載愛萊諾迪肯(Iri)的脂質體(Lip)。
製備微小核糖核酸(miRNA,miRs)的固體脂質奈米粒子(SLN)
通過水性溶劑擴散法製備固體脂質奈米粒子(SLN),將L-α-磷脂醯膽鹼(L-α-Phosphatidylcholine)或一酸甘油酯(monoglyceride)、膽固醇、1,2-二油醯基-3-三甲基銨丙烷(DOTAP)、DSPE-PEG-peptide和DSPE-omPEG分別以1:0.1:0.1:0.1:0.1的摩爾比溶解在甲醇/二氯甲烷中(比例為1:9),將所得混合物迅速分散到Tween 80溶液中攪拌,再將微小核糖核酸(miRs)溶液添加到SLN膠體分散液中,並將該混合物在室溫下培養30分鐘。
微脂體(Lip)和固體脂質奈米粒子(SLN)的特性分析
使用單角度動/靜態光散射儀(Zetasizer Malvern)測量粒徑大小分佈和界面電位(zeta potential),使用穿透式電子顯微鏡(TEM;JEOL)觀察微脂體(Lip)和固體脂質奈米粒子(SLN)的形態,另外,使用低溫高分辨率穿透式電子顯微鏡儀(FEI)檢測微脂體(Lip)和固體脂質奈米粒子(SLN)的形態。
包封效率(EE%)和載藥量(DL%)
離心後,通過HPLC(Hitachi)分析濾液和奈米粒子中的愛萊諾迪肯(Iri)或微小核糖核酸(miRs),流速為1.0mL/min,檢測波長為220nm,使用以下方程式計算EE%和DL%。
包封效率EE%=[(We-Wf)/We]×100% (1)
加載藥量DL%=[(We-Wf)/Wt]×100% (2)
其中,We是添加愛萊諾迪肯(Iri)或微小核糖核酸(miRs)的重量,Wf是濾液中的愛萊諾迪肯(Iri)或微小核糖核酸(miRs)的重量,Wt是奈米粒子的總重量。
微小核糖核酸(miRs)的保護測試
將固體脂質奈米粒子(SLN)中不同的微小核糖核酸(miRs)配方與1% RNase或50% FBS在37℃培養24小時,培養後,進行膠體遲滯分析(gel retardation assay)所有樣品,該樣品用5%瓊脂糖凝膠在120V下跑膠30分鐘,通過凝膠記錄系統(DigiGel;TopBio,台灣台北)對5%瓊脂糖凝膠進行分析和掃描。
Iri/omLip-RFKH和miR-200/omSLN-RFKH顯示出均勻 且狹窄的粒徑分佈(如下表1)。微脂體(Lip)帶負電,固體脂質奈米粒子(SLN)帶正電(如下表1),裝載有愛萊諾迪肯(Iri)或微小核糖核酸(miRs)的微脂體(Lip)或固體脂質奈米粒子(SLN)的包封率均高於88%,相應的載藥量百分比高於14%(如下表1和圖4A所示)。
Figure 108137115-A0305-02-0018-1
我們發現,這些奈米粒子的粒徑和界面電位(zeta potential)在4℃儲存28天後保持恆定,且粒徑分佈均勻(PDI~0.1)。
此外,通過進行瓊脂糖凝膠電泳所示(如圖4B中第6和第10泳道所示),無修飾的微小核糖核酸(miRs)在與1% RNase或50% FBS培養24小時後造成降解或聚集情況,值得注意的是,miRs樣品受到omSLN-RFKH的良好保護,免受RNase或FBS造成降解或聚集情況(如圖4B中第9和13泳道所示);有趣的是沒有pH敏感層的 SLN-RFKH也可在50% FBS的攻擊下提供類似的保護(如圖4B中第12泳道所示);但是沒有pH敏感層和胜肽修飾的固體脂質奈米粒子(SLN)不能防止miRs受到50% FBS的攻擊而造成降解或聚集(如圖4B中第11泳道所示),即使不具有修飾的固體脂質奈米粒子(SLN),仍可以保護微小核糖核酸(miRs)免受1% RNase誘導而造成降解(如圖4B中第7-9泳道所示)。此外,透過穿透式電子顯微镜(TEM)和低溫穿透式電子顯微鏡(cryo-TEM),發現微脂體(Lip)均形成球形微粒且無聚集現象,(如圖4C所示),最外層為典型的脂質雙層結構,並且在核中觀察到愛萊諾迪肯(Iri)的晶體,如低溫穿透式電子顯微鏡影像所示(如圖4C所示)。
特別地,微小核糖核酸(miRs)受到pH-sensitive PEG和/或omSLN-RFKH中修飾的胜肽保護,免受RNase或極高濃度FBS的攻擊而降解或聚集現象(如圖4B所示),表明這些pH敏感(pH-sensitive)和胜肽鍵結的奈米粒子可以做為注射方式施用的基因治療藥物(如:微小核糖核酸(miRs))極佳的平台。
RF胜肽比TAT胜肽(像是CPP胜肽)具有更好的細胞選擇性,因為它較少被正常細胞所攝取,然而被腫瘤細胞有較高的攝取;在我們先前的研究中,吉非替尼(gefitinib)包覆在表面具有RF胜肽之PEG化微脂體(Lip)中,藉由調節包吞途徑,可增強吉非替尼(gefitinib)通過血腦屏障,並且進一步提高了吉非替尼(gefitinib)對肺癌細胞的細胞毒性。
此外K胜肽啟動了粒線體相關的凋亡途徑,並抑制了腫瘤生長。K胜肽也顯示具有化學穩定性的優勢,高抑制癌細胞增殖活性和針對癌細胞粒線體特異性破壞的優勢。此外H胜肽可以增強標靶到在腫瘤血管上過度表現之NG2,此NG2在正常血管上不會過度表現。在目前研究中,我們發現用K胜肽和H胜肽對Iri/Lip-RF進行進一步修飾以形成Iri/Lip-RFKH時,此Iri/Lip-RFKH和Iri/Lip-RF相比可降低HCT116細胞的存活率%(如圖6C所示)。
實施例3:pH應答性的微脂體(Lip)和固體脂質奈米粒子(SLN)載體的特性分析
pH敏感型釋放
將裝載有愛萊諾迪肯(Iri)或微小核糖核酸(miRs)的製劑置於透析袋(1,000-3,500 MWCO)中,並分別針對pH 7.4和6.5的PBS進行透析,在指定的時間,從透析袋外取出溶液,以HPLC測定愛萊諾迪肯(Iri)濃度以計算藥物累積釋放量%。
在37℃pH 7.4和pH 6.5下測試對pH敏感的愛萊諾迪肯(Iri)或微小核糖核酸(miRs)釋放,在最初的1小時內,釋放了95%以上的愛萊諾迪肯(Iri)或微小核糖核酸(miRs)(作為對照組),在24小時內釋放量達到100%(如圖5A所示);但是,在pH 7.4及24小時情況下,從omLip-RFKH載體釋放的愛萊諾迪肯(Iri)百分比為46.86±2.34%,在pH 6.5時增加至67.89±1.88%(如圖5A所示),因此,omLip載體在pH 7.4時顯示出愛萊諾迪肯(Iri)持續釋放,而在 模擬酸性的腫瘤pH環境下則顯著增加釋放百分比;另外,用DSPE-PEG5000製備而沒有形成亞胺鍵的奈米粒子(Iri/PEG-Lip-RFKH)載體來比較,愛萊諾迪肯(Iri)在pH 6.5和7.4時從Iri/PEG Lip-RFKH載體的釋放趨勢與在pH 7.4時omLip-RFKH載體的釋放趨勢相似,表明Iri/PEG Lip-RFKH載體沒有pH依賴性的釋放(如圖5A所示),重要的是,微小核糖核酸(miRs)從omSLN-RFKH載體在pH 6.5和7.4的釋放曲線也顯示出與Iri/omLip-RFKH載體相似的pH應答趨勢,表明omLip或omSLN載體配方在pH 6.5時對pH敏感,因此可以屏蔽內部Lip-RFKH或SLN-RFKH載體以釋放愛萊諾迪肯(Iri)或微小核糖核酸(miRs)(如圖5A所示)。
此外,omLip-RFKH載體中的柔紅黴素(DNR,愛萊諾迪肯(Iri)探針)在PBS中於pH 6.5培養後比在pH 7.4處顯示更高的細胞攝取(如圖5B所示),在pH值為6.5時,miR-200/omSLN-RFKH的添加進一步增強了omLip-RFKH載體對柔紅黴素(DNR)的細胞內積累,有趣的是,在沒有omPEG長鏈的阻抗的情況下,當在pH 6.5和pH 7.4時Iri/Lip-RFKH和miR-200/SLN-RFKH的組合治療顯示出高細胞攝取到結腸直腸癌HCT116細胞中的能力(無亞胺鍵;如圖5B所示);然而,沒有pH應答的PEG-Lip-RFKH(無亞胺鍵)於HCT116細胞則有很低的柔紅黴素(DNR)攝取(如圖5B所示);此外,CLSM結果顯示,於pH值6.5培養24小時後,pH應答型omLip-RFKH釋出的柔紅黴素(DNR)主要位HCT116細胞核中, 這證實了omLip-RFKH攜帶的拓撲異構酶抑制劑(topoisomerase inhibitor)的最終目的地是進入細胞核以誘導癌細胞毒性,我們進一步驗證了Lip-RFKH中的柔紅黴素(DNR)在30分鐘時從內體逃脫並靶向粒線體,然後,柔紅黴素(DNR)傳遞3小時後轉運到細胞核中,並將HCT116細胞與柔紅黴素/Lip-RFKH培養後,在細胞核中可維持24小時。
通過累積釋放(如圖5A所示)、細胞攝取(如圖5B所示)和細胞內分布(如圖5C所示)證實了omLip-RFKH和omSLN-RFKH的pH敏感性;但是,從沒有pH應答設計的PEG-Lip-RFKH或PEG-SLN-RFKH則無pH依賴性的釋放或細胞攝取愛萊諾迪肯(Iri)、柔紅黴素(DNR)或微小核糖核酸(miRs)(無亞胺鍵;如圖5A-B所示),因此我們建議omLip-RFKH具有腫瘤選擇性遞送系統的作用,從而減少治療劑進入正常組織(pH 7.4),並增加其在酸性腫瘤部位(pH 6.5)的細胞攝取(如圖5B所示)和細胞內分布(如圖5C所示),因此證實了omLip-RFKH之pH敏感載體的論述。此外,當我們觀察CLSM影像時,從omLip-RFKH在pH 6.5釋放的大多數柔紅黴素(DNR,伊立替康的螢光探針)在24小時後會出現在細胞核中,表明這些肽修飾的奈米粒子傾向於成功避免溶酶體滯留分解藥物並證實與以前的研究一致的核內體脫離作用。
實施例4.攝取修飾之胜肽的微脂體(Lip)和固體脂質奈米粒子(SLN)的內吞作用機制
細胞株
由食品工業發展研究所(台灣新竹市)取得HCT116人結腸直腸癌細胞株和CT26小鼠結腸腺癌細胞株,將該細胞株放置在37℃的5% CO2培養箱中,以添加了10%胎牛血清的Dulbecco's modified Eagle's medium(DMEM)中進行培養。
pH應答的細胞攝取和細胞內定位
柔紅黴素(DNR)用作愛萊諾迪肯(Iri)的螢光探針,使用FACSCalibur流式細胞儀(Becton Dickinson)和Olympus共聚焦激光掃描顯微鏡(以下簡稱:CLSM)分別測量和觀察HCT116細胞株中來自不同微脂體(Lip)的柔紅黴素(DNR)的積累,用pH 7.4和6.5的不同處理液培養24小時後,將細胞株用核染料DAPI(Sigma)染色,使用CLSM進行螢光觀察,為了驗證粒線體靶向(mitochondria-targeting)和脫離核內體(endosomal escape)的特性分析,使用了粒線體綠色螢光(MitoTracker Green,ThermoFisher)和早期核內體抗原1的抗體(EEA1;細胞信號轉導(Cell Signailing Inc.))。
在培養3小時後,氯丙嗪(chlorpromazine,CPZ)和聚離胺酸(poly-L-lysine)可顯著降低在人結腸直腸癌HCT116細胞株中的DiI/Lip-RFKH相對螢光強度%,這表明主要是由網格蛋白媒介的胞吞作用和吸附-媒介的胞吞作用來驅動DiI/Lip-RFKH的細胞攝取。
此外,通過流式細胞儀分析檢測到(如圖5C所示)在24 小時內被SLN-RFKH載體轉染FAM-miR-200的HCT116人結腸直腸癌細胞株胞的效率%顯著高於LipofectamineTM 3000、T-Pro P-Fect、PolyJetTM(用作陽性對照組)和無包覆之FAM-miR-200,但是,Viromer®顯示出與SLN-RFKH載體相近的轉染效率%(如圖5C所示;P>0.05)。此外,通過CLSM觀察HCT116細胞株中FAM-miR200/SLN-RFKH在24小時內的細胞內分佈後,在HCT116細胞的細胞質中觀察到FAM-miR200的清晰攝取(綠色螢光)。除微小核糖核酸(miRs)外,細胞核還用DAPI(藍色)染色,用LysoTracker(紅色)染色溶酶體,結果顯示培養24小時後FAM-miRNA-200不會分佈至溶酶體,從而驗證了逃脫溶酶體的能力(Endo/lysosomal escape),證明微小核糖核酸-200(miR-200)受到SLN-RFKH很好地保護以防止微小核糖核酸-200(miR-200)在內質體/溶酶體中降解。
miR-200/SLN-RFKH的配方改善了微小核糖核酸-200(miR-200)不佳的細胞攝取和增強了逃脫溶酶體的能力(如圖5C所示),令人興奮的是,SLN的轉染效率%大於或等於市售的LipofectamineTM,PolyJet和Viromer®(如圖5C所示),微小核糖核酸-200(miR-200)的負電荷與SLN-RFKH中的正電荷之間的靜電相互作用可以形成穩定的複合物,陽離子奈米粒子的另一個優勢是通過質子海綿效應(proton sponge effect)導致溶酶體膜不穩定,從而有效地逃脫溶酶體並提高了基因轉植效率[29]。通過CLSM觀察到的FAM-miR-200(綠色)未與LysoTracker(紅色)共定位, 表明微小核糖核酸-200(miR-200)從SLN-RFKH獲得良好的溶酶體逃脫作用,因而防止在溶酶體中的微小核糖核酸(miRs)降解受損。
實施例5.裝載有愛萊諾迪肯(Iri)的微脂體(Lip)或裝載有微小核糖核酸(miRs)的固體脂質奈米粒子(SLN)對血球細胞,腸細胞和癌細胞的毒性
細胞活性
使用磺胺多巴酚B(Sulforhodamine B,SRB)測定法確定配方在大鼠小腸上皮IEC-6細胞株和人結腸直腸癌HCT116細胞株中的細胞毒性。與各種配方培養48小時後,將細胞用SRB染色10分鐘,使用微量盤式分析儀TECAN檢測540nm處的吸光度。
奈米粒子通常在臨床上使用注射給藥,因此使用大鼠血球細胞作為血液安全性評估。比較裝載有愛萊諾迪肯(Iri)的微脂體(Lip)或裝載有微小核糖核酸(miRs)的固體脂質奈米粒子(SLN)(以下簡稱:Iri/Lip或miRs/SLN)的溶血反應,發現各種Iri/Lip或miRs/SLN製劑幾乎不引起溶血(3%~7%)(如圖6A所示),顯示這些測試的微脂體(Lip)和固體脂質奈米粒子(SLN)配方具有可接受的安全性,因此這些修飾對紅血球細胞的毒性較低,但是無包覆之愛萊諾迪肯(Iri)顯示出約10%的溶血,表明有輕微毒性(如圖6A所示),此外愛萊諾迪肯(Iri)溶液對非癌性IEC-6細胞株顯示出約30%的細胞毒性,但當愛萊諾迪肯(Iri)加載在微脂體 (Lip)和Lip-RFKH中的細胞毒性降低至約15%~20%,但是裝載有愛萊諾迪肯(Iri)的omLip-RFKH、裝載有微小核糖核酸-200(miR-200)的SLN-RFKH和omSLN-RFKH對IEC-6細胞株的毒性均低於10%(如圖6B所示),顯示其對腸上皮細胞的毒性降低,此外愛萊諾迪肯(Iri)對HCT116細胞株的存活率具有濃度依賴性抑制作用,當愛萊諾迪肯(Iri)濃度在4×10-6M時對HCT116細胞株具有約20%的細胞毒性,因此選擇該濃度以確認經由各種脂質體配方和/或與微小核糖核酸-200(miR-200)組合的改善,與僅用胜肽RF修飾的脂質體相比,用胜肽RF+K和胜肽RF+K+H修飾的脂質體顯示出更大的癌細胞毒殺性(兩者結果均P<0.05)(如圖6C所示),在所有組中,先施用miR-200/SLN-RFKH,然後再施用Iri/Lip-RFKH表現出最大的抑制百分比(如圖6C所示),另外,所有未修飾的和胜肽修飾的微脂體(Lip)和固體脂質奈米粒子(SLN)載體對紅血球細胞均顯示出輕微的溶血作用,並且對IEC-6和HCT116細胞株的細胞毒性較低。
愛萊諾迪肯(Iri)或其代謝產物SN-38已經證明在結腸癌細胞中透過PARP切割誘導凋亡,在本發明中其與miR-200/SLN-RFKH聯合治療可增強Iri/Lip-RFKH對HCT116細胞株的細胞毒性(如圖6C所示)。
實施例6.細胞死亡相關機制
西方墨點法(Western blotting)
使用不同的配方處理48小時後,通過SDS聚丙烯醯胺凝膠電泳(SDS-PAGE)分離蛋白質樣品,並在80V下轉印到聚偏二氟乙烯膜(Bio-Rad)上。封閉(blocking)後,將印跡(blots)與從細胞傳訊(Cell Signaling)或艾博抗(Abcam)購買之一級抗體培養,該一級抗體再和辣根過氧化物酶-共軛的二抗山羊-抗-兔子免疫球蛋白G(horseradish peroxidase-conjugated goat anti-rabbit IgG)(Jackson)結合並使用檢測系統(Millipore)偵測,使用抗-β-肌動蛋白抗體對比探測,並使用增強型化學發光檢測試劑盒(PerkinElmer)進行測量。由Iri/Lip-RFKH誘導的凋亡百分比(早期和晚期凋亡細胞的總和)和死亡百分數(凋亡和壞死細胞的總和)均遠高於其他Iri劑型所誘導的百分比(如圖7A和圖7B所示)。
此外,先使用miR-200/SLN-RFKH和HCT116細胞株一起處理,接著再以Iri/Lip-RFKH可誘導HCT116細胞株凋亡和死亡的最大%(如圖7A和圖7B所示)。然而,空的奈米載體如Lip-RFKH和SLN-RFKH顯示出可忽略的凋亡、壞死和死亡%(如圖7A和圖7B所示)。此外,miR-200/SLN-RFKH+Iri/Lip-RFKH顯著增強了Bax/Bcl-2 mRNA的比例(如圖7C所示),並顯著上調了Bax、裂解的PARP和caspase-3,-8,和-9的蛋白質表現值(如圖7D所示),以及將caspase-9和caspase-3活性值提高到最大程度(如圖7E所示)。相反的Mcl-1和Bcl-2蛋白被顯著下調(如圖7D所示)。
發明的結果支持了愛萊諾迪肯(Iri)誘導的腫瘤細胞死亡 主要是透過凋亡誘導而發生的(如圖7所示),此外,在愛萊諾迪肯(Iri)中經歷凋亡和細胞死亡的細胞百分比的增加最顯著的是在Lip-RFKH+miR-200/SLN-RFKH組別(如圖7A和圖7B所示),先前的研究表明,Bax和caspase-9參與引發由愛萊諾迪肯(Iri)引起的細胞凋亡,我們的結果一致性地顯示,Iri/Lip-RFKH+miR-200/SLN-RFKH組別中的Bax、裂解的PARP和caspase-3和-9之mRNA、蛋白表現和/或活性值可達到最高(如圖7C-圖7E所示)。
實施例7.體內IVIS和PET/CT影像以及抗腫瘤功效和生物安全性評估
小鼠體內腫瘤模型的建立
購自國家實驗動物中心(台灣台北)的6週齡雄性BALB/c小鼠體重為20±2g,並飼養於單獨的通風籠系統中,確保給予小鼠無菌食物和水。將CT-26細胞(每0.1ml PBS中含有105的細胞)皮下注射到小鼠的右脇腹以建立腫瘤BALB/c小鼠,對動物進行的所有處理均符合美國國立衛生研究院實驗動物的護理和使用指南,並獲得了國立陽明大學動物委員會的批准。
IVIS影像
將CT-26細胞(每0.1ml PBS中含有105個細胞)皮下注射到小鼠的右脇腹中以建立腫瘤BALB/c小鼠,當腫瘤體積達到約100mm3(如公式4所計算)時,將小鼠隨機分為6組(每組n=5),分組如下: 第1組:處理生理食鹽水溶液(CTR)
第2組:處理愛萊諾迪肯(Iri)溶液
第3組:處理包載有愛萊諾迪肯的微脂體(Iri/Lip)
第4組:處理包載有愛萊諾迪肯之被RFKH胜肽修飾的微脂體(Lip-RFKH/Iri)
第5組:裝處理裝載有微小核糖核酸-200之被RFKH胜肽修飾的固體脂質奈米粒子(miR-200/SLN-RFKH)加上裝載有愛萊諾迪肯之被RFKH胜肽修飾的微脂體(Lip-RFKH/Iri)(首先是miR-200/SLN-RFKH,然後是Iri/Lip-RFKH)、第6組:裝載有微小核糖核酸-200之被pH敏感的om和RFKH胜肽修飾的固體脂質奈米粒子加上裝載有愛萊諾迪肯之被pH敏感的om和RFKH胜肽修飾的微脂體(miR-200/omSLN-RFKH+Iri/omLip-RFKH)、進行治療:每7天給小鼠靜脈注射(IV)不同配方組別的100mg/kg的愛萊諾迪肯(Iri)和1.25mg/kg的微小核糖核酸-200,每7天注射一次持續28天,最終處理後一天使用IVIS SPECTRUM(Caliper)來以定量螢光影像。
公式4:腫瘤體積=(長度x寬度2)/2其中長度(L,mm)是最長的直徑,寬度(W,mm)是垂直於長度軸的最短直徑。
正子電腦斷層造影/電腦斷層掃描(PET/CT)
使用正子電腦斷層造影/電腦斷層掃描監測腫瘤影像,於 實驗終點(第28天),給小鼠靜脈注射0.282 mCi[18F]-氟脫氧葡萄糖(18F-FDG),注射18F-FDG後30分鐘,使用LabPET/X-SPECT/X-O CT成像系統(美國TriFoil Imaging,Inc.)來獲取影像,此外每次PET掃描後進行3分鐘(FOV=80毫米)的CT攝影,以取得每隻動物的解剖學影像資料並進一步建構影像,使用AMIDE軟件(SourceForge,Iowa,USA)觀察和計算PET和CT影像。
體內抗腫瘤療效和體重的評估,每3或4天持續28天檢測一次動物體重和腫瘤大小,使用數位卡尺測量腫瘤大小,併計算腫瘤體積(V)(如公式4所示)。
如IVIS影像所示,未經治療(第1組:CTR)的帶有結直腸腫瘤CT26細胞的小鼠在腫瘤區域顯示高螢光(如圖8A所示),此外通過IVIS軟件對影像進行標準化,並且相對生物發光強度顯示在如圖8A所示的對照板中,此外我們使用18F-FDG作為通過正電子發射電腦斷層掃描/電腦斷層攝影(PET/CT)(如圖8B所示)和3D正電子發射電腦斷層掃描(3D PET)成像檢測腫瘤的變化,使用不同的Iri/Lip-RFKH和/或miR-200/SLN-RFKH的配方組別治療的CT26腫瘤小鼠在腫瘤周圍出現不同程度的螢光和18F-FDG信號變化(如圖8A和B所示),其中omLip-RFKH/Iri+omSLN-RFKH/miR-200顯示出最顯著的腫瘤螢光減少和18F-FDG變化(如圖8A和B所示)。此外在第28天用pH敏感的omLip-RFKH/Iri+omSLN-RFKH/miR-200處理的腫瘤大小為原始腫瘤體積的49.12%±5.83 %,優於所有其他治療方法(如圖8C所示)。
為了安全性評估,用愛萊諾迪肯(Iri)治療組的攜帶CT26小鼠表現出體重的持續降低(如圖8D所示),而所有其他組顯示出體重不斷增加,個體差異較小(如圖8D所示)。
生化試驗以及蘇木素-伊紅染色(H&E Stain)
如上所述治療腫瘤小鼠,於最終治療後48小時,從小鼠眼窩採血(170μl),將收集的血液並離心15分鐘後,利用使用相應的活性分析套組(Fujifilm,Tokyo,Japan)和臨床化學分析儀(Fujifilm Corp.的Fuji Dri-Chem 7000V)來檢測血清中的丙胺酸轉胺酶(GPT)、肌酸酐(CRE)和肌酸磷化酶-MB(CK-MB)的數值來評估肝、腎和心臟功能。另外將腫瘤、肝、腎和腸在4%多聚甲醛中固定過夜後,經石蠟包埋,作緃向切片(5μm),以H & E染色在光學顯微鏡進行組織學檢查。
末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記(簡稱為TUNEL檢測)
在不同配方組別的最後處理48小時後,進行了TUNEL測定以評估活體CT26腫瘤小鼠的凋亡癌細胞,簡而言之,將樣品冷凍和固定在4%多聚甲醛中20分鐘,再用PBS洗滌10分鐘後,將樣品浸入冰中2分鐘,根據製造商的手冊(原位細胞死亡檢測試劑盒,Roche,Germany)與反應液(50μL)混合後,將切片樣品用Hoechst染細胞何以進行比較,並使用CLSM進行監測。
統計分析
結果以平均值±標準偏差(mean±SD)表示,使用Student’s t-test分析統計顯著性,以比較兩個治療組之間的差異,並使用one-way ANOVA和Dunnett's multiple comparison tests進行統計分析,若P值小於0.05則視為有顯著差異的統計學意義。
此外,檢查血清中GPT、CRE和CKMB值來分別評估肝、腎和心臟功能(如圖9A-C所示),結果顯示,使用愛萊諾迪肯(Iri)溶液或包載有愛萊諾迪肯的微脂體(Iri/Lip)治療後,血清中GPT,CRE和CKMB值升高(如圖9A-C所示),表明使用愛萊諾迪肯(Iri)溶液或裝載有愛萊諾迪肯的微脂體(Iri/Lip)治療對肝臟、腎臟和心臟造成了實質性損害。相對於Iri及Iri/Lip之高GPT,CRE和CKMB值,Lip-RFKH/Iri+SLN-RFKH及omLip-RFKH/Iri+omSLN-RFKH/miR-200則會降低GPT,CRE和CKMB值並有接近控制組值之趨勢。
當前研究中亦解決陽離子基因遞送系統或化學治療劑產生毒性之問題,例如愛萊諾迪肯(Iri)相關的毒性(如圖6A-6B、圖8D、圖9A-9D和圖S3所示),儘管我們的miR-200/SLN-RFKH表現出正電荷,Iri/Lip-RFKH表現出負電荷(如表1所示),但這些配方對腸道和紅血球細胞均顯示出低毒性(如圖6A-6B,S3AB所示),製備的微脂體(Lip)和固體脂質奈米粒子(SLN)配方的所有溶血百分值均低於10%(如圖6A和圖3A所示),上述數值遵循指南的指示,該指示規範為製劑配方必須小於10%的溶血值才能被 視為非溶血性,而溶血百分比值需大於25%的配方可能有溶血的危險。
此外,與愛萊諾迪肯(Iri)相比,Iri/omLip對IEC-6細胞株的毒性更低,這表明omLip可能會降低愛萊諾迪肯(Iri)的胃腸道副作用,其體內試驗結果還表明omLip-RFKH和omSLN-RFKH具有良好的耐受性和生物相容性(如圖9D所示),藉由對pH敏感的omPEG-脂質層進行屏蔽以釋放較少的愛萊諾迪肯(Iri)至正常細胞來降低毒性,其空泡、間質性出血、組織變性和GPT,CRE和CKMB的血清值顯著下降,表明在pH應答的PEG層(pH-responsive PEG coating)後,減輕組織損傷和炎症(如圖9A-9D所示),因此,單獨使用Iri/omLip-RFKH或與miR-200/omSLN-RFKH合併使用可能減少不良事件(如胃腸道毒性),因此可能會增加其臨床意義,然而這些腫瘤細胞在各種治療後均表現出死亡的形態特徵,包括腫瘤細胞壞死和凋亡,特別是在Iri/omLip-RFKH+miR-200/omSLN-RFKH組中(如圖9D所示),該聯合治療組腫瘤細胞凋亡特別明顯。
此外,透過IVIS和PET/CT影像觀察,有RFKH胜肽修飾的om固體脂質奈米粒子(miR-200/omSLN-RFKH)裝載微小核糖核酸-200和RFKH胜肽修飾的om微脂體(Iri/omLip-RFKH治療)裝載有愛萊諾迪肯之組別中,觀察到了明顯的腫瘤影像強度減少(如圖8A-8B所示),此外,通過腫瘤大小測量(如圖8C所示)和腫瘤 HE染色(如圖9D,第一幅所示)和TUNEL測定驗證了抗癌療效以及腫瘤細胞凋亡和壞死的證據,在結腸直腸癌模式中,藉由可解離的PEG層及胜肽RFHK修飾的Lip和SLN以裝載愛萊諾迪肯(Iri)和微小核糖核酸-200(miR-200)之組合,可調節細胞凋亡訊息傳遞的總體策略(如圖3所示)。
共同使用Iri/omLip-RFKH+miR-200/omSLN-RFKH聯合治療後,結腸直腸癌(CRC)細胞株生長顯著降低,並且於小鼠結腸癌動物模式中具有顯著抗癌功效,其中細胞凋亡是結腸癌細胞死亡的主要機制。總體而言,藉由聯合治療的成功遞送,其調節β-catenin/MDR/凋亡/EMT信號途徑,並抑制了Rac-1、KRAS、p-GSK-3 β、、β-catenin、cyclin D1、c-Myc、P-gp、MRP、ZEB1、Slug和波形蛋白(Vimentin)的表現量,從而有效抑制了結腸直腸癌中的腫瘤生長。
實施例8.不同配方於小鼠結腸癌之動物模式(CT26/tk-luc)的生物分佈
藉由紫外光分光光度計分析不同配方的愛萊諾迪肯(Iri)於小鼠結腸癌之動物模式(CT26/tk-luc)的生物分佈(顯著性差異*代表P<0.05;**代表P<0.01;***代表P<0.001),(如圖10所示),結果顯示,沒有微脂體(Lip)包覆的愛萊諾迪肯(Iri)時主要分佈在肝、腎和腸中,然而有愛萊諾迪肯(Iri)的配方組在Iri/Lip-RFKH+miR-200/SLN-RFKH、Iri/omLip-RFKH+miR-200/omSLN- RFKH和Onivyde中主要積累在腫瘤組織中,特別是對pH敏感型的om治療組。此外,本發明進一步證明這種腫瘤微環境可優化愛萊諾迪肯(Iri)和微小核糖核酸-200(miR-200)的組合用於治療腫瘤蓄積性,主要歸因於其pH應答型和標靶腫瘤的設計。
實施例9.不同配方組的愛萊諾迪肯(Iri)處理帶有人類口腔癌細胞之裸鼠中的生物分佈研究
使用紫外分光光度計分析處理不同配方的愛萊諾迪肯(Iri)在帶有人類口腔癌細胞(SAS)的裸鼠中的生物分佈(顯著性差異:*代表P<0.05;**代表P<0.01;***代表P<0.001),檢測不同配方的愛萊諾迪肯(Iri)在帶有SAS的小鼠中的生物分佈(如圖11所示),結果表明愛萊諾迪肯(Iri)溶液主要分佈在肝、腎和腸中,然而結合在Iri/Lip-RFKH+miR-200/SLN-RFKH、Iri/omLip-RFKH+miR-200/omSLN-RFKH中的愛萊諾迪肯(Iri)主要分佈在腫瘤組織中,特別是對pH敏感型的Iri/omLip-RFKH+miR-200/omSLN-RFKH治療組(如圖11所示),本發明進一步表明,這種可優化於腫瘤可解離的PEG衍生生物材料的蓄積性,可製備出專門用於將Iri和微小核糖核酸-200(miR-200)遞送至頭頸癌(HNC)腫瘤的奈米粒子。

Claims (16)

  1. 一種酸鹼敏感型脂質奈米粒子,包括一奈米粒核的一表面,其中該表面包含:一亞胺-om聚乙二醇,該亞胺是pH敏感型連接物;一聚乙二醇-RF胜肽,其中該RF胜肽是一細胞穿透胜肽(cell-penetrating peptide),該RF胜肽係為SEQ.NO 1.(SEQ.NO 1 GLKKLARLFHKLLKLGC);一聚乙二醇-K胜肽,其中該K胜肽是粒線體標靶胜肽,該K胜肽係為SEQ.NO 2.(SEQ.NO 2 CKLAKLAK);一-聚乙二醇-H胜肽,其中該H胜肽是癌症特異性結合胜肽,該H胜肽係為神經膠質抗原2(NG2)蛋白聚醣結合胜肽,且該H胜肽係為SEQ.NO 3.(SEQ.NO 3 CTAASGVRSMH)。;以及一標靶製劑包覆於該奈米粒核內;其中該奈米粒核係由一脂質、一陽離子性脂質、一界面活性劑或一磷脂質所組成。
  2. 如申請專利範圍第1項所述之酸鹼敏感型脂質奈米粒子,其中該脂質係選自L-α-磷脂醯膽鹼(PC)、單硬脂酸甘油酯(monostearin)、單棕櫚酸甘油酯及單油酸甘油酯所組成之群組。
  3. 如申請專利範圍第1項所述之酸鹼敏感型脂質奈米粒子,其中所述陽離子脂質包含1,2-二油醯基-3-三甲基銨丙烷(DOTAP)、1,2-二-O-十八碳烯基-3-三甲基銨丙烷(DOTMA)、陽離子吡啶鎓脂質(SAINT)、七足綱-6,9,28,31-四烯基-19-基4-(二甲基胺基)丁酸酯(MC3)或2,2-二亞油基-4-(2-二甲基胺 基乙基)-[1,3]-二氧戊環(KC2)。
  4. 如申請專利範圍第1項所述之酸鹼敏感型脂質奈米粒子,其中該磷脂質包含1,2-二硬脂醯基-sn-甘油-3-磷酸乙醇胺(DSPE)、1,2-二棕櫚醯基-sn-甘油-3-磷酸乙醇胺(DPPE)或1,2-二油醯基-sn-甘油-3-磷酸乙醇胺(DOPE)。
  5. 如申請專利範圍第1項所述之酸鹼敏感型脂質奈米粒子,其中該奈米粒核包含一表面活性劑,其中該表面活性劑包含泊洛沙姆(Pluronics;Poloxamers)、聚山梨醇酯(Tweens)、山梨糖醇酯(Spans)、非離子聚氧乙烯表面活性劑(Brij)、聚乙二醇單硬脂酸酯(Myrj)、環糊精衍生物(cyclodextrin derivative)或殼聚醣衍生物(chitosan derivative)。
  6. 如申請專利範圍第1項所述之酸鹼敏感型脂質奈米粒子,其中該標靶製劑包含一微小核糖核酸(miRs)或一藥物所組成。
  7. 如申請專利範圍第6項所述之酸鹼敏感型脂質奈米粒子,其中該微小核糖核酸(miRs)為一hsa-miR抑制劑或相似物,該hsa-miR抑制劑或相似物係選自由hsa-miR-21、has-miR-122-5p、hsa-miR-125b-5p、has-miR-136-5p、has-miR-139-5p、has-miR-200c-3p及has-miR-320a相似物所組成之群組。
  8. 如申請專利範圍第6項所述之酸鹼敏感型脂質奈米粒子,其中該藥物係選自由愛萊諾迪肯(Irinotecan)、奧沙利鉑(oxaliplatin)、表柔比星(epirubicin)、阿黴素(doxorubicin)、阿法替尼(afatinib)和多西他賽(docetaxel)所組成之群組。
  9. 如申請專利範圍第1項所述之酸鹼敏感型脂質奈米粒子,其中所述脂質奈米粒子更可以聚集在癌細胞處處於pH 5~7的環境或腫瘤微環境中。
  10. 如申請專利範圍第9項所述之酸鹼敏感型脂質奈米粒子,其中所述癌細胞包括結腸直腸癌、頭頸或胰腺癌。
  11. 一種醫藥組合物,包含:如申請專利範圍第1項所述的有效量的酸鹼敏感型脂質奈米粒子,包括:一裝載有微小核糖核酸(miRs)的pH應答型奈米粒子,其中該脂質包括一甘油單酸酯、一磷脂和一表面活性劑的混合物和一標靶製劑係為一微小核糖核酸(miRs);以及一裝載藥物的pH應答型奈米粒子,其中所述該脂質係為一脂質雙層,且所述標靶製劑係為一抗癌藥物。
  12. 如申請專利範圍第11項所述之醫藥組合物,其中所述該微小核糖核酸(miRs)為一hsa-miR抑制劑或相似物,該hsa-miR抑制劑或相似物係選自由hsa-miRs-21、has-miR-122-5p、hsa-miR-125b-5p、has-miR-136-5p、has-miR-139-5p、has-miR-200c-3p和has-miR-320a相似物所組成之群組。
  13. 如申請專利範圍第11項所述之醫藥組合物,其中所述該抗癌藥係選自由愛萊諾迪肯(Irinotecan)、奧沙利鉑(oxaliplatin)、表柔比星(epirubicin)、阿黴素(doxorubicin)、阿法替尼(afatinib)和多西他賽(docetaxel)所組成之群組。
  14. 一種如申請專利範圍第1項所述的酸鹼敏感型脂質奈米粒子用於製備治療癌症之藥物的用途,包括:一裝載微小核糖核酸(miRs)的pH應答型奈米粒子,其中所述該脂質包括一甘油單酸酯、一磷脂和一表面活性劑的混合物和一標靶製劑係為一微小核糖核酸(miRs);以及一裝載藥物的pH應答型奈米粒子,其中所述該脂質係為脂質雙層,且該標靶製劑係為一抗癌藥。
  15. 如申請專利範圍第14項所述之用途,其中所述該癌症包括結腸直腸癌、頭頸癌或胰腺癌。
  16. 如申請專利範圍第14項所述之用途,其中所述該抗癌藥係選自愛萊諾迪肯(Irinotecan)、奧沙利鉑(oxaliplatin)、表柔比星(epirubicin)、阿黴素(doxorubicin)、阿法替尼(afatinib)和多西他賽(docetaxel)所組成之群組。
TW108137115A 2018-10-15 2019-10-15 酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途 TWI724578B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862745600P 2018-10-15 2018-10-15
US62/745,600 2018-10-15

Publications (2)

Publication Number Publication Date
TW202027796A TW202027796A (zh) 2020-08-01
TWI724578B true TWI724578B (zh) 2021-04-11

Family

ID=70162092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137115A TWI724578B (zh) 2018-10-15 2019-10-15 酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途

Country Status (2)

Country Link
US (1) US11141491B2 (zh)
TW (1) TWI724578B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111804238B (zh) * 2020-06-28 2021-08-10 中国人民解放军军事科学院国防科技创新研究院 一种高分子表面活性剂及其调控油水界面张力的方法
CN113185421B (zh) * 2020-11-27 2022-01-25 广州市锐博生物科技有限公司 脂质化合物及其组合物
WO2024125823A1 (en) * 2022-12-15 2024-06-20 Roquette Freres Lipid nanoparticles for nucleic acid delivery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201249458A (en) * 2011-04-25 2012-12-16 Taiho Pharmaceutical Co Ltd NANOPARTICLES CONTAINING pH-RESPONSIVE PEPTIDE
WO2017176894A1 (en) * 2016-04-06 2017-10-12 Ohio State Innovation Foundation Rna ligand-displaying exosomes for specific delivery of therapeutics to cell by rna nanotechnology

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528481B1 (en) * 1999-02-16 2003-03-04 The Burnam Institute NG2/HM proteoglycan-binding peptides that home to angiogenic vasculature and related methods
WO2009120247A2 (en) * 2007-12-27 2009-10-01 The Ohio State University Research Foundation Lipid nanoparticle compositions and methods of making and using the same
EP2362728A1 (en) * 2008-11-17 2011-09-07 Enzon Pharmaceuticals, Inc. Releasable polymeric lipids for nucleic acids delivery system
US8648017B2 (en) * 2009-11-04 2014-02-11 Diamir, Llc Methods of using small RNA from bodily fluids for diagnosis and monitoring of neurodegenerative diseases
JP2012050390A (ja) * 2010-09-02 2012-03-15 Hipep Laboratories ペプチドの細胞内への取り込み量の評価方法及びそれを用いた細胞の鑑別方法
WO2014059022A1 (en) * 2012-10-09 2014-04-17 The Brigham And Women's Hospital, Inc. Nanoparticles for targeted delivery of multiple therapeutic agents and methods of use
US20160244452A1 (en) * 2013-10-21 2016-08-25 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9782343B2 (en) * 2014-07-21 2017-10-10 Mehrdad Hamidi Method and system for synthesizing nanocarrier based long acting drug delivery system for morphine
GB201710097D0 (en) * 2017-06-23 2017-08-09 Univ Ulster A sensitizer - peptide conjugate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201249458A (en) * 2011-04-25 2012-12-16 Taiho Pharmaceutical Co Ltd NANOPARTICLES CONTAINING pH-RESPONSIVE PEPTIDE
WO2017176894A1 (en) * 2016-04-06 2017-10-12 Ohio State Innovation Foundation Rna ligand-displaying exosomes for specific delivery of therapeutics to cell by rna nanotechnology

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Kang et al., "Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment", Acta Pharmaceutica Sinica B, 2015, 5(3), pp 169-175.
Wu et al., "Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications", Theranostics, 30 Apr. 2018, 8(11), pp 3038-3058.
Wu et al., "Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications", Theranostics, 30 Apr. 2018, 8(11), pp 3038-3058. Kang et al., "Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment", Acta Pharmaceutica Sinica B, 2015, 5(3), pp 169-175. *

Also Published As

Publication number Publication date
US11141491B2 (en) 2021-10-12
US20200114019A1 (en) 2020-04-16
TW202027796A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
Juang et al. pH‐responsive PEG‐shedding and Targeting peptide‐modified nanoparticles for dual‐delivery of Irinotecan and microRNA to enhance tumor‐specific therapy
US11918686B2 (en) Lipid bilayer coated mesoporous silica nanoparticles with a high loading capacity for one or more anticancer agents
Wei et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression
Tang et al. Tumor‐microenvironment‐adaptive nanoparticles codeliver paclitaxel and siRNA to inhibit growth and lung metastasis of breast cancer
Zhang et al. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy
Pakunlu et al. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug
Zhao et al. A simple way to enhance Doxil® therapy: drug release from liposomes at the tumor site by amphiphilic block copolymer
Batrakova et al. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers
Yu et al. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma
Malhi et al. Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes
Zhang et al. Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma
TWI724578B (zh) 酸鹼敏感型脂質奈米粒子用於包覆抗癌藥物和微小核糖核酸及其用途
He et al. Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance
Li et al. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy
Jain et al. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: in vitro and in vivo evaluation
Lee et al. KSP siRNA/paclitaxel-loaded PEGylated cationic liposomes for overcoming resistance to KSP inhibitors: Synergistic antitumor effects in drug-resistant ovarian cancer
Joshi et al. Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression
Long et al. Azo-inserted responsive hybrid liposomes for hypoxia-specific drug delivery
In't Veld et al. Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells
Xu et al. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core–shell nanoparticles targeting the heterogeneous tumor cells of glioma
US20200368161A1 (en) Tumor pH-shiftable coating and the nucleus-directed nanoparticles facilitate the targeted chemotherapy and gene therapy against multiple cancers and use thereof
Liu et al. Transferrin-conjugated liposomes loaded with carnosic acid inhibit liver cancer growth by inducing mitochondria-mediated apoptosis
Wang et al. Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p
Popilski et al. Doxorubicin liposomes cell penetration enhancement and its potential drawbacks for the tumor targeting efficiency
Wongkhieo et al. Liposomal thiostrepton formulation and its effect on breast cancer growth inhibition