TWI724185B - Detector for electrostatic capacitance detection and method for using the detector to calibrate conveying position data in processing system - Google Patents

Detector for electrostatic capacitance detection and method for using the detector to calibrate conveying position data in processing system Download PDF

Info

Publication number
TWI724185B
TWI724185B TW106120306A TW106120306A TWI724185B TW I724185 B TWI724185 B TW I724185B TW 106120306 A TW106120306 A TW 106120306A TW 106120306 A TW106120306 A TW 106120306A TW I724185 B TWI724185 B TW I724185B
Authority
TW
Taiwan
Prior art keywords
sensors
electrode
detector
base substrate
electrodes
Prior art date
Application number
TW106120306A
Other languages
Chinese (zh)
Other versions
TW201803004A (en
Inventor
杉田吉平
南朋秀
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201803004A publication Critical patent/TW201803004A/en
Application granted granted Critical
Publication of TWI724185B publication Critical patent/TWI724185B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本發明提供一種靜電電容檢測用之檢測器。檢測器具備:基底基板,其具有圓盤形狀;複數個第1感測器,其等分別提供沿基底基板之邊緣排列之複數個側部電極;一個以上之第2感測器,其分別具有沿基底基板之底面設置之底部電極;及電路基板。電路基板構成為:向複數個側部電極及底部電極賦予高頻信號,根據複數個側部電極中之電壓振幅之各者產生表示靜電電容之複數個第1檢測值,並根據底部電極中之電壓振幅產生表示靜電電容之第2檢測值。The present invention provides a detector for detecting electrostatic capacitance. The detector includes: a base substrate, which has a disc shape; a plurality of first sensors, which respectively provide a plurality of side electrodes arranged along the edge of the base substrate; and one or more second sensors, which respectively have The bottom electrode arranged along the bottom surface of the base substrate; and the circuit substrate. The circuit board is configured to apply a high-frequency signal to a plurality of side electrodes and a bottom electrode, generate a plurality of first detection values representing electrostatic capacitance based on each of the voltage amplitudes in the plurality of side electrodes, and generate a plurality of first detection values representing electrostatic capacitance based on the values in the bottom electrode. The voltage amplitude generation represents the second detection value of the electrostatic capacitance.

Description

靜電電容檢測用之檢測器及使用檢測器來校正處理系統中之搬送位置資料之方法Detector for electrostatic capacitance detection and method of using the detector to calibrate conveying position data in processing system

本發明中之實施形態係關於一種靜電電容檢測用之檢測器及使用檢測器來校正處理系統中之搬送位置資料之方法。The embodiment of the present invention relates to a detector for detecting electrostatic capacitance and a method of using the detector to calibrate conveyance position data in a processing system.

於半導體元件等電子元件之製造中,使用有對圓盤狀之被加工物進行處理之處理系統。處理系統具有用於搬送被加工物之搬送裝置、及用於處理被加工物之處理裝置。處理裝置通常具有腔室本體、及設置於該腔室本體內之載置台。載置台以支持載置於其上之被加工物之方式而構成。搬送裝置以將被加工物搬送至載置台上之方式而構成。 於處理裝置中之被加工物之處理中,載置台上之被加工物之位置較為重要。因此,於載置台上之被加工物之位置自特定位置偏移之情形時,需要調整搬送裝置。 作為調整搬送裝置之技術,已知有日本專利第4956328號說明書所記載之技術。於該文獻所記載之技術中,於載置台上形成有凹部。又,於該文獻所記載之技術中,利用具有與被加工物相同之圓盤形狀、且具有用於靜電電容檢測之電極的檢測器。於該文獻所記載之技術中,利用搬送裝置將檢測器搬送至載置台上,獲得取決於凹部與電極之相對位置關係的靜電電容之檢測值,且以基於該檢測值修正被加工物之搬送位置之方式調整搬送裝置。In the manufacture of electronic components such as semiconductor components, a processing system for processing disc-shaped workpieces is used. The processing system has a conveying device for conveying the workpiece, and a processing device for processing the workpiece. The processing device usually has a chamber body and a mounting table arranged in the chamber body. The mounting table is constructed to support the processed object mounted on it. The conveying device is configured to convey the workpiece to the mounting table. In the processing of the processed object in the processing device, the position of the processed object on the mounting table is more important. Therefore, when the position of the workpiece on the mounting table is shifted from a specific position, the conveying device needs to be adjusted. As a technique for adjusting the conveying device, the technique described in the specification of Japanese Patent No. 4956328 is known. In the technique described in this document, a recess is formed on the mounting table. In addition, in the technique described in this document, a detector having the same disk shape as the workpiece and having electrodes for electrostatic capacitance detection is used. In the technique described in this document, the detector is transported to the mounting table by a transport device to obtain a detection value of the electrostatic capacitance depending on the relative positional relationship between the recess and the electrode, and the transport of the workpiece is corrected based on the detection value Adjust the conveying device by way of position.

作為上述處理系統之處理裝置,有使用電漿處理裝置之情況。電漿處理裝置與上述處理裝置同樣地具有腔室本體及載置台。又,於電漿處理裝置中,以包圍被加工物之邊緣之方式將聚焦環設置於載置台上。聚焦環為相對於中心軸線沿圓周方向延伸之環狀之板,例如,由矽所形成。 於使用電漿處理裝置之對被加工物之電漿處理中,聚焦環與被加工物之位置關係較為重要。例如,若圓盤狀之被加工物之位置相對於聚焦環偏移、聚焦環與被加工物之邊緣之間的間隙之大小在圓周方向上變動,則有電漿滲入產生較大之間隙之部分而使被加工物上產生微粒之情形。因此,需要獲得反映利用搬送裝置而搬送之被加工物與聚焦環之位置關係的可靠性較高之資料。 於一態樣中,本發明提供一種靜電電容檢測用之檢測器。該檢測器具備:基底基板、複數個第1感測器、一個以上之第2感測器、及電路基板。基底基板具有圓盤形狀。複數個第1感測器沿基底基板之邊緣排列,且分別提供複數個側部電極。一個以上之第2感測器分別具有沿基底基板之底面設置之底部電極。電路基板搭載於基底基板上,且與複數個第1感測器及一個以上之第2感測器之各者相連接。電路基板構成為,向複數個側部電極及底部電極賦予高頻信號,根據複數個側部電極之電壓振幅之各者產生表示靜電電容之複數個第1檢測值,並根據底部電極之電壓振幅產生表示靜電電容之第2檢測值。 於一態樣之檢測器中,由複數個第1感測器所提供之複數個側部電極沿基底基板之邊緣排列。於將該檢測器配置於由聚焦環所包圍之區域之狀態下,複數個側部電極與聚焦環之內緣相向。根據該等側部電極中之電壓振幅而產生之複數個第1檢測值表示反映複數個側部電極各者與聚焦環之間之距離的靜電電容。因此,根據該檢測器,獲得反映模擬被加工物之檢測器與聚焦環之相對位置關係的檢測資料。又,於該檢測器中,一個以上之第2感測器各自之底部電極沿基底基板之底面而配置。根據底部電極之電壓振幅而產生之第2檢測值表示底部電極與處於檢測器之下方之物體之間的靜電電容。即,第2檢測值反映出底部電極與處於檢測器之下方之物體的相對位置關係。因此,根據第2檢測值,可確認檢測器是否於載置台上配置在聚焦環所包圍之區域內。藉由使用該第2檢測值,可確認上述第1檢測值之可靠性。 於一實施形態中,一個以上之第2感測器各自之底部電極具有圓形狀。一個以上之第2感測器之各者進而具有以包圍底部電極之方式而配置之周邊電極。電路基板進而構成為,向周邊電極賦予高頻信號,並根據周邊電極中之電壓振幅產生表示靜電電容之第3檢測值。 於一實施形態中,一個以上之第2感測器為複數個第2感測器。複數個第2感測器沿共用基底基板之中心軸線之圓而配置。 於一實施形態中,一個以上之第2感測器之各者進而具有以自基底基板之上表面於該基底基板之板厚方向上延伸之方式設置於該基底基板的複數個電極。一個以上之第2感測器各自之底部電極由複數個電極之底面側之端面而構成。 於一實施形態中,一個以上之第2感測器之各者進而具有貫通基底基板之一個以上之貫通電極。一個以上之第2感測器各自之底部電極經由一個以上之貫通電極而與電路基板相連接。 於一實施形態中,一個以上之第2感測器為三個以上之第2感測器。三個以上之第2感測器之各者沿共用基底基板之中心軸線之圓而配置。三個以上之第2感測器各自之底部電極的邊緣之一部分具有圓弧形狀且於該圓上延伸。 於另一態樣中,提供一種使用上述檢測器來校正處理系統中之搬送位置資料之方法。處理系統具備處理裝置及搬送裝置。處理裝置具有腔室本體及靜電吸盤。靜電吸盤設置於由腔室本體所提供之腔室內。靜電吸盤具有具備圓形之邊緣之載置區域。於載置區域上載置被加工物。搬送裝置基於搬送位置資料將被加工物搬送至載置區域上。該方法包括如下步驟:使用搬送裝置將檢測器搬送至根據搬送位置資料而特定出之載置區域上之位置;利用搬送至載置區域上之檢測器之三個以上之第2感測器,檢測三個以上之靜電電容;根據三個以上之靜電電容之檢測值,求出檢測器被搬送至之載置區域上之位置相對於載置區域上之特定之搬送位置的誤差;及利用該誤差來校正搬送位置資料。 於一實施形態中,底部電極之邊緣之上述一部分之曲率與載置區域之邊緣之曲率一致。As the processing device of the above-mentioned processing system, there is a case of using a plasma processing device. The plasma processing apparatus has a chamber main body and a mounting table similarly to the above-mentioned processing apparatus. In addition, in the plasma processing device, the focus ring is set on the mounting table so as to surround the edge of the workpiece. The focus ring is a ring-shaped plate extending in the circumferential direction with respect to the central axis, for example, formed of silicon. In the plasma treatment of the processed object using a plasma processing device, the positional relationship between the focus ring and the processed object is more important. For example, if the position of the disc-shaped workpiece is offset relative to the focus ring, and the size of the gap between the focus ring and the edge of the workpiece fluctuates in the circumferential direction, there will be a large gap caused by plasma infiltration. Part of the situation that causes particles to be produced on the processed object. Therefore, it is necessary to obtain highly reliable data reflecting the positional relationship between the workpiece and the focus ring conveyed by the conveying device. In one aspect, the present invention provides a detector for detecting electrostatic capacitance. The detector includes a base substrate, a plurality of first sensors, one or more second sensors, and a circuit board. The base substrate has a disc shape. A plurality of first sensors are arranged along the edge of the base substrate, and a plurality of side electrodes are respectively provided. The one or more second sensors respectively have bottom electrodes arranged along the bottom surface of the base substrate. The circuit board is mounted on the base board, and is connected to each of a plurality of first sensors and one or more second sensors. The circuit board is configured to apply a high-frequency signal to a plurality of side electrodes and a bottom electrode, generate a plurality of first detection values representing electrostatic capacitance based on each of the voltage amplitudes of the plurality of side electrodes, and based on the voltage amplitude of the bottom electrode Generate a second detection value that represents the electrostatic capacitance. In one aspect of the detector, the plurality of side electrodes provided by the plurality of first sensors are arranged along the edge of the base substrate. In the state where the detector is arranged in the area surrounded by the focus ring, the plurality of side electrodes face the inner edge of the focus ring. The plurality of first detection values generated according to the voltage amplitude in the side electrodes represent the electrostatic capacitance reflecting the distance between each of the plurality of side electrodes and the focus ring. Therefore, according to the detector, detection data reflecting the relative positional relationship between the detector and the focus ring of the simulated workpiece are obtained. Furthermore, in this detector, the bottom electrodes of each of the one or more second sensors are arranged along the bottom surface of the base substrate. The second detection value generated based on the voltage amplitude of the bottom electrode represents the electrostatic capacitance between the bottom electrode and the object under the detector. That is, the second detection value reflects the relative positional relationship between the bottom electrode and the object under the detector. Therefore, based on the second detection value, it can be confirmed whether the detector is placed on the mounting table within the area surrounded by the focus ring. By using the second detection value, the reliability of the above-mentioned first detection value can be confirmed. In one embodiment, the bottom electrodes of each of the more than one second sensors have a circular shape. Each of the one or more second sensors further has peripheral electrodes arranged to surround the bottom electrode. The circuit board is further configured to apply a high-frequency signal to the peripheral electrode, and generate a third detection value representing the electrostatic capacitance based on the voltage amplitude in the peripheral electrode. In one embodiment, more than one second sensor is a plurality of second sensors. The plurality of second sensors are arranged along a circle sharing the central axis of the base substrate. In one embodiment, each of the one or more second sensors further has a plurality of electrodes provided on the base substrate in a manner extending from the upper surface of the base substrate in the thickness direction of the base substrate. The bottom electrodes of each of the one or more second sensors are composed of end surfaces on the bottom side of the plurality of electrodes. In one embodiment, each of the one or more second sensors further has one or more through electrodes penetrating the base substrate. The bottom electrodes of each of the one or more second sensors are connected to the circuit board through one or more through electrodes. In one embodiment, more than one second sensor is more than three second sensors. Each of the three or more second sensors is arranged along a circle that shares the central axis of the base substrate. A part of the edge of the bottom electrode of each of the three or more second sensors has an arc shape and extends on the circle. In another aspect, a method of using the above-mentioned detector to calibrate the conveying position data in the processing system is provided. The processing system includes a processing device and a conveying device. The processing device has a chamber body and an electrostatic chuck. The electrostatic chuck is arranged in the chamber provided by the chamber body. The electrostatic chuck has a mounting area with rounded edges. Place the workpiece on the placement area. The conveying device conveys the workpiece to the placement area based on the conveying position data. The method includes the following steps: using a transport device to transport the detector to a position on the loading area specified based on the transport position data; using three or more second sensors of the detectors transported to the loading area, Detect three or more electrostatic capacitances; calculate the error of the position on the mounting area to which the detector is transported relative to the specific transport position on the mounting area based on the detected values of the three or more electrostatic capacitances; Error to correct the conveying position data. In one embodiment, the curvature of the above-mentioned part of the edge of the bottom electrode is consistent with the curvature of the edge of the placement area.

以下,參照圖式對各種實施形態進行詳細說明。再者,於各圖式中,對相同或相當之部分標附相同符號。 首先,對具有用於處理圓盤狀之被加工物之處理裝置、及用於將被處理體搬送至該處理裝置之搬送裝置的處理系統進行說明。圖1係例示處理系統之圖。處理系統1具備台2a~2d、容器4a~4d、裝載模組LM、對準器AN、加載互鎖真空模組LL1、LL2、製程模組PM1~PM6、轉移模組TF、及控制部MC。再者,台2a~2d之個數、容器4a~4d之個數、加載互鎖真空模組LL1、LL2之個數、及製程模組PM1~PM6之個數並無限定,可為一個以上之任意個數。 台2a~2d沿裝載模組LM之一邊緣排列。容器4a~4d分別搭載於台2a~2d上。容器4a~4d之各者為例如被稱為FOUP(Front Opening Unified Pod,前開式晶圓盒)之容器。容器4a~4d之各者以將被加工物W收容於其中之方式而構成。被加工物W如晶圓般具有大致圓盤形狀。 裝載模組LM具有將大氣壓狀態之搬送空間於其內部劃分形成之腔室壁。於該搬送空間內設置有搬送裝置TU1。搬送裝置TU1例如為多關節機器人,且由控制部MC控制。搬送裝置TU1構成為於容器4a~4d與對準器AN之間、於對準器AN與加載互鎖真空模組LL1~LL2之間、於加載互鎖真空模組LL1~LL2與容器4a~4d之間搬送被加工物W。 對準器AN與裝載模組LM相連接。對準器AN以進行被加工物W之位置之調整(位置之校正)之方式而構成。圖2係例示對準器之立體圖。對準器AN具有支持台6T、驅動裝置6D、及感測器6S。支持台6T為能夠以於鉛直方向延伸之軸線為中心旋轉之台,且以將被加工物W支持於其上之方式而構成。支持台6T藉由驅動裝置6D而旋轉。驅動裝置6D由控制部MC控制。若藉由來自驅動裝置6D之動力而使支持台6T旋轉,則載置於該支持台6T上之被加工物W亦旋轉。 感測器6S為光學感測器,於被加工物W旋轉期間,檢測被加工物W之邊緣。感測器6S根據邊緣之檢測結果,檢測被加工物W之凹口WN(或另一標記物)之角度位置相對於基準角度位置之偏移量、及被加工物W之中心位置相對於基準位置之偏移量。感測器6S將凹口WN之角度位置之偏移量及被加工物W之中心位置之偏移量輸出至控制部MC。控制部MC基於凹口WN之角度位置之偏移量,算出用於將凹口WN之角度位置修正為基準角度位置的支持台6T之旋轉量。控制部MC以使支持台6T旋轉相當於該旋轉量之程度之方式控制驅動裝置6D。藉此,可將凹口WN之角度位置修正為基準角度位置。又,控制部MC以被加工物W之中心位置與搬送裝置TU1之末端效應器(ende ffector)上之特定位置一致之方式,基於被加工物W之中心位置之偏移量,對自對準器AN接收被加工物W時之搬送裝置TU1之末端效應器之位置進行控制。 返回圖1,加載互鎖真空模組LL1及加載互鎖真空模組LL2分別設置於裝載模組LM與轉移模組TF之間。加載互鎖真空模組LL1及加載互鎖真空模組LL2分別提供預減壓室。 轉移模組TF經由閘閥而與加載互鎖真空模組LL1及加載互鎖真空模組LL2相連接。轉移模組TF提供可減壓之減壓室。於該減壓室設置有搬送裝置TU2。搬送裝置TU2例如為多關節機器人,且由控制部MC控制。搬送裝置TU2構成為,於加載互鎖真空模組LL1~LL2與製程模組PM1~PM6之間、及於製程模組PM1~PM6中任意兩個製程模組之間搬送被加工物W。 製程模組PM1~PM6經由閘閥而與轉移模組TF相連接。製程模組PM1~PM6之各者為以對被加工物W進行電漿處理等專用之處理之方式而構成之處理裝置。 於該處理系統1中進行被加工物W之處理時之一連串之動作如下述般例示。裝載模組LM之搬送裝置TU1自容器4a~4d之任一者中取出被加工物W,且將該被加工物W搬送至對準器AN。繼而,搬送裝置TU1自對準器AN中取出位置經調整之被加工物W,且將該被加工物W搬送至加載互鎖真空模組LL1及加載互鎖真空模組LL2中之一加載互鎖真空模組。繼而,一加載互鎖真空模組將預減壓室之壓力減壓至特定之壓力。繼而,轉移模組TF之搬送裝置TU2自一加載互鎖真空模組中取出被加工物W,並將該被加工物W搬送至製程模組PM1~PM6中之任一者。繼而,製程模組PM1~PM6中一個以上之製程模組對被加工物W進行處理。然後,搬送裝置TU2將處理後之被加工物W自製程模組搬送至加載互鎖真空模組LL1及加載互鎖真空模組LL2中之一加載互鎖真空模組。繼而,搬送裝置TU1將被加工物W自一加載互鎖真空模組搬送至容器4a~4d中之任一者。 該處理系統1如上所述般具備控制部MC。控制部MC可為具備處理器、記憶體等記憶裝置、顯示裝置、輸入輸出裝置、通信裝置等之電腦。上述處理系統1之一連串之動作係藉由依據記憶裝置所記憶之程式的、控制部MC對處理系統1之各部之控制而實現。 圖3係表示可用作製程模組PM1~PM6中之任一者之電漿處理裝置之一例之圖。圖3所示之電漿處理裝置10為電容耦合型電漿蝕刻裝置。電漿處理裝置10具備大致圓筒形狀之腔室本體12。腔室本體12係例如由鋁所形成,且可對其內壁面實施陽極氧化處理。該腔室本體12接地。 於腔室本體12之底部上設置有大致圓筒形狀之支持部14。支持部14係例如由絕緣材料構成。支持部14設置於腔室本體12內,且自腔室本體12之底部向上方延伸。又,於由腔室本體12所提供之腔室S內設置有載置台PD。載置台PD由支持部14支持。 載置台PD具有下部電極LE及靜電吸盤ESC。下部電極LE包含第1平板18a及第2平板18b。第1平板18a及第2平板18b例如係由鋁等金屬構成,且呈大致圓盤形狀。第2平板18b設置於第1平板18a上,且與第1平板18a電性連接。 於第2平板18b上設置有靜電吸盤ESC。靜電吸盤ESC具有將作為導電膜之電極配置於一對絕緣層或絕緣片之間之構造,且具有大致圓盤形狀。靜電吸盤ESC之電極經由開關23與直流電源22電性連接。該靜電吸盤ESC利用藉由來自直流電源22之直流電壓而產生之庫侖力等靜電力,將被加工物W吸引至該靜電吸盤ESC。藉此,靜電吸盤ESC能夠保持被加工物W。 於第2平板18b之周緣部上設置有聚焦環FR。該聚焦環FR以包圍被加工物W之邊緣及靜電吸盤ESC之方式而設置。聚焦環FR具有第1部分P1及第2部分P2(參照圖8)。第1部分P1及第2部分P2具有環狀板形狀。第2部分P2設置於第1部分P1上。第2部分P2之內緣P2i具有較第1部分P1之內緣P1i之直徑大的直徑。被加工物W以其邊緣區域位於聚焦環FR之第1部分P1上之方式載置於靜電吸盤ESC上。該聚焦環FR可由矽、碳化矽、氧化矽等各種材料中之任一者所形成。 於第2平板18b之內部設置有冷媒流路24。冷媒流路24構成調溫機構。冷媒自設置於腔室本體12之外部之冷卻單元經由配管26a供給至冷媒流路24。被供給至冷媒流路24之冷媒經由配管26b返回冷卻單元。如此,於冷媒流路24與冷卻單元之間,循環有冷媒。藉由控制該冷媒之溫度,而控制由靜電吸盤ESC支持之被加工物W之溫度。 於載置台PD形成有貫通該載置台PD之複數個(例如,三個)貫通孔25。複數根(例如,3根)頂起銷25a分別插入至該等複數個貫通孔25。再者,於圖3中,繪製出插入有一根頂起銷25a之一個貫通孔25。 圖4係表示構成載置台PD之靜電吸盤ESC之俯視圖。如圖4所示般,複數個頂起銷25a沿著與共用靜電吸盤ESC之中心軸線、即載置台PD之中心軸線之圓正交且於鉛直方向延伸之複數條直線而配置。複數個頂起銷25a可相對於該中心軸線於圓周方向上以等間隔配置。該等頂起銷25a例如支持於藉由致動器而升降之連桿。頂起銷25a於其前端向靜電吸盤ESC之上方突出之狀態下將被加工物W支持於該頂起銷25a之前端。之後,藉由頂起銷25a下降,將被加工物W載置於靜電吸盤ESC上。又,於被加工物W之電漿處理後,藉由頂起銷25a上升而使被加工物W自靜電吸盤ESC分離。即,頂起銷25a係用於被加工物W之裝載及卸載。 又,於電漿處理裝置10設置有氣體供給管線28。氣體供給管線28將來自傳熱氣體供給機構之傳熱氣體,例如He氣體供給至靜電吸盤ESC之上表面與被加工物W之背面之間。 又,電漿處理裝置10具備上部電極30。上部電極30於載置台PD之上方以與該載置台PD相向之方式而配置。上部電極30經由絕緣性遮蔽構件32,支持於腔室本體12之上部。上部電極30可包含頂板34及支持體36。頂板34面向腔室S。於該頂板34設置有複數個氣體噴出孔34a。該頂板34可由矽或石英所形成。或者,頂板34可藉由在鋁製之母材之表面形成氧化釔等耐電漿性之膜而構成。 支持體36裝卸自如地支持頂板34。支持體36例如可由鋁等導電性材料而構成。該支持體36可具有水冷構造。於支持體36之內部,設置有氣體擴散室36a。與氣體噴出孔34a連通之複數個氣體通流孔36b,自該氣體擴散室36a向下方延伸。又,於支持體36,形成有向氣體擴散室36a引導處理氣體之氣體導入口36c。於該氣體導入口36c連接有氣體供給管38。 於氣體供給管38,經由閥群42及流量控制器群44連接有氣體源群40。氣體源群40包含複數種氣體用之複數個氣體源。閥群42包含複數個閥。流量控制器群44包含質量流量控制器等複數個流量控制器。氣體源群40之複數個氣體源分別經由閥群42之對應之閥及流量控制器群44之對應之流量控制器而與氣體供給管38相連接。 又,於電漿處理裝置10中,沿腔室本體12之內壁裝卸自如地設置有遮罩46。遮罩46亦設置於支持部14之外周。遮罩46防止蝕刻副產物附著於腔室本體12。遮罩46可藉由對鋁材被覆氧化釔等陶瓷而構成。 於腔室本體12之底部側、且支持部14與腔室本體12之側壁之間設置有排氣平板48。排氣平板48可藉由例如對鋁材被覆氧化釔等陶瓷而構成。於排氣平板48形成有於其板厚方向貫通之複數個孔。於該排氣平板48之下方、且於腔室本體12設置有排氣口12e。排氣口12e經由排氣管52與排氣裝置50相連接。排氣裝置50具有壓力調整閥及渦輪分子泵等真空泵,能夠將腔室本體12內之空間減壓至所需之真空度。又,於腔室本體12之側壁設置有用於被加工物W之搬入或搬出之開口12g。開口12g可藉由閘閥54開啟及關閉。 又,電漿處理裝置10進而具備第1高頻電源62及第2高頻電源64。第1高頻電源62為產生出電漿產生用之第1高頻的電源,例如,產生具有27~100 MHz之頻率之高頻。第1高頻電源62經由整合器66而與上部電極30相連接。整合器66具有用於使第1高頻電源62之輸出阻抗與負載側(上部電極30側)之輸入阻抗整合的電路。再者,第1高頻電源62亦可經由整合器66而與下部電極LE相連接。 第2高頻電源64係產生用於將離子引入至被加工物W之第2高頻的電源,例如,產生400 kHz~13.56 MHz之範圍內之頻率之高頻。第2高頻電源64經由整合器68而與下部電極LE相連接。整合器68具有用於將第2高頻電源64之輸出阻抗與負載側(下部電極LE側)之輸入阻抗整合的電路。 於該電漿處理裝置10中,將來自選自複數個氣體源中之一個以上之氣體源之氣體供給至腔室S。又,藉由排氣裝置50將腔室S之壓力設定為特定之壓力。進而,藉由來自第1高頻電源62之第1高頻,激發腔室S內之氣體。藉此產生電漿。然後,利用所產生之活性物質對被加工物W進行處理。再者,亦可視需要藉由基於第2高頻電源64之第2高頻之偏壓而將離子引入至被加工物W。 以下,對檢測器進行說明。圖5係例示檢測器之立體圖。圖6係表示自底面側觀察圖5所示之檢測器之俯視圖。圖5及圖6所示之檢測器100具備基底基板102。基底基板102例如由矽所形成,且具有與被加工物W之形狀相同之形狀、即大致圓盤形狀。基底基板102之直徑為與被加工物W之直徑相同之直徑,例如300 mm。檢測器100之形狀及尺寸係藉由該基底基板102之形狀及尺寸而界定。因此,檢測器100具有與被加工物W之形狀相同之形狀,且具有與被加工物W之尺寸相同之尺寸。又,於基底基板102之邊緣形成有凹口102N(或另一標記物)。 基底基板102具有下側部分102a及上側部分102b。下側部分102a係當檢測器100配置於靜電吸盤ESC之上方時位於較上側部分102b更靠近靜電吸盤ESC之部分。於基底基板102之下側部分102a,設置有靜電電容檢測用之複數個第1感測器104A~104D。再者,設置於檢測器100之第1感測器之個數可為三個以上之任意個數。複數個第1感測器104A~104D沿基底基板102之邊緣,例如於該邊緣之全周上等間隔地排列。具體而言,以複數個第1感測器104A~104D各自之前側端面104f沿基底基板102之下側部分102a之邊緣之方式而設置。 基底基板102之上側部分102b之上表面提供有凹部102r。凹部102r包含中央區域102c及複數個放射區域102h。中央區域102c為與中心軸線AX100交叉之區域。中心軸線AX100為於板厚方向通過基底基板102之中心之軸線。於中央區域102c設置有電路基板106。複數個放射區域102h係自中央區域102c相對於中心軸線AX100於放射方向上延伸至配置有複數個第1感測器104A~104D之區域之上方。於複數個放射區域102h設置有配線群108A~108D。配線群108A~108D將複數個第1感測器104A~104D與電路基板106分別電性連接。再者,複數個第1感測器104A~104D亦可設置於基底基板102之上側部分102b。 又,於基底基板102,設置有靜電電容檢測用之複數個第2感測器105A~105C。再者,設置於檢測器100之第2感測器之個數可為一個以上之任意個數。於一實施形態中,三個第2感測器105A~105C沿共用基底基板102之中心軸線AX100之圓,於圓周方向上以等間隔配置。再者,第2感測器105A~105C各自之下述底部電極與中心軸線AX100之間之距離可和載置台PD之中心軸線與頂起銷25a之各者之間之距離大致一致。 以下,對第1感測器進行詳細說明。圖7係表示感測器之一例之立體圖。圖8係沿圖7之VIII-VIII線而獲得之剖視圖,與感測器一起示出檢測器之基底基板及聚焦環。圖9係沿圖8之IX-IX線而獲得之剖視圖。圖7~圖9所示之第1感測器104係作為檢測器100之複數個第1感測器104A~104D而被利用之感測器,於一例中構成為晶片狀之零件。再者,於下述說明中,適當參照XYZ正交座標系統。X方向表示第1感測器104之前方向,Y方向表示與X方向正交之一方向且第1感測器104之寬度方向,Z方向表示與X方向及Y方向正交之方向且第1感測器104之上方向。 如圖7~圖9所示般,第1感測器104具有前側端面104f、上表面104t、下表面104b、一對側面104s、及後側端面104r。前側端面104f於X方向上構成第1感測器104之前側表面。第1感測器104以前側端面104f相對於中心軸線AX100朝向放射方向之方式搭載於檢測器100之基底基板102(參照圖5)。又,於第1感測器104搭載於基底基板102之狀態下,前側端面104f沿基底基板102之邊緣延伸。因此,於檢測器100配置於靜電吸盤ESC上之狀態下,前側端面104f與聚焦環FR之內緣相向。 後側端面104r於X方向上構成第1感測器104之後側表面。於第1感測器104搭載於基底基板102之狀態下,後側端面104r位於較前側端面104f更靠近中心軸線AX100。上表面104t於Z方向上構成第1感測器104之上側表面。下表面104b於Z方向上構成第1感測器104之下側表面。又,一對側面104s於Y方向上構成第1感測器104之表面。 第1感測器104具有電極(側部電極)143。第1感測器104亦可進而具有電極141及電極142。電極141由導體所形成。電極141具有第1部分141a。如圖7及圖8所示般,第1部分141a於X方向及Y方向上延伸。 電極142由導體所形成。電極142具有第2部分142a。第2部分142a於第1部分141a之上延伸。於第1感測器104內,電極142與電極141絕緣。如圖7及圖8所示般,第2部分142a於第1部分141a之上,於X方向及Y方向上延伸。 電極143係由導體所形成之感測器電極。電極143設置於電極141之第1部分141a及電極142之第2部分142a之上。電極143於第1感測器104內與電極141及電極142絕緣。電極143具有前表面143f。該前表面143f於與第1部分141a及第2部分142a交叉之方向上延伸。又,前表面143f沿第1感測器104之前側端面104f延伸。於一實施形態中,前表面143f構成第1感測器104之前側端面104f之一部分。或者,第1感測器104亦可於電極143之前表面143f之前側具有覆蓋該前表面143f之絕緣膜。 如圖7~圖9所示般,電極141及電極142亦可以朝配置有電極143之前表面143f之區域側(X方向)開口且包圍電極143之周圍之方式而延伸。即,電極141及電極142亦可以於電極143之上方、後方、及側方包圍該電極143之方式而延伸。 又,第1感測器104之前側端面104f可為具有特定之曲率之曲面。於此情形時,前側端面104f於該前側端面之任意之位置具有固定之曲率。前側端面104f之曲率可為檢測器100之中心軸線AX100與該前側端面104f之間之距離之倒數。該第1感測器104以前側端面104f之曲率中心與中心軸線AX100一致之方式,搭載於基底基板102。 又,第1感測器104可進而具有基板部144、絕緣區域146~148、焊墊151~153、及穿孔配線154。基板部144具有本體部144m及表層部144f。本體部144m例如由矽所形成。表層部144f覆蓋本體部144m之表面。表層部144f由絕緣材料所形成。表層部144f例如為矽之熱氧化膜。 電極142之第2部分142a於基板部144之下方延伸。於基板部144與電極142之間,設置有絕緣區域146。絕緣區域146例如由SiO2 、SiN、Al2 O3 、或聚醯亞胺所形成。 電極141之第1部分141a於基板部144及電極142之第2部分142a之下方延伸。於電極141與電極142之間設置有絕緣區域147。絕緣區域147例如由SiO2 、SiN、Al2 O3 、或聚醯亞胺所形成。 絕緣區域148構成第1感測器104之上表面104t。絕緣區域148由例如SiO2 、SiN、Al2 O3 、或聚醯亞胺所形成。於該絕緣區域148形成有焊墊151~153。焊墊153由導體形成,且與電極143相連接。具體而言,藉由貫通絕緣區域146、電極142、絕緣區域147、及電極141之穿孔配線154,電極143與焊墊153相互連接。於穿孔配線154之周圍設置有絕緣體,該穿孔配線154與電極141及電極142絕緣。焊墊153經由設置於基底基板102內之穿孔配線123、及設置於凹部102r之放射區域102h之配線183,而與電路基板106相連接。焊墊151及焊墊152亦同樣地由導體所形成。焊墊151及焊墊152分別經由對應之穿孔配線而與電極141、電極142相連接。又,焊墊151及焊墊152經由設置於基底基板102之對應之穿孔配線及設置於凹部102r之放射區域102h之對應之配線,而與電路基板106相連接。 以下,對第2感測器進行詳細說明。圖10係沿圖6之X-X線而獲得之剖視圖。再者,於圖10中,示出藉由頂起銷25a支持檢測器100之狀態。以下參照圖5、圖6、及圖10。第2感測器105A~105C之各者包含底部電極161。於一實施形態中,第2感測器105A~105C之各者進而包含周邊電極162a~162d、及貫通電極165a~165e。底部電極161及周邊電極162a~162d沿基底基板102之底面而形成。貫通電極165a~165e貫通基底基板102。底部電極161、周邊電極162a~162d、及貫通電極165a~165e由導體所形成。 底部電極161可具有圓形狀。底部電極161之大小例如為與頂起銷25a之上端面之大小大致相同。周邊電極162a~162d排列於包圍底部電極161之圓上。周邊電極162a~162d之各者具有藉由共用底部電極161之中心且具有不同半徑之兩個圓弧而界定之平面形狀。又,周邊電極162a~162d相對於底部電極161之中心於圓周方向上排列。於基底基板102之底面形成有絕緣膜169。絕緣膜169覆蓋底部電極161及周邊電極162a~162d。該絕緣膜169由例如SiO2 、SiN、Al2 O3 、或聚醯亞胺所形成。 複數個貫通電極165a~165e之一端分別與周邊電極162a~162d及底部電極161相連接。又,複數個貫通電極165a~165e各自之另一端與電路基板106電性連接(參照圖5)。複數個貫通電極165a~165e可使用例如TSV(Through-Silicon Via,矽穿孔)技術而形成。 以下,對電路基板106之構成進行說明。圖11係例示檢測器之電路基板之構成之圖。如圖11所示般,電路基板106具有高頻振盪器171、複數個C/V轉換電路172A~172D、複數個C/V轉換電路180A~180O、A/D轉換器173、處理器174、記憶裝置175、通信裝置176、及電源177。 複數個第1感測器104A~104D之各者經由複數個配線群108A~108D中對應之配線群,而與電路基板106相連接。又,複數個第1感測器104A~104D之各者經由對應之配線群所包含之若干配線,而與複數個C/V轉換電路172A~172D中對應之C/V轉換電路相連接。又,複數個第2感測器105A~105C之各者經由複數條配線184,而與複數個C/V轉換電路180A~180O中對應之C/V轉換電路(於一實施形態中為五個C/V轉換電路)相連接。以下,對與複數個第1感測器104A~104D之各者相同構成的一個第1感測器104、與複數個配線群108A~108D之各者相同構成的一個配線群108、與複數個C/V轉換電路172A~172D之各者相同構成的一個C/V轉換電路172、與複數個第2感測器105A~105C之各者相同構成的一個第2感測器105、及與複數個C/V轉換電路180A~180O之各者相同構成的一個C/V轉換電路180進行說明。 配線群108包含配線181~183。配線181之一端與連接於電極141之焊墊151相連接。該配線181與連接於電路基板106之地線GC之接地電位線GL相連接。再者,配線181亦可經由開關SWG而與接地電位線GL相連接。又,配線182之一端與連接於電極142之焊墊152相連接,配線182之另一端與C/V轉換電路172相連接。又,配線183之一端與連接於電極143之焊墊153相連接,且配線183之另一端與C/V轉換電路172相連接。 第2感測器105之周邊電極162a~162d及底部電極161對電路基板106個別地連接。即,分別連接於周邊電極162a~162d之貫通電極165a~165d及連接於底部電極161之貫通電極165e經由個別之配線184,分別與複數個C/V轉換電路180(於一實施形態中為五個C/V轉換電路)相連接。 高頻振盪器171以與電池等電源177相連接、且接收來自該電源177之電力而產生高頻信號之方式而構成。再者,電源177亦與處理器174、記憶裝置175、及通信裝置176相連接。高頻振盪器171具有複數條輸出線。高頻振盪器171經由複數條輸出線,將所產生之高頻信號賦予至配線182、配線183、及配線184。因此,高頻振盪器171與第1感測器104之電極142及電極143電性連接,來自該高頻振盪器171之高頻信號被賦予至電極142及電極143。又,高頻振盪器171與第2感測器105之底部電極161及周邊電極162a~162d電性連接,來自該高頻振盪器171之高頻信號被賦予至底部電極161及周邊電極162a~162d。 於C/V轉換電路172之輸入連接有配線182及配線183。即,於C/V轉換電路172之輸入,連接有第1感測器104之電極142及電極143。又,於複數個C/V轉換電路180之輸入,分別連接有底部電極161及周邊電極162a~162d。C/V轉換電路172及C/V轉換電路180之各者根據其輸入中之電壓振幅產生電壓信號。電壓信號表示與該輸入相連接之電極之靜電電容。C/V轉換電路172及C/V轉換電路180之各者輸出該電壓信號。再者,與C/V轉換電路172相連接之電極之靜電電容越大,該C/V轉換電路172所輸出之電壓信號之電壓之大小變得越大。同樣地,與C/V轉換電路180相連接之電極之靜電電容越大,該C/V轉換電路180所輸出之電壓信號之電壓之大小變得越大。 於A/D轉換器173之輸入,連接有複數個C/V轉換電路172A~172D及複數個C/V轉換電路180A~180O之輸出。又,A/D轉換器173與處理器174相連接。A/D轉換器173由來自處理器174之控制信號控制,而將複數個C/V轉換電路172A~172D之輸出信號(電壓信號)及複數個C/V轉換電路180A~180O之輸出信號(電壓信號)轉換為數位值。即,A/D轉換器173產生表示第1感測器104A~104D各自之電極143之靜電電容的第1檢測值。又,A/D轉換器173產生表示第2感測器105A~105C各自之底部電極161之靜電電容的第2檢測值,並且產生表示第2感測器105A~105C各自之周邊電極162a~162d各自之靜電電容的複數個第3檢測值。A/D轉換器173向處理器174輸出第1檢測值、第2檢測值、及第3檢測值。 於處理器174連接有記憶裝置175。記憶裝置175為揮發性記憶體等記憶裝置,以記憶下述之檢測資料之方式而構成。又,於處理器174連接有另一記憶裝置178。記憶裝置178為非揮發性記憶體等記憶裝置,記憶有利用處理器174而讀取並執行之程式。 通信裝置176為依據任意之無線通信標準之通信裝置。例如,通信裝置176係依據Bluetooth(註冊商標)。通信裝置176係以將記憶於記憶裝置175之檢測資料無線發送之方式而構成。 處理器174以藉由執行上述程式而控制檢測器100之各部之方式構成。例如,處理器174控制自高頻振盪器171對電極142、電極143、底部電極161、及周邊電極162a~162d之高頻信號之供給、自電源177對記憶裝置175之電力供給、及自電源177對通信裝置176之電力供給等。進而,處理器174藉由執行上述程式,而執行第1~第3檢測值之獲得、第1~第3檢測值於記憶裝置175中之記憶、及第1~第3檢測值之發送等。 於以上所說明之檢測器100中,藉由第1感測器104A~104D所提供之複數個電極143(側部電極),係沿基底基板102之邊緣而排列。於檢測器100配置於由聚焦環FR所包圍之區域之狀態下,複數個電極143與聚焦環FR之內緣相向。根據該等電極143中之電壓振幅而產生之複數個第1檢測值,表示反映複數個電極143分別與聚焦環之間之距離的靜電電容。再者,靜電電容C以C=εS/d表示。ε為電極143之前表面143f與聚焦環FR之內緣之間之介質之介電常數,S為電極143之前表面143f之面積,d可視為電極143之前表面143f與聚焦環FR之內緣之間之距離。因此,根據檢測器100,可獲得反映模擬被加工物W之該檢測器100與聚焦環FR之相對位置關係的檢測資料。例如,電極143之前表面143f與聚焦環FR之內緣之間之距離越大,藉由檢測器100而獲得之複數個第1檢測值變得越小。 又,於檢測器100中,第2感測器105A~105C各自之底部電極161沿基底基板102之底面配置。根據底部電極161中之電壓振幅而產生之第2檢測值表示底部電極161與位於檢測器100之下方之物體之間的靜電電容。即,第2檢測值反映出底部電極161與處於檢測器100之下方之物體的相對位置關係。於一實施形態中,第2檢測值反映出底部電極161與作為處於檢測器100之下方之物體之頂起銷25a的相對位置關係。具體而言,於底部電極161與頂起銷25a之前端相向時,第2檢測值變大。另一方面,於底部電極161之位置自頂起銷25a之前端位置偏離之情形時,第2檢測值變小。如上所述般,第2感測器105A~105C各自之底部電極161與檢測器100之中心軸線AX100之間之位置關係和頂起銷25a之各者與載置台PD之中心軸線之位置關係大致一致。因此,於第2檢測值為特定值以上之值之情形時,可確認,藉由頂起銷25a之下降,檢測器100配置於由聚焦環FR所包圍之區域。因此,根據第2檢測值,可確認檢測器100是否於載置台PD上配置在由聚焦環FR所包圍之區域內。藉由使用該第2檢測值,可確認上述第1檢測值之可靠性。因此,根據檢測器100,能夠獲得反映模擬被加工物W之該檢測器100與聚焦環FR之位置關係的可靠性較高之資料。 又,於第2感測器105A~105C之各者,以包圍底部電極161之方式設置有周邊電極162a~162d。藉由將根據該等周邊電極162a~162d之各者中之電壓振幅而求出之複數個第3檢測值與第2檢測值一起使用,可更準確地確認檢測器100是否於載置台PD上配置在由聚焦環FR所包圍之區域內。 又,如上所述般,於搭載於檢測器100之第1感測器104中,電極143(感測器電極)設置於電極141之上,且於電極141與電極143之間介置有電極142之第2部分。於利用該第1感測器104時,開關SWG關閉,將電極141之電位設置為接地電位。然後,向電極142及電極143供給高頻信號。此時,電極143之電壓振幅成為如下之電壓振幅:未受到來自相對於該電極143設置有電極141之方向、即第1感測器104之下方的靜電電容之影響,而是反映出特定方向、即電極143之前表面143f所朝向之方向(X方向)上之靜電電容。因此,根據第1感測器104,可對特定方向具有較高之指向性地檢測靜電電容。 又,電極141及電極142以於配置有電極143之前表面之區域側(X方向)開口、且包圍電極143之周圍之方式而延伸。因此,藉由電極141及電極142,電極143對除特定方向以外之方向遮蔽。因此,於靜電電容之檢測中,進一步提高第1感測器104對特定方向之指向性。 又,第1感測器104之前側端面104f係作為具有特定之曲率之曲面而構成,電極143之前表面143f沿前側端面104f延伸。因此,可將電極143之前表面143f之各位置與聚焦環FR之內緣之間的徑向之距離設定為大致等距離。因此,進一步提高靜電電容之檢測之精度。 以下,對能夠搭載於檢測器100之第1感測器之其他例進行說明。圖12係表示第1感測器之其他例之縱剖視圖。於圖12中,示出第1感測器204之縱剖視圖,又,與第1感測器204一起示出聚焦環FR。 第1感測器204具有電極241、電極242、及電極243。第1感測器204可進而具有基板部244及絕緣區域247。基板部244具有本體部244m及表層部244f。本體部244m例如由矽所形成。表層部244f覆蓋本體部244m之表面。表層部244f由絕緣材料所形成。表層部244f例如為矽之熱氧化膜。 基板部244具有上表面244a、下表面244b、及前側端面244c。電極242設置於基板部244之下表面244b之下方,且於X方向及Y方向上延伸。又,電極241經由絕緣區域247而設置於電極242之下方,且於X方向及Y方向上延伸。 基板部244之前側端面244c呈階狀地形成。前側端面244c之下側部分244d較該前側端面244c之上側部分244u更朝向聚焦環FR側突出。電極243沿前側端面244c之上側部分244u延伸。 於使用該第1感測器204作為檢測器100之感測器之情形時,電極241與配線181相連接,電極242與配線182相連接,電極243與配線183相連接。 於第1感測器204中,作為感測器電極之電極243藉由電極241及電極242而對第1感測器204之下方遮蔽。因此,根據該第1感測器204,能夠對特定方向、即電極243之前表面243f所朝向之方向(X方向)具有較高之指向性地檢測靜電電容。 以下,對能夠代替第2感測器105A~105C而搭載於檢測器100之第2感測器之其他例進行說明。圖13之(a)係自檢測器之底面側觀察表示其他例之第2感測器之複數個電極之俯視圖,圖13之(b)係自檢測器之上表面側觀察表示第2感測器之俯視圖。又,圖14係沿圖13之(b)之XIV-XIV線而獲得之剖視圖。再者,於圖14中,示出藉由頂起銷25a支持檢測器100之狀態。 第2感測器305包含複數個電極365。複數個電極365以自基底基板102之上表面向該基底基板102之板厚方向延伸之方式設置於基底基板102。於第2感測器305中,複數個電極365貫通基底基板102。複數個電極365之各者向基底基板102之底面側提供端面365a。複數個電極365之端面365a構成底部電極及複數個周邊電極。具體而言,如圖13之(a)所示般,於複數個電極365之端面365a之中,存在於中央之圓形之區域361內之若干個電極365之端面365a構成底部電極。又,存在於包圍區域361之周邊區域362a~362d之各者的若干個電極365之端面365a構成周邊電極。再者,於圖13所示之例中,周邊區域之個數為四個。該等周邊區域362a~362d藉由具有不同之半徑之二個圓弧而界定,且相對於區域361之中心於圓周方向上排列。如圖14所示般,於基底基板102之底面形成有絕緣膜169。該絕緣膜169覆蓋複數個電極365之端面365a。 於基底基板102之上表面,形成有分別與周邊區域362a~362d及區域361對向且分別具有與周邊區域362a~362d及區域361大致相同形狀之圖案電極366a~366e。於周邊區域362a中提供端面365a之電極365與圖案電極366a相連接。於周邊區域362b中提供端面365a之電極365與圖案電極366b相連接。於周邊區域362c中提供端面365a之電極365與圖案電極366c相連接。於周邊區域362d中提供端面365a之電極365與圖案電極366d相連接。又,於區域361中提供端面365a之電極365與圖案電極366e相連接。於上述第2感測器105A~105C各自之製作中,需要與貫通電極165a~165e分開地另外形成底部電極及周邊電極之步驟。另一方面,第2感測器305中,與貫通電極165a~165e同樣地於基底基板102之板厚方向上延伸之複數個電極365提供底部電極及周邊電極,故於第2感測器305之製作中,無需進行形成底部電極及周邊電極之另外之步驟。 以下,對能夠代替第2感測器105A~105C而搭載於檢測器100之第2感測器之進而其他例進行說明。圖15係表示第2感測器之進而其他例之剖視圖。 圖15所示之第2感測器405具有複數個電極465。複數個電極465以自基底基板102之上表面向該基底基板102之板厚方向延伸之方式設置於基底基板102。於第2感測器405中,複數個電極465於基底基板102之上表面與底面之間之中途提供端面465a。與第2感測器305之複數個電極365之端面365a同樣地,複數個電極465之端面465a構成底部電極及複數個周邊電極。於搭載第2感測器405之檢測器100中,基底基板102例如可為玻璃基板。於第2感測器405之製作中,亦無需進行另外形成底部電極及複數個周邊電極之步驟。 以下,對能夠代替第2感測器105A~105C而搭載於檢測器100之第2感測器之進而其他例進行說明。圖16係表示第2感測器之進而其他例之剖視圖。 圖16所示之第2感測器505與第2感測器305同樣地,具有配置於區域361及周邊區域362a~362d之各者之複數個電極365。而且,第2感測器505進而具有包圍電極370a~370e。包圍電極370a~370e由導體所形成,且於第2感測器505內與電極365絕緣。包圍電極370a以總括地包圍配置於周邊區域362a內之一群電極365之端面365a之方式沿基底基板之底面形成。於包圍電極370a連接有貫通基底基板之穿孔電極371a。又,包圍電極370b以總括地包圍配置於周邊區域362b內之一群電極365之端面365a之方式沿基底基板之底面形成。於包圍電極370b連接有貫通基底基板之穿孔電極371b。又,包圍電極370c以總括地包圍配置於周邊區域362c內之一群電極365之端面365a之方式沿基底基板之底面形成。於包圍電極370c連接有貫通基底基板之穿孔電極371c。又,包圍電極370d以總括地包圍配置於周邊區域362d內之一群電極365之端面365a之方式沿基底基板之底面形成。於包圍電極370d連接有貫通基底基板之穿孔電極371d。又,包圍電極370e以總括地包圍配置於區域361內之一群電極365之端面365a之方式沿基底基板之底面形成。於包圍電極370e連接有貫通基底基板之穿孔電極371e。於穿孔電極371a~371e之各者,電性連接有高頻振盪器171,且向包圍電極370a~370e之各者賦予高頻信號。於第2感測器505中,一群電極365之端面365a藉由包圍電極370a~370e中之包圍該一群電極365之端面365a之包圍電極,而對該包圍電極之外側遮蔽。因此,於靜電電容之檢測中,提高第2感測器505之指向性。 以上,對各種實施形態進行了說明,但並不限定於上述實施形態,而可構成各種變化態樣。例如,作為製程模組PM1~PM6之例,例示出電漿處理裝置,但製程模組PM1~PM6只要為利用靜電吸盤及聚焦環者,則可為任意之處理裝置。又,上述電漿處理裝置10為電容耦合型之電漿處理裝置,但可用作製程模組PM1~PM6之電漿處理裝置可為如感應耦合型之電漿處理裝置、利用微波等表面波之電漿處理裝置般任意之電漿處理裝置。 又,於上述實施形態中,複數個第2感測器之底部電極與檢測器100之中心軸線AX100之位置關係和載置台PD之中心軸線與頂起銷25a之位置關係大致一致,但複數個第2感測器之底部電極與檢測器100之中心軸線AX100之位置關係並不限定於此。例如,複數個第2感測器之底部電極之各者與檢測器100之中心軸線AX100之間之距離亦可和載置台PD之中心軸線與靜電吸盤之邊緣之間之距離大致一致。 以下,對此種另一實施形態之檢測器進行說明。即,對複數個第2感測器之底部電極之各者與檢測器之中心軸線AX100之間之距離和載置台PD之中心軸線與靜電吸盤之邊緣之間之距離大致一致之檢測器進行說明。再者,該另一實施形態之檢測器亦可於圖1所示之處理系統中使用。圖17係自底面側觀察表示檢測器之俯視圖。圖17所示之檢測器600具備基底基板102。於基底基板102之下側部分102a,設置有靜電電容檢測用之四個第1感測器104A~104D。又,於基底基板102之下側部分102a,代替圖6所示之第2感測器105A~105C,設置有四個第2感測器605A~605D。再者,設置於檢測器600之第2感測器之個數可為三個以上之任意個數。第2感測器605A~605D沿共用基底基板102之中心軸線AX100之圓,於圓周方向上以等間隔配置。又,第2感測器605A~605D及第1感測器104A~104D於圓周方向上交替地配置。四個第2感測器605A~605D之各者具有沿基底基板102之底面設置之底部電極606。 圖18係靜電吸盤之剖視圖,表示於靜電吸盤載置有被加工物之狀態。於一實施形態中,靜電吸盤ESC具有將作為導電膜之電極E配置於一對絕緣層或絕緣片間之構造,且具有大致圓盤形狀。靜電吸盤ESC具有供被加工物W及檢測器600載置於其上之載置區域R。載置區域R具有圓形之邊緣。被加工物W及檢測器600具有較載置區域R之外徑大的外徑。 圖19係圖17之局部放大圖,表示一個第2感測器。底部電極606之邊緣局部地呈圓弧形狀。即,底部電極606具有藉由以中心軸線AX100為中心且具有不同半徑之二個圓弧606a、606b而界定之平面形狀。複數個第2感測器605A~605D各自之底部電極606中之徑向外側的圓弧606b於共同之圓上延伸。又,複數個第2感測器605A~605D各自之底部電極606中之徑向內側的圓弧606a於其他共同之圓上延伸。底部電極606之邊緣之一部分之曲率與靜電吸盤ESC(載置區域R)之邊緣之曲率一致。於一實施形態中,形成底部電極606中之徑向外側之邊緣的圓弧606b之曲率與靜電吸盤ESC之載置區域R之邊緣之曲率一致。再者,圓弧606b之曲率中心、即圓弧606b於其上延伸之圓之中心共用中心軸線AX100。 於一實施形態中,第2感測器605A~605D之各者進而包含包圍底部電極606之電極607。電極607呈框狀,且遍及底部電極606之全周地包圍底部電極606。電極607與底部電極606以於其等之間介置絕緣區域608之方式相互隔開。又,於一實施形態中,第2感測器605A~605D之各者於電極607之外側進而包含包圍該電極607之電極609。電極609呈框狀,且遍及電極607之全周地包圍電極607。電極607與電極609以於該等之間介置絕緣區域610之方式相互隔開。 圖20係例示檢測器之電路基板的構成之圖。檢測器600具有電路基板106A。電路基板106A相當於檢測器100中之電路基板106。如圖20所示般,電路基板106A具有高頻振盪器171、複數個C/V轉換電路172A~172D、複數個C/V轉換電路680A~680D、A/D轉換器173、處理器174、記憶裝置175、通信裝置176、電源177、及記憶裝置178。 第2感測器605A~605D之底部電極606經由對應之配線681,與C/V轉換電路680A~680D中對應之C/V轉換電路相連接。又,第2感測器605A~605D各自之電極607經由對應之配線682,與C/V轉換電路680A~680D中對應之C/V轉換電路相連接。第2感測器605A~605D各自之底部電極606及電極607以向其等賦予來自高頻振盪器171之高頻信號之方式,與高頻振盪器171電性連接。C/V轉換電路680A~680D之各者構成為,根據其輸入中之電壓振幅產生表示連接於該輸入之電極之靜電電容的電壓信號,且輸出該電壓信號。又,第2感測器605A~605D各自之電極609經由對應之配線683,與接地電位線GL相連接。再者,配線683亦可經由開關SWG,與接地電位線GL相連接。 於A/D轉換器173之輸入,連接有複數個C/V轉換電路680A~680D之輸出。藉此,A/D轉換器173產生表示底部電極606之靜電電容之數位值(檢測值)。A/D轉換器173將所產生之數位值輸出至處理器174。 以下,對使用檢測器600來校正處理系統1中之搬送位置資料之方法進行說明。再者,如上所述,處理系統1中之搬送裝置TU2由控制部MC控制。於一實施形態中,搬送裝置TU2可基於自控制部MC發送之搬送位置資料,將被加工物W及檢測器600搬送至靜電吸盤ESC之載置區域R上。圖21係表示一實施形態之處理系統之搬送裝置之校正方法的流程圖。 於圖21所示之方法MT中,首先執行步驟ST1。於步驟ST1中,利用搬送裝置TU2,將檢測器600搬送至根據搬送位置資料而特定出之載置區域R上之位置。具體而言,搬送裝置TU1將檢測器600搬送至加載互鎖真空模組LL1及加載互鎖真空模組LL2中之一加載互鎖真空模組。然後,搬送裝置TU2基於搬送位置資料,將檢測器600自一加載互鎖真空模組搬送至製程模組PM1~PM6中之任一者,且將該檢測器600載置於靜電吸盤ESC之載置區域R上。搬送位置資料為例如以檢測器600之中心軸線AX100之位置與載置區域R之中心位置一致之方式而預先設定之座標資料。 於接下來之步驟ST2中,檢測器600進行靜電電容之檢測。具體而言,檢測器600獲得和靜電吸盤ESC之載置區域R與第2感測器605A~605D各自之底部電極606之間的靜電電容之大小對應之複數個數位值(檢測值),且將該複數個數位值記憶於記憶裝置175。再者,複數個數位值可於處理器174之控制下,於預先設定之時點獲得。於一實施形態中,亦可在藉由第2感測器605A~605D而進行之靜電電容之檢測的時點,執行藉由第1感測器104A~104D而進行之靜電電容之檢測。 於接下來之步驟ST3中,將檢測器600自製程模組搬出,返回至轉移模組TF、加載互鎖真空模組LL1、LL2、裝載模組LM及容器4a~4d中之任一者。於接下來之步驟ST4中,將檢測器600被搬送至之載置區域R上之位置與載置區域R上之特定之搬送位置的誤差導出。再者,特定之搬送位置可為載置區域R之中心位置。於一實施形態之步驟ST4中,首先,將記憶裝置175所記憶之複數個數位值發送至控制部MC。複數個數位值可根據來自控制部MC之指令而自通信裝置176發送至控制部MC,或亦可藉由基於設置於電路基板106A之計時器之計數的處理器174之控制,於特定之時點發送至控制部MC。繼而,控制部MC基於所接收之複數個數位值,導出檢測器600之搬送位置之誤差。於一實施形態中,控制部MC具有表示載置區域R上之檢測器600之搬送位置與藉由第2感測器605A~605D而獲得之數位值的關係之資料表。該資料表中登錄有例如載置區域R之各徑向上之底部電極606之位置與表示該位置處之底部電極606之靜電電容之數位值的關係。 圖22係表示檢測器相對於靜電吸盤之載置區域的搬送位置之圖。圖22之(a)表示於將檢測器600搬送至特定之搬送位置之情形時載置區域R與一個底部電極606之位置關係。圖22之(b)、(c)表示於將檢測器600搬送至偏離特定之搬送位置之情形時載置區域R與一個底部電極606之位置關係。如圖22之(b)所示般,於底部電極606相對於載置區域R向載置區域R之徑向之外側偏離之情形時,藉由底部電極606而檢測之靜電電容與將檢測器600搬送至特定之搬送位置之情形(圖22之(a))時之靜電電容相比變小。如圖22之(c)所示般,於底部電極606相對於載置區域R向載置區域R之徑向之內側偏離之情形時,由於電極E之影響,藉由底部電極606而檢測之靜電電容與將檢測器600搬送至特定之搬送位置之情形(圖22之(a))時之靜電電容相比變大。因此,藉由使用表示第2感測器605A~605D各自之底部電極606之靜電電容的數位值並參照資料表,能夠求出載置區域R之各徑向上之各底部電極606之偏移量。然後,能夠根據各徑向上之第2感測器605A~605D各自之底部電極606之偏移量,求出檢測器600之搬送位置之誤差。 於檢測器600之搬送位置之誤差大於特定之閾值之情形時,於接下來之步驟ST5中判定需要進行搬送位置資料之校正。於此情形時,於步驟ST6中,以去除誤差之方式藉由控制部MC來修正搬送位置資料。然後,於步驟ST7中,再次將檢測器600搬送至與之前檢測器600曾被搬送至之製程模組相同之製程模組,並再次執行步驟ST2~步驟ST5。另一方面,於檢測器600之搬送位置之誤差小於特定之閾值之情形時,於步驟ST5中判定無需進行搬送位置資料之校正。於此情形時,於步驟ST8中,判定是否向接下來檢測器600應被搬送至之另一製程模組搬送檢測器600。於剩餘有接下來檢測器600應被搬送至之另一製程模組之情形時,於接下來之步驟ST9中,將檢測器600搬送至該另一製程模組,並執行步驟ST2~步驟ST5。另一方面,於未剩餘有接下來檢測器600應被搬送至之另一製程模組之情形時,方法MT結束。 根據以如此之方式使用檢測器600之方法MT,在用於藉由搬送裝置TU2所進行之搬送之搬送位置資料之校正中可利用的複數個數位值由檢測器600提供。藉由使用該複數個數位值,可視需要校正搬送位置資料。藉由將以如此之方式校正之搬送位置資料使用於利用搬送裝置TU2所進行之被加工物W之搬送,可將被加工物W搬送至特定之搬送位置。 又,於一實施形態中,第2感測器605A~605D各自之底部電極606沿共用基底基板102之中心軸線AX100之圓而配置。於以基底基板102之中心軸線AX100與作為特定之搬送位置的載置區域R之中心一致之方式搬送檢測器600之情形時,表示第2感測器605A~605D各自之底部電極606之靜電電容的數位值理想上相同。因此,能夠容易地求出檢測器600之搬送位置之誤差。 又,第2感測器605A~605D各自之底部電極606的邊緣之一部分具有圓弧形狀,且於具有與載置區域R之直徑大致一致之直徑的圓上延伸。又,底部電極606之邊緣之該一部分之曲率與載置區域R之邊緣之曲率一致。因此,能夠精度良好地檢測出檢測器600之搬送位置與特定之搬送位置之間的各徑向上之偏移量。Hereinafter, various embodiments will be described in detail with reference to the drawings. Furthermore, in each drawing, the same or equivalent parts are marked with the same symbols. First, a description will be given of a processing system having a processing device for processing a disk-shaped object to be processed and a transport device for transporting the object to be processed to the processing device. Figure 1 is a diagram illustrating the processing system. The processing system 1 includes tables 2a to 2d, containers 4a to 4d, loading module LM, aligner AN, load lock vacuum modules LL1, LL2, process modules PM1 to PM6, transfer module TF, and control unit MC . Furthermore, the number of stations 2a~2d, the number of containers 4a~4d, the number of load lock vacuum modules LL1 and LL2, and the number of process modules PM1~PM6 are not limited, and can be more than one Any number of them. The tables 2a-2d are arranged along an edge of the loading module LM. The containers 4a to 4d are mounted on the tables 2a to 2d, respectively. Each of the containers 4a to 4d is, for example, a container called FOUP (Front Opening Unified Pod). Each of the containers 4a to 4d is configured to house the workpiece W therein. The workpiece W has a substantially disc shape like a wafer. The loading module LM has a chamber wall formed by dividing the conveying space in the atmospheric pressure state inside the loading module LM. A conveying device TU1 is installed in the conveying space. The transport device TU1 is, for example, a multi-joint robot, and is controlled by the control unit MC. The transfer device TU1 is configured between the containers 4a to 4d and the aligner AN, between the aligner AN and the load lock vacuum modules LL1 to LL2, and between the load lock vacuum modules LL1 to LL2 and the container 4a to The workpiece W is transferred between 4d. The aligner AN is connected to the loading module LM. The aligner AN is configured to adjust the position of the workpiece W (position correction). Fig. 2 is a perspective view illustrating the aligner. The aligner AN has a supporting table 6T, a driving device 6D, and a sensor 6S. The supporting table 6T is a table capable of rotating around an axis extending in the vertical direction, and is configured to support the workpiece W thereon. The support table 6T is rotated by the driving device 6D. The driving device 6D is controlled by the control unit MC. If the support table 6T is rotated by the power from the driving device 6D, the workpiece W placed on the support table 6T also rotates. The sensor 6S is an optical sensor that detects the edge of the workpiece W during the rotation of the workpiece W. The sensor 6S detects the deviation of the angular position of the notch WN (or another marker) of the workpiece W from the reference angular position and the center position of the workpiece W relative to the reference based on the detection result of the edge The offset of the position. The sensor 6S outputs the offset of the angular position of the notch WN and the offset of the center position of the workpiece W to the control unit MC. The control unit MC calculates the amount of rotation of the support base 6T for correcting the angular position of the notch WN to the reference angular position based on the amount of deviation of the angular position of the notch WN. The control unit MC controls the driving device 6D so as to rotate the support table 6T by an amount corresponding to the rotation amount. Thereby, the angular position of the notch WN can be corrected to the reference angular position. In addition, the control unit MC self-aligns the center position of the workpiece W with the specific position on the end effector (ende ffector) of the conveying device TU1 based on the offset of the center position of the workpiece W. The position of the end effector of the conveying device TU1 when the device AN receives the workpiece W is controlled. Returning to FIG. 1, the load lock vacuum module LL1 and the load lock vacuum module LL2 are respectively arranged between the load module LM and the transfer module TF. The load lock vacuum module LL1 and the load lock vacuum module LL2 respectively provide pre-decompression chambers. The transfer module TF is connected to the load lock vacuum module LL1 and the load lock vacuum module LL2 via a gate valve. The transfer module TF provides a decompression chamber that can be decompressed. The conveying device TU2 is installed in this decompression chamber. The transport device TU2 is, for example, a multi-joint robot, and is controlled by the control unit MC. The conveying device TU2 is configured to convey the workpiece W between the load lock vacuum modules LL1 to LL2 and the process modules PM1 to PM6, and between any two process modules of the process modules PM1 to PM6. The process modules PM1 to PM6 are connected to the transfer module TF through gate valves. Each of the process modules PM1 to PM6 is a processing device configured to perform special processing such as plasma processing on the workpiece W. A series of operations when processing the workpiece W in the processing system 1 is exemplified as follows. The transport device TU1 of the loading module LM takes out the workpiece W from any one of the containers 4a to 4d, and transports the workpiece W to the aligner AN. Then, the transfer device TU1 takes out the workpiece W whose position has been adjusted from the aligner AN, and transfers the workpiece W to one of the load lock vacuum module LL1 and the load lock vacuum module LL2. Lock the vacuum module. Then, a load lock vacuum module reduces the pressure in the pre-decompression chamber to a specific pressure. Then, the transfer device TU2 of the transfer module TF takes out the processed object W from a load lock vacuum module, and transports the processed object W to any one of the process modules PM1 to PM6. Then, one or more process modules among the process modules PM1 to PM6 process the workpiece W. Then, the transfer device TU2 transfers the processed object W self-process module to one of the load lock vacuum module LL1 and the load lock vacuum module LL2. Then, the conveying device TU1 conveys the workpiece W from a load lock vacuum module to any one of the containers 4a to 4d. The processing system 1 includes the control unit MC as described above. The control unit MC may be a computer equipped with a memory device such as a processor and a memory, a display device, an input/output device, and a communication device. A series of operations of the above-mentioned processing system 1 is realized by the control of the control unit MC on each part of the processing system 1 based on the program memorized by the memory device. FIG. 3 is a diagram showing an example of a plasma processing device that can be used as any of the process modules PM1 to PM6. The plasma processing apparatus 10 shown in FIG. 3 is a capacitive coupling type plasma etching apparatus. The plasma processing apparatus 10 includes a chamber body 12 having a substantially cylindrical shape. The chamber body 12 is formed of, for example, aluminum, and its inner wall surface can be anodized. The chamber body 12 is grounded. A support 14 having a substantially cylindrical shape is provided on the bottom of the chamber body 12. The supporting portion 14 is made of, for example, an insulating material. The supporting portion 14 is disposed in the chamber body 12 and extends upward from the bottom of the chamber body 12. In addition, a mounting table PD is provided in the chamber S provided by the chamber body 12. The mounting table PD is supported by the support unit 14. The mounting table PD has a lower electrode LE and an electrostatic chuck ESC. The lower electrode LE includes a first plate 18a and a second plate 18b. The first flat plate 18a and the second flat plate 18b are made of, for example, metal such as aluminum, and have a substantially disc shape. The second flat plate 18b is disposed on the first flat plate 18a, and is electrically connected to the first flat plate 18a. An electrostatic chuck ESC is provided on the second plate 18b. The electrostatic chuck ESC has a structure in which an electrode as a conductive film is arranged between a pair of insulating layers or insulating sheets, and has a substantially disc shape. The electrode of the electrostatic chuck ESC is electrically connected to the DC power supply 22 via the switch 23. The electrostatic chuck ESC uses electrostatic forces such as Coulomb force generated by the DC voltage from the DC power supply 22 to attract the workpiece W to the electrostatic chuck ESC. Thereby, the electrostatic chuck ESC can hold the workpiece W. A focus ring FR is provided on the peripheral edge of the second flat plate 18b. The focus ring FR is set so as to surround the edge of the workpiece W and the electrostatic chuck ESC. The focus ring FR has a first part P1 and a second part P2 (refer to FIG. 8). The first part P1 and the second part P2 have an annular plate shape. The second part P2 is provided on the first part P1. The inner edge P2i of the second portion P2 has a larger diameter than the inner edge P1i of the first portion P1. The workpiece W is placed on the electrostatic chuck ESC so that its edge area is located on the first portion P1 of the focus ring FR. The focus ring FR can be formed of any of various materials such as silicon, silicon carbide, and silicon oxide. A refrigerant flow path 24 is provided inside the second plate 18b. The refrigerant flow path 24 constitutes a temperature adjustment mechanism. The refrigerant is supplied to the refrigerant flow path 24 from the cooling unit provided outside the chamber body 12 via the pipe 26a. The refrigerant supplied to the refrigerant flow path 24 returns to the cooling unit via the pipe 26b. In this way, the refrigerant circulates between the refrigerant flow path 24 and the cooling unit. By controlling the temperature of the refrigerant, the temperature of the workpiece W supported by the electrostatic chuck ESC is controlled. The mounting table PD is formed with a plurality of (for example, three) through holes 25 penetrating the mounting table PD. A plurality of (for example, three) jacking pins 25a are inserted into the plurality of through holes 25, respectively. Furthermore, in FIG. 3, a through hole 25 into which a jacking pin 25a is inserted is drawn. FIG. 4 is a plan view showing the electrostatic chuck ESC constituting the mounting table PD. As shown in FIG. 4, a plurality of jack-up pins 25a are arranged along a plurality of straight lines that are orthogonal to the center axis of the common electrostatic chuck ESC, that is, the center axis of the mounting table PD, and extend in the vertical direction. A plurality of jack-up pins 25a may be arranged at equal intervals in the circumferential direction with respect to the central axis. The jacking pins 25a are supported by, for example, a link that is raised and lowered by an actuator. The push-up pin 25a supports the workpiece W on the front end of the push-up pin 25a in a state where the front end thereof protrudes above the electrostatic chuck ESC. After that, the lifting pin 25a is lowered, and the workpiece W is placed on the electrostatic chuck ESC. In addition, after the plasma treatment of the workpiece W, the workpiece W is separated from the electrostatic chuck ESC by the lifting pin 25a ascending. That is, the jacking pin 25a is used for loading and unloading of the workpiece W. In addition, a gas supply line 28 is provided in the plasma processing apparatus 10. The gas supply line 28 supplies the heat transfer gas from the heat transfer gas supply mechanism, such as He gas, between the upper surface of the electrostatic chuck ESC and the back surface of the workpiece W. In addition, the plasma processing apparatus 10 includes an upper electrode 30. The upper electrode 30 is arranged above the mounting table PD so as to face the mounting table PD. The upper electrode 30 is supported on the upper part of the chamber body 12 via an insulating shielding member 32. The upper electrode 30 may include a top plate 34 and a support 36. The top plate 34 faces the chamber S. The top plate 34 is provided with a plurality of gas ejection holes 34a. The top plate 34 may be formed of silicon or quartz. Alternatively, the top plate 34 may be formed by forming a plasma resistant film such as yttrium oxide on the surface of a base material made of aluminum. The support body 36 detachably supports the top plate 34. The support 36 can be made of, for example, a conductive material such as aluminum. The support 36 may have a water-cooling structure. Inside the support 36, a gas diffusion chamber 36a is provided. A plurality of gas passage holes 36b communicating with the gas ejection hole 34a extend downward from the gas diffusion chamber 36a. In addition, the support 36 is formed with a gas introduction port 36c for guiding the processing gas to the gas diffusion chamber 36a. A gas supply pipe 38 is connected to the gas inlet 36c. The gas supply pipe 38 is connected to a gas source group 40 via a valve group 42 and a flow controller group 44. The gas source group 40 includes a plurality of gas sources for a plurality of kinds of gases. The valve group 42 includes a plurality of valves. The flow controller group 44 includes a plurality of flow controllers such as mass flow controllers. The plural gas sources of the gas source group 40 are respectively connected to the gas supply pipe 38 via the corresponding valve of the valve group 42 and the corresponding flow controller of the flow controller group 44. Furthermore, in the plasma processing apparatus 10, a mask 46 is detachably provided along the inner wall of the chamber body 12. The mask 46 is also provided on the outer periphery of the support part 14. The mask 46 prevents etching by-products from adhering to the chamber body 12. The mask 46 can be formed by coating an aluminum material with ceramics such as yttrium oxide. An exhaust flat plate 48 is provided on the bottom side of the chamber body 12 and between the supporting portion 14 and the side wall of the chamber body 12. The exhaust flat plate 48 can be formed by, for example, coating an aluminum material with ceramics such as yttrium oxide. A plurality of holes penetrating in the thickness direction of the exhaust flat plate 48 are formed. An exhaust port 12e is provided below the exhaust plate 48 and in the chamber body 12. The exhaust port 12e is connected to the exhaust device 50 via an exhaust pipe 52. The exhaust device 50 has a vacuum pump such as a pressure regulating valve and a turbo molecular pump, and can depressurize the space in the chamber body 12 to a required degree of vacuum. In addition, the side wall of the chamber body 12 is provided with an opening 12g for carrying in or out of the workpiece W. The opening 12g can be opened and closed by the gate valve 54. In addition, the plasma processing apparatus 10 further includes a first high-frequency power source 62 and a second high-frequency power source 64. The first high-frequency power supply 62 is a power supply that generates a first high-frequency for plasma generation, for example, a high-frequency with a frequency of 27 to 100 MHz. The first high-frequency power source 62 is connected to the upper electrode 30 via an integrator 66. The integrator 66 has a circuit for aligning the output impedance of the first high-frequency power source 62 with the input impedance of the load side (the upper electrode 30 side). Furthermore, the first high-frequency power source 62 may be connected to the lower electrode LE via the integrator 66. The second high-frequency power source 64 generates a second high-frequency power source for introducing ions to the workpiece W, for example, a high-frequency frequency in the range of 400 kHz to 13.56 MHz. The second high-frequency power source 64 is connected to the lower electrode LE via an integrator 68. The integrator 68 has a circuit for aligning the output impedance of the second high-frequency power source 64 with the input impedance of the load side (the lower electrode LE side). In the plasma processing apparatus 10, gas from one or more gas sources selected from a plurality of gas sources is supplied to the chamber S. In addition, the pressure of the chamber S is set to a specific pressure by the exhaust device 50. Furthermore, the gas in the chamber S is excited by the first high frequency from the first high frequency power source 62. This generates plasma. Then, the processed object W is processed using the generated active material. Furthermore, if necessary, ions may be introduced into the workpiece W by the second high-frequency bias voltage based on the second high-frequency power source 64. Hereinafter, the detector will be described. Figure 5 is a perspective view illustrating the detector. Fig. 6 is a plan view of the detector shown in Fig. 5 viewed from the bottom side. The detector 100 shown in FIGS. 5 and 6 includes a base substrate 102. The base substrate 102 is formed of, for example, silicon, and has the same shape as the shape of the workpiece W, that is, a substantially disc shape. The diameter of the base substrate 102 is the same as the diameter of the workpiece W, for example, 300 mm. The shape and size of the detector 100 are defined by the shape and size of the base substrate 102. Therefore, the detector 100 has the same shape as the shape of the workpiece W, and has the same size as the size of the workpiece W. In addition, a notch 102N (or another marker) is formed on the edge of the base substrate 102. The base substrate 102 has a lower portion 102a and an upper portion 102b. The lower part 102a is a part located closer to the electrostatic chuck ESC than the upper part 102b when the detector 100 is disposed above the electrostatic chuck ESC. A plurality of first sensors 104A to 104D for electrostatic capacitance detection are provided on the lower portion 102a of the base substrate 102. Furthermore, the number of the first sensors provided in the detector 100 can be any number above three. The plurality of first sensors 104A to 104D are arranged along the edge of the base substrate 102, for example, at equal intervals on the entire circumference of the edge. Specifically, the front end surface 104f of each of the plurality of first sensors 104A to 104D is arranged along the edge of the lower portion 102a of the base substrate 102. The upper surface of the upper portion 102b of the base substrate 102 is provided with a recess 102r. The recess 102r includes a central area 102c and a plurality of radiation areas 102h. The central area 102c is an area intersecting the central axis AX100. The center axis AX100 is an axis passing through the center of the base substrate 102 in the plate thickness direction. A circuit board 106 is provided in the central area 102c. The plurality of radiation regions 102h extend from the central region 102c in the radiation direction with respect to the central axis AX100 to above the region where the plurality of first sensors 104A to 104D are arranged. The wiring groups 108A to 108D are provided in the plurality of radiation areas 102h. The wiring groups 108A to 108D electrically connect the plurality of first sensors 104A to 104D to the circuit board 106, respectively. Furthermore, a plurality of first sensors 104A-104D may also be disposed on the upper portion 102b of the base substrate 102. In addition, the base substrate 102 is provided with a plurality of second sensors 105A to 105C for electrostatic capacitance detection. Furthermore, the number of the second sensors provided in the detector 100 can be any number above one. In one embodiment, the three second sensors 105A to 105C are arranged at equal intervals in the circumferential direction along a circle sharing the central axis AX100 of the base substrate 102. Furthermore, the distance between the following bottom electrode of each of the second sensors 105A to 105C and the central axis AX100 may be approximately the same as the distance between the central axis of the mounting table PD and the lifting pins 25a. Hereinafter, the first sensor will be described in detail. Fig. 7 is a perspective view showing an example of the sensor. Fig. 8 is a cross-sectional view taken along the line VIII-VIII of Fig. 7, showing the base substrate and focus ring of the detector together with the sensor. Fig. 9 is a cross-sectional view taken along the line IX-IX in Fig. 8. The first sensor 104 shown in FIGS. 7 to 9 is a sensor used as a plurality of first sensors 104A to 104D of the detector 100, and is constituted as a chip-shaped component in one example. In addition, in the following description, refer to the XYZ orthogonal coordinate system as appropriate. The X direction indicates the front direction of the first sensor 104, the Y direction indicates the direction orthogonal to the X direction and the width direction of the first sensor 104, and the Z direction indicates the direction orthogonal to the X direction and the Y direction and the first The upper direction of the sensor 104. As shown in FIGS. 7-9, the first sensor 104 has a front end surface 104f, an upper surface 104t, a lower surface 104b, a pair of side surfaces 104s, and a rear end surface 104r. The front end surface 104f constitutes the front surface of the first sensor 104 in the X direction. The first sensor 104 is mounted on the base substrate 102 of the detector 100 (see FIG. 5) so that the front end surface 104f faces the radiation direction with respect to the central axis AX100. Furthermore, in the state where the first sensor 104 is mounted on the base substrate 102, the front end surface 104 f extends along the edge of the base substrate 102. Therefore, when the detector 100 is disposed on the electrostatic chuck ESC, the front end surface 104f faces the inner edge of the focus ring FR. The rear end surface 104r constitutes the rear surface of the first sensor 104 in the X direction. In the state where the first sensor 104 is mounted on the base substrate 102, the rear end surface 104r is located closer to the central axis AX100 than the front end surface 104f. The upper surface 104t constitutes the upper surface of the first sensor 104 in the Z direction. The lower surface 104b constitutes the lower surface of the first sensor 104 in the Z direction. In addition, a pair of side surfaces 104s constitute the surface of the first sensor 104 in the Y direction. The first sensor 104 has electrodes (side electrodes) 143. The first sensor 104 may further have an electrode 141 and an electrode 142. The electrode 141 is formed of a conductor. The electrode 141 has a first portion 141a. As shown in FIGS. 7 and 8, the first portion 141a extends in the X direction and the Y direction. The electrode 142 is formed of a conductor. The electrode 142 has a second portion 142a. The second portion 142a extends above the first portion 141a. In the first sensor 104, the electrode 142 and the electrode 141 are insulated. As shown in FIGS. 7 and 8, the second portion 142a is above the first portion 141a and extends in the X direction and the Y direction. The electrode 143 is a sensor electrode formed by a conductor. The electrode 143 is provided on the first portion 141 a of the electrode 141 and the second portion 142 a of the electrode 142. The electrode 143 is insulated from the electrode 141 and the electrode 142 in the first sensor 104. The electrode 143 has a front surface 143f. The front surface 143f extends in a direction crossing the first portion 141a and the second portion 142a. In addition, the front surface 143f extends along the front end surface 104f of the first sensor 104. In one embodiment, the front surface 143f constitutes a part of the front end surface 104f of the first sensor 104. Alternatively, the first sensor 104 may have an insulating film covering the front surface 143f on the front side of the front surface 143f of the electrode 143. As shown in FIGS. 7 to 9, the electrode 141 and the electrode 142 may extend toward the side (X direction) of the area where the front surface 143 f of the electrode 143 is arranged and surround the periphery of the electrode 143. In other words, the electrode 141 and the electrode 142 may extend above, behind, and on the side of the electrode 143 so as to surround the electrode 143. In addition, the front end surface 104f of the first sensor 104 may be a curved surface having a specific curvature. In this case, the front end surface 104f has a fixed curvature at any position of the front end surface. The curvature of the front end surface 104f may be the reciprocal of the distance between the central axis AX100 of the detector 100 and the front end surface 104f. The first sensor 104 is mounted on the base substrate 102 such that the center of curvature of the front end surface 104f coincides with the center axis AX100. In addition, the first sensor 104 may further include a substrate portion 144, insulating regions 146 to 148, pads 151 to 153, and through-hole wiring 154. The substrate portion 144 has a main body portion 144m and a surface layer portion 144f. The main body 144m is formed of silicon, for example. The surface portion 144f covers the surface of the main body portion 144m. The surface layer portion 144f is formed of an insulating material. The surface layer 144f is, for example, a thermal oxide film of silicon. The second portion 142 a of the electrode 142 extends below the substrate portion 144. Between the substrate portion 144 and the electrode 142, an insulating region 146 is provided. The insulating region 146 is formed of , for example, SiO 2 , SiN, Al 2 O 3 , or polyimide. The first portion 141 a of the electrode 141 extends below the substrate portion 144 and the second portion 142 a of the electrode 142. An insulating region 147 is provided between the electrode 141 and the electrode 142. The insulating region 147 is formed of , for example, SiO 2 , SiN, Al 2 O 3 , or polyimide. The insulating region 148 constitutes the upper surface 104t of the first sensor 104. The insulating region 148 is formed of, for example, SiO 2 , SiN, Al 2 O 3 , or polyimide. Pads 151 to 153 are formed in the insulating region 148. The pad 153 is formed of a conductor and is connected to the electrode 143. Specifically, the electrode 143 and the pad 153 are connected to each other by the through-hole wiring 154 penetrating the insulating region 146, the electrode 142, the insulating region 147, and the electrode 141. An insulator is provided around the through-hole wiring 154, and the through-hole wiring 154 is insulated from the electrode 141 and the electrode 142. The pad 153 is connected to the circuit board 106 via the through-hole wiring 123 provided in the base substrate 102 and the wiring 183 provided in the radiation area 102h of the recess 102r. The bonding pad 151 and the bonding pad 152 are similarly formed by conductors. The pad 151 and the pad 152 are respectively connected to the electrode 141 and the electrode 142 via corresponding through-hole wiring. In addition, the bonding pads 151 and the bonding pads 152 are connected to the circuit board 106 via the corresponding through-hole wiring provided in the base substrate 102 and the corresponding wiring provided in the radiation area 102h of the recess 102r. Hereinafter, the second sensor will be described in detail. Fig. 10 is a cross-sectional view taken along line XX in Fig. 6. Furthermore, in FIG. 10, the state in which the detector 100 is supported by the push-up pin 25a is shown. Refer to FIG. 5, FIG. 6, and FIG. 10 below. Each of the second sensors 105A to 105C includes a bottom electrode 161. In one embodiment, each of the second sensors 105A to 105C further includes peripheral electrodes 162a to 162d and through electrodes 165a to 165e. The bottom electrode 161 and the peripheral electrodes 162 a to 162 d are formed along the bottom surface of the base substrate 102. The through electrodes 165 a to 165 e penetrate the base substrate 102. The bottom electrode 161, the peripheral electrodes 162a to 162d, and the through electrodes 165a to 165e are formed of conductors. The bottom electrode 161 may have a round shape. The size of the bottom electrode 161 is, for example, approximately the same as the size of the upper end surface of the jacking pin 25a. The peripheral electrodes 162a to 162d are arranged on a circle surrounding the bottom electrode 161. Each of the peripheral electrodes 162a to 162d has a planar shape defined by two arcs that share the center of the bottom electrode 161 and have different radii. In addition, the peripheral electrodes 162a to 162d are arranged in the circumferential direction with respect to the center of the bottom electrode 161. An insulating film 169 is formed on the bottom surface of the base substrate 102. The insulating film 169 covers the bottom electrode 161 and the peripheral electrodes 162a to 162d. The insulating film 169 is formed of, for example, SiO 2 , SiN, Al 2 O 3 , or polyimide. One end of the plurality of through electrodes 165a to 165e is connected to the peripheral electrodes 162a to 162d and the bottom electrode 161, respectively. In addition, the other end of each of the plurality of through electrodes 165a to 165e is electrically connected to the circuit board 106 (see FIG. 5). The plurality of through electrodes 165a to 165e can be formed using, for example, TSV (Through-Silicon Via) technology. Hereinafter, the structure of the circuit board 106 will be described. FIG. 11 is a diagram illustrating the structure of the circuit board of the detector. As shown in FIG. 11, the circuit board 106 has a high-frequency oscillator 171, a plurality of C/V conversion circuits 172A to 172D, a plurality of C/V conversion circuits 180A to 180O, an A/D converter 173, a processor 174, Memory device 175, communication device 176, and power supply 177. Each of the plurality of first sensors 104A to 104D is connected to the circuit board 106 via the corresponding wiring group among the plurality of wiring groups 108A to 108D. In addition, each of the plurality of first sensors 104A to 104D is connected to the corresponding C/V conversion circuit of the plurality of C/V conversion circuits 172A to 172D via a plurality of wirings included in the corresponding wiring group. In addition, each of the plurality of second sensors 105A to 105C is connected to the corresponding C/V conversion circuit of the plurality of C/V conversion circuits 180A to 180O through the plurality of wires 184 (in one embodiment, five C/V conversion circuit) are connected. Hereinafter, a first sensor 104 having the same configuration as each of the plurality of first sensors 104A to 104D, a wiring group 108 having the same configuration as each of the plurality of wiring groups 108A to 108D, and a plurality of One C/V conversion circuit 172 having the same configuration as each of the C/V conversion circuits 172A to 172D, a second sensor 105 having the same configuration as each of the plurality of second sensors 105A to 105C, and a plurality of One C/V conversion circuit 180 having the same configuration of each of the C/V conversion circuits 180A to 180O will be described. The wiring group 108 includes wirings 181 to 183. One end of the wiring 181 is connected to the pad 151 connected to the electrode 141. The wiring 181 is connected to the ground potential line GL connected to the ground line GC of the circuit board 106. Furthermore, the wiring 181 may be connected to the ground potential line GL via the switch SWG. In addition, one end of the wiring 182 is connected to the pad 152 connected to the electrode 142, and the other end of the wiring 182 is connected to the C/V conversion circuit 172. In addition, one end of the wiring 183 is connected to the pad 153 connected to the electrode 143, and the other end of the wiring 183 is connected to the C/V conversion circuit 172. The peripheral electrodes 162 a to 162 d and the bottom electrode 161 of the second sensor 105 are individually connected to the circuit board 106. That is, the through electrodes 165a to 165d connected to the peripheral electrodes 162a to 162d and the through electrode 165e connected to the bottom electrode 161 are respectively connected to a plurality of C/V conversion circuits 180 (in one embodiment, five A C/V conversion circuit) are connected. The high-frequency oscillator 171 is connected to a power source 177 such as a battery, and receives power from the power source 177 to generate a high-frequency signal. Furthermore, the power supply 177 is also connected to the processor 174, the memory device 175, and the communication device 176. The high-frequency oscillator 171 has a plurality of output lines. The high-frequency oscillator 171 applies the generated high-frequency signal to the wiring 182, the wiring 183, and the wiring 184 through a plurality of output lines. Therefore, the high-frequency oscillator 171 is electrically connected to the electrode 142 and the electrode 143 of the first sensor 104, and the high-frequency signal from the high-frequency oscillator 171 is applied to the electrode 142 and the electrode 143. In addition, the high-frequency oscillator 171 is electrically connected to the bottom electrode 161 and the peripheral electrodes 162a to 162d of the second sensor 105, and the high-frequency signal from the high-frequency oscillator 171 is applied to the bottom electrode 161 and the peripheral electrodes 162a to 162a. 162d. A wiring 182 and a wiring 183 are connected to the input of the C/V conversion circuit 172. That is, to the input of the C/V conversion circuit 172, the electrode 142 and the electrode 143 of the first sensor 104 are connected. In addition, the inputs of the plurality of C/V conversion circuits 180 are respectively connected to the bottom electrode 161 and the peripheral electrodes 162a to 162d. Each of the C/V conversion circuit 172 and the C/V conversion circuit 180 generates a voltage signal according to the voltage amplitude in its input. The voltage signal represents the electrostatic capacitance of the electrode connected to the input. Each of the C/V conversion circuit 172 and the C/V conversion circuit 180 outputs the voltage signal. Furthermore, the greater the electrostatic capacitance of the electrode connected to the C/V conversion circuit 172, the greater the magnitude of the voltage of the voltage signal output by the C/V conversion circuit 172. Similarly, the greater the electrostatic capacitance of the electrode connected to the C/V conversion circuit 180, the greater the voltage of the voltage signal output by the C/V conversion circuit 180. The input of the A/D converter 173 is connected with the outputs of a plurality of C/V conversion circuits 172A-172D and a plurality of C/V conversion circuits 180A-180O. In addition, the A/D converter 173 is connected to the processor 174. The A/D converter 173 is controlled by the control signal from the processor 174, and converts the output signals (voltage signals) of the plurality of C/V conversion circuits 172A to 172D and the output signals of the plurality of C/V conversion circuits 180A to 180O ( The voltage signal) is converted to a digital value. That is, the A/D converter 173 generates a first detection value representing the electrostatic capacitance of the electrode 143 of the first sensors 104A to 104D. In addition, the A/D converter 173 generates a second detection value representing the electrostatic capacitance of the bottom electrode 161 of each of the second sensors 105A to 105C, and generates a peripheral electrode 162a to 162d representing each of the second sensors 105A to 105C Multiple third detection values of each electrostatic capacitance. The A/D converter 173 outputs the first detection value, the second detection value, and the third detection value to the processor 174. A memory device 175 is connected to the processor 174. The memory device 175 is a memory device such as a volatile memory, and is constructed by storing the following detection data. In addition, another memory device 178 is connected to the processor 174. The memory device 178 is a memory device such as a non-volatile memory, and stores a program that is read and executed by the processor 174. The communication device 176 is a communication device based on any wireless communication standard. For example, the communication device 176 is based on Bluetooth (registered trademark). The communication device 176 is constructed by wirelessly transmitting the detection data stored in the memory device 175. The processor 174 is configured to control each part of the detector 100 by executing the above-mentioned program. For example, the processor 174 controls the supply of high-frequency signals from the high-frequency oscillator 171 to the electrode 142, the electrode 143, the bottom electrode 161, and the peripheral electrodes 162a-162d, the power supply from the power source 177 to the memory device 175, and the power source 177 Power supply to the communication device 176, etc. Furthermore, the processor 174 executes the acquisition of the first to third detection values, the storage of the first to third detection values in the memory device 175, and the transmission of the first to third detection values, etc., by executing the above-mentioned program. In the detector 100 described above, the plurality of electrodes 143 (side electrodes) provided by the first sensors 104A to 104D are arranged along the edge of the base substrate 102. In the state where the detector 100 is arranged in the area surrounded by the focus ring FR, the plurality of electrodes 143 face the inner edge of the focus ring FR. The plurality of first detection values generated according to the voltage amplitude in the electrodes 143 represent electrostatic capacitances reflecting the distances between the plurality of electrodes 143 and the focus ring, respectively. Furthermore, the electrostatic capacitance C is represented by C=εS/d. ε is the dielectric constant of the medium between the front surface 143f of the electrode 143 and the inner edge of the focus ring FR, S is the area of the front surface 143f of the electrode 143, and d can be regarded as the distance between the front surface 143f of the electrode 143 and the inner edge of the focus ring FR. The distance. Therefore, according to the detector 100, detection data reflecting the relative positional relationship between the detector 100 and the focus ring FR that simulate the workpiece W can be obtained. For example, the greater the distance between the front surface 143f of the electrode 143 and the inner edge of the focus ring FR, the smaller the plural first detection values obtained by the detector 100. Furthermore, in the detector 100, the bottom electrode 161 of each of the second sensors 105A to 105C is arranged along the bottom surface of the base substrate 102. The second detection value generated based on the voltage amplitude in the bottom electrode 161 represents the electrostatic capacitance between the bottom electrode 161 and an object located below the detector 100. That is, the second detection value reflects the relative positional relationship between the bottom electrode 161 and the object under the detector 100. In one embodiment, the second detection value reflects the relative positional relationship between the bottom electrode 161 and the lifting pin 25a as an object under the detector 100. Specifically, when the bottom electrode 161 faces the front end of the push-up pin 25a, the second detection value becomes larger. On the other hand, when the position of the bottom electrode 161 deviates from the position of the front end of the jack pin 25a, the second detection value becomes smaller. As described above, the positional relationship between the bottom electrode 161 of each of the second sensors 105A to 105C and the central axis AX100 of the detector 100 and the positional relationship between each of the jacking pins 25a and the central axis of the mounting table PD are approximately Unanimous. Therefore, when the second detection value is a value greater than or equal to the specific value, it can be confirmed that the detector 100 is arranged in the area surrounded by the focus ring FR by the lowering of the push-up pin 25a. Therefore, based on the second detection value, it can be confirmed whether the detector 100 is arranged on the stage PD in the area surrounded by the focus ring FR. By using the second detection value, the reliability of the above-mentioned first detection value can be confirmed. Therefore, according to the detector 100, it is possible to obtain highly reliable data reflecting the positional relationship between the detector 100 and the focus ring FR that simulates the workpiece W. In addition, peripheral electrodes 162a to 162d are provided in each of the second sensors 105A to 105C so as to surround the bottom electrode 161. By using a plurality of third detection values obtained from the voltage amplitudes in each of the peripheral electrodes 162a to 162d together with the second detection values, it is possible to more accurately confirm whether the detector 100 is on the mounting table PD It is arranged in the area enclosed by the focus ring FR. Also, as described above, in the first sensor 104 mounted on the detector 100, the electrode 143 (sensor electrode) is provided on the electrode 141, and an electrode is interposed between the electrode 141 and the electrode 143 Part 2 of 142. When using the first sensor 104, the switch SWG is closed, and the potential of the electrode 141 is set to the ground potential. Then, a high-frequency signal is supplied to the electrode 142 and the electrode 143. At this time, the voltage amplitude of the electrode 143 becomes a voltage amplitude that is not affected by the electrostatic capacitance under the first sensor 104 in the direction in which the electrode 141 is provided with respect to the electrode 143, but reflects a specific direction , That is, the electrostatic capacitance in the direction (X direction) the front surface 143f of the electrode 143 faces. Therefore, according to the first sensor 104, the electrostatic capacitance can be detected with high directivity in a specific direction. In addition, the electrode 141 and the electrode 142 extend so as to open on the side of the area (X direction) on the front surface where the electrode 143 is arranged and surround the periphery of the electrode 143. Therefore, with the electrode 141 and the electrode 142, the electrode 143 shields directions other than a specific direction. Therefore, in the detection of electrostatic capacitance, the directivity of the first sensor 104 to a specific direction is further improved. In addition, the front end surface 104f of the first sensor 104 is configured as a curved surface having a specific curvature, and the front surface 143f of the electrode 143 extends along the front end surface 104f. Therefore, the radial distance between each position of the front surface 143f of the electrode 143 and the inner edge of the focus ring FR can be set to be approximately the same distance. Therefore, the accuracy of electrostatic capacitance detection is further improved. Hereinafter, another example of the first sensor that can be mounted on the detector 100 will be described. Fig. 12 is a longitudinal sectional view showing another example of the first sensor. In FIG. 12, a longitudinal cross-sectional view of the first sensor 204 is shown, and the focus ring FR is shown together with the first sensor 204. The first sensor 204 has an electrode 241, an electrode 242, and an electrode 243. The first sensor 204 may further have a substrate portion 244 and an insulating region 247. The substrate portion 244 has a main body portion 244m and a surface layer portion 244f. The main body 244m is formed of silicon, for example. The surface portion 244f covers the surface of the main body portion 244m. The surface layer portion 244f is formed of an insulating material. The surface layer 244f is, for example, a thermal oxide film of silicon. The substrate portion 244 has an upper surface 244a, a lower surface 244b, and a front end surface 244c. The electrode 242 is disposed under the lower surface 244b of the substrate portion 244 and extends in the X direction and the Y direction. In addition, the electrode 241 is disposed under the electrode 242 via the insulating region 247, and extends in the X direction and the Y direction. The front end surface 244c of the substrate portion 244 is formed in a stepped shape. The lower portion 244d of the front end surface 244c protrudes toward the focus ring FR side than the upper portion 244u of the front end surface 244c. The electrode 243 extends along the upper portion 244u of the front end surface 244c. When the first sensor 204 is used as the sensor of the detector 100, the electrode 241 is connected to the wiring 181, the electrode 242 is connected to the wiring 182, and the electrode 243 is connected to the wiring 183. In the first sensor 204, the electrode 243 as the sensor electrode is shielded from the bottom of the first sensor 204 by the electrode 241 and the electrode 242. Therefore, according to the first sensor 204, the electrostatic capacitance can be detected with high directivity in a specific direction, that is, the direction (X direction) the front surface 243f of the electrode 243 faces. Hereinafter, another example of the second sensor that can be mounted on the detector 100 instead of the second sensors 105A to 105C will be described. Fig. 13(a) is a plan view of the plurality of electrodes of the second sensor in another example when viewed from the bottom surface side of the detector, and Fig. 13(b) is viewed from the upper surface side of the detector showing the second sensor The top view of the device. In addition, FIG. 14 is a cross-sectional view taken along the line XIV-XIV in (b) of FIG. 13. Furthermore, FIG. 14 shows a state where the detector 100 is supported by the push-up pin 25a. The second sensor 305 includes a plurality of electrodes 365. A plurality of electrodes 365 are provided on the base substrate 102 in a manner extending from the upper surface of the base substrate 102 in the thickness direction of the base substrate 102. In the second sensor 305, a plurality of electrodes 365 penetrate through the base substrate 102. Each of the plurality of electrodes 365 provides an end surface 365 a to the bottom surface side of the base substrate 102. The end faces 365a of the plurality of electrodes 365 constitute a bottom electrode and a plurality of peripheral electrodes. Specifically, as shown in (a) of FIG. 13, among the end faces 365a of the plurality of electrodes 365, the end faces 365a of the plurality of electrodes 365 existing in the central circular area 361 constitute the bottom electrode. In addition, the end faces 365a of a plurality of electrodes 365 existing in each of the peripheral regions 362a to 362d of the surrounding region 361 constitute peripheral electrodes. Furthermore, in the example shown in FIG. 13, the number of peripheral regions is four. The peripheral areas 362a-362d are defined by two arcs with different radii, and are arranged in the circumferential direction with respect to the center of the area 361. As shown in FIG. 14, an insulating film 169 is formed on the bottom surface of the base substrate 102. The insulating film 169 covers the end faces 365a of the plurality of electrodes 365. On the upper surface of the base substrate 102, there are formed pattern electrodes 366a to 366e which are opposed to the peripheral regions 362a to 362d and the region 361 and have substantially the same shape as the peripheral regions 362a to 362d and the region 361, respectively. The electrode 365 providing the end surface 365a in the peripheral area 362a is connected to the pattern electrode 366a. The electrode 365 provided with the end surface 365a in the peripheral area 362b is connected to the pattern electrode 366b. The electrode 365 providing the end surface 365a in the peripheral area 362c is connected to the pattern electrode 366c. The electrode 365 providing the end surface 365a in the peripheral area 362d is connected to the pattern electrode 366d. In addition, the electrode 365 provided with the end surface 365a in the area 361 is connected to the pattern electrode 366e. In the production of each of the second sensors 105A to 105C, it is necessary to separately form the bottom electrode and the peripheral electrode separately from the through electrodes 165a to 165e. On the other hand, in the second sensor 305, the plurality of electrodes 365 extending in the thickness direction of the base substrate 102 like the through electrodes 165a to 165e provide the bottom electrode and the peripheral electrode, so the second sensor 305 During the production, no additional steps of forming the bottom electrode and the peripheral electrode are required. Hereinafter, another example of the second sensor that can be mounted on the detector 100 instead of the second sensors 105A to 105C will be described. Fig. 15 is a cross-sectional view showing still another example of the second sensor. The second sensor 405 shown in FIG. 15 has a plurality of electrodes 465. A plurality of electrodes 465 are provided on the base substrate 102 in a manner extending from the upper surface of the base substrate 102 in the thickness direction of the base substrate 102. In the second sensor 405, a plurality of electrodes 465 provide an end surface 465a midway between the upper surface and the bottom surface of the base substrate 102. Similar to the end faces 365a of the plurality of electrodes 365 of the second sensor 305, the end faces 465a of the plurality of electrodes 465 constitute a bottom electrode and a plurality of peripheral electrodes. In the detector 100 equipped with the second sensor 405, the base substrate 102 may be, for example, a glass substrate. In the production of the second sensor 405, there is no need to perform additional steps of forming a bottom electrode and a plurality of peripheral electrodes. Hereinafter, another example of the second sensor that can be mounted on the detector 100 instead of the second sensors 105A to 105C will be described. Fig. 16 is a cross-sectional view showing still another example of the second sensor. Like the second sensor 305, the second sensor 505 shown in FIG. 16 has a plurality of electrodes 365 arranged in each of the area 361 and the peripheral areas 362a to 362d. Furthermore, the second sensor 505 further has surrounding electrodes 370a to 370e. The surrounding electrodes 370 a to 370 e are formed of a conductor, and are insulated from the electrode 365 in the second sensor 505. The surrounding electrode 370a is formed along the bottom surface of the base substrate so as to collectively surround the end surface 365a of a group of electrodes 365 arranged in the peripheral region 362a. The surrounding electrode 370a is connected with a perforated electrode 371a penetrating the base substrate. In addition, the surrounding electrode 370b is formed along the bottom surface of the base substrate so as to collectively surround the end surface 365a of a group of electrodes 365 arranged in the peripheral region 362b. The surrounding electrode 370b is connected with a perforated electrode 371b penetrating the base substrate. In addition, the surrounding electrode 370c is formed along the bottom surface of the base substrate so as to collectively surround the end surface 365a of a group of electrodes 365 arranged in the peripheral region 362c. The surrounding electrode 370c is connected with a perforated electrode 371c penetrating the base substrate. In addition, the surrounding electrode 370d is formed along the bottom surface of the base substrate so as to collectively surround the end surface 365a of a group of electrodes 365 arranged in the peripheral region 362d. The surrounding electrode 370d is connected with a perforated electrode 371d penetrating the base substrate. In addition, the surrounding electrode 370e is formed along the bottom surface of the base substrate so as to collectively surround the end surface 365a of a group of electrodes 365 arranged in the area 361. The surrounding electrode 370e is connected with a through hole electrode 371e penetrating the base substrate. A high frequency oscillator 171 is electrically connected to each of the perforated electrodes 371a to 371e, and a high frequency signal is applied to each of the surrounding electrodes 370a to 370e. In the second sensor 505, the end surface 365a of a group of electrodes 365 is shielded from the outer side of the surrounding electrode by the surrounding electrode surrounding the end surface 365a of the group of electrodes 365 among the surrounding electrodes 370a to 370e. Therefore, in the detection of electrostatic capacitance, the directivity of the second sensor 505 is improved. As mentioned above, although various embodiments have been described, it is not limited to the above-mentioned embodiments, and various modifications can be made. For example, as an example of the process modules PM1 to PM6, a plasma processing device is illustrated, but the process modules PM1 to PM6 may be any processing devices as long as they use electrostatic chucks and focus rings. In addition, the above-mentioned plasma processing device 10 is a capacitively coupled plasma processing device, but the plasma processing device that can be used as process modules PM1 to PM6 can be an inductively coupled plasma processing device, using surface waves such as microwaves, etc. The plasma processing device is any plasma processing device. In addition, in the above-mentioned embodiment, the positional relationship between the bottom electrodes of the plurality of second sensors and the central axis AX100 of the detector 100 is substantially the same as the positional relationship between the central axis of the mounting table PD and the jacking pin 25a, but the plurality of The positional relationship between the bottom electrode of the second sensor and the central axis AX100 of the detector 100 is not limited to this. For example, the distance between each of the bottom electrodes of the plurality of second sensors and the central axis AX100 of the detector 100 may also be approximately the same as the distance between the central axis of the mounting table PD and the edge of the electrostatic chuck. Hereinafter, a detector of another embodiment of this type will be described. In other words, a description will be given of a detector in which the distance between each of the bottom electrodes of the plurality of second sensors and the central axis AX100 of the detector is approximately the same as the distance between the central axis of the mounting table PD and the edge of the electrostatic chuck. . Furthermore, the detector of this other embodiment can also be used in the processing system shown in FIG. 1. Fig. 17 is a plan view of the detector viewed from the bottom side. The detector 600 shown in FIG. 17 includes a base substrate 102. On the lower portion 102a of the base substrate 102, four first sensors 104A to 104D for electrostatic capacitance detection are provided. In addition, in the lower portion 102a of the base substrate 102, instead of the second sensors 105A to 105C shown in FIG. 6, four second sensors 605A to 605D are provided. Furthermore, the number of second sensors provided in the detector 600 can be any number above three. The second sensors 605A to 605D are arranged at equal intervals in the circumferential direction along a circle sharing the central axis AX100 of the base substrate 102. In addition, the second sensors 605A to 605D and the first sensors 104A to 104D are alternately arranged in the circumferential direction. Each of the four second sensors 605A to 605D has a bottom electrode 606 arranged along the bottom surface of the base substrate 102. Fig. 18 is a cross-sectional view of the electrostatic chuck, showing a state where the object to be processed is placed on the electrostatic chuck. In one embodiment, the electrostatic chuck ESC has a structure in which the electrode E as a conductive film is arranged between a pair of insulating layers or insulating sheets, and has a substantially disc shape. The electrostatic chuck ESC has a mounting area R on which the workpiece W and the detector 600 are mounted. The mounting area R has rounded edges. The workpiece W and the detector 600 have an outer diameter larger than the outer diameter of the mounting area R. Fig. 19 is a partial enlarged view of Fig. 17, showing a second sensor. The edge of the bottom electrode 606 partially has a circular arc shape. That is, the bottom electrode 606 has a planar shape defined by two arcs 606a, 606b with different radii centered on the central axis AX100. The radially outer arc 606b of the bottom electrode 606 of each of the plurality of second sensors 605A to 605D extends on a common circle. In addition, the radially inner arc 606a of the bottom electrode 606 of each of the plurality of second sensors 605A to 605D extends on the other common circle. The curvature of a part of the edge of the bottom electrode 606 is consistent with the curvature of the edge of the electrostatic chuck ESC (loading area R). In one embodiment, the curvature of the arc 606b forming the radially outer edge of the bottom electrode 606 is the same as the curvature of the edge of the mounting area R of the electrostatic chuck ESC. Furthermore, the center of curvature of the arc 606b, that is, the center of the circle on which the arc 606b extends, shares the central axis AX100. In one embodiment, each of the second sensors 605A to 605D further includes an electrode 607 surrounding the bottom electrode 606. The electrode 607 has a frame shape and surrounds the bottom electrode 606 throughout the entire circumference of the bottom electrode 606. The electrode 607 and the bottom electrode 606 are separated from each other by interposing an insulating region 608 therebetween. Moreover, in one embodiment, each of the second sensors 605A to 605D further includes an electrode 609 surrounding the electrode 607 on the outer side of the electrode 607. The electrode 609 has a frame shape and surrounds the electrode 607 over the entire circumference of the electrode 607. The electrode 607 and the electrode 609 are separated from each other by interposing an insulating region 610 therebetween. Fig. 20 is a diagram illustrating the structure of the circuit board of the detector. The detector 600 has a circuit board 106A. The circuit board 106A is equivalent to the circuit board 106 in the detector 100. As shown in FIG. 20, the circuit board 106A has a high-frequency oscillator 171, a plurality of C/V conversion circuits 172A to 172D, a plurality of C/V conversion circuits 680A to 680D, an A/D converter 173, a processor 174, The memory device 175, the communication device 176, the power supply 177, and the memory device 178. The bottom electrodes 606 of the second sensors 605A to 605D are connected to the corresponding C/V conversion circuit of the C/V conversion circuits 680A to 680D via the corresponding wiring 681. In addition, the electrodes 607 of the second sensors 605A to 605D are connected to the corresponding C/V conversion circuit of the C/V conversion circuits 680A to 680D via the corresponding wiring 682. The bottom electrode 606 and the electrode 607 of each of the second sensors 605A to 605D are electrically connected to the high-frequency oscillator 171 in such a way that a high-frequency signal from the high-frequency oscillator 171 is applied to them. Each of the C/V conversion circuits 680A to 680D is configured to generate a voltage signal representing the electrostatic capacitance of the electrode connected to the input according to the voltage amplitude in its input, and output the voltage signal. In addition, the electrodes 609 of the second sensors 605A to 605D are connected to the ground potential line GL via the corresponding wiring 683. Furthermore, the wiring 683 may be connected to the ground potential line GL via the switch SWG. The input of the A/D converter 173 is connected to the output of a plurality of C/V conversion circuits 680A-680D. Thereby, the A/D converter 173 generates a digital value (detection value) representing the electrostatic capacitance of the bottom electrode 606. The A/D converter 173 outputs the generated digital value to the processor 174. Hereinafter, a method of using the detector 600 to calibrate the conveying position data in the processing system 1 will be described. Furthermore, as described above, the conveying device TU2 in the processing system 1 is controlled by the control unit MC. In one embodiment, the transport device TU2 can transport the workpiece W and the detector 600 to the placement area R of the electrostatic chuck ESC based on the transport position data sent from the control unit MC. Fig. 21 is a flowchart showing a method of calibrating the conveying device of the processing system according to an embodiment. In the method MT shown in FIG. 21, step ST1 is first performed. In step ST1, the transport device TU2 is used to transport the detector 600 to a position on the placement area R specified based on the transport position data. Specifically, the transfer device TU1 transfers the detector 600 to one of the load lock vacuum module LL1 and the load lock vacuum module LL2. Then, the transport device TU2 transports the detector 600 from a load lock vacuum module to any one of the process modules PM1 to PM6 based on the transport position data, and places the detector 600 on the electrostatic chuck ESC.置area R. The conveying position data is, for example, coordinate data set in advance in such a way that the position of the center axis AX100 of the detector 600 coincides with the center position of the mounting area R. In the next step ST2, the detector 600 detects the electrostatic capacitance. Specifically, the detector 600 obtains a plurality of digital values (detected values) corresponding to the magnitude of the electrostatic capacitance between the mounting area R of the electrostatic chuck ESC and the bottom electrode 606 of each of the second sensors 605A to 605D, and The plurality of digit values are stored in the memory device 175. Furthermore, a plurality of digit values can be obtained at a preset time under the control of the processor 174. In one embodiment, the detection of the electrostatic capacitance by the first sensors 104A to 104D may also be performed at the time of the detection of the electrostatic capacitance by the second sensors 605A to 605D. In the next step ST3, the detector 600 self-processed module is unloaded and returned to any one of the transfer module TF, the load lock vacuum modules LL1, LL2, the load module LM, and the containers 4a-4d. In the next step ST4, the error between the position on the placement area R to which the detector 600 is transported and the specific transport position on the placement area R is derived. Furthermore, the specific conveying position may be the center position of the mounting area R. In step ST4 of an embodiment, first, the plurality of digital values memorized by the memory device 175 are sent to the control unit MC. A plurality of digital values can be sent from the communication device 176 to the control unit MC according to instructions from the control unit MC, or can also be controlled by the processor 174 based on the counting of a timer provided on the circuit board 106A at a specific point in time Send to the control unit MC. Then, the control unit MC derives the error of the conveying position of the detector 600 based on the received plural digital values. In one embodiment, the control unit MC has a data table indicating the relationship between the transport position of the detector 600 on the placement area R and the digital value obtained by the second sensors 605A to 605D. In the data table, for example, the relationship between the position of the bottom electrode 606 in each radial direction of the mounting region R and the digital value of the electrostatic capacitance of the bottom electrode 606 at that position is registered. Fig. 22 is a diagram showing the transport position of the detector with respect to the mounting area of the electrostatic chuck. FIG. 22(a) shows the positional relationship between the mounting area R and one bottom electrode 606 when the detector 600 is transported to a specific transport position. (B) and (c) of FIG. 22 show the positional relationship between the mounting area R and one bottom electrode 606 when the detector 600 is transported to a deviation from a specific transport position. As shown in FIG. 22(b), when the bottom electrode 606 deviates from the placement area R to the radially outer side of the placement area R, the electrostatic capacitance detected by the bottom electrode 606 and the detector When the 600 is transported to a specific transport position (Figure 22(a)), the electrostatic capacitance becomes smaller than that. As shown in FIG. 22(c), when the bottom electrode 606 deviates from the placement area R to the inside in the radial direction of the placement area R, due to the influence of the electrode E, it is detected by the bottom electrode 606 The electrostatic capacitance is larger than the electrostatic capacitance when the detector 600 is transported to a specific transport position (FIG. 22(a)). Therefore, by using the digital value representing the electrostatic capacitance of the bottom electrode 606 of each of the second sensors 605A to 605D and referring to the data table, the offset amount of each bottom electrode 606 in each radial direction of the mounting region R can be obtained . Then, based on the offset amount of the bottom electrode 606 of each of the second sensors 605A to 605D in each radial direction, the error of the conveying position of the detector 600 can be obtained. When the error of the transport position of the detector 600 is greater than a specific threshold, it is determined in the next step ST5 that the transport position data needs to be corrected. In this case, in step ST6, the conveying position data is corrected by the control unit MC in a way of removing errors. Then, in step ST7, the detector 600 is transported again to the same process module as the process module to which the detector 600 was transported before, and steps ST2 to ST5 are executed again. On the other hand, when the error of the conveying position of the detector 600 is less than a specific threshold value, it is determined in step ST5 that no correction of the conveying position data is required. In this case, in step ST8, it is determined whether to transport the detector 600 to another process module to which the detector 600 should be transported next. When there is another process module to which the detector 600 should be transferred next, in the next step ST9, the detector 600 is transferred to the other process module, and steps ST2 to ST5 are executed . On the other hand, when there is no other process module to which the detector 600 should be transported next, the method MT ends. According to the method MT of using the detector 600 in this way, a plurality of digit values that can be used in the correction of the transport position data for transport by the transport device TU2 are provided by the detector 600. By using the plurality of digital values, the conveying position data can be corrected as necessary. By using the conveying position data corrected in this way for the conveying of the workpiece W by the conveying device TU2, the workpiece W can be conveyed to a specific conveying position. Furthermore, in one embodiment, the bottom electrodes 606 of the second sensors 605A to 605D are arranged along a circle that shares the central axis AX100 of the base substrate 102. When the detector 600 is transported so that the center axis AX100 of the base substrate 102 coincides with the center of the placement area R as a specific transport position, the electrostatic capacitance of the bottom electrode 606 of each of the second sensors 605A to 605D is shown The digit value of is ideally the same. Therefore, the error of the conveying position of the detector 600 can be easily obtained. In addition, a part of the edge of the bottom electrode 606 of each of the second sensors 605A to 605D has a circular arc shape, and extends on a circle having a diameter substantially equal to the diameter of the placement area R. In addition, the curvature of the part of the edge of the bottom electrode 606 is consistent with the curvature of the edge of the placement region R. Therefore, it is possible to accurately detect the amount of deviation in each radial direction between the transport position of the detector 600 and the specific transport position.

1‧‧‧處理系統 2a~2d‧‧‧台 4a~4d‧‧‧容器 6D‧‧‧驅動裝置 6S‧‧‧感測器 6T‧‧‧支持台 10‧‧‧電漿處理裝置 12‧‧‧腔室本體 12e‧‧‧排氣口 12g‧‧‧開口 14‧‧‧支持部 18a‧‧‧第1平板 18b‧‧‧第2平板 22‧‧‧直流電源 23‧‧‧開關 24‧‧‧冷媒流路 25‧‧‧貫通孔 25a‧‧‧頂起銷 26a‧‧‧配管 26b‧‧‧配管 28‧‧‧氣體供給管線 30‧‧‧上部電極 32‧‧‧絕緣性遮蔽構件 34‧‧‧頂板 34a‧‧‧氣體噴出孔 36‧‧‧支持體 36a‧‧‧氣體擴散室 36b‧‧‧氣體通流孔 36c‧‧‧氣體導入口 38‧‧‧氣體供給管 40‧‧‧氣體源群 42‧‧‧閥群 44‧‧‧流量控制器群 46‧‧‧遮罩 48‧‧‧排氣平板 50‧‧‧排氣裝置 52‧‧‧排氣管 54‧‧‧閘閥 62‧‧‧第1高頻電源 64‧‧‧第2高頻電源 66‧‧‧整合器 68‧‧‧整合器 100‧‧‧檢測器 102‧‧‧基底基板 102a‧‧‧下側部分 102b‧‧‧上側部分 102c‧‧‧中央區域 102h‧‧‧放射區域 102N‧‧‧凹口 102r‧‧‧凹部 104‧‧‧第1感測器 104A~104D‧‧‧第1感測器 104b‧‧‧下表面 104f‧‧‧前側端面 104r‧‧‧後側端面 104s‧‧‧一對側面 104t‧‧‧上表面 105‧‧‧第2感測器 105A~105C‧‧‧第2感測器 106‧‧‧電路基板 106A‧‧‧電路基板 108‧‧‧配線群 108A~108D‧‧‧配線群 123‧‧‧穿孔配線 141‧‧‧電極 141a‧‧‧第1部分 142‧‧‧電極 142a‧‧‧第2部分 143‧‧‧電極 143f‧‧‧前表面 144‧‧‧基板部 144f‧‧‧表層部 144m‧‧‧本體部 146‧‧‧絕緣區域 147‧‧‧絕緣區域 148‧‧‧絕緣區域 151‧‧‧焊墊 152‧‧‧焊墊 153‧‧‧焊墊 154‧‧‧穿孔配線 161‧‧‧底部電極 162a~162d‧‧‧周邊電極 165a~165e‧‧‧貫通電極 169‧‧‧絕緣膜 171‧‧‧高頻振盪器 172‧‧‧C/V轉換電路 172A~172D‧‧‧C/V轉換電路 173‧‧‧A/D轉換器 174‧‧‧處理器 175‧‧‧記憶裝置 176‧‧‧通信裝置 177‧‧‧電源 178‧‧‧記憶裝置 180‧‧‧C/V轉換電路 180A~180O‧‧‧C/V轉換電路 181‧‧‧配線 182‧‧‧配線 183‧‧‧配線 184‧‧‧配線 204‧‧‧第1感測器 241‧‧‧電極 242‧‧‧電極 243‧‧‧電極 243f‧‧‧前表面 244‧‧‧基板部 244a‧‧‧上表面 244b‧‧‧下表面 244c‧‧‧前側端面 244d‧‧‧下側部分 244f‧‧‧表層部 244m‧‧‧本體部 244u‧‧‧上側部分 247‧‧‧絕緣區域 305‧‧‧第2感測器 361‧‧‧區域 362a‧‧‧周邊區域 362b‧‧‧周邊區域 362c‧‧‧周邊區域 362d‧‧‧周邊區域 365‧‧‧電極 365a‧‧‧端面 366a‧‧‧圖案電極 366b‧‧‧圖案電極 366c‧‧‧圖案電極 366d‧‧‧圖案電極 366e‧‧‧圖案電極 370a‧‧‧包圍電極 370b‧‧‧包圍電極 370c‧‧‧包圍電極 370d‧‧‧包圍電極 370e‧‧‧包圍電極 371a‧‧‧穿孔電極 371b‧‧‧穿孔電極 371c‧‧‧穿孔電極 371d‧‧‧穿孔電極 371e‧‧‧穿孔電極 405‧‧‧第2感測器 465‧‧‧電極 465a‧‧‧端面 505‧‧‧第2感測器 600‧‧‧檢測器 605A~605D‧‧‧第2感測器 606‧‧‧底部電極 606a‧‧‧圓弧 606b‧‧‧圓弧 607‧‧‧電極 608‧‧‧絕緣區域 609‧‧‧電極 610‧‧‧絕緣區域 680A~680D‧‧‧C/V轉換電路 681‧‧‧配線 682‧‧‧配線 683‧‧‧配線 AN‧‧‧對準器 AX100‧‧‧中心軸線 E‧‧‧電極 ESC‧‧‧靜電吸盤 FR‧‧‧聚焦環 GC‧‧‧地線 GL‧‧‧接地電位線 He‧‧‧He氣體 LE‧‧‧下部電極 LL1‧‧‧加載互鎖真空模組 LL2‧‧‧加載互鎖真空模組 LM‧‧‧裝載模組 MC‧‧‧控制部 MT‧‧‧方法 P1‧‧‧第1部分 P1i‧‧‧內緣 P2‧‧‧第2部分 P2i‧‧‧內緣 PD‧‧‧載置台 PM1~PM6‧‧‧製程模組 R‧‧‧載置區域 S‧‧‧腔室 ST1‧‧‧步驟 ST2‧‧‧步驟 ST3‧‧‧步驟 ST4‧‧‧步驟 ST5‧‧‧步驟 ST6‧‧‧步驟 ST7‧‧‧步驟 ST8‧‧‧步驟 ST9‧‧‧步驟 SWG‧‧‧開關 TF‧‧‧轉移模組 TU2‧‧‧搬送裝置 W‧‧‧被加工物 WN‧‧‧凹口 1‧‧‧Processing system 2a~2d‧‧‧Taiwan 4a~4d‧‧‧Container 6D‧‧‧Drive device 6S‧‧‧Sensor 6T‧‧‧Support Desk 10‧‧‧Plasma processing device 12‧‧‧The chamber body 12e‧‧‧Exhaust port 12g‧‧‧Opening 14‧‧‧Support Department 18a‧‧‧The first plate 18b‧‧‧Second plate 22‧‧‧DC power supply 23‧‧‧Switch 24‧‧‧Refrigerant flow path 25‧‧‧Through hole 25a‧‧‧Ejector pin 26a‧‧‧Piping 26b‧‧‧Piping 28‧‧‧Gas supply pipeline 30‧‧‧Upper electrode 32‧‧‧Insulating shielding member 34‧‧‧Top plate 34a‧‧‧Gas ejection hole 36‧‧‧Support 36a‧‧‧Gas diffusion chamber 36b‧‧‧Gas through hole 36c‧‧‧Gas inlet 38‧‧‧Gas supply pipe 40‧‧‧Gas source group 42‧‧‧Valve group 44‧‧‧Flow Controller Group 46‧‧‧Mask 48‧‧‧Exhaust plate 50‧‧‧Exhaust device 52‧‧‧Exhaust pipe 54‧‧‧Gate Valve 62‧‧‧The first high frequency power supply 64‧‧‧The second high frequency power supply 66‧‧‧Integrator 68‧‧‧Integrator 100‧‧‧Detector 102‧‧‧Base substrate 102a‧‧‧Lower part 102b‧‧‧Upper part 102c‧‧‧Central area 102h‧‧‧Radiation area 102N‧‧‧Notch 102r‧‧‧Concave 104‧‧‧The first sensor 104A~104D‧‧‧The first sensor 104b‧‧‧Lower surface 104f‧‧‧Front end face 104r‧‧‧rear end face 104s‧‧‧A pair of sides 104t‧‧‧Upper surface 105‧‧‧Second sensor 105A~105C‧‧‧Second sensor 106‧‧‧Circuit board 106A‧‧‧Circuit board 108‧‧‧Wiring Group 108A~108D‧‧‧Wiring group 123‧‧‧Perforated wiring 141‧‧‧electrode 141a‧‧‧Part 1 142‧‧‧electrode 142a‧‧‧Part 2 143‧‧‧electrode 143f‧‧‧Front surface 144‧‧‧Substrate Department 144f‧‧‧Surface 144m‧‧‧Main body 146‧‧‧Insulation area 147‧‧‧Insulation area 148‧‧‧Insulation area 151‧‧‧Solder pad 152‧‧‧Solder pad 153‧‧‧Solder pad 154‧‧‧Perforated wiring 161‧‧‧Bottom electrode 162a~162d‧‧‧peripheral electrode 165a~165e‧‧‧through electrode 169‧‧‧Insulation film 171‧‧‧High Frequency Oscillator 172‧‧‧C/V conversion circuit 172A~172D‧‧‧C/V conversion circuit 173‧‧‧A/D converter 174‧‧‧Processor 175‧‧‧Memory device 176‧‧‧Communication device 177‧‧‧Power 178‧‧‧Memory device 180‧‧‧C/V conversion circuit 180A~180O‧‧‧C/V conversion circuit 181‧‧‧Wiring 182‧‧‧Wiring 183‧‧‧Wiring 184‧‧‧Wiring 204‧‧‧The first sensor 241‧‧‧electrode 242‧‧‧electrode 243‧‧‧electrode 243f‧‧‧Front surface 244‧‧‧Substrate Department 244a‧‧‧Upper surface 244b‧‧‧Lower surface 244c‧‧‧Front end face 244d‧‧‧Lower part 244f‧‧‧Surface 244m‧‧‧Main body 244u‧‧‧Upper part 247‧‧‧Insulation area 305‧‧‧Second sensor 361‧‧‧area 362a‧‧‧ Surrounding area 362b‧‧‧ Surrounding area 362c‧‧‧ Surrounding area 362d‧‧‧ Surrounding area 365‧‧‧electrode 365a‧‧‧end face 366a‧‧‧Pattern electrode 366b‧‧‧Pattern electrode 366c‧‧‧Pattern electrode 366d‧‧‧Pattern electrode 366e‧‧‧Pattern electrode 370a‧‧‧surrounding electrode 370b‧‧‧Enclosure electrode 370c‧‧‧surrounding electrode 370d‧‧‧surrounding electrode 370e‧‧‧surrounding electrode 371a‧‧‧Perforated electrode 371b‧‧‧Perforated electrode 371c‧‧‧Perforated electrode 371d‧‧‧Perforated electrode 371e‧‧‧Perforated electrode 405‧‧‧Second sensor 465‧‧‧electrode 465a‧‧‧end face 505‧‧‧Second sensor 600‧‧‧Detector 605A~605D‧‧‧Second sensor 606‧‧‧Bottom electrode 606a‧‧‧arc 606b‧‧‧arc 607‧‧‧electrode 608‧‧‧Insulation area 609‧‧‧electrode 610‧‧‧Insulation area 680A~680D‧‧‧C/V conversion circuit 681‧‧‧Wiring 682‧‧‧Wiring 683‧‧‧Wiring AN‧‧‧Aligner AX100‧‧‧Central axis E‧‧‧electrode ESC‧‧‧Electrostatic chuck FR‧‧‧Focusing Ring GC‧‧‧Ground wire GL‧‧‧Ground potential line He‧‧‧He gas LE‧‧‧Lower electrode LL1‧‧‧Loading interlocking vacuum module LL2‧‧‧Loading interlocking vacuum module LM‧‧‧Loading module MC‧‧‧Control Department MT‧‧‧Method P1‧‧‧Part 1 P1i‧‧‧Inner edge P2‧‧‧Part 2 P2i‧‧‧Inner edge PD‧‧‧Placing table PM1~PM6‧‧‧Processing module R‧‧‧Placement area S‧‧‧ Chamber ST1‧‧‧Step ST2‧‧‧Step ST3‧‧‧Step ST4‧‧‧Step ST5‧‧‧Step ST6‧‧‧Step ST7‧‧‧Step ST8‧‧‧Step ST9‧‧‧Step SWG‧‧‧switch TF‧‧‧Transfer Module TU2‧‧‧Transfer device W‧‧‧Processed object WN‧‧‧Notch

圖1係例示處理系統之圖。 圖2係例示對準器之立體圖。 圖3係表示電漿處理裝置之一例之圖。 圖4係表示靜電吸盤之俯視圖。 圖5係例示檢測器之立體圖。 圖6係表示自底面側觀察圖5所示之檢測器之俯視圖。 圖7係表示第1感測器之一例之立體圖。 圖8係沿圖7之VIII-VIII線而獲得之剖視圖。 圖9係沿圖8之IX-IX線而獲得之剖視圖。 圖10係沿圖6之X-X線而獲得之剖視圖。 圖11係例示檢測器之電路基板之構成之圖。 圖12係表示第1感測器之其他例之縱剖視圖。 圖13(a)、(b)係表示第2感測器之其他例之圖。 圖14係沿圖13之(b)之XIV-XIV線而獲得之剖視圖。 圖15係表示第2感測器之進而其他例之圖。 圖16係表示第2感測器之進而其他例之圖。 圖17係表示檢測器之其他例之圖。 圖18係模式性地表示靜電吸盤之剖視圖。 圖19係圖17之檢測器之放大圖。 圖20係例示圖17之檢測器之電路基板的構成之圖。 圖21係表示校正處理系統中之搬送位置資料之方法的一實施形態之流程圖。 圖22(a)~(c)係表示檢測器相對於靜電吸盤之搬送位置之圖。Figure 1 is a diagram illustrating the processing system. Fig. 2 is a perspective view illustrating the aligner. Fig. 3 is a diagram showing an example of a plasma processing apparatus. Figure 4 shows a top view of the electrostatic chuck. Figure 5 is a perspective view illustrating the detector. Fig. 6 is a plan view of the detector shown in Fig. 5 viewed from the bottom side. Fig. 7 is a perspective view showing an example of the first sensor. Fig. 8 is a cross-sectional view taken along the line VIII-VIII in Fig. 7. Fig. 9 is a cross-sectional view taken along the line IX-IX in Fig. 8. Fig. 10 is a cross-sectional view taken along line X-X in Fig. 6; FIG. 11 is a diagram illustrating the structure of the circuit board of the detector. Fig. 12 is a longitudinal sectional view showing another example of the first sensor. Fig. 13 (a) and (b) are diagrams showing other examples of the second sensor. Fig. 14 is a cross-sectional view taken along the line XIV-XIV of Fig. 13(b). Fig. 15 is a diagram showing still another example of the second sensor. Fig. 16 is a diagram showing still another example of the second sensor. Fig. 17 is a diagram showing another example of the detector. Fig. 18 is a schematic cross-sectional view of the electrostatic chuck. Figure 19 is an enlarged view of the detector of Figure 17; FIG. 20 is a diagram illustrating the structure of the circuit board of the detector of FIG. 17; Fig. 21 is a flow chart showing an embodiment of a method of correcting the conveying position data in the processing system. Figure 22 (a) ~ (c) are diagrams showing the transport position of the detector relative to the electrostatic chuck.

100‧‧‧檢測器 100‧‧‧Detector

102‧‧‧基底基板 102‧‧‧Base substrate

102a‧‧‧下側部分 102a‧‧‧Lower part

102b‧‧‧上側部分 102b‧‧‧Upper part

102c‧‧‧中央區域 102c‧‧‧Central area

102h‧‧‧放射區域 102h‧‧‧Radiation area

102N‧‧‧凹口 102N‧‧‧Notch

102r‧‧‧凹部 102r‧‧‧Concave

104A~104D‧‧‧第1感測器 104A~104D‧‧‧The first sensor

104f‧‧‧前側端面 104f‧‧‧Front end face

105‧‧‧第2感測器 105‧‧‧Second sensor

105A~105C‧‧‧第2感測器 105A~105C‧‧‧Second sensor

106‧‧‧電路基板 106‧‧‧Circuit board

108A~108D‧‧‧配線群 108A~108D‧‧‧Wiring Group

165a~165e‧‧‧貫通電極 165a~165e‧‧‧Through electrode

184‧‧‧配線 184‧‧‧Wiring

AX100‧‧‧中心軸線 AX100‧‧‧Central axis

Claims (9)

一種靜電電容檢測用之檢測器,其包含:基底基板,其具有圓盤形狀;複數個第1感測器,其等沿上述基底基板之邊緣排列,且分別提供複數個側部電極;一個以上之第2感測器,其分別具有沿上述基底基板之底面設置之底部電極;及電路基板,其係搭載於上述基底基板上,且與上述複數個第1感測器及上述一個以上之第2感測器之各者相連接者,且構成為:向上述複數個側部電極及上述底部電極賦予高頻信號,根據上述複數個側部電極中之電壓振幅之各者產生表示靜電電容之複數個第1檢測值,並根據上述底部電極中之電壓振幅產生表示靜電電容之第2檢測值;且上述一個以上之第2感測器之各者進而包含以自上述基底基板之上表面於該基底基板之板厚方向延伸之方式設置於該基底基板的複數個電極;且上述一個以上之第2感測器各自之上述底部電極,係由上述複數個電極之上述底面側之端面構成。 A detector for electrostatic capacitance detection, comprising: a base substrate having a disc shape; a plurality of first sensors arranged along the edge of the base substrate, and a plurality of side electrodes are provided respectively; and more than one The second sensors respectively have bottom electrodes arranged along the bottom surface of the base substrate; and a circuit board, which is mounted on the base substrate, and is connected to the plurality of first sensors and the one or more first sensors. 2. Each of the sensors is connected, and is configured to apply high-frequency signals to the plurality of side electrodes and the bottom electrode, and generate a capacitance representing electrostatic capacitance based on each of the voltage amplitudes in the plurality of side electrodes A plurality of first detection values are generated based on the voltage amplitude in the bottom electrode, and a second detection value representing the electrostatic capacitance is generated; and each of the one or more second sensors further includes a second detection value from the upper surface of the base substrate The base substrate is provided on the plurality of electrodes of the base substrate in a manner extending in the thickness direction; and the bottom electrode of each of the one or more second sensors is constituted by the end surface on the bottom side of the plurality of electrodes. 如請求項1之靜電電容檢測用之檢測器,其中上述一個以上之第2感測器各自之上述底部電極具有圓形狀;上述一個以上之第2感測器之各者,進而具有以包圍上述底部電極之方式而配置之周邊電極;上述電路基板進而構成為:向上述周邊電極賦予上述高頻信號,並 根據上述周邊電極中之電壓振幅產生表示靜電電容之第3檢測值。 The detector for electrostatic capacitance detection according to claim 1, wherein the bottom electrode of each of the one or more second sensors has a circular shape; each of the one or more second sensors further has to surround the The peripheral electrode is arranged as a bottom electrode; the circuit board is further configured to apply the high-frequency signal to the peripheral electrode, and A third detection value representing the electrostatic capacitance is generated based on the voltage amplitude in the peripheral electrode. 如請求項1之靜電電容檢測用之檢測器,其中上述一個以上之第2感測器為複數個第2感測器;上述複數個第2感測器係沿共用上述基底基板之中心軸線之圓配置。 Such as the detector for electrostatic capacitance detection of claim 1, wherein the above-mentioned one or more second sensors are plural second sensors; the plural second sensors share the central axis of the base substrate Circle configuration. 一種靜電電容檢測用之檢測器,其包含:基底基板,其具有圓盤形狀;複數個第1感測器,其等沿上述基底基板之邊緣排列,且分別提供複數個側部電極;一個以上之第2感測器,其分別具有沿上述基底基板之底面設置之底部電極;及電路基板,其係搭載於上述基底基板上,且與上述複數個第1感測器及上述一個以上之第2感測器之各者相連接者,且構成為:向上述複數個側部電極及上述底部電極賦予高頻信號,根據上述複數個側部電極中之電壓振幅之各者產生表示靜電電容之複數個第1檢測值,並根據上述底部電極中之電壓振幅產生表示靜電電容之第2檢測值;且上述一個以上之第2感測器之各者,進而包含貫通上述基底基板之一個以上之貫通電極;且上述一個以上之第2感測器各自之上述底部電極,經由上述一個以上之貫通電極而與上述電路基板相連接。 A detector for electrostatic capacitance detection, comprising: a base substrate having a disc shape; a plurality of first sensors arranged along the edge of the base substrate, and a plurality of side electrodes are provided respectively; and more than one The second sensors respectively have bottom electrodes arranged along the bottom surface of the base substrate; and a circuit board, which is mounted on the base substrate, and is connected to the plurality of first sensors and the one or more first sensors. 2. Each of the sensors is connected, and is configured to apply high-frequency signals to the plurality of side electrodes and the bottom electrode, and generate a capacitance representing electrostatic capacitance based on each of the voltage amplitudes in the plurality of side electrodes A plurality of first detection values, and generating a second detection value representing the electrostatic capacitance based on the voltage amplitude in the bottom electrode; and each of the one or more second sensors, further including one or more penetrating through the base substrate Through electrodes; and the bottom electrodes of each of the one or more second sensors are connected to the circuit board via the one or more through electrodes. 如請求項4之靜電電容檢測用之檢測器,其中 上述一個以上之第2感測器各自之上述底部電極具有圓形狀;上述一個以上之第2感測器之各者,進而具有以包圍上述底部電極之方式而配置之周邊電極;上述電路基板進而構成為:向上述周邊電極賦予上述高頻信號,並根據上述周邊電極中之電壓振幅產生表示靜電電容之第3檢測值。 Such as the detector for electrostatic capacitance detection in claim 4, where The bottom electrode of each of the one or more second sensors has a circular shape; each of the one or more second sensors further has peripheral electrodes arranged to surround the bottom electrode; the circuit board further The configuration is such that the high-frequency signal is applied to the peripheral electrode, and a third detection value representing the electrostatic capacitance is generated based on the voltage amplitude in the peripheral electrode. 如請求項4之靜電電容檢測用之檢測器,其中上述一個以上之第2感測器為複數個第2感測器;上述複數個第2感測器係沿共用上述基底基板之中心軸線之圓配置。 Such as the detector for electrostatic capacitance detection of claim 4, wherein the above-mentioned one or more second sensors are a plurality of second sensors; the above-mentioned plurality of second sensors share the central axis of the base substrate Circle configuration. 一種靜電電容檢測用之檢測器,其包含:基底基板,其具有圓盤形狀;複數個第1感測器,其等沿上述基底基板之邊緣排列,且分別提供複數個側部電極;一個以上之第2感測器,其分別具有沿上述基底基板之底面設置之底部電極;及電路基板,其係搭載於上述基底基板上,且與上述複數個第1感測器及上述一個以上之第2感測器之各者相連接者,且構成為:向上述複數個側部電極及上述底部電極賦予高頻信號,根據上述複數個側部電極中之電壓振幅之各者產生表示靜電電容之複數個第1檢測值,並根據上述底部電極中之電壓振幅產生表示靜電電容之第2檢測值;且上述一個以上之第2感測器為三個以上之第2感測器;上述三個以上之第2感測器之各者,包含沿上述基底基板之底面設置 之底部電極,且沿共用上述基底基板之中心軸線之圓而配置;且上述三個以上之第2感測器各自之上述底部電極的邊緣之一部分,具有圓弧形狀且於上述圓上延伸。 A detector for electrostatic capacitance detection, comprising: a base substrate having a disc shape; a plurality of first sensors arranged along the edge of the base substrate, and a plurality of side electrodes are provided respectively; and more than one The second sensors respectively have bottom electrodes arranged along the bottom surface of the base substrate; and a circuit board, which is mounted on the base substrate, and is connected to the plurality of first sensors and the one or more first sensors. 2. Each of the sensors is connected, and is configured to apply high-frequency signals to the plurality of side electrodes and the bottom electrode, and generate a capacitance representing electrostatic capacitance based on each of the voltage amplitudes in the plurality of side electrodes A plurality of first detection values, and a second detection value representing electrostatic capacitance is generated according to the voltage amplitude in the bottom electrode; and the above one or more second sensors are three or more second sensors; the above three Each of the above-mentioned second sensors includes the arrangement along the bottom surface of the above-mentioned base substrate The bottom electrode is arranged along a circle sharing the central axis of the base substrate; and a part of the edge of the bottom electrode of each of the three or more second sensors has an arc shape and extends on the circle. 一種校正搬送位置資料之方法,其係使用如請求項7之檢測器來校正處理系統中之搬送位置資料者;上述處理系統包含:處理裝置,其包含腔室本體及靜電吸盤,該靜電吸盤設置於由該腔室本體所提供之腔室內,包含具有圓形之邊緣之載置區域,且於該載置區域上載置被加工物;及搬送裝置,其基於搬送位置資料將上述被加工物搬送至上述載置區域上;該方法包括如下步驟:使用上述搬送裝置將上述檢測器搬送至根據上述搬送位置資料而特定出之上述載置區域上之位置;利用搬送至上述載置區域上之上述檢測器之上述三個以上之第2感測器,檢測三個以上之靜電電容;根據上述三個以上之靜電電容之檢測值,求出上述檢測器被搬送至之上述載置區域上之位置相對於上述載置區域上之特定之搬送位置的誤差;及利用上述誤差來校正上述搬送位置資料。 A method for correcting conveying position data, which uses a detector such as claim 7 to correct the conveying position data in a processing system; the processing system includes: a processing device including a chamber body and an electrostatic chuck, the electrostatic chuck is provided The chamber provided by the chamber body includes a placing area with a circular edge, and placing the processed object on the placing area; and a conveying device that conveys the processed object based on the conveying position data To the loading area; the method includes the following steps: using the transport device to transport the detector to a position on the loading area specified based on the transport position data; using the transport to the loading area The above three or more second sensors of the detector detect three or more electrostatic capacitances; based on the detection values of the above three or more electrostatic capacitances, the position on the mounting area where the detector is transported is obtained An error relative to the specific conveying position on the loading area; and using the error to correct the conveying position data. 如請求項8之校正搬送位置資料之方法,其中上述底部電極之邊緣之上述一部分之曲率,與上述載置區域之邊緣之曲率一致。 Such as the method for calibrating transport position data of claim 8, wherein the curvature of the part of the edge of the bottom electrode is consistent with the curvature of the edge of the mounting area.
TW106120306A 2016-06-20 2017-06-19 Detector for electrostatic capacitance detection and method for using the detector to calibrate conveying position data in processing system TWI724185B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016121714 2016-06-20
JP??2016-121714 2016-06-20
JP??2016-207649 2016-10-24
JP2016207649A JP6712939B2 (en) 2016-06-20 2016-10-24 Measuring instrument for capacitance measurement and method of calibrating transfer position data in a processing system using the measuring instrument

Publications (2)

Publication Number Publication Date
TW201803004A TW201803004A (en) 2018-01-16
TWI724185B true TWI724185B (en) 2021-04-11

Family

ID=60892229

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120306A TWI724185B (en) 2016-06-20 2017-06-19 Detector for electrostatic capacitance detection and method for using the detector to calibrate conveying position data in processing system

Country Status (3)

Country Link
JP (1) JP6712939B2 (en)
KR (1) KR102381838B1 (en)
TW (1) TWI724185B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029983B2 (en) * 2018-03-09 2022-03-04 東京エレクトロン株式会社 How to find the measuring instrument and the amount of deviation of the measuring instrument
JP7037964B2 (en) * 2018-03-09 2022-03-17 東京エレクトロン株式会社 How the system operates to inspect the measuring instrument and focus ring
US10794681B2 (en) 2018-09-04 2020-10-06 Applied Materials, Inc. Long range capacitive gap measurement in a wafer form sensor system
US11521872B2 (en) * 2018-09-04 2022-12-06 Applied Materials, Inc. Method and apparatus for measuring erosion and calibrating position for a moving process kit
US11404296B2 (en) 2018-09-04 2022-08-02 Applied Materials, Inc. Method and apparatus for measuring placement of a substrate on a heater pedestal
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
US11342210B2 (en) * 2018-09-04 2022-05-24 Applied Materials, Inc. Method and apparatus for measuring wafer movement and placement using vibration data
JP2020085452A (en) 2018-11-15 2020-06-04 オムロン株式会社 Proximity sensor unit and distance observation device
JP7129325B2 (en) * 2018-12-14 2022-09-01 東京エレクトロン株式会社 Conveying method and conveying system
JP2020115499A (en) * 2019-01-17 2020-07-30 東京エレクトロン株式会社 Plasma processing apparatus and ring member position deviation measuring method
WO2021185939A1 (en) * 2020-03-20 2021-09-23 Asml Netherlands B.V. Method, apparatus, and system for dynamically controlling an electrostatic chuck during an inspection of wafer
JP2022068582A (en) 2020-10-22 2022-05-10 東京エレクトロン株式会社 Calibration method of conveyance position data
JP2022107401A (en) 2021-01-08 2022-07-21 東京エレクトロン株式会社 Measurement instrument and measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333572B1 (en) * 1997-03-17 2001-12-25 Nikon Corporation Article positioning apparatus and exposing apparatus having the article positioning apparatus
US20030046998A1 (en) * 2001-08-06 2003-03-13 Semiconductor Leading Edge Technologies, Inc. Substrate-container measuring device, and substrate-container measuring jig
TW200921836A (en) * 2007-08-02 2009-05-16 Tokyo Electron Ltd Jig for detecting position
TW200931581A (en) * 2007-08-24 2009-07-16 Tokyo Electron Ltd Method of adjusting moving position of transfer arm and position detecting jig
WO2010053229A1 (en) * 2008-11-06 2010-05-14 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Method and system of measuring motion error in precision linear stage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460592B2 (en) * 2007-08-07 2010-05-12 小島プレス工業株式会社 On-vehicle equipment operation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333572B1 (en) * 1997-03-17 2001-12-25 Nikon Corporation Article positioning apparatus and exposing apparatus having the article positioning apparatus
US20030046998A1 (en) * 2001-08-06 2003-03-13 Semiconductor Leading Edge Technologies, Inc. Substrate-container measuring device, and substrate-container measuring jig
TW200921836A (en) * 2007-08-02 2009-05-16 Tokyo Electron Ltd Jig for detecting position
TW200931581A (en) * 2007-08-24 2009-07-16 Tokyo Electron Ltd Method of adjusting moving position of transfer arm and position detecting jig
WO2010053229A1 (en) * 2008-11-06 2010-05-14 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Method and system of measuring motion error in precision linear stage

Also Published As

Publication number Publication date
JP2017228754A (en) 2017-12-28
KR102381838B1 (en) 2022-04-04
KR20170142905A (en) 2017-12-28
JP6712939B2 (en) 2020-06-24
TW201803004A (en) 2018-01-16

Similar Documents

Publication Publication Date Title
TWI724185B (en) Detector for electrostatic capacitance detection and method for using the detector to calibrate conveying position data in processing system
TWI781253B (en) Method of obtaining amount of deviation of a measuring device, and method of calibrating transfer position data in a processing system
KR102636225B1 (en) Method for calibrating measuring device and case used in the calibration method
JP6537433B2 (en) Sensor chip for capacitance measurement and measuring instrument equipped with the same
KR102299122B1 (en) Method for acquiring data indicating electrostatic capacitance
US10634479B2 (en) Measuring instrument for measuring electrostatic capacity and method of calibrating transfer position data in processing system by using measuring instrument
TWI794563B (en) Transfer method and transfer system
JP6502232B2 (en) Focus ring and sensor chip
JP7037964B2 (en) How the system operates to inspect the measuring instrument and focus ring
TWI753140B (en) Electrostatic capacitance measuring device
CN110246796B (en) Measuring device and method for determining deviation of measuring device
TW202232108A (en) Measuring device and measuring method wherein the measuring method can stabilize the measurement accuracy of a measuring device
WO2022249973A1 (en) Plasma monitoring system, plasma monitoring method, and monitoring device
KR20230099647A (en) Measurement device
TW202220091A (en) Correction method of transport position data comprising a processing system, an electrostatic chuck, a measuring device