TWI724341B - Rotation detection device and encoder and motor using same - Google Patents

Rotation detection device and encoder and motor using same Download PDF

Info

Publication number
TWI724341B
TWI724341B TW107138768A TW107138768A TWI724341B TW I724341 B TWI724341 B TW I724341B TW 107138768 A TW107138768 A TW 107138768A TW 107138768 A TW107138768 A TW 107138768A TW I724341 B TWI724341 B TW I724341B
Authority
TW
Taiwan
Prior art keywords
magnet
magnetic sensing
sensing component
rotation
magnetic
Prior art date
Application number
TW107138768A
Other languages
Chinese (zh)
Other versions
TW202018258A (en
Inventor
王宏洲
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW107138768A priority Critical patent/TWI724341B/en
Publication of TW202018258A publication Critical patent/TW202018258A/en
Application granted granted Critical
Publication of TWI724341B publication Critical patent/TWI724341B/en

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A rotation detection device includes a magnet, a first magnetic sensing assembly and a second magnetic sensing assembly. The magnet is rotated with a rotation central axis as the axis, and the magnet has a magnetic characteristic with one cycle per revolution of the magnet. The first magnetic sensing assembly is disposed above the rotation central axis, and the first length direction of the first magnetic sensing is parallel to the rotation radius direction of the magnet. The second magnetic sensing assembly is disposed adjacent to the first magnetic sensing assembly, and the second length direction of the second magnetic sensing assembly is parallel to the rotation tangent direction of the magnet. The angle between the second length direction and the first length direction is (90°+θ), and -30°≦θ≦30°. The change in the magnetic characteristic is sensed by the first magnetic sensing assembly and the second magnetic sensing assembly, and the first voltage pulse signal and the second voltage pulse signal are generated, such that the rotation information of the magnet is obtained through simple components and configurations.

Description

旋轉檢測裝置及其適用之編碼器與馬達Rotation detection device and its applicable encoder and motor

本發明係關於一種旋轉檢測裝置,尤指一種透過第一磁感測組件及第二磁感測組件於磁石旋轉時感測磁氣特性的變化並產生電壓脈波訊號,以獲得磁石的旋轉資訊之旋轉檢測裝置及其適用之編碼器與馬達。The present invention relates to a rotation detection device, in particular to a first magnetic sensing component and a second magnetic sensing component to sense changes in magnetic characteristics when a magnet rotates and generate a voltage pulse signal to obtain rotation information of the magnet The rotation detection device and its applicable encoder and motor.

一般而言,於諸如旋轉編碼器或馬達等可旋轉裝置中,往往設有旋轉檢測器,以透過光電原理或者電磁原理將機械位移量轉換為電子訊號,藉此檢測可旋轉裝置之旋轉圈數或旋轉狀態。Generally speaking, in rotatable devices such as rotary encoders or motors, rotation detectors are often provided to convert mechanical displacement into electronic signals through photoelectric or electromagnetic principles, thereby detecting the number of rotations of the rotatable device Or rotating state.

習知技術中,旋轉檢測器之架構係包括磁石及多個磁場感測部件,多個磁場感測部件係以與磁石旋轉軌跡圓呈切線方式配置,或者在磁石之旋轉圓周上以錯開相位角之方式配置,以藉由檢測磁場變化,進而獲取旋轉狀態資訊。In the prior art, the structure of the rotation detector includes a magnet and a plurality of magnetic field sensing components. The plurality of magnetic field sensing components are arranged in a tangent manner to the rotation track circle of the magnet, or the phase angle is staggered on the rotation circle of the magnet. The method is configured to detect the change of the magnetic field to obtain the rotation state information.

然而,習知的旋轉檢測器中,元件數量多且結構上較為複雜,且該些磁場感測部件的配置方式對於平面空間之需求較大,使得旋轉檢測器之體積亦隨之增加,佔據了較大的空間而難以進行小型化。However, in the conventional rotation detector, the number of components is large and the structure is more complicated, and the arrangement of the magnetic field sensing components requires a large amount of planar space, so that the volume of the rotation detector also increases, occupying It is difficult to miniaturize due to the large space.

故此,如何發展一種有別於以往的旋轉檢測裝置及其適用之編碼器與馬達,以改善習知技術中的問題與缺點,可透過簡易的元件及配置獲得精確的磁石旋轉資訊,且可達到縮減佔據空間及體積之功效,實為目前技術領域中的重點課題。Therefore, how to develop a rotation detection device and its applicable encoder and motor to improve the problems and shortcomings in the prior art, which can obtain accurate magnet rotation information through simple components and configuration, and achieve The effect of reducing the occupied space and volume is actually a key issue in the current technical field.

本案之主要目的為提供一種旋轉檢測裝置及其適用之編碼器與馬達,俾解決並改善前述先前技術之問題與缺點。The main purpose of this case is to provide a rotation detection device and its applicable encoder and motor, so as to solve and improve the aforementioned problems and shortcomings of the prior art.

本案之另一目的為提供一種旋轉檢測裝置及其適用之編碼器與馬達,藉由設置第一磁感測組件及第二磁感測組件,且第一磁感測組件之第一長度方向與第二磁感測組件之第二長度方向之夾角的角度為60°至120°,以透過簡易的元件及配置獲得磁石之旋轉資訊,並達到縮減佔據空間及體積小型化之功效。Another object of this case is to provide a rotation detection device and its applicable encoder and motor, by providing a first magnetic sensing component and a second magnetic sensing component, and the first length direction of the first magnetic sensing component is The angle of the second lengthwise included angle of the second magnetic sensing component is 60° to 120°, so that the rotation information of the magnet can be obtained through simple components and configuration, and the effect of reducing the occupied space and miniaturization is achieved.

本案之另一目的為提供一種旋轉檢測裝置及其適用之編碼器與馬達,透過第一磁感測組件於磁石之旋轉角度為(90°+θ)及(270°+θ)時產生第一電壓脈波訊號,且第二磁感測元件於磁石之旋轉角度為0°及180°時產生第二電壓脈波訊號,並由訊號處理單元進行解析及整合,以獲得精確的磁石之旋轉資訊。Another purpose of this case is to provide a rotation detection device and its applicable encoder and motor. Through the first magnetic sensing component, when the rotation angle of the magnet is (90°+θ) and (270°+θ), the first Voltage pulse signal, and the second magnetic sensing element generates a second voltage pulse signal when the rotation angle of the magnet is 0° and 180°, which is analyzed and integrated by the signal processing unit to obtain accurate rotation information of the magnet .

本案之另一目的為提供一種旋轉檢測裝置及其適用之編碼器與馬達,藉由與電力調整電路及儲存單元進行整合,將電壓脈波訊號提供電力調整電路及訊號處理單元使用,且可將旋轉資訊暫存於儲存單元,以達成免外加電力之旋轉檢測。Another purpose of this case is to provide a rotation detection device and its applicable encoder and motor. By integrating with the power adjustment circuit and storage unit, the voltage pulse signal can be used by the power adjustment circuit and the signal processing unit. The rotation information is temporarily stored in the storage unit to achieve rotation detection without additional power.

本案之另一目的為提供一種旋轉檢測裝置及其適用之編碼器與馬達,藉由將單圈絕對位置感測組件獲得之單圈絕對位置資訊以及第一磁感測組件與第二磁感測組件獲得之磁石旋轉資訊進行整合,以獲得精細之多圈絕對位置資訊。Another purpose of this case is to provide a rotation detection device and its applicable encoder and motor, which are obtained by combining the single-turn absolute position sensing component with the single-turn absolute position information and the first magnetic sensing component and the second magnetic sensing component. The magnet rotation information obtained by the component is integrated to obtain precise multi-turn absolute position information.

為達上述目的,本案之一較佳實施態樣為提供一種旋轉檢測裝置,包括:一磁石,係以一旋轉中心軸為軸心旋轉,且該磁石具有一磁氣特性,其中該磁氣特性係以該磁石每旋轉一圈為一個週期;一第一磁感測組件,係設置於該旋轉中心軸之上方,其中該第一磁感測組件之一第一長度方向係與該磁石之一旋轉半徑方向平行;以及一第二磁感測組件,係鄰設於該第一磁感測組件,其中該第二磁感測組件之一第二長度方向係與該磁石之一旋轉切線方向平行,且該第二長度方向與該第一長度方向之夾角的角度為(90°+θ),其中-30°≦θ≦30°;其中,該第一磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第一電壓脈波訊號,且該第二磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第二電壓脈波訊號,俾獲得該磁石之一旋轉資訊。In order to achieve the above objective, a preferred implementation aspect of the present case is to provide a rotation detection device, which includes: a magnet that rotates about a central axis of rotation as an axis, and the magnet has a magnetic characteristic, wherein the magnetic characteristic One cycle of the magnet is one rotation; a first magnetic sensing component is arranged above the rotation center axis, wherein a first length direction of the first magnetic sensing component is connected to one of the magnet The direction of the radius of rotation is parallel; and a second magnetic sensing component is adjacent to the first magnetic sensing component, wherein a second length direction of the second magnetic sensing component is parallel to a rotation tangential direction of the magnet , And the angle between the second length direction and the first length direction is (90°+θ), where -30°≦θ≦30°; wherein, the first magnetic sensing component is used when the magnet rotates Sensing the change of the magnetic characteristic and generating a first voltage pulse signal, and the second magnetic sensing component senses the change of the magnetic characteristic when the magnet rotates and generates a second voltage pulse signal, To obtain the rotation information of one of the magnets.

為達上述目的,本案之另一較佳實施態樣為提供一種編碼器,包括:一承載盤;一磁石,係設置於該承載盤,且該磁石具有一磁氣特性,其中該磁氣特性係以該磁石每旋轉一圈為一個週期;以及一碼盤,係設置於該承載盤,且係環設於該磁石,其中該承載盤、該碼盤及該磁石係以一旋轉中心軸為軸心共軸設置及旋轉;一單圈絕對位置感測組件,係對應該碼盤及該磁石設置,以於該碼盤及該磁石旋轉時進行感測並產生一單圈絕對位置訊號;一第一磁感測組件,係設置於該旋轉中心軸之上方,其中該第一磁感測組件之一第一長度方向係與該磁石之一旋轉半徑方向平行;以及一第二磁感測組件,係鄰設於該第一磁感測組件,其中該第二磁感測組件之一第二長度方向係與該磁石之一旋轉切線方向平行,且該第二長度方向與該第一長度方向之夾角的角度為(90°+θ),其中-30°≦θ≦30°;其中,該第一磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第一電壓脈波訊號,且該第二磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第二電壓脈波訊號,俾獲得該磁石之一旋轉資訊。In order to achieve the above objective, another preferred embodiment of the present application is to provide an encoder, which includes: a carrier plate; a magnet arranged on the carrier plate, and the magnet has a magnetic characteristic, wherein the magnetic characteristic Each rotation of the magnet is regarded as a cycle; and a code disc is arranged on the carrying disc and is arranged on the magnet, wherein the carrying disc, the code disc and the magnet are based on a central axis of rotation The axis is set and rotated coaxially; a single-turn absolute position sensing component is set corresponding to the code wheel and the magnet to sense and generate a single-turn absolute position signal when the code wheel and the magnet rotate; The first magnetic sensing component is arranged above the rotation center axis, wherein a first length direction of the first magnetic sensing component is parallel to a rotation radius direction of the magnet; and a second magnetic sensing component , Is adjacent to the first magnetic sensing component, wherein a second length direction of the second magnetic sensing component is parallel to a rotation tangential direction of the magnet, and the second length direction is parallel to the first length direction The angle of the included angle is (90°+θ), where -30°≦θ≦30°; wherein, the first magnetic sensing component senses the change of the magnetic characteristics when the magnet rotates and generates a first A voltage pulse signal, and the second magnetic sensing component senses the change of the magnetic characteristic when the magnet rotates and generates a second voltage pulse signal to obtain rotation information of the magnet.

為達上述目的,本案之另一較佳實施態樣為提供一種馬達,包括:一框體;一旋轉軸,係穿設於該框體,且具有一旋轉中心軸;一轉子部,係套設於該旋轉軸;一定子部,係設置於該框體且相對應於該轉子部;一承載盤,係設置於該旋轉軸;一磁石,係設置於該承載盤,且該磁石具有一磁氣特性,其中該磁氣特性係以該磁石每旋轉一圈為一個週期;以及一碼盤,係設置於該承載盤,且係環設於該磁石,其中該承載盤、該碼盤及該磁石係以該旋轉中心軸為軸心共軸設置及旋轉;一單圈絕對位置感測組件,係對應該碼盤及該磁石設置,以於該碼盤及該磁石旋轉時進行感測並產生一單圈絕對位置訊號;一第一磁感測組件,係設置於該旋轉中心軸之上方,其中該第一磁感測組件之一第一長度方向係與該磁石之一旋轉半徑方向平行;以及一第二磁感測組件,係鄰設於該第一磁感測組件,其中該第二磁感測組件之一第二長度方向係與該磁石之一旋轉切線方向平行,且該第二長度方向與該第一長度方向之夾角的角度為(90°+θ),其中-30°≦θ≦30°;其中,該第一磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第一電壓脈波訊號,且該第二磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第二電壓脈波訊號,俾獲得該磁石之一旋轉資訊。In order to achieve the above objective, another preferred embodiment of the present application is to provide a motor, including: a frame; a rotating shaft passing through the frame and having a rotating central shaft; a rotor part, and a sleeve Is provided on the rotating shaft; a stator part is provided on the frame and corresponds to the rotor part; a bearing plate is provided on the rotating shaft; a magnet is provided on the bearing plate, and the magnet has a Magnetic characteristics, wherein the magnetic characteristics are based on each rotation of the magnet as a cycle; and a code disc is arranged on the carrier disc, and is arranged on the magnet, wherein the carrier disc, the code disc and The magnet is arranged and rotated coaxially with the central axis of rotation as the axis; a single-turn absolute position sensing component is set corresponding to the code disc and the magnet, so as to sense and rotate when the code disc and the magnet rotate A single-turn absolute position signal is generated; a first magnetic sensing component is arranged above the rotation center axis, wherein a first length direction of the first magnetic sensing component is parallel to a rotation radius direction of the magnet And a second magnetic sensing component, which is adjacent to the first magnetic sensing component, wherein a second length direction of the second magnetic sensing component is parallel to a rotation tangential direction of the magnet, and the first The angle between the two length directions and the first length direction is (90°+θ), where -30°≦θ≦30°; wherein, the first magnetic sensing component senses the magnetic field when the magnet rotates. The change of the gas characteristic generates a first voltage pulse signal, and the second magnetic sensing component senses the change of the magnetic characteristic when the magnet rotates and generates a second voltage pulse signal to obtain the magnet One of the rotating information.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上係當作說明之用,而非架構於限制本案。Some typical embodiments embodying the features and advantages of this case will be described in detail in the following description. It should be understood that this case can have various changes in different aspects, which do not depart from the scope of this case, and the descriptions and illustrations therein are essentially for illustrative purposes, rather than being constructed to limit the case.

請參閱第1A圖、第1B圖、第2圖及第3圖,第1A圖係顯示本案較佳實施例之旋轉檢測裝置之上視圖,第1B圖係顯示本案較佳實施例之旋轉檢測裝置之側視圖,第2圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之上視圖與其對應之側視圖,以及第3圖係顯示本案另一較佳實施例之旋轉檢測裝置之磁石之上視圖與其對應之側視圖,其中第2圖與第3圖之上視圖與側視圖係以對應之虛線繪出。如第1A圖、第1B圖、第2圖及第3圖所示,本案較佳實施例之旋轉檢測裝置1係包括磁石10、第一磁感測組件11以及第二磁感測組件12,其中第一磁感測組件11及第二磁感測組件12係配置在磁石10之磁石厚度方向z上。磁石10係以旋轉中心軸C為軸心旋轉,且磁石10具有一磁氣特性,該磁氣特性係以磁石10每旋轉一圈為一個週期,其中該磁氣特性係可包括磁通密度或磁場強度。磁石10可為例如但不限於中空環形磁石、圓板形磁石、長方形磁石或任何具有旋轉一圈一個週期的磁氣特性變化之磁石。於一些實施例中,如第2圖所示,磁石10係以其旋轉半徑方向r進行徑向充磁。於一些實施例中,如第3圖所示,磁石10係以其磁石厚度方向z進行軸向充磁,然並不以此為限。Please refer to Fig. 1A, Fig. 1B, Fig. 2 and Fig. 3. Fig. 1A shows a top view of the rotation detection device of the preferred embodiment of this case, and Fig. 1B shows the rotation detection device of the preferred embodiment of this case The side view, Figure 2 shows the top view of the magnet of the rotation detection device of the preferred embodiment of the present case and its corresponding side view, and Figure 3 shows the top view of the magnet of the rotation detection device of another preferred embodiment of the present case The view and its corresponding side view, wherein the upper and side views of Fig. 2 and Fig. 3 are drawn with corresponding dashed lines. As shown in Fig. 1A, Fig. 1B, Fig. 2 and Fig. 3, the rotation detection device 1 of the preferred embodiment of the present invention includes a magnet 10, a first magnetic sensing component 11, and a second magnetic sensing component 12. The first magnetic sensing component 11 and the second magnetic sensing component 12 are arranged in the thickness direction z of the magnet 10. The magnet 10 is rotated about the central axis of rotation C as the axis, and the magnet 10 has a magnetic characteristic. The magnetic characteristic takes one revolution of the magnet 10 as a period, and the magnetic characteristic may include magnetic flux density or Magnetic field strength. The magnet 10 can be, for example, but not limited to, a hollow ring magnet, a disc-shaped magnet, a rectangular magnet, or any magnet with a change in the magnetic characteristics of one rotation and one cycle. In some embodiments, as shown in FIG. 2, the magnet 10 is magnetized radially in the direction of the radius of rotation r. In some embodiments, as shown in FIG. 3, the magnet 10 is magnetized in the axial direction in the thickness direction z of the magnet, but it is not limited thereto.

第一磁感測組件11係設置於旋轉中心軸C之上方,其中第一磁感測組件11之第一長度方向L1係與磁石10之旋轉半徑方向r平行。第二磁感測組件12係鄰設於第一磁感測組件11,其中第二磁感測組件12之第二長度方向L2係與磁石10之旋轉切線方向t平行,且第二長度方向L2與第一長度方向L1之夾角α的角度為(90°+θ),其中-30°≦θ≦30°。其中,第一長度方向L1係為第一磁感測組件11沿其自身長度方向上之延伸,第二長度方向L2係為第二磁感測組件12沿其自身長度方向上之延伸,旋轉半徑方向r係為磁石10以旋轉中心軸C為軸心旋轉時之半徑方向,且旋轉切線方向t係為磁石10以旋轉中心軸C為軸心旋轉時之切線方向。The first magnetic sensing element 11 is disposed above the rotation center axis C, wherein the first length direction L1 of the first magnetic sensing element 11 is parallel to the rotation radius direction r of the magnet 10. The second magnetic sensing element 12 is adjacent to the first magnetic sensing element 11, wherein the second longitudinal direction L2 of the second magnetic sensing element 12 is parallel to the rotation tangential direction t of the magnet 10, and the second longitudinal direction L2 The angle α with the first longitudinal direction L1 is (90°+θ), where -30°≦θ≦30°. Wherein, the first length direction L1 is the extension of the first magnetic sensing component 11 along its own length, and the second length direction L2 is the extension of the second magnetic sensing component 12 along its own length. The radius of rotation The direction r is the radial direction when the magnet 10 rotates with the rotation center axis C as the axis, and the rotation tangent direction t is the tangent direction when the magnet 10 rotates with the rotation center axis C as the axis.

第一磁感測組件11係於磁石10以旋轉中心軸C為軸心旋轉時感測磁石10之磁氣特性的變化並產生第一電壓脈波訊號,且第二磁感測組件12係於磁石10以旋轉中心軸C為軸心旋轉時感測磁石10之磁氣特性的變化並產生第二電壓脈波訊號,俾藉由後端之電路與訊號的處理以獲得磁石10之旋轉資訊,其中該旋轉資訊係包含磁石10之旋轉圈數及旋轉方向的資訊。The first magnetic sensing component 11 senses the change in the magnetic characteristics of the magnet 10 and generates a first voltage pulse signal when the magnet 10 rotates about the central axis of rotation C as the axis, and the second magnetic sensing component 12 is connected to When the magnet 10 rotates around the central axis of rotation C as its axis, it senses the change in the magnetic characteristics of the magnet 10 and generates a second voltage pulse signal, so as to obtain the rotation information of the magnet 10 through the processing of the back-end circuit and signal. The rotation information includes information on the number of rotations and the direction of rotation of the magnet 10.

於一些實施例中,第一磁感測組件11沿第一長度方向L1上具有中軸A,第一磁感測組件11設置於磁石10的旋轉中心軸C之上方,且中軸A係通過旋轉中心軸C之延伸,此延伸係指旋轉中心軸C之延伸線上之任一位置,並非限定於實體部分。於一些實施例中,第二磁感測組件12具有一中心點M,且第一磁感測組件11之中軸A之延伸係通過第二磁感測組件12之中心點M,其中中軸A之延伸係指中軸A之延伸線上之任一位置,並非限定於實體部分。於一些實施例中,第一磁感測組件11及第二磁感測組件12係呈類T字型之配置。於一些實施例中,第二磁感測組件12之第二長度方向L2與第一磁感測組件11之第一長度方向L1之夾角α的角度為90°,即θ=0°,且第二長度方向L2係垂直於第一長度方向L1。藉此,透過較為精確之對位配置,係可獲得較為精細之旋轉資訊,然並不以此為限。In some embodiments, the first magnetic sensing component 11 has a central axis A along the first length direction L1, the first magnetic sensing component 11 is disposed above the rotation center axis C of the magnet 10, and the central axis A passes through the rotation center The extension of the axis C refers to any position on the extension line of the central axis of rotation C, and is not limited to the physical part. In some embodiments, the second magnetic sensing element 12 has a central point M, and the extension of the central axis A of the first magnetic sensing element 11 passes through the central point M of the second magnetic sensing element 12, where the central axis A Extension refers to any position on the extension line of the central axis A, and is not limited to the physical part. In some embodiments, the first magnetic sensing element 11 and the second magnetic sensing element 12 are in a T-like configuration. In some embodiments, the angle α between the second longitudinal direction L2 of the second magnetic sensing element 12 and the first longitudinal direction L1 of the first magnetic sensing element 11 is 90°, that is, θ=0°, and The two length directions L2 are perpendicular to the first length direction L1. In this way, more precise rotation information can be obtained through a more precise alignment configuration, but it is not limited to this.

第一磁感測組件11及第二磁感測組件12係由可產生大巴克豪森效應之磁性元件及線圈所構成,例如韋根絲(Wiegand wire)、複合磁性線及非晶線(amorphous wire)等。大巴克豪森效應係指磁性元件的磁化方向在施予的外部磁場的強度超過某個強度時,會產生急劇地反轉現象,也稱之為大巴克豪森跳變。第一磁感測組件11及第二磁感測組件12在感受到磁石10之磁氣特性(例如磁通密度或磁場強度等)之變動時,會產生大巴克豪森跳變現象,進而將磁氣特性之變動轉換成相關之電壓脈波訊號的輸出,此訊號輸出含有磁石10之旋轉資訊,係可藉由後端的電路與訊號的處理解析出磁石10之旋轉圈數及旋轉方向的資訊。The first magnetic sensing component 11 and the second magnetic sensing component 12 are composed of magnetic elements and coils that can produce the Barkhausen effect, such as Wiegand wire, composite magnetic wire, and amorphous wire. wire) and so on. The Barkhausen effect refers to the phenomenon that the magnetization direction of the magnetic element is suddenly reversed when the applied external magnetic field exceeds a certain strength, which is also called the Barkhausen jump. When the first magnetic sensing component 11 and the second magnetic sensing component 12 experience changes in the magnetic characteristics (such as magnetic flux density or magnetic field strength) of the magnet 10, they will produce a large Barkhausen jump phenomenon, thereby reducing The change of the magnetic characteristics is converted into the output of the relevant voltage pulse signal. This signal output contains the rotation information of the magnet 10, which can be analyzed by the back-end circuit and signal processing to obtain the information of the number of rotations and the rotation direction of the magnet 10 .

根據本案之構思,當旋轉檢測裝置1之磁石10以旋轉中心軸C為軸心旋轉一圈,第一磁感測組件11係於磁石10之旋轉角度為(90°+θ)及(270°+θ)時產生第一電壓脈波訊號,且第二磁感測元件12係於磁石10之旋轉角度為0°及180°時產生第二電壓脈波訊號。於一些實施例中,磁石10之磁氣特性係包括磁通密度,當磁石10以旋轉中心軸C為軸心旋轉一圈,第一磁感測組件11係於磁石10之旋轉角度為(90°+θ)及(270°+θ)時感測到該磁通密度之方向改變,且第二磁感測元件12係於磁石10之旋轉角度為0°及180°時感測到該磁通密度之方向改變。According to the concept of the present case, when the magnet 10 of the rotation detection device 1 rotates one circle with the rotation center axis C as the axis, the rotation angle of the first magnetic sensing component 11 on the magnet 10 is (90°+θ) and (270° +θ) generates the first voltage pulse signal, and the second magnetic sensing element 12 generates the second voltage pulse signal when the rotation angle of the magnet 10 is 0° and 180°. In some embodiments, the magnetic characteristics of the magnet 10 include the magnetic flux density. When the magnet 10 rotates about the central axis of rotation C as the axis, the rotation angle of the first magnetic sensing component 11 on the magnet 10 is (90 °+θ) and (270°+θ) when the direction of the magnetic flux density changes, and the second magnetic sensing element 12 senses the magnetic flux when the rotation angle of the magnet 10 is 0° and 180° The direction of flux changes.

以下實施例係以第二磁感測組件12之第二長度方向L2與第一磁感測組件11之第一長度方向L1之夾角α的角度為90°,即θ=0°之態樣進行進一步之詳細說明。然而,第二長度方向L2與第一長度方向L1之夾角α的角度為(90°+θ)之態樣(-30°≦θ≦30°)亦可獲得相近之效力,並不以此為限。The following embodiments are performed with the angle α between the second longitudinal direction L2 of the second magnetic sensing element 12 and the first longitudinal direction L1 of the first magnetic sensing element 11 being 90°, that is, θ=0° Further details. However, when the angle α between the second longitudinal direction L2 and the first longitudinal direction L1 is (90°+θ) (-30°≦θ≦30°), a similar effect can be obtained, and this is not the case. limit.

請參閱第4A圖、第4B圖、第4C圖及第4D圖,第4A圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為0°時之磁通密度分佈上視示意圖,第4B圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為90°時之磁通密度分佈上視示意圖,第4C圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為180°時之磁通密度分佈上視示意圖,以及第4D圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為270°時之磁通密度分佈上視示意圖,其中於第4A圖、第4B圖、第4C圖及第4D圖中,係定義水平方向為x軸,垂直方向為y軸。於磁石10之旋轉角度為0°與180°時,如第4A圖與第4C圖所示,第二磁感測組件12之中央部位所感受到的磁通密度分佈線與第二長度方向L2係呈垂直,且隨著向+y方向與-y方向兩端延伸,其磁通密度分佈線係呈現對稱,故整體的第二磁感測組件12於自身長度上感測到的磁通密度值為0。於磁石10之旋轉角度為90°時,如第4B圖所示,第二磁感測組件12係自自身長度上感測到最大量值的磁通密度值By,其方向為-y方向。於磁石10之旋轉角度為270°時,如第4D圖所示,第二磁感測組件12係於自身長度上感測到最大量值的磁通密度值By,其方向為+y方向。Please refer to Fig. 4A, Fig. 4B, Fig. 4C and Fig. 4D. Fig. 4A is a schematic top view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present invention is 0°. Figure 4B is a schematic top view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of this project is 90°, and Figure 4C shows the rotation of the magnet of the rotation detection device of the preferred embodiment of this project The top view schematic diagram of the magnetic flux density distribution when the angle is 180°, and the 4D diagram shows the top view schematic diagram of the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present invention is 270°. Figures 4A, 4B, 4C, and 4D define the horizontal direction as the x-axis and the vertical direction as the y-axis. When the rotation angle of the magnet 10 is 0° and 180°, as shown in FIGS. 4A and 4C, the magnetic flux density distribution line felt by the central part of the second magnetic sensing element 12 is in line with the second longitudinal direction L2 The magnetic flux density distribution line is symmetrical as it extends in the +y direction and the -y direction. Therefore, the overall second magnetic sensing component 12 senses the magnetic flux density value over its length Is 0. When the rotation angle of the magnet 10 is 90°, as shown in FIG. 4B, the second magnetic sensing element 12 senses the maximum magnetic flux density value By from its length, and its direction is the -y direction. When the rotation angle of the magnet 10 is 270°, as shown in FIG. 4D, the second magnetic sensing element 12 senses the maximum magnetic flux density By over its length, and its direction is the +y direction.

請參閱第5A圖及第5B圖,其中第5A圖係顯示本案磁石旋轉時之第二磁感測組件之長度方向的磁通密度值對應圖,或稱長度-磁通密度值對應圖,以及第5B圖係顯示本案磁石旋轉時之第二磁感測組件之另一長度方向的磁通密度值對應圖。如第5A圖及第5B圖所示,於磁石10之旋轉角度為0°與180°時,磁通密度值的分佈係以第二磁感測組件12之中心點M(即圖中長度為10mm處)呈現正負對稱,故整體的第二磁感測組件12於其自身長度上感測到的磁通密度值為0。於磁石10之旋轉角度為90°時,第二磁感測組件12於其自身長度上感測到最大負值的磁通密度值。於磁石之旋轉角度為270°時,第二磁感測組件12於其自身長度上感測到最大正值的磁通密度值。Please refer to Figure 5A and Figure 5B, where Figure 5A shows the magnetic flux density value map in the length direction of the second magnetic sensing component when the magnet is rotating in this case, or the length-magnetic flux density value map, and Fig. 5B shows the corresponding graph of the magnetic flux density value in another longitudinal direction of the second magnetic sensing element when the magnet is rotating in this case. As shown in Figures 5A and 5B, when the rotation angle of the magnet 10 is 0° and 180°, the distribution of the magnetic flux density is based on the center point M of the second magnetic sensing component 12 (that is, the length in the figure is 10mm) presents positive and negative symmetry, so the magnetic flux density value sensed by the entire second magnetic sensing component 12 over its own length is 0. When the rotation angle of the magnet 10 is 90°, the second magnetic sensing element 12 senses the maximum negative magnetic flux density value over its own length. When the rotation angle of the magnet is 270°, the second magnetic sensing element 12 senses the maximum positive magnetic flux density value over its own length.

亦即,當磁石10以順時針方向旋轉一圈時,磁石10之旋轉角度依序經過0°、90°、180°與270°,最後再回到0°(或為360°),其相對於第二磁感測組件12在其長度方向感受到的磁通密度依序為0、-By、0與+By,最後再回到0。故磁石10以順時針方向旋轉一圈,第二磁感測組件12會在磁石10之旋轉角度為0°(或360°)與180°處分別感受到磁通密度方向的轉換,進而產生第二電壓脈波的輸出,如第6A圖所示,其中第6A圖係顯示本案磁石以順時針旋轉時之第二磁感測組件之第二電壓脈波訊號之電壓-旋轉角度對應圖。That is, when the magnet 10 rotates in a clockwise direction, the rotation angle of the magnet 10 sequentially passes through 0°, 90°, 180°, and 270°, and finally returns to 0° (or 360°). The magnetic flux density sensed by the second magnetic sensing component 12 in its length direction is 0, -By, 0, and +By in order, and finally returns to 0. Therefore, the magnet 10 rotates one circle in a clockwise direction, and the second magnetic sensing component 12 will feel the change of the direction of the magnetic flux density when the rotation angle of the magnet 10 is 0° (or 360°) and 180°, and then generate the first The output of the two voltage pulses is shown in Fig. 6A. Fig. 6A shows the voltage-rotation angle correspondence diagram of the second voltage pulse signal of the second magnetic sensing component when the magnet rotates clockwise in this case.

請參閱第6B圖,其中第6B圖係顯示本案磁石以逆時針旋轉時之第二磁感測組件之第二電壓脈波訊號之電壓-旋轉角度對應圖。如第6B圖所示,同理地,當磁石10以逆時針方向旋轉時,第二磁感測組件12同樣於旋轉角度為0°(或360°)與180°處分別感受到磁通密度方向的轉換,而產生第二電壓脈波訊號的輸出。磁石10在逆時針旋轉之情況下,磁通密度方向改變的正負方向係與磁石10在順時針旋轉之情況下相反,因此第6B圖所示之第二電壓脈波輸出的方向係與第6A圖相反。同時,由於第二磁感測組件12本身具有磁滯效應,故脈波位置會有些微的偏移,而此偏移可以透過後端之訊號處理加以補正。Please refer to Fig. 6B. Fig. 6B shows the voltage-rotation angle correspondence diagram of the second voltage pulse signal of the second magnetic sensing element when the magnet rotates counterclockwise in this case. As shown in Fig. 6B, similarly, when the magnet 10 rotates in a counterclockwise direction, the second magnetic sensing component 12 also feels the magnetic flux density at the rotation angle of 0° (or 360°) and 180°, respectively. The direction is changed, and the output of the second voltage pulse signal is generated. When the magnet 10 rotates counterclockwise, the positive and negative directions of the magnetic flux density change are opposite to those of the magnet 10 when the magnet 10 rotates clockwise. Therefore, the direction of the second voltage pulse output shown in Figure 6B is the same as that of the 6A The figure is opposite. At the same time, since the second magnetic sensing element 12 itself has a hysteresis effect, the pulse wave position will be slightly shifted, and this shift can be corrected by the signal processing at the back end.

請參閱第7A圖及第7B圖,並配合第4B圖及第4D圖,第7A圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為0°時之磁通密度分佈側視示意圖,以及第7B圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為180°時之磁通密度分佈側視示意圖,其中於第7A圖及第7B圖中,係定義水平方向為x軸,且垂直方向為磁石厚度方向z。於磁石10之旋轉角度為0°時,如第7A圖所示,第一磁感測組件11係於自身長度上感測到最大量值的磁通密度值Bx,其方向為+x方向。於磁石10之旋轉角度為180°時,如第7B圖所示,第一磁感測組件11係於自身長度上感測到最大量值的磁通密度值Bx,其方向為-x方向。於磁石10之旋轉角度為90°與270°時,如第4B圖與第4D圖所示,第一磁感測組件11所感測到的磁通密度分佈線大致係與其自身長度呈垂直,第一磁感測組件11於自身長度上感測到的磁通密度值為0。Please refer to Fig. 7A and Fig. 7B, in conjunction with Fig. 4B and Fig. 4D, Fig. 7A shows the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of this case is 0°. The schematic diagram and Figure 7B are a schematic side view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present invention is 180°, in which the horizontal direction is defined in Figures 7A and 7B Is the x-axis, and the vertical direction is the magnet thickness direction z. When the rotation angle of the magnet 10 is 0°, as shown in FIG. 7A, the first magnetic sensing element 11 senses the maximum magnetic flux density value Bx along its length, and its direction is the +x direction. When the rotation angle of the magnet 10 is 180°, as shown in FIG. 7B, the first magnetic sensing element 11 senses the maximum magnetic flux density value Bx along its length, and its direction is the -x direction. When the rotation angle of the magnet 10 is 90° and 270°, as shown in Fig. 4B and Fig. 4D, the magnetic flux density distribution line sensed by the first magnetic sensing element 11 is roughly perpendicular to its own length. The value of the magnetic flux density sensed by a magnetic sensing component 11 over its own length is zero.

請參閱第8A圖及第8B圖,其中第8A圖係顯示本案磁石旋轉時之第一磁感測組件之長度方向的磁通密度值對應圖,以及第8B圖係顯示本案磁石旋轉時之第一磁感測組件之另一長度方向的磁通密度值對應圖。如第8A圖及第8B圖所示,於磁石10之旋轉角度為90°與270°時,第一磁感測組件11於自身長度上感測到的磁通密度值為0。於磁石10之旋轉角度為0°時,第一磁感測組件11係於自身長度上感測到最大正值的磁通密度值。於磁石10之旋轉角度為180°時,第一磁感測組件11係於自身長度上感測到最大負值的磁通密度值。Please refer to Figure 8A and Figure 8B. Figure 8A shows the corresponding diagram of the magnetic flux density value in the longitudinal direction of the first magnetic sensing element when the magnet is rotating in this case, and Figure 8B shows the first magnetic flux density value when the magnet is rotating in this case. Corresponding graph of the magnetic flux density value in the other length direction of a magnetic sensing component. As shown in FIGS. 8A and 8B, when the rotation angle of the magnet 10 is 90° and 270°, the magnetic flux density value sensed by the first magnetic sensing element 11 over its length is 0. When the rotation angle of the magnet 10 is 0°, the first magnetic sensing element 11 senses the maximum positive magnetic flux density value along its length. When the rotation angle of the magnet 10 is 180°, the first magnetic sensing element 11 senses the maximum negative magnetic flux density value over its length.

亦即,當磁石10以順時針方向旋轉一圈時,磁石10之旋轉角度依序經過0°、90°、180°與270°,最後再回到0°(或為360°),其相對於第一磁感測組件11在其長度方向感受到的磁通密度依序為Bx、0、-Bx與0,最後再回到Bx。故磁石10以順時針方向旋轉一圈,第一磁感測組件11會在磁石10之旋轉角度為90°與270°處分別感受到磁通密度方向的轉換,進而產生第一電壓脈波的輸出,如第9A圖所示,其中第9A圖係顯示本案磁石以順時針旋轉時之第一磁感測組件之第一電壓脈波訊號之電壓-旋轉角度對應圖。That is, when the magnet 10 rotates in a clockwise direction, the rotation angle of the magnet 10 sequentially passes through 0°, 90°, 180°, and 270°, and finally returns to 0° (or 360°). The magnetic flux density sensed in the length direction of the first magnetic sensing element 11 is Bx, 0, -Bx, and 0 in order, and finally returns to Bx. Therefore, when the magnet 10 rotates in a clockwise direction, the first magnetic sensing component 11 will feel the change of the direction of the magnetic flux density when the rotation angle of the magnet 10 is 90° and 270°, and then generate the first voltage pulse. The output is shown in Fig. 9A, where Fig. 9A shows the voltage-rotation angle correspondence diagram of the first voltage pulse signal of the first magnetic sensing element when the magnet rotates clockwise in this case.

請參閱第9B圖,其中第9B圖係顯示本案磁石以逆時針旋轉時之第一磁感測組件之第一電壓脈波訊號之電壓-旋轉角度對應圖。如第9B圖所示,同理地,當磁石10以逆時針方向旋轉時,第一磁感測組件11同樣於旋轉角度為90°與270°處分別感受到磁通密度方向的轉換,而產生第一電壓脈波的輸出。磁石10在逆時針旋轉之情況下,磁通密度方向改變的正負方向係與磁石10在順時針旋轉之情況下相反,因此第9B圖所示之第一電壓脈波輸出的方向係與第9A圖相反。同時,由於第一磁感測組件11本身具有磁滯效應,故脈波位置會有些微的偏移,而此偏移可以透過後端之訊號處理加以補正。Please refer to Fig. 9B. Fig. 9B shows the voltage-rotation angle correspondence diagram of the first voltage pulse signal of the first magnetic sensing element when the magnet rotates counterclockwise in this case. As shown in Figure 9B, similarly, when the magnet 10 rotates in a counterclockwise direction, the first magnetic sensing component 11 also feels the direction of the magnetic flux density at the rotation angles of 90° and 270°, respectively, and Generate the output of the first voltage pulse. When the magnet 10 rotates counterclockwise, the positive and negative directions of the magnetic flux density change are opposite to those of the magnet 10 when the magnet 10 rotates clockwise. Therefore, the direction of the first voltage pulse output shown in Figure 9B is the same as that of the 9A The figure is opposite. At the same time, since the first magnetic sensing element 11 itself has a hysteresis effect, the pulse wave position will be slightly shifted, and this shift can be corrected by the signal processing at the back end.

綜合以上實施例,當旋轉檢測裝置1之磁石10以旋轉中心軸C為軸心旋轉一圈,第一磁感測組件11係於磁石10之旋轉角度為90°及270°處產生第一電壓脈波訊號的輸出,第二磁感測組件12係於磁石10之旋轉角度為0°(或360°)及180°時產生第二電壓脈波訊號的輸出,其中第一磁感測組件11與第二磁感測組件12的電壓脈波訊號輸出係依序相差90°。該些訊號係含有磁石10之旋轉資訊,係可藉由後端的電路與訊號的處理解析出磁石10之旋轉圈數與旋轉方向的資訊。In summary of the above embodiments, when the magnet 10 of the rotation detection device 1 rotates one revolution with the rotation center axis C as the axis, the first magnetic sensing component 11 generates the first voltage at the rotation angle of the magnet 10 at 90° and 270° The output of the pulse wave signal. The second magnetic sensing element 12 generates the output of the second voltage pulse signal when the rotation angle of the magnet 10 is 0° (or 360°) and 180°. The first magnetic sensing element 11 The voltage pulse signal output from the second magnetic sensing component 12 is sequentially different by 90°. These signals contain the rotation information of the magnet 10, and the information about the number of rotations and the rotation direction of the magnet 10 can be parsed by the back-end circuit and signal processing.

換言之,本案提供之旋轉檢測裝置,係藉由設置第一磁感測組件及第二磁感測組件,且第一磁感測組件之第一長度方向與第二磁感測組件之第二長度方向之夾角的角度為60°至120°,以透過簡易的元件及配置獲得磁石之旋轉資訊,並達到縮減佔據空間及體積小型化之功效。並且,透過第一磁感測組件於磁石之旋轉角度為(90°+θ)及(270°+θ)時產生第一電壓脈波訊號,且第二磁感測元件於磁石之旋轉角度為0°及180°時產生第二電壓脈波訊號,並由訊號處理單元進行解析及整合,以獲得精確的磁石之旋轉資訊。In other words, the rotation detection device provided in this case is provided by the first magnetic sensing element and the second magnetic sensing element, and the first length direction of the first magnetic sensing element and the second length of the second magnetic sensing element The angle of the direction is from 60° to 120°, so that the rotation information of the magnet can be obtained through simple components and configuration, and the effect of reducing the occupied space and miniaturization is achieved. Moreover, the first voltage pulse signal is generated when the rotation angle of the magnet is (90°+θ) and (270°+θ) through the first magnetic sensing element, and the rotation angle of the second magnetic sensing element on the magnet is The second voltage pulse signal is generated at 0° and 180°, which is analyzed and integrated by the signal processing unit to obtain accurate rotation information of the magnet.

請參閱第1A圖、第1B圖及第10圖,其中第10圖係顯示本案另一較佳實施例之旋轉檢測裝置之架構方塊圖。如第1A圖、第1B圖及第10圖所示,旋轉檢測裝置1更包括訊號處理單元13,係與第一磁感測組件11及第二磁感測組件12相連接,且接收並解析第一磁感測組件11產生之第一電壓脈波訊號及第二磁感測組件12產生之第二電壓脈波訊號,以獲得磁石10之旋轉資訊。Please refer to FIG. 1A, FIG. 1B and FIG. 10. FIG. 10 is a block diagram showing the structure of the rotation detection device according to another preferred embodiment of the present application. As shown in Figures 1A, 1B, and 10, the rotation detection device 1 further includes a signal processing unit 13, which is connected to the first magnetic sensing component 11 and the second magnetic sensing component 12, and receives and analyzes The first voltage pulse signal generated by the first magnetic sensing component 11 and the second voltage pulse signal generated by the second magnetic sensing component 12 are used to obtain the rotation information of the magnet 10.

於一些實施例中,旋轉檢測裝置1更包括電力調整電路14及儲存單元15,電力調整電路14係與第一磁感測組件11、第二磁感測組件12及訊號處理單元13相連接,以接收第一電壓脈波訊號及第二電壓脈波訊號並進行電力調整。儲存單元15係與訊號處理單元13及電力調整電路14相連接,其中電力調整電路14係供電於訊號處理單元13及儲存單元15,且儲存單元15係接收並儲存訊號處理單元13傳送之旋轉資訊。In some embodiments, the rotation detection device 1 further includes a power adjustment circuit 14 and a storage unit 15. The power adjustment circuit 14 is connected to the first magnetic sensing component 11, the second magnetic sensing component 12, and the signal processing unit 13. To receive the first voltage pulse signal and the second voltage pulse signal and perform power adjustment. The storage unit 15 is connected to the signal processing unit 13 and the power adjustment circuit 14. The power adjustment circuit 14 supplies power to the signal processing unit 13 and the storage unit 15, and the storage unit 15 receives and stores the rotation information transmitted by the signal processing unit 13 .

舉例而言,第一磁感測組件11及第二磁感測組件12產生之第一電壓脈波訊號及第二電壓脈波訊號係提供給電力調整電路14,而電力調整電路14將第一電壓脈波訊號及第二電壓脈波訊號調適後,提供電力給訊號處理單元13以及儲存單元15。訊號處理單元13接收來自電力調整電路14供給的電力以及來自第一磁感測組件11及第二磁感測組件12的第一電壓脈波訊號及第二電壓脈波訊號後,進行訊號的處理並解析出磁石10之旋轉資訊,並將磁石10之旋轉資訊提供給儲存單元15。儲存單元15係接收來自電力調整電路14供給的電力,並將訊號處理單元提供的磁石10之旋轉資訊寫入儲存單元15。於一些實施例中,儲存單元15係為非易失性儲存單元,在沒有外加電力的情況下,可將磁石10之旋轉資訊儲存於儲存單元15,待外加電力再度供給時再將旋轉資訊提供給訊號處理單元13讀取。藉此,旋轉檢測裝置1可達成免外加電力(例如不用外加電池或不用外部電力供應)之旋轉檢測。For example, the first voltage pulse signal and the second voltage pulse signal generated by the first magnetic sensing element 11 and the second magnetic sensing element 12 are provided to the power regulating circuit 14, and the power regulating circuit 14 After the voltage pulse signal and the second voltage pulse signal are adjusted, power is provided to the signal processing unit 13 and the storage unit 15. The signal processing unit 13 receives the power supplied from the power adjustment circuit 14 and the first voltage pulse signal and the second voltage pulse signal from the first magnetic sensing component 11 and the second magnetic sensing component 12, and then processes the signal And parse out the rotation information of the magnet 10, and provide the rotation information of the magnet 10 to the storage unit 15. The storage unit 15 receives the power supplied from the power adjustment circuit 14 and writes the rotation information of the magnet 10 provided by the signal processing unit into the storage unit 15. In some embodiments, the storage unit 15 is a non-volatile storage unit. When there is no external power, the rotation information of the magnet 10 can be stored in the storage unit 15, and the rotation information will be provided when the external power is supplied again. Read to the signal processing unit 13. In this way, the rotation detection device 1 can achieve rotation detection without external power (for example, without external battery or external power supply).

換言之,本案提供之旋轉檢測裝置,係藉由與電力調整電路及儲存單元進行整合,將電壓脈波訊號提供電力調整電路及訊號處理單元使用,且可將旋轉資訊暫存於儲存單元,以達成免外加電力之旋轉檢測。In other words, the rotation detection device provided in this case is integrated with the power adjustment circuit and the storage unit to provide the voltage pulse signal to the power adjustment circuit and the signal processing unit for use, and the rotation information can be temporarily stored in the storage unit to achieve Rotation detection without additional power.

根據本案之構思,旋轉檢測裝置係可進一步與單圈(single-turn)絕對型編碼器整合構成多圈(multi-turn)絕對型編碼器。請參閱第11圖,其中第11圖係顯示本案較佳實施例之旋轉檢測裝置適用之編碼器之剖面結構示意圖。如第11圖所示,編碼器2係包括承載盤20、磁石21、碼盤22、單圈絕對位置感測組件23、第一磁感測組件24及第二磁感測組件25。磁石21係設置於承載盤20,且磁石21具有一磁氣特性,該磁氣特性係以磁石21每旋轉一圈為一個週期。碼盤22係設置於承載盤20,且碼盤22係環設於磁石21,其中承載盤20、碼盤22及磁石21係以旋轉中心軸C為軸心共軸設置及旋轉。單圈絕對位置感測組件23係對應碼盤22及磁石21設置,以於碼盤22及磁石21旋轉時進行感測,並產生單圈絕對位置訊號。第一磁感測組件24及第二磁感測組件25係可設置於單圈絕對位置感測組件23之上方,且係分別於磁石21旋轉時感測其磁氣特性的變化並產生第一電壓脈波訊號及第二電壓脈波訊號。此外,編碼器2之第一磁感測組件24及第二磁感測組件25與磁石21間之配置關係,係如同於前述之旋轉檢測裝置1之第一磁感測組件11及第二磁感測組件12與磁石10間之配置關係,由於此前已進行詳細描述,故於此不再贅述。According to the concept of this case, the rotation detection device can be further integrated with a single-turn absolute encoder to form a multi-turn absolute encoder. Please refer to FIG. 11, where FIG. 11 is a cross-sectional structure diagram of an encoder applicable to the rotation detection device of the preferred embodiment of the present application. As shown in FIG. 11, the encoder 2 includes a carrier disk 20, a magnet 21, a code disk 22, a single-turn absolute position sensing component 23, a first magnetic sensing component 24 and a second magnetic sensing component 25. The magnet 21 is disposed on the carrier plate 20, and the magnet 21 has a magnetic characteristic, and the magnetic characteristic is that each rotation of the magnet 21 is a cycle. The code disc 22 is arranged on the carrier disc 20, and the code disc 22 is annularly arranged on the magnet 21, wherein the carrier disc 20, the code disc 22 and the magnet 21 are arranged and rotated coaxially with the rotation center axis C as the axis. The single-turn absolute position sensing component 23 is set corresponding to the code disk 22 and the magnet 21 to sense when the code disk 22 and the magnet 21 rotate, and generate a single-turn absolute position signal. The first magnetic sensing element 24 and the second magnetic sensing element 25 can be arranged above the single-turn absolute position sensing element 23, and the change in the magnetic characteristics of the magnet 21 is sensed when the magnet 21 rotates and generates a first The voltage pulse signal and the second voltage pulse signal. In addition, the arrangement relationship between the first magnetic sensing component 24 and the second magnetic sensing component 25 and the magnet 21 of the encoder 2 is the same as that of the first magnetic sensing component 11 and the second magnetic sensing component 11 of the aforementioned rotation detection device 1. The configuration relationship between the sensing component 12 and the magnet 10 has been described in detail before, so it will not be repeated here.

編碼器2更包括訊號處理單元,訊號處理單元係與單圈絕對位置感測組件23、第一磁感測組件24及第二磁感測組件25相連接。訊號處理單元係接收並整合單圈絕對位置訊號,以獲得單圈絕對位置資訊θST ,其中θST 係介於機械角0°至360°。且訊號處理單元係接收並整合第一電壓脈波訊號及第二電壓脈波訊號,以獲得磁石之旋轉資訊N,其中N係為旋轉圈數。最終訊號處理單元係接收並整合單圈絕對位置資訊θST 以及旋轉資訊N,以獲得多圈絕對位置資訊θMT ,其中θMTST +N*360°。The encoder 2 further includes a signal processing unit, which is connected to the single-turn absolute position sensing component 23, the first magnetic sensing component 24 and the second magnetic sensing component 25. The signal processing unit receives and integrates the single-turn absolute position signal to obtain the single-turn absolute position information θ ST , where θ ST is a mechanical angle between 0° and 360°. And the signal processing unit receives and integrates the first voltage pulse signal and the second voltage pulse signal to obtain the rotation information N of the magnet, where N is the number of rotations. The final signal processing unit receives and integrates single-turn absolute position information θ ST and rotation information N to obtain multi-turn absolute position information θ MT , where θ MTST +N*360°.

於一些實施例中,編碼器2更包括電力調整電路及儲存單元,其中訊號處理單元、電力調整電路及儲存單元之架構係與第10圖所示之訊號處理單元13、電力調整電路14及儲存單元15相仿。是以,編碼器2在沒有施加外部電力的情況下,可將磁石21之旋轉資訊(例如圈數資訊N)儲存於儲存單元,待外加電力再度供給時再提供圈數資訊N給訊號處理單元讀取,並與單圈絕對位置資訊θST 整合。藉此,以使編碼器2達成於免外加電力之情況下之旋轉檢測功能。In some embodiments, the encoder 2 further includes a power adjustment circuit and a storage unit. The structure of the signal processing unit, the power adjustment circuit, and the storage unit is the same as the signal processing unit 13, the power adjustment circuit 14 and the storage unit shown in Figure 10. Unit 15 is similar. Therefore, the encoder 2 can store the rotation information of the magnet 21 (such as the number of turns information N) in the storage unit without applying external power, and then provide the number of turns information N to the signal processing unit when the external power is supplied again. Read and integrate with single-turn absolute position information θ ST . In this way, the encoder 2 can achieve the rotation detection function without external power.

於一些實施例中,編碼器2係為光學反射式架構,而單圈絕對位置資訊係可由碼盤上之至少一絕對位置圖紋搭配收光元件之至少一絕對位置收光區域產生,亦可由磁氣式之角度感測器(angle sensor)搭配磁石產生,然並不以此為限。此外,本案之旋轉檢測裝置亦可搭配光學穿透式架構或磁氣式感測架構等各種的單圈絕對型編碼器架構,以整合構成多圈絕對型編碼器。In some embodiments, the encoder 2 is an optical reflective structure, and the single-turn absolute position information can be generated by at least one absolute position pattern on the code wheel and at least one absolute position light-receiving area of the light-receiving element, or from The magnetic angle sensor (angle sensor) is produced with a magnet, but it is not limited to this. In addition, the rotation detection device in this case can also be combined with various single-turn absolute encoder architectures such as optical transmissive architecture or magnetic sensing architecture to integrate a multi-turn absolute encoder.

根據本案之構思,旋轉檢測裝置與單圈絕對型編碼器構成之多圈絕對型編碼器係可直接內建(built-in)於馬達之內部,可使得空間尺寸微小化。請參閱第12圖,其中第12圖係顯示本案較佳實施例之旋轉檢測裝置適用之馬達之剖面結構示意圖。如第12圖所示,馬達3係包括框體30、旋轉軸31、轉子部32、定子部33、承載盤34、磁石35、碼盤36、單圈絕對位置感測組件37、第一磁感測組件38及第二磁感測組件39。旋轉軸31係穿設於框體30且具有旋轉中心軸C,轉子部32係套設於旋轉軸31,定子部33係設置於框體30且相對應於轉子部32,且承載盤34係設置於旋轉軸31。此外,馬達3之承載盤34、磁石35、碼盤36、單圈絕對位置感測組件37、第一磁感測組件38及第二磁感測組件39之連接與配置關係,係如同於前述之編碼器2之承載盤20、磁石21、碼盤22、單圈絕對位置感測組件23、第一磁感測組件24及第二磁感測組件25之連接與配置關係,由於此前已進行詳細描述,故於此不再贅述。According to the concept of this case, the multi-turn absolute encoder composed of the rotation detection device and the single-turn absolute encoder can be directly built-in inside the motor, which can minimize the space size. Please refer to FIG. 12, where FIG. 12 is a schematic diagram showing the cross-sectional structure of the motor to which the rotation detection device of the preferred embodiment of the present application is applicable. As shown in Figure 12, the motor 3 includes a frame 30, a rotating shaft 31, a rotor portion 32, a stator portion 33, a carrier plate 34, a magnet 35, an encoder plate 36, a single-turn absolute position sensing assembly 37, and a first magnet The sensing component 38 and the second magnetic sensing component 39. The rotating shaft 31 passes through the frame 30 and has a central axis of rotation C, the rotor part 32 is sleeved on the rotating shaft 31, the stator part 33 is arranged on the frame 30 and corresponds to the rotor part 32, and the bearing plate 34 is Set on the rotating shaft 31. In addition, the connection and configuration of the carrier plate 34, the magnet 35, the code plate 36, the single-turn absolute position sensing component 37, the first magnetic sensing component 38 and the second magnetic sensing component 39 of the motor 3 are the same as described above The connection and configuration of the carrier disk 20, the magnet 21, the code disk 22, the single-turn absolute position sensing component 23, the first magnetic sensing component 24 and the second magnetic sensing component 25 of the encoder 2 have been carried out before Detailed description, so I won't repeat it here.

於一些實施例中,馬達3更包括訊號處理單元、電力調整電路及儲存單元,訊號處理單元係與單圈絕對位置感測組件37、第一磁感測組件38及第二磁感測組件39相連接,其中訊號處理單元、電力調整電路及儲存單元之架構係與第10圖所示之訊號處理單元13、電力調整電路14及儲存單元15相仿。是以,馬達3在沒有施加外部電力的情況下,可將磁石35之旋轉資訊(例如圈數資訊N)儲存於儲存單元,待外加電力再度供給時再提供圈數資訊N給訊號處理單元讀取,並與單圈絕對位置資訊θST 整合。藉此,以使馬達3達成於免外加電力之情況下之旋轉檢測功能。In some embodiments, the motor 3 further includes a signal processing unit, a power adjustment circuit, and a storage unit. The signal processing unit is associated with a single-turn absolute position sensing component 37, a first magnetic sensing component 38, and a second magnetic sensing component 39 The structure of the signal processing unit, the power adjustment circuit and the storage unit is similar to the signal processing unit 13, the power adjustment circuit 14 and the storage unit 15 shown in FIG. 10. Therefore, the motor 3 can store the rotation information of the magnet 35 (such as lap information N) in the storage unit without applying external power, and then provide the lap information N to the signal processing unit for reading when the external power is supplied again. And integrate with the absolute position information θ ST of the single lap. In this way, the motor 3 can achieve the rotation detection function without external power.

易言之,本案提供之旋轉檢測裝置及其適用之編碼器與馬達,係可藉由將單圈絕對位置感測組件獲得之單圈絕對位置資訊以及第一磁感測組件與第二磁感測組件獲得之磁石旋轉資訊進行整合,以獲得精細之多圈絕對位置資訊。In other words, the rotation detection device and its applicable encoder and motor provided in this case are the single-turn absolute position information obtained by the single-turn absolute position sensing component, as well as the first magnetic sensing component and the second magnetic sensing component. The magnet rotation information obtained by the measuring component is integrated to obtain precise multi-turn absolute position information.

綜上所述,本案係提供一種旋轉檢測裝置及其適用之編碼器與馬達,藉由設置第一磁感測組件及第二磁感測組件,且第一磁感測組件之第一長度方向與第二磁感測組件之第二長度方向之夾角的角度為60°至120°,以透過簡易的元件及配置獲得磁石之旋轉資訊,並達到縮減佔據空間及體積小型化之功效。同時,透過第一磁感測組件於磁石之旋轉角度為(90°+θ)及(270°+θ)時產生第一電壓脈波訊號,且第二磁感測元件於磁石之旋轉角度為0°及180°時產生第二電壓脈波訊號,並由訊號處理單元進行解析及整合,以獲得精確的磁石之旋轉資訊。並且,藉由與電力調整電路及儲存單元進行整合,將電壓脈波訊號提供電力調整電路及訊號處理單元使用,且可將旋轉資訊暫存於儲存單元,以達成免外加電力之旋轉檢測。此外,藉由將單圈絕對位置感測組件獲得之單圈絕對位置資訊以及第一磁感測組件與第二磁感測組件獲得之磁石旋轉資訊進行整合,以獲得精細之多圈絕對位置資訊。In summary, this case provides a rotation detection device and its applicable encoder and motor, by arranging a first magnetic sensing component and a second magnetic sensing component, and the first longitudinal direction of the first magnetic sensing component The angle between the second longitudinal direction of the second magnetic sensing component and the angle is 60° to 120°, so that the rotation information of the magnet can be obtained through simple components and configuration, and the effect of reducing the occupied space and miniaturization is achieved. At the same time, the first voltage pulse signal is generated when the rotation angle of the magnet is (90°+θ) and (270°+θ) through the first magnetic sensing element, and the rotation angle of the second magnetic sensing element on the magnet is The second voltage pulse signal is generated at 0° and 180°, which is analyzed and integrated by the signal processing unit to obtain accurate rotation information of the magnet. Moreover, by integrating with the power adjustment circuit and the storage unit, the voltage pulse signal is provided to the power adjustment circuit and the signal processing unit for use, and the rotation information can be temporarily stored in the storage unit to achieve rotation detection without additional power. In addition, by integrating the single-turn absolute position information obtained by the single-turn absolute position sensing component and the magnet rotation information obtained by the first magnetic sensing component and the second magnetic sensing component to obtain fine multi-turn absolute position information .

縱使本案已由上述之實施例詳細敘述而可由熟悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。Even though this case has been described in detail by the above-mentioned embodiments and can be modified in many ways by those who are familiar with the art, it does not deviate from the protection of the scope of the attached patent application.

1:旋轉檢測裝置10、21、35:磁石11、24、38:第一磁感測組件12、25、39:第二磁感測組件13:訊號處理單元14:電力調整電路15:儲存單元2:編碼器20、34:承載盤22、36:碼盤23、37:單圈絕對位置感測組件3:馬達30:框體31:旋轉軸32:轉子部33:定子部C:旋轉中心軸z:磁石厚度方向r:旋轉半徑方向t:旋轉切線方向L1:第一長度方向L2:第二長度方向α:夾角A:中軸M:中心點x:水平方向y:垂直方向1: Rotation detection device 10, 21, 35: Magnet 11, 24, 38: First magnetic sensing component 12, 25, 39: Second magnetic sensing component 13: Signal processing unit 14: Power adjustment circuit 15: Storage unit 2: Encoder 20, 34: Carrier disc 22, 36: Code disc 23, 37: Single-turn absolute position sensing assembly 3: Motor 30: Frame 31: Rotating shaft 32: Rotor part 33: Stator part C: Rotation center Axis z: magnet thickness direction r: rotation radius direction t: rotation tangent direction L1: first length direction L2: second length direction α: included angle A: central axis M: center point x: horizontal direction y: vertical direction

第1A圖係顯示本案較佳實施例之旋轉檢測裝置之上視圖。 第1B圖係顯示本案較佳實施例之旋轉檢測裝置之側視圖。 第2圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之上視圖與其對應之側視圖。 第3圖係顯示本案另一較佳實施例之旋轉檢測裝置之磁石之上視圖與其對應之側視圖。 第4A圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為0°時之磁通密度分佈上視示意圖。 第4B圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為90°時之磁通密度分佈上視示意圖。 第4C圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為180°時之磁通密度分佈上視示意圖。 第4D圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為270°時之磁通密度分佈上視示意圖。 第5A圖係顯示本案磁石旋轉時之第二磁感測組件之長度方向的磁通密度值對應圖。 第5B圖係顯示本案磁石旋轉時之第二磁感測組件之另一長度方向的磁通密度值對應圖。 第6A圖係顯示本案磁石以順時針旋轉時之第二磁感測組件之第二電壓脈波訊號之電壓-旋轉角度對應圖。 第6B圖係顯示本案磁石以逆時針旋轉時之第二磁感測組件之第二電壓脈波訊號之電壓-旋轉角度對應圖。 第7A圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為0°時之磁通密度分佈側視示意圖。 第7B圖係顯示本案較佳實施例之旋轉檢測裝置之磁石之旋轉角度為180°時之磁通密度分佈側視示意圖。 第8A圖係顯示本案磁石旋轉時之第一磁感測組件之長度方向的磁通密度值對應圖。 第8B圖係顯示本案磁石旋轉時之第一磁感測組件之另一長度方向的磁通密度值對應圖。 第9A圖係顯示本案磁石以順時針旋轉時之第一磁感測組件之第一電壓脈波訊號之電壓-旋轉角度對應圖。 第9B圖係顯示本案磁石以逆時針旋轉時之第一磁感測組件之第一電壓脈波訊號之電壓-旋轉角度對應圖。 第10圖係顯示本案另一較佳實施例之旋轉檢測裝置之架構方塊圖。 第11圖係顯示本案較佳實施例之旋轉檢測裝置適用之編碼器之剖面結構示意圖。 第12圖係顯示本案較佳實施例之旋轉檢測裝置適用之馬達之剖面結構示意圖。Figure 1A is a top view of the rotation detection device of the preferred embodiment of the present invention. Figure 1B is a side view of the rotation detection device of the preferred embodiment of the present invention. Figure 2 shows the top view of the magnet of the rotation detection device of the preferred embodiment of the present invention and its corresponding side view. Fig. 3 shows a top view of the magnet of the rotation detection device of another preferred embodiment of the present invention and its corresponding side view. Fig. 4A is a schematic top view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present application is 0°. FIG. 4B is a schematic top view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present application is 90°. Fig. 4C is a schematic top view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detecting device of the preferred embodiment of the present application is 180°. Fig. 4D is a schematic top view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present application is 270°. Figure 5A shows the corresponding figure of the magnetic flux density value in the longitudinal direction of the second magnetic sensing component when the magnet is rotating in this case. Fig. 5B shows the corresponding graph of the magnetic flux density value in another longitudinal direction of the second magnetic sensing element when the magnet is rotating in this case. Fig. 6A shows the voltage-rotation angle correspondence diagram of the second voltage pulse signal of the second magnetic sensing element when the magnet rotates clockwise in this case. Fig. 6B is a diagram showing the voltage-rotation angle correspondence of the second voltage pulse signal of the second magnetic sensing element when the magnet rotates counterclockwise in this case. FIG. 7A is a schematic side view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present application is 0°. FIG. 7B is a schematic side view showing the magnetic flux density distribution when the rotation angle of the magnet of the rotation detection device of the preferred embodiment of the present application is 180°. Figure 8A shows the corresponding figure of the magnetic flux density value in the longitudinal direction of the first magnetic sensing element when the magnet is rotating in this case. Fig. 8B shows the corresponding graph of the magnetic flux density value in another longitudinal direction of the first magnetic sensing element when the magnet is rotating in this case. Fig. 9A shows the voltage-rotation angle correspondence diagram of the first voltage pulse signal of the first magnetic sensing element when the magnet is rotated clockwise in this case. Fig. 9B is a diagram showing the voltage-rotation angle correspondence of the first voltage pulse signal of the first magnetic sensing element when the magnet rotates counterclockwise in this case. Fig. 10 is a block diagram showing the structure of the rotation detecting device of another preferred embodiment of the present invention. Fig. 11 is a schematic diagram showing the cross-sectional structure of the encoder applicable to the rotation detection device of the preferred embodiment of the present invention. Figure 12 is a schematic diagram showing the cross-sectional structure of the motor to which the rotation detection device of the preferred embodiment of the present invention is applicable.

1:旋轉檢測裝置 1: Rotation detection device

10:磁石 10: Magnet

11:第一磁感測組件 11: The first magnetic sensing component

12:第二磁感測組件 12: The second magnetic sensing component

C:旋轉中心軸 C: Rotation center axis

r:旋轉半徑方向 r: the direction of the radius of rotation

t:旋轉切線方向 t: Rotation tangent direction

L1:第一長度方向 L1: first length direction

L2:第二長度方向 L2: second length direction

α:夾角 α: included angle

A:中軸 A: Bottom axis

M:中心點 M: center point

Claims (13)

一種旋轉檢測裝置,包括:一磁石,係以一旋轉中心軸為軸心旋轉,且該磁石具有一磁氣特性,其中該磁氣特性係以該磁石每旋轉一圈為一個週期;一第一磁感測組件,係設置於該旋轉中心軸之上方,其中該第一磁感測組件具有產生大巴克豪森效應的磁性元件和線圈,該第一磁感測組件之一第一長度方向係與該磁石之一旋轉半徑方向平行;以及一第二磁感測組件,係鄰設於該第一磁感測組件,其中該第二磁感測組件具有產生大巴克豪森效應的磁性元件和線圈,該第二磁感測組件之一第二長度方向係與該磁石之一旋轉切線方向平行,其中,該旋轉切線方向與該旋轉半徑方向垂直,且該第二長度方向與該第一長度方向之夾角的角度為(90°+θ),其中-30°≦θ≦30°;其中,該第一磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第一電壓脈波訊號,且該第二磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第二電壓脈波訊號,俾獲得該磁石之一旋轉資訊;其中,該第一磁感測組件沿該第一長度方向上具有一中軸,且該中軸係通過該旋轉中心軸之延伸,該第二磁感測組件具有一中心點,其中,該中心點為該第二磁感測組件的一中心,且該中軸之延伸係通過該中心點; 其中,該第一磁感測組件在該第一長度方向上的長度係大於該磁石在該旋轉半徑方向上的長度,該第二磁感測組件在該第二長度方向上的長度係大於該磁石在該旋轉半徑方向上的長度。 A rotation detection device includes: a magnet that rotates around a central axis of rotation, and the magnet has a magnetic characteristic, wherein the magnetic characteristic is that each revolution of the magnet is a cycle; a first a magnetic sensing element, disposed above the central line of the axis of rotation, wherein the first magnetic sensing element and the assembly has a magnetic coil generating a large Barkhausen effect, the magnetic sensing one of the first components of the first longitudinal direction line Parallel to the direction of a radius of rotation of the magnet; and a second magnetic sensing component adjacent to the first magnetic sensing component, wherein the second magnetic sensing component has a magnetic element that produces a large Barkhausen effect and Coil, a second length direction of the second magnetic sensing component is parallel to a rotation tangential direction of the magnet, wherein the rotation tangent direction is perpendicular to the rotation radius direction, and the second length direction is parallel to the first length The angle of the direction is (90°+θ), where -30°≦θ≦30°; wherein, the first magnetic sensing component senses the change of the magnetic characteristics when the magnet rotates and generates a first A voltage pulse signal, and the second magnetic sensing component senses the change of the magnetic characteristics when the magnet rotates and generates a second voltage pulse signal to obtain a rotation information of the magnet; wherein, the The first magnetic sensing component has a center axis along the first length direction, and the center axis system extends through the rotation center axis. The second magnetic sensing component has a center point, wherein the center point is the second A center of the magnetic sensing component, and the extension of the central axis passes through the center point; wherein the length of the first magnetic sensing component in the first longitudinal direction is greater than the length of the magnet in the rotation radius direction, The length of the second magnetic sensing component in the second length direction is greater than the length of the magnet in the rotation radius direction. 如申請專利範圍第1項所述之旋轉檢測裝置,其中當該磁石以該旋轉中心軸為軸心旋轉一圈,該第一磁感測組件係於該磁石之一旋轉角度為(90°+θ)及(270°+θ)時產生該第一電壓脈波訊號,且該第二磁感測元件係於該旋轉角度為0°及180°時產生該第二電壓脈波訊號。 The rotation detection device described in the first item of the scope of patent application, wherein when the magnet rotates one circle with the rotation center axis as the axis, the first magnetic sensing component is connected to the magnet with a rotation angle of (90°+ θ) and (270°+θ) generate the first voltage pulse signal, and the second magnetic sensing element generates the second voltage pulse signal when the rotation angle is 0° and 180°. 如申請專利範圍第1項所述之旋轉檢測裝置,其中該磁氣特性係包括一磁通密度,當該磁石以該旋轉中心軸為軸心旋轉一圈,該第一磁感測組件係於該磁石之一旋轉角度為(90°+θ)及(270°+θ)時感測到該磁通密度之方向改變,且該第二磁感測元件係於該旋轉角度為0°及180°時感測到該磁通密度之方向改變。 For the rotation detection device described in item 1 of the scope of patent application, the magnetic characteristic includes a magnetic flux density. When the magnet rotates around the rotation center axis as its axis, the first magnetic sensing component is attached to When one of the rotation angles of the magnet is (90°+θ) and (270°+θ), the direction change of the magnetic flux density is sensed, and the second magnetic sensing element is set when the rotation angle is 0° and 180° ° when the direction of the magnetic flux density is sensed to change. 如申請專利範圍第1項所述之旋轉檢測裝置,更包括一訊號處理單元,係與該第一磁感測組件及該第二磁感測組件相連接,且接收並解析該第一電壓脈波訊號及該第二電壓脈波訊號,以獲得該旋轉資訊。 The rotation detection device described in the first item of the scope of patent application further includes a signal processing unit, which is connected to the first magnetic sensing component and the second magnetic sensing component, and receives and analyzes the first voltage pulse The wave signal and the second voltage pulse signal are used to obtain the rotation information. 如申請專利範圍第4項所述之旋轉檢測裝置,更包括:一電力調整電路,係與該第一磁感測組件、該第二磁感測組件及該訊號處理單元相連接,以接收該第一電壓脈波訊號及該第二電壓脈波訊號並進行電力調整;以及一儲存單元,係與該訊號處理單元及該電力調整電路相連接; 其中,該電力調整電路係供電於該訊號處理單元及該儲存單元,且該儲存單元係接收並儲存該訊號處理單元傳送之該旋轉資訊。 For example, the rotation detection device described in item 4 of the scope of patent application further includes: a power adjustment circuit connected to the first magnetic sensing component, the second magnetic sensing component and the signal processing unit to receive the The first voltage pulse signal and the second voltage pulse signal and perform power adjustment; and a storage unit connected to the signal processing unit and the power adjustment circuit; Wherein, the power adjustment circuit supplies power to the signal processing unit and the storage unit, and the storage unit receives and stores the rotation information transmitted by the signal processing unit. 如申請專利範圍第1項所述之旋轉檢測裝置,其中θ=0°,且該第二長度方向係垂直於該第一長度方向。 The rotation detection device described in the first item of the scope of patent application, wherein θ=0°, and the second length direction is perpendicular to the first length direction. 如申請專利範圍第1項所述之旋轉檢測裝置,其中該磁石係以該旋轉半徑方向徑向充磁。 The rotation detection device described in the first item of the scope of patent application, wherein the magnet is magnetized radially in the direction of the rotation radius. 如申請專利範圍第1項所述之旋轉檢測裝置,其中該磁石係以一磁石厚度方向軸向充磁。 The rotation detection device described in the first item of the scope of patent application, wherein the magnet is axially magnetized in a thickness direction of the magnet. 一種編碼器,包括:一承載盤;一磁石,係設置於該承載盤,且該磁石具有一磁氣特性,其中該磁氣特性係以該磁石每旋轉一圈為一個週期;以及一碼盤,係設置於該承載盤,且係環設於該磁石,其中該承載盤、該碼盤及該磁石係以一旋轉中心軸為軸心共軸設置及旋轉;一單圈絕對位置感測組件,係對應該碼盤及該磁石設置,以於該碼盤及該磁石旋轉時進行感測並產生一單圈絕對位置訊號;一第一磁感測組件,係設置於該旋轉中心軸之上方,其中該第一磁感測組件具有產生大巴克豪森效應的磁性元件和線圈,該第一磁感測組件之一第一長度方向係與該磁石之一旋轉半徑方向平行;以及一第二磁感測組件,係鄰設於該第一磁感測組件,其中該第二磁感測組件具有產生大巴克豪森效應的磁性元件和線圈,該第二磁 感測組件之一第二長度方向係與該磁石之一旋轉切線方向平行,其中,該旋轉切線方向與該旋轉半徑方向垂直,且該第二長度方向與該第一長度方向之夾角的角度為(90°+θ),其中-30°≦θ≦30°;其中,該第一磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第一電壓脈波訊號,且該第二磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第二電壓脈波訊號,俾獲得該磁石之一旋轉資訊;其中,該第一磁感測組件沿該第一長度方向上具有一中軸,且該中軸係通過該旋轉中心軸之延伸,該第二磁感測組件具有一中心點,其中,該中心點為該第二磁感測組件的一中心,且該中軸之延伸係通過該中心點;其中,該第一磁感測組件在該第一長度方向上的長度係大於該磁石在該旋轉半徑方向上的長度,該第二磁感測組件在該第二長度方向上的長度係大於該磁石在該旋轉半徑方向上的長度。 An encoder includes: a carrier disk; a magnet arranged on the carrier disk, and the magnet has a magnetic characteristic, wherein each rotation of the magnet is a cycle; and an encoder disk , Is set on the carrier plate, and the ring is set on the magnet, wherein the carrier plate, the code plate and the magnet are coaxially arranged and rotated with a central axis of rotation as the axis; a single-turn absolute position sensing assembly , Is set corresponding to the code disk and the magnet to sense and generate a single-turn absolute position signal when the code disk and the magnet rotate; a first magnetic sensing component is set above the rotation center axis , Wherein the first magnetic sensing component has a magnetic element and a coil that produce a large Barkhausen effect, a first length direction of the first magnetic sensing component is parallel to a rotation radius direction of the magnet; and a second The magnetic sensing component is arranged adjacent to the first magnetic sensing component, wherein the second magnetic sensing component has a magnetic element and a coil that produce a large Barkhausen effect, and the second magnetic A second length direction of the sensing component is parallel to a rotation tangent direction of the magnet, wherein the rotation tangent direction is perpendicular to the rotation radius direction, and the angle between the second length direction and the first length direction is (90°+θ), where -30°≦θ≦30°; wherein, the first magnetic sensing component senses the change of the magnetic characteristics when the magnet rotates and generates a first voltage pulse signal, And the second magnetic sensing element senses the change of the magnetic characteristics when the magnet rotates and generates a second voltage pulse signal to obtain a rotation information of the magnet; wherein, the first magnetic sensing element A central axis is provided along the first length direction, and the central axis system extends through the central axis of rotation. The second magnetic sensing component has a central point, wherein the central point is a part of the second magnetic sensing component. Center, and the extension of the central axis passes through the center point; wherein, the length of the first magnetic sensing component in the first length direction is greater than the length of the magnet in the rotation radius direction, and the second magnetic sensing component The length of the component in the second length direction is greater than the length of the magnet in the rotation radius direction. 如申請專利範圍第9項所述之編碼器,更包括一訊號處理單元,係與該單圈絕對位置感測組件、該第一磁感測組件及該第二磁感測組件相連接,以接收並整合該單圈絕對位置訊號及該旋轉資訊,俾獲得一多圈絕對位置資訊。 For example, the encoder described in item 9 of the scope of patent application further includes a signal processing unit connected to the single-turn absolute position sensing component, the first magnetic sensing component, and the second magnetic sensing component to Receive and integrate the single-turn absolute position signal and the rotation information to obtain one-turn absolute position information. 如申請專利範圍第10項所述之編碼器,更包括:一電力調整電路,係與該第一磁感測組件、該第二磁感測組件及該訊號處理單元相連接,以接收該第一電壓脈波訊號及該第二電壓脈波訊號並進行電力調整;以及 一儲存單元,係與該訊號處理單元及該電力調整電路相連接;其中,該電力調整電路係供電於該訊號處理單元及該儲存單元,且該儲存單元係接收並儲存該訊號處理單元傳送之該旋轉資訊。 For example, the encoder described in item 10 of the scope of patent application further includes: a power adjustment circuit connected to the first magnetic sensing component, the second magnetic sensing component, and the signal processing unit to receive the first magnetic sensing component, the second magnetic sensing component, and the signal processing unit. A voltage pulse signal and the second voltage pulse signal and perform power adjustment; and A storage unit is connected to the signal processing unit and the power adjustment circuit; wherein, the power adjustment circuit supplies power to the signal processing unit and the storage unit, and the storage unit receives and stores the signals transmitted by the signal processing unit The rotation information. 一種馬達,包括:一框體;一旋轉軸,係穿設於該框體,且具有一旋轉中心軸;一轉子部,係套設於該旋轉軸;一定子部,係設置於該框體且相對應於該轉子部;一承載盤,係設置於該旋轉軸;一磁石,係設置於該承載盤,且該磁石具有一磁氣特性,其中該磁氣特性係以該磁石每旋轉一圈為一個週期;以及一碼盤,係設置於該承載盤,且係環設於該磁石,其中該承載盤、該碼盤及該磁石係以該旋轉中心軸為軸心共軸設置及旋轉;一單圈絕對位置感測組件,係對應該碼盤及該磁石設置,以於該碼盤及該磁石旋轉時進行感測並產生一單圈絕對位置訊號;一第一磁感測組件,係設置於該旋轉中心軸之上方,其中該第一磁感測組件具有產生大巴克豪森效應的磁性元件和線圈,該第一磁感測組件之一第一長度方向係與該磁石之一旋轉半徑方向平行;以及一第二磁感測組件,係鄰設於該第一磁感測組件,其中該第二磁感測組件具有產生大巴克豪森效應的磁性元件和線圈,該第二磁感測組件之一第二長度方向係與該磁石之一旋轉切線方向平行,其 中,該旋轉切線方向與該旋轉半徑方向垂直,且該第二長度方向與該第一長度方向之夾角的角度為(90°+θ),其中-30°≦θ≦30°;其中,該第一磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第一電壓脈波訊號,且該第二磁感測組件係於該磁石旋轉時感測該磁氣特性的變化並產生一第二電壓脈波訊號,俾獲得該磁石之一旋轉資訊;其中,該第一磁感測組件沿該第一長度方向上具有一中軸,且該中軸係通過該旋轉中心軸之延伸,該第二磁感測組件具有一中心點,其中,該中心點為該第二磁感測組件的一中心,且該中軸之延伸係通過該中心點;其中,該第一磁感測組件在該第一長度方向上的長度係大於該磁石在該旋轉半徑方向上的長度,該第二磁感測組件在該第二長度方向上的長度係大於該磁石在該旋轉半徑方向上的長度。 A motor includes: a frame body; a rotating shaft, which penetrates the frame body and has a rotating central shaft; a rotor part, which is sleeved on the rotating shaft; a stator part, which is arranged on the frame body And corresponds to the rotor part; a bearing plate is arranged on the rotating shaft; a magnet is arranged on the bearing plate, and the magnet has a magnetic characteristic, wherein the magnetic characteristic is based on the fact that every time the magnet rotates The circle is a cycle; and a code disc is arranged on the carrying disc and the ring is arranged on the magnet, wherein the carrying disc, the code disc and the magnet are arranged and rotated coaxially with the rotation center axis as the axis ; A single-turn absolute position sensing component is set corresponding to the code disk and the magnet to sense and generate a single-turn absolute position signal when the code disk and the magnet rotate; a first magnetic sensing component, Is arranged above the central axis of rotation, wherein the first magnetic sensing component has a magnetic element and a coil that produce a large Barkhausen effect, and a first length direction of the first magnetic sensing component is connected to one of the magnets The direction of the radius of rotation is parallel; and a second magnetic sensing component is adjacent to the first magnetic sensing component, wherein the second magnetic sensing component has a magnetic element and a coil that produce a large Barkhausen effect, and the second A second length direction of the magnetic sensing component is parallel to a rotation tangential direction of the magnet, which Wherein, the rotation tangent direction is perpendicular to the rotation radius direction, and the angle between the second length direction and the first length direction is (90°+θ), where -30°≦θ≦30°; wherein, the The first magnetic sensing component senses the change of the magnetic characteristic when the magnet is rotating and generates a first voltage pulse signal, and the second magnetic sensing component senses the magnetic characteristic when the magnet is rotating And generate a second voltage pulse signal to obtain a rotation information of the magnet; wherein, the first magnetic sensing component has a center axis along the first length direction, and the center axis passes through the rotation center axis The extension of the second magnetic sensing component has a center point, wherein the center point is a center of the second magnetic sensing component, and the extension of the central axis passes through the center point; wherein, the first magnetic sensing component The length of the measuring component in the first length direction is greater than the length of the magnet in the direction of the rotation radius, and the length of the second magnetic sensing component in the second length direction is greater than the length of the magnet in the rotation radius direction length. 如申請專利範圍第12項所述之馬達,更包括:一訊號處理單元,係與該單圈絕對位置感測組件、該第一磁感測組件及該第二磁感測組件相連接,以接收並整合該單圈絕對位置訊號及該旋轉資訊,俾獲得一多圈絕對位置資訊;一電力調整電路,係與該第一磁感測組件、該第二磁感測組件及該訊號處理單元相連接,以接收該第一電壓脈波訊號及該第二電壓脈波訊號並進行電力調整;以及一儲存單元,係與該訊號處理單元及該電力調整電路相連接; 其中,該電力調整電路係供電於該訊號處理單元及該儲存單元,且該儲存單元係接收並儲存該訊號處理單元傳送之該旋轉資訊。For example, the motor described in item 12 of the scope of patent application further includes: a signal processing unit connected to the single-turn absolute position sensing component, the first magnetic sensing component, and the second magnetic sensing component to Receive and integrate the single-turn absolute position signal and the rotation information to obtain a multi-turn absolute position information; a power adjustment circuit is connected to the first magnetic sensing component, the second magnetic sensing component and the signal processing unit Are connected to each other to receive the first voltage pulse signal and the second voltage pulse signal and perform power adjustment; and a storage unit is connected to the signal processing unit and the power adjustment circuit; Wherein, the power adjustment circuit supplies power to the signal processing unit and the storage unit, and the storage unit receives and stores the rotation information transmitted by the signal processing unit.
TW107138768A 2018-11-01 2018-11-01 Rotation detection device and encoder and motor using same TWI724341B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107138768A TWI724341B (en) 2018-11-01 2018-11-01 Rotation detection device and encoder and motor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107138768A TWI724341B (en) 2018-11-01 2018-11-01 Rotation detection device and encoder and motor using same

Publications (2)

Publication Number Publication Date
TW202018258A TW202018258A (en) 2020-05-16
TWI724341B true TWI724341B (en) 2021-04-11

Family

ID=71895468

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138768A TWI724341B (en) 2018-11-01 2018-11-01 Rotation detection device and encoder and motor using same

Country Status (1)

Country Link
TW (1) TWI724341B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI843967B (en) 2021-09-27 2024-06-01 財團法人工業技術研究院 Battery-free rotation detecting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014799A (en) * 2006-07-06 2008-01-24 Yaskawa Electric Corp Absolute value encoder device
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder
US20150369636A1 (en) * 2013-01-11 2015-12-24 Jiangsu Multidimensional Technology Co., Ltd Multi-turn absolute magnetic encoder
TW201623921A (en) * 2014-12-18 2016-07-01 Nat Inst Chung Shan Science & Technology Magnetic encoding device
US20180087888A1 (en) * 2016-09-28 2018-03-29 Infineon Technologies Ag Magnetic angle sensor device and method of operation
CN207717105U (en) * 2017-12-18 2018-08-10 嘉兴市锐鹰传感技术有限公司 A kind of passive wake-up formula encoder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014799A (en) * 2006-07-06 2008-01-24 Yaskawa Electric Corp Absolute value encoder device
US20150130450A1 (en) * 2012-04-30 2015-05-14 Fritz Kubler Gmbh Zahl- Und Sensortechnik Energy-self-sufficient multiturn rotary encoder and method for determining a unique position of an encoder shaft by means of the multiturn rotary encoder
US20150369636A1 (en) * 2013-01-11 2015-12-24 Jiangsu Multidimensional Technology Co., Ltd Multi-turn absolute magnetic encoder
TW201623921A (en) * 2014-12-18 2016-07-01 Nat Inst Chung Shan Science & Technology Magnetic encoding device
US20180087888A1 (en) * 2016-09-28 2018-03-29 Infineon Technologies Ag Magnetic angle sensor device and method of operation
CN207717105U (en) * 2017-12-18 2018-08-10 嘉兴市锐鹰传感技术有限公司 A kind of passive wake-up formula encoder

Also Published As

Publication number Publication date
TW202018258A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
CN103154672B (en) Magnetic multi-turn absolute position detection device
CN103443590B (en) Absolute encoder device and motor
CN102472642B (en) Multi-periodic absolute position sensor
JP6410732B2 (en) Integrated multi-turn absolute position sensor for multi-pole count motors
CN101929834B (en) Rotational angle-measurement apparatus and rotational speed-measurement apparatus
JP5216462B2 (en) Rotary encoder and operation method thereof
JP5880577B2 (en) Motor, motor system and motor encoder
WO2011111494A1 (en) Magnetic sensor and magnetic encoder
JPWO2003036237A1 (en) Multi-rotation encoder
WO1999013296A1 (en) Magnetic encoder
JP2000353051A (en) Method for pointing information and pointing device
TWI724341B (en) Rotation detection device and encoder and motor using same
CN114072636A (en) Position sensing circuit, position sensing system, magnet member, position sensing method, and program
JP2007051953A (en) Magnetic encoder
CN111130274B (en) Rotation detection device and encoder and motor suitable for same
JP2008008699A (en) Rotation detecting apparatus
JP7463593B2 (en) Magnetic sensor system and lens position detection device
CN116164778A (en) Position sensor with main rail and Norus rail
JP7308091B2 (en) Rotation detector
CN209399923U (en) A kind of angular displacement sensor based on eddy current effect
EP1016852A1 (en) Apparatus for measuring the position of a movable member
JPS60162920A (en) Resolver device using magnetism sensing element
JP4543297B2 (en) Magnetic encoder
JP7468753B1 (en) Encoder
JP2958846B2 (en) Angle detector