TWI722803B - A method for step length estimation and pulmonary function prediction with a six-minute walking test - Google Patents
A method for step length estimation and pulmonary function prediction with a six-minute walking test Download PDFInfo
- Publication number
- TWI722803B TWI722803B TW109105720A TW109105720A TWI722803B TW I722803 B TWI722803 B TW I722803B TW 109105720 A TW109105720 A TW 109105720A TW 109105720 A TW109105720 A TW 109105720A TW I722803 B TWI722803 B TW I722803B
- Authority
- TW
- Taiwan
- Prior art keywords
- formula
- unit
- age
- distance
- fev
- Prior art date
Links
Images
Landscapes
- Measurement Of Distances Traversed On The Ground (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明係有關一種以六分鐘走路運動發展步距與肺功能估算之方法,尤指一種兼具使用者可在醫院之外進行肺功能評估、不論知道六分鐘走路運動之總距離與否均可預測,及走路運動兼可進行運動後肺功能評估之方法。 The present invention relates to a method for estimating stride length and pulmonary function by six-minute walking exercise, especially a method that allows users to perform pulmonary function evaluation outside the hospital, regardless of whether the total distance of six-minute walking exercise is known or not. Prediction, and walking exercise can also be used to evaluate lung function after exercise.
傳統上,有呼吸道疾病民眾進行肺功能檢查,例如:用力肺活量(forced vital capacity,簡稱FVC)與用力呼氣一秒量(forced exhale volume in one second,簡稱FEV1)等項目,需要到醫院才能進行檢查,十分不便。此外,運動後肺功能可以作為運動後肺部通氣量的指標,但在醫院大多進行靜止時肺功能檢查,較無法反應運動後的侷限狀態。此外,目前走路運動也以計步為主,但對於需要以距離來衡量的項目,則須要有定位參考點才能執行;這對於胸腔疾病需以走路運動來復健的民眾相當不便。 Traditionally, people with respiratory diseases undergo pulmonary function tests, such as forced vital capacity (FVC) and forced exhale volume in one second (FEV 1 ), and they need to go to the hospital. It is very inconvenient to perform an inspection. In addition, post-exercise lung function can be used as an indicator of post-exercise pulmonary ventilation, but in hospitals, lung function tests are mostly performed at rest, which is less able to reflect the limitations of post-exercise. In addition, the current walking exercise is mainly based on step counting, but for items that need to be measured by distance, a positioning reference point is required to perform; this is quite inconvenient for people with chest diseases who need to use walking exercise to rehabilitate.
有鑑於此,必須研發出可解決上述習用缺點之技術。 In view of this, it is necessary to develop a technology that can solve the above-mentioned conventional shortcomings.
本發明之目的,在於提供一種以六分鐘走路運動發展步距與肺功能估算之方法,其兼具使用者可在醫院之外進行肺功能評估、不論知道六分鐘走路運動之總距離與否均可預測,及走路運動兼可進行運動後肺功能評估等優點。特別是,本發明所欲解決之問題係在於有呼吸道疾病民眾進行用力肺活量與用力呼氣一秒量等肺功能檢查項目,需要到醫院才能進行檢查,十分不便。此外,運動後肺功能可以作為運動後肺部通氣量的指標,但在醫院大多進行靜止時肺功 能檢查,較無法反應運動後的局限狀態。此外,目前走路運動也以計步為主,但對於需要以距離來衡量的項目,則須要有定位參考點才能執行;這對於胸腔疾病需以走路運動來復健的民眾相當不便等問題。 The purpose of the present invention is to provide a method for estimating stride length and pulmonary function by six-minute walking exercise, which allows users to perform pulmonary function evaluation outside the hospital, regardless of whether the total distance of six-minute walking exercise is known or not. Predictable, and walking exercise can also be used for post-exercise lung function assessment and other advantages. In particular, the problem to be solved by the present invention is that people with respiratory diseases undergoing lung function test items such as forced vital capacity and forced exhalation for one second, which need to go to the hospital for the test, which is very inconvenient. In addition, lung function after exercise can be used as an indicator of lung ventilation after exercise. Can check, less able to reflect the limited state after exercise. In addition, the current walking exercise is mainly based on step counting, but for items that need to be measured by distance, a positioning reference point is required to perform; this is quite inconvenient for people with chest diseases who need to use walking exercise to rehabilitate.
解決上述問題之技術手段係提供一種以六分鐘走路運動發展步距與肺功能估算之方法,其包括:一.輸入資料步驟:預先準備一估算單元、一計步單元及一計時單元,該估算單元係具有一輸入介面及一顯示介面;以該輸入介面對該估算單元輸入一使用者之身高(H)、體重(W)、性別(G)及年齡(A);其中,該身高(H)之單位為公分,該體重(W)之單位為公斤,該性別(G)係選自男、女其中之一;該年齡(A)之單位係為歲;該計步單元及該計時單元皆係設於該估算單元內;二.進行六分鐘走路運動步驟:攜帶該估算單元進行六分鐘走路運動後,其係取得一總步數(B);若已知六分鐘走路運動後之總距離(S),則進行下列之步驟三;否則,進行下列之步驟四;三.已知總距離之步距計算步驟:步距(D)係以下列之公式(1)計算:(公式1)步距(D)=總距離(S)/總步數(B);四.未知總距離之步距計算步驟:步距(D)係以下列之公式(2)、(3)、(4)、(5)其中之一及公式(6)計算而得:若性別(G)為男性,且20≦年齡(A)<25,則以公式(2)計算:(公式2)FEV1pred=-6.1181+0.0519*身高(H)+0.0636*年齡(A);若性別(G)為男性,且25≦年齡(A)<99,則以公式(3)計算:(公式3) FEV1pred=-6.5147+0.0665*身高(H)-0.0292*年齡(A);若性別(G)為女性,且20≦年齡(A)<25,則以公式(4)計算:(公式4)FEV1pred=-1.8210+0.0332*身高(H)-0.0190*年齡(A);若性別(G)為女性,且25≦年齡(A)<99,則以公式(3)計算:(公式5)FEV1pred=2.6539+0.0143*身高(H)-0.0397*年齡(A);其中,FEV1pred係為用力呼氣一秒量預測值,單位為公升;再以下列之公式(6)計算步距(D):(公式6)步距(D)=0.289+0.153*FEV1pred;再以下列之公式(7)可計算總距離(S):(公式7)總距離(S)=步距(D)*總步數(B);五.肺功能估算步驟:進行下列公式(8)與公式(9)計算:(公式8)FVC估算值=-4.249+2.255*步距(D)+0.031*身高(H);(公式9)FEV1估算值=-0.453+0.002*總距離+0.020*體重(W);其中,FVC估算值係運動後用力肺活量估算值;FEV1估算值係為運動後用力呼氣一秒量之估算值。 The technical means to solve the above problems is to provide a method for estimating the pace and lung function of the six-minute walking exercise, which includes: 1. Steps of inputting data: prepare an estimation unit, a pedometer unit and a timing unit in advance. The estimation unit has an input interface and a display interface; input a user's height (H), Weight (W), gender (G) and age (A); among them, the unit of height (H) is centimeters, the unit of weight (W) is kilograms, and the gender (G) is selected from male and female 1. The unit of the age (A) is years; the pedometer unit and the timing unit are both set in the estimation unit; 2. Steps for six-minute walking exercise: After carrying the estimating unit for six-minute walking exercise, it obtains a total number of steps (B); if the total distance (S) after six-minute walking exercise is known, proceed to the following step 3 ; Otherwise, proceed to the following step four; three. Steps for calculating the known total distance: Step distance (D) is calculated by the following formula (1): (Formula 1) Step distance (D) = total distance (S)/total number of steps (B); 4. Steps for calculating the step distance of the unknown total distance: The step distance (D) is calculated by one of the following formulas (2), (3), (4), (5) and formula (6): If gender (G ) Is male, and 20≦age(A)<25, then use formula (2) to calculate: (Formula 2) FEV 1 pred=-6.1181+0.0519*height(H)+0.0636*age(A); if gender ( G) is male, and 25≦age(A)<99, then use formula (3) to calculate: (Formula 3) FEV 1 pred=-6.5147+0.0665*height(H)-0.0292*age(A); if gender (G) is female, and 20≦age(A)<25, then use formula (4) to calculate: (Formula 4) FEV 1 pred=-1.8210+0.0332*height(H)-0.0190*age(A); if Gender (G) is female, and 25≦age (A)<99, then use formula (3) to calculate: (Formula 5) FEV 1 pred=2.6539+0.0143*height(H)-0.0397*age(A); where , FEV 1 pred is the predicted value of forced exhalation for one second, in liters; then use the following formula (6) to calculate the step distance (D): (Formula 6) step distance (D)=0.289+0.153*FEV 1 pred; then the total distance (S) can be calculated by the following formula (7): (formula 7) total distance (S) = step distance (D) * total number of steps (B); five. Pulmonary function estimation steps: Carry out the following formula (8) and formula (9) calculation: (Formula 8) FVC estimated value = -4.249 + 2.255 * step distance (D) + 0.031 * height (H); (Formula 9) FEV 1 Estimated value=-0.453+0.002*total distance+0.020*weight (W); among them, the estimated value of FVC is the estimated value of forced vital capacity after exercise; the estimated value of FEV 1 is the estimated value of forced exhalation for one second after exercise.
本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。 The above-mentioned objects and advantages of the present invention can be easily understood from the detailed description of the selected embodiments and the accompanying drawings.
茲以下列實施例並配合圖式詳細說明本發明於後: Hereinafter, the present invention will be described in detail with the following examples and drawings:
S1:輸入資料步驟 S1: Steps to input data
S2:進行六分鐘走路運動步驟 S2: Perform a six-minute walking exercise step
S3:已知總距離之步距計算步驟 S3: Step distance calculation steps for known total distance
S4:未知總距離之步距計算步驟 S4: Steps for calculating step distance of unknown total distance
S5:肺功能估算步驟 S5: Steps to estimate lung function
10:估算單元 10: Estimation unit
11:輸入介面 11: Input interface
12:顯示介面 12: Display interface
20:計步單元 20: Pedometer unit
30:計時單元 30: Timing unit
L1:第一線段 L1: the first line segment
L2:第二線段 L2: second line segment
L3:第三線段 L3: The third line segment
L4:第四線段 L4: The fourth line segment
L5:第五線段 L5: The fifth line segment
L6:第六線段 L6: The sixth line segment
L7:第七線段 L7: The seventh line segment
第1圖係本發明之流程圖 Figure 1 is a flowchart of the present invention
第2圖係本發明之裝置之示意圖 Figure 2 is a schematic diagram of the device of the present invention
第3圖係本發明之預測步距與實際步距之對應關係之散佈圖 Figure 3 is a scatter diagram of the corresponding relationship between the predicted step distance and the actual step distance of the present invention
第4圖係本發明之預測FVC與實際FVC之對應關係之散佈圖 Figure 4 is a scatter diagram of the corresponding relationship between predicted FVC and actual FVC of the present invention
第5圖係本發明之預測FEV1與實際FEV1之對應關係之散佈圖 Figure 5 is a scatter diagram of the corresponding relationship between predicted FEV 1 and actual FEV 1 of the present invention
參閱第1及第2圖,本發明係為一以六分鐘走路運動發展步距與肺功能估算之方法,其包括: Referring to Figures 1 and 2, the present invention is a method for estimating the pace and lung function of a six-minute walking exercise, which includes:
一.輸入資料步驟S1:預先準備一估算單元10、一計步單元20及一計時單元30,該估算單元10係具有一輸入介面11及一顯示介面12。以該輸入介面11對該估算單元10輸入一使用者之身高(H)、體重(W)、性別(G)及年齡(A);其中,該身高(H)之單位為公分,該體重(W)之單位為公斤,該性別(G)係選自男、女其中之一;該年齡(A)之單位係為歲。該計步單元20及該計時單元30皆係設於該估算單元10內。
One. Input data step S1: Prepare an
二.進行六分鐘走路運動步驟S2:攜帶該估算單元10進行六分鐘走路運動後,其係取得一總步數(B);若已知六分鐘走路運動後之總距離(S),則進行下列之步驟三;否則,進行下列之步驟四。
two. Perform six-minute walking exercise step S2: After carrying the estimating
三.已知總距離之步距計算步驟S3:步距(D)係以下列之公式(1)計算:(公式1)步距(D)=總距離(S)/總步數(B)。 three. Step S3 for calculating the step distance of the known total distance: Step distance (D) is calculated by the following formula (1): (Formula 1) step distance (D) = total distance (S)/total number of steps (B).
四.未知總距離之步距計算步驟S4: 步距(D)係以下列之公式(2)、(3)、(4)、(5)其中之一及公式(6)計算而得:若性別(G)為男性,且20≦年齡(A)<25,則以公式(2)計算:(公式2)FEV1pred=-6.1181+0.0519*身高(H)+0.0636*年齡(A)。 four. Step S4 of step distance calculation of unknown total distance: Step distance (D) is calculated by one of the following formulas (2), (3), (4), (5) and formula (6): If gender ( G) is male and 20≦age(A)<25, then it is calculated by formula (2): (Formula 2) FEV 1 pred=-6.1181+0.0519*height(H)+0.0636*age(A).
若性別(G)為男性,且25≦年齡(A)<99,則以公式(3)計算:(公式3)FEV1pred=-6.5147+0.0665*身高(H)-0.0292*年齡(A)。 If gender (G) is male, and 25≦age (A)<99, use formula (3) to calculate: (Formula 3) FEV 1 pred=-6.5147+0.0665*height(H)-0.0292*age(A) .
若性別(G)為女性,且20≦年齡(A)<25,則以公式(4)計算:(公式4)FEV1pred=-1.8210+0.0332*身高(H)-0.0190*年齡(A)。 If gender (G) is female, and 20≦age (A)<25, use formula (4) to calculate: (Formula 4) FEV 1 pred=-1.8210+0.0332*height(H)-0.0190*age(A) .
若性別(G)為女性,且25≦年齡(A)<99,則以公式(3)計算:(公式5)FEV1pred=2.6539+0.0143*身高(H)-0.0397*年齡(A)。 If gender (G) is female, and 25≦age (A)<99, then use formula (3) to calculate: (Formula 5) FEV 1 pred=2.6539+0.0143*height (H)-0.0397*age (A).
其中,FEV1pred係為用力呼氣一秒量預測值,單位為公升;更明確的說,前述之用力呼氣一秒量預測值係指適用亞洲健康成年人之用力呼氣一秒量預測值。 Among them, FEV 1 pred is the predicted value of forced expiration in one second, in liters; more specifically, the aforementioned predicted value of forced expiration in one second refers to the predicted value of forced expiration in one second for healthy Asian adults value.
再以下列之公式(6)計算步距(D):(公式6)步距(D)=0.289+0.153*FEV1pred;再以下列之公式(7)可計算總距離(S):(公式7)總距離(S)=步距(D)(先選擇公式(2)、(3)、(4)、(5)其中一者相對應之數據,再經過公式(6)計算後)*總步數(B)。 Then use the following formula (6) to calculate the step distance (D): (Equation 6) step distance (D)=0.289+0.153*FEV 1 pred; then use the following formula (7) to calculate the total distance (S): ( Formula 7) Total distance (S) = Step distance (D) (First select the data corresponding to one of formulas (2), (3), (4), (5), and then calculate by formula (6)) *Total number of steps (B).
五.肺功能估算步驟S5: 進行下列公式(8)與公式(9)計算:(公式8)FVC估算值=-4.249+2.255*步距(D)+0.031*身高(H)。 Fives. Pulmonary function estimation step S5: Carry out the following formula (8) and formula (9) calculations: (Formula 8) FVC estimated value = -4.249 + 2.255 * step distance (D) + 0.031 * height (H).
(公式9)FEV1估算值=-0.453+0.002*總距離+0.020*體重(W)。 (Equation 9) FEV 1 estimated value = -0.453+0.002*total distance+0.020*weight (W).
其中,FVC估算值係運動後用力肺活量估算值。 Among them, the estimated value of FVC is the estimated value of forced vital capacity after exercise.
FEV1估算值係為運動後用力呼氣一秒量之估算值。 The estimated value of FEV 1 is the estimated value of forced exhalation for one second after exercise.
實務上,該估算單元10可為手腕固定攜帶式結構。
In practice, the
該輸入介面11可為觸控式介面,並設於該手腕固定攜帶式結構。
The
該顯示介面12可為觸控式螢幕,並配合該輸入介面11設於該手腕固定攜帶式結構。
The
該步距(D)之單位為公尺。 The unit of this step (D) is meters.
本發明之研發過程為下列之階段: The research and development process of the present invention includes the following stages:
[1]變數萃取。先收集呼吸道疾病民眾共60名,生理資料包含六分鐘走路距離、步數、運動前後肺功能以及最大心跳與最低血氧等參數。隨機分成觀察組與確效組各30名。分別以每步距離與肺功能作為依變數,萃取具中度以上之相關變數如下表一。 [1] Variable extraction. A total of 60 people with respiratory diseases were first collected. Physiological data included six-minute walking distance, number of steps, lung function before and after exercise, as well as parameters such as maximum heartbeat and minimum blood oxygen. Randomly divide them into an observation group and a validation group of 30 each. Taking the distance of each step and lung function as the dependent variables, respectively, the relevant variables with moderate or higher levels are extracted as shown in Table 1.
[2]預估模組建立與確效。觀察組建立預估模型,與另外30名確效組之已知數值作比較。發展步距預測,並與其他呼吸道疾病民眾之生理資料一起比較確效。之後再發展肺功能估算(FVC與FEV1),並與其他呼吸道疾病民眾之生理資料一起比較確效。 [2] Establishment and validation of the estimation module. The observation group established an estimation model and compared it with the known values of the other 30 confirmed groups. Develop the step distance prediction and compare it with the physiological data of other people with respiratory diseases. Then develop lung function estimates (FVC and FEV 1 ), and compare them with the physiological data of people with other respiratory diseases.
關於步距之預測,參閱第3圖,其中的第一線段L1代表本案所發展出來之模組(對應前述之公式(1)之4種不同條件)的平均數與標準差(Diff)=-0.68±9.7。 Regarding the prediction of the step distance, refer to Figure 3. The first line segment L1 represents the average and standard deviation (Diff) of the module developed in this case (corresponding to the 4 different conditions of the aforementioned formula (1)) = -0.68±9.7.
第二線段L2代表第一種習知預測法,其公式:步距=身高-100(cm);其平均數與標準差(Diff)=-2.47±9.4。 The second line segment L2 represents the first conventional prediction method, and its formula: step distance = height-100 (cm); its mean and standard deviation (Diff) = -2.47 ± 9.4.
第三線段L3代表第二種習知預測法,若使用者為女性,則公式為:步距=身高X0.413(cm)。若為男性,則公式:步距=身高X0.415;其平均數與標準差(Diff)=2.74±11.5。 The third line segment L3 represents the second conventional prediction method. If the user is a female, the formula is: step distance = height X 0.413 (cm). If you are a male, the formula is: step distance = height X 0.415; its average and standard deviation (Diff) = 2.74 ± 11.5.
所以,可證明本案之步距預估方式之準確性相對較高。 Therefore, it can be proved that the accuracy of the step distance estimation method in this case is relatively high.
關於FVC之預測,參閱第4圖,其中:第四線段L4代表本案所發展出來之模組(對應前述之公式(2)),其平均數與標準差(Diff)=0.17±0.7。 For FVC prediction, refer to Figure 4, where: the fourth line segment L4 represents the module developed in this case (corresponding to the aforementioned formula (2)), and its average and standard deviation (Diff)=0.17±0.7.
第五線段L5代表習知之FVC預測法,其平均數與標準差(Diff)=-0.60±0.8。 The fifth line segment L5 represents the conventional FVC prediction method, and its average and standard deviation (Diff) = -0.60±0.8.
所以,可證明本案之FVC估算方式之準確性相對較高。 Therefore, it can be proved that the accuracy of the FVC estimation method in this case is relatively high.
關於FEV1之預測,參閱第5圖,其中:第六線段L6代表本案所發展出來之模組(即前述之公式(3))的平均數與標準差(Diff)=0.05±0.5。 Regarding the prediction of FEV 1 , refer to Figure 5, where: the sixth line segment L6 represents the average and standard deviation (Diff) of the module developed in this case (ie the aforementioned formula (3)) = 0.05±0.5.
第七線段L7代表習知之FEV1預測法,其平均數與標準差(Diff)=-0.72±0.6。 The seventh line segment L7 represents the conventional FEV 1 prediction method, and its average and standard deviation (Diff)=-0.72±0.6.
所以,可證明本案之FEV1估算方式之準確性相對較高。 Therefore, it can be proved that the accuracy of the FEV 1 estimation method in this case is relatively high.
進一步,舉下列三例實際運算說明:第一例:假設男性、身高175公分(H)、23歲(A)及體重70公斤(W),於該六分鐘走路運動結束後,當已知總距離:該計步單元20取得總步數623步,且總距離為288(假設)公尺(可藉由任何能計算行進距離之裝置進行計算,例如GPS)。
Further, cite the following three practical calculation examples: Example 1: Assuming a male, a height of 175 cm (H), a 23-year-old (A) and a weight of 70 kg (W), after the six-minute walking exercise is completed, when the total is known Distance: The
該估算單元10係利用下列公式(1)計算步距:公式(1):步距=總距離/走六分鐘步數=288/623=0.46公尺。
The
接著,該估算單元10可利用下列公式(8)計算運動後用力肺活量(forced vital capacity,簡稱FVC)之估算值:公式(8):FVC估算值=-4.249+2.255*步距+0.031*H;=-4.249+2.255*0.46+0.031*175;=-4.249+1.04+5.425=2.22。
Then, the
又,該估算單元10可利用下列公式(9)計算用力呼氣一秒量(forced exhale volume in one second,簡稱FEV1)之估算值:公式(9):FEV1估算值=-0.453+0.002*總距離+0.020*W;=-0.453+0.002*288+0.020*70;=-0.453+0.576+1.4=1.523。
In addition, the
第二例:假設女性、身高165公分(H)、22歲(A)及體重60公斤(W),於該六分鐘走路運動結束後,當未知總距離:該計步單元20取得總步數635步。
Example 2: Assuming a female, 165 cm (H) tall, 22 years old (A) and weight 60 kg (W), after the six-minute walk, when the total distance is unknown: the
該估算單元10係利用下列公式(4)計算用力呼氣一秒量預測值:公式(4):用力呼氣一秒量估算值=-1.8210+0.0332*身高(H)-0.0190*年齡(A);=-1.8210+0.0332*165-0.0190*33;=-1.8210+5.478-0.627;=3.03。
The
接著,將該用力呼氣一秒量估算值,代入公式(6):公式(6):步距=0.289+0.153*用力呼氣一秒量估算值;=0.289+0.153*3.03;=0.289+0.46359;=0.75。 Next, the estimated value of the forced exhalation in one second is substituted into the formula (6): Formula (6): step distance=0.289+0.153*the estimated value of the forced exhalation in one second;=0.289+0.153*3.03;=0.289+ 0.46359; = 0.75.
當該估算單元10算出該步距,代入公式(7):公式(7):
總距離=步距*總步數;=0.75*635;=476.25。
When the
接著,該估算單元10可利用下列公式(8)計算用力肺活量(forced vital capacity,簡稱FVC)之估算值:公式(8):FVC估算值=-4.249+2.255*步距+0.031*H;=-4.249+2.255*0.75+0.031*165;=-4.249+1.69+5.115=2.556。
Then, the
又,該估算單元10可利用下列公式(9)計算用力呼氣一秒量(forced exhale volume in one second,簡稱FEV1)之估算值:公式(9):FEV1估算值=-0.453+0.002*總距離+0.020*W;=-0.453+0.002*476.25+0.020*60;=-0.453+0.9525+1.2=1.7。
In addition, the
第三例:假設女性、身高150公分(H)、24歲(A)及體重70公斤(W),於該六分鐘走路運動結束後,當未知總距離:該計步單元20取得總步數521步。
Example 3: Suppose a female, 150 cm (H) tall, 24 years old (A), and weight 70 kg (W), after the six-minute walk, when the total distance is unknown: the
該估算單元10係利用下列公式(4)計算用力呼氣一秒量估算值:公式(4):用力呼氣一秒量估算值=-1.8210+0.0332*身高(H)-0.0190*年齡(A);=-1.8210+0.0332*150-0.0190*50;=-1.8210+4.98-0.95;
=2.21。
The
接著,將該用力呼氣一秒量估算值,代入公式(6):公式(6):步距=0.289+0.153*用力呼氣一秒量估算值;=0.289+0.153*2.21;=0.289+0.33813;=0.63。 Next, the estimated value of the forced exhalation in one second is substituted into the formula (6): Formula (6): step distance=0.289+0.153*the estimated value of the forced exhalation in one second;=0.289+0.153*2.21;=0.289+ 0.33813; = 0.63.
當該估算單元10算出該步距,代入公式(7):公式(7):總距離=步距*總步數;=0.63*521;=328.23。
When the
接著,該估算單元10可利用下列公式(8)計算用力肺活量(forced vital capacity,簡稱FVC)之估算值:公式(8):FVC估算值=-4.249+2.255*步距+0.031*H;=-4.249+2.255*0.63+0.031*150;=-4.249+1.42+4.65=1.821。
Then, the
又,該估算單元10可利用下列公式(9)計算用力呼氣一秒量(forced exhale volume in one second,簡稱FEV1)之估算值:公式(9):FEV1估算值=-0.453+0.002*總距離+0.020*W;=-0.453+0.002*328.23+0.020*70;=-0.453+0.9525+1.4=0.9。
In addition, the
本發明之優點及功效係如下所述: The advantages and effects of the present invention are as follows:
[1]使用者可在醫院之外進行肺功能評估。肺功能在醫療領域中,多半必需到醫院配合專業、昂貴又複雜的器材,才能進行檢測,相當不便。而本發明可在醫院以外,藉由走路六分鐘得到的數據進行估算。故,使用者可在醫院之外進行肺功能評估。 [1] Users can perform lung function assessment outside the hospital. In the medical field, lung function must be tested in hospitals with professional, expensive and complicated equipment, which is quite inconvenient. The present invention can be estimated from data obtained by walking for six minutes outside the hospital. Therefore, users can perform lung function assessment outside the hospital.
[2]不論知道六分鐘走路運動之總距離與否均可預測。本發明經研發,預先建立相關公式及數據,在走路(有可能是固定路線,也可能是隨性走。)六分鐘結束後,不論是否知道總距離多長,只要將得到之數據代入公式,便可進行肺功能估算,相當方便。故,不論知道六分鐘走路運動之總距離與否均可預測。 [2] It can be predicted whether or not the total distance of a six-minute walk is known. The present invention has been developed and established relevant formulas and data in advance. After six minutes of walking (it may be a fixed route or random walking), regardless of whether the total distance is known or not, as long as the obtained data is substituted into the formula, The lung function can be estimated, which is very convenient. Therefore, it can be predicted whether or not the total distance of the six-minute walk is known.
[3]走路復健兼可進行肺功能估算一舉兩得。本發明無場閾運動,在作下肢走路健身(復健或運算)的同時,由得到的數據即可進行肺助能估算。故,走路復健兼可進行肺功能估算一舉兩得。 [3] Walking rehabilitation can also be used for lung function estimation to do two things with one stone. The field-free threshold exercise of the present invention can perform lung assistance estimation based on the obtained data while walking fitness (rehabilitation or calculation) of the lower limbs. Therefore, walking rehabilitation can be used to estimate lung function at the same time.
以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。 The foregoing is only a detailed description of the present invention with a preferred embodiment, and any simple modifications and changes made to the embodiment will not depart from the spirit and scope of the present invention.
S1:輸入資料步驟 S1: Steps to input data
S2:進行六分鐘走路運動步驟 S2: Perform a six-minute walking exercise step
S3:已知總距離之步距計算步驟 S3: Step distance calculation steps for known total distance
S4:未知總距離之步距計算步驟 S4: Steps for calculating step distance of unknown total distance
S5:肺功能估算步驟 S5: Steps to estimate lung function
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105720A TWI722803B (en) | 2020-02-21 | 2020-02-21 | A method for step length estimation and pulmonary function prediction with a six-minute walking test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105720A TWI722803B (en) | 2020-02-21 | 2020-02-21 | A method for step length estimation and pulmonary function prediction with a six-minute walking test |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI722803B true TWI722803B (en) | 2021-03-21 |
TW202133192A TW202133192A (en) | 2021-09-01 |
Family
ID=76036164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109105720A TWI722803B (en) | 2020-02-21 | 2020-02-21 | A method for step length estimation and pulmonary function prediction with a six-minute walking test |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI722803B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117617945A (en) * | 2023-01-04 | 2024-03-01 | 中国人民解放军总医院 | Method and device for predicting lung function grading of chronic obstructive pulmonary disease based on six-minute walking physiological data |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103027696A (en) * | 2012-12-06 | 2013-04-10 | 可瑞尔科技(扬州)有限公司 | Human motion energy consumption instrument |
TWM479408U (en) * | 2014-01-07 | 2014-06-01 | Univ Nat Taiwan Normal | Pedometer capable of measuring activity intensity |
WO2014171547A1 (en) * | 2013-04-18 | 2014-10-23 | 株式会社フクダ産業 | Walking test device |
TW201739489A (en) * | 2016-05-13 | 2017-11-16 | 國立雲林科技大學 | Method for combinating motion and virtual pet raising, mobile device, application software and computer readable storage medium |
US20180368737A1 (en) * | 2016-01-08 | 2018-12-27 | Koninklijke Philips N.V. | Personalized fitness tracking |
-
2020
- 2020-02-21 TW TW109105720A patent/TWI722803B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103027696A (en) * | 2012-12-06 | 2013-04-10 | 可瑞尔科技(扬州)有限公司 | Human motion energy consumption instrument |
WO2014171547A1 (en) * | 2013-04-18 | 2014-10-23 | 株式会社フクダ産業 | Walking test device |
TWM479408U (en) * | 2014-01-07 | 2014-06-01 | Univ Nat Taiwan Normal | Pedometer capable of measuring activity intensity |
US20180368737A1 (en) * | 2016-01-08 | 2018-12-27 | Koninklijke Philips N.V. | Personalized fitness tracking |
TW201739489A (en) * | 2016-05-13 | 2017-11-16 | 國立雲林科技大學 | Method for combinating motion and virtual pet raising, mobile device, application software and computer readable storage medium |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117617945A (en) * | 2023-01-04 | 2024-03-01 | 中国人民解放军总医院 | Method and device for predicting lung function grading of chronic obstructive pulmonary disease based on six-minute walking physiological data |
Also Published As
Publication number | Publication date |
---|---|
TW202133192A (en) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Noonan et al. | Submaximal exercise testing: clinical application and interpretation | |
Li et al. | Standard reference for the six-minute-walk test in healthy children aged 7 to 16 years | |
Różańska-Kirschke et al. | The Fullerton Fitness Test as an index of fitness in the elderly | |
EP2501276B1 (en) | Fitness test system | |
JP6914896B2 (en) | Health condition diagnosis system | |
Scott et al. | Measurement in Duchenne muscular dystrophy: considerations in the development of a neuromuscular assessment tool | |
WO2002051309A1 (en) | Visceral fat meter having pace counting function | |
Sivaranjini et al. | Six minute walk test in people with tuberculosis sequelae | |
Nara et al. | Grip strength performance as a determinant of body composition, muscular strength and cardiovascular endurance | |
Sant'Anna et al. | Evaluation of a new motion sensor in patients with chronic obstructive pulmonary disease | |
Ajiboye et al. | Prediction equations for 6-minute walk distance in apparently healthy Nigerians | |
TWI722803B (en) | A method for step length estimation and pulmonary function prediction with a six-minute walking test | |
Nara et al. | Predicting lower body explosive strength using hand grip dynamometer strength test | |
Karunarathna et al. | Enhancing Perioperative Care: Comprehensive Preoperative Assessment of Functional Capacity | |
Dalleck et al. | Development of a metabolic equation for the NuStep recumbent stepper in older adults | |
Bongers et al. | 10-m shuttle ride test in youth with osteogenesis imperfecta who use wheelchairs: feasibility, reproducibility, and physiological responses | |
Zellner et al. | Differences in respiratory muscle strength measures in well-nourished and malnourished hospitalized patients | |
RU2585164C2 (en) | Method for diagnosis of health status and determining level of physical activity | |
Wyndham, CH, Strydom, NB, van Graan, CH, van Rensburg, AJ, Rogers, GG, Greyson, JS & van der Walt | Walk or jog for health: I-the energy costs of walking or running at different speeds | |
Sudan et al. | A comparative study to evaluate the effect of crook lying position versus sitting position on forced vital capacity (FVC) in healthy individuals | |
Mishra et al. | Peak Expiratory Flow Rate Measure among Community-Dwelling Elderly Rural Population | |
JP5990231B2 (en) | Physical fitness age evaluation method and physical fitness age evaluation device | |
Van der Net et al. | Aerobic capacity and muscle strength in juvenile-onset mixed connective tissue disease (MCTD) | |
CN109620234B (en) | Cardiopulmonary endurance test method based on incremental load reentry walking movement and oxygen uptake | |
Alfano et al. | DUCHENNE MUSCULAR DYSTROPHY-PHYSIOTHERAPY: P. 317Clinically meaningful change on the 100 meter timed test in neuromuscular diseases |