TWI719936B - Power amplifier system, mobile device, and method for characterizing a front end module of a wireless device - Google Patents

Power amplifier system, mobile device, and method for characterizing a front end module of a wireless device Download PDF

Info

Publication number
TWI719936B
TWI719936B TW104117570A TW104117570A TWI719936B TW I719936 B TWI719936 B TW I719936B TW 104117570 A TW104117570 A TW 104117570A TW 104117570 A TW104117570 A TW 104117570A TW I719936 B TWI719936 B TW I719936B
Authority
TW
Taiwan
Prior art keywords
power amplifier
signal
power
radio frequency
transmission signal
Prior art date
Application number
TW104117570A
Other languages
Chinese (zh)
Other versions
TW201603480A (en
Inventor
席芙 阿倫
麥斯威爾L 湯瑪士
Original Assignee
美商西凱渥資訊處理科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/715,307 external-priority patent/US10333474B2/en
Application filed by 美商西凱渥資訊處理科技公司 filed Critical 美商西凱渥資訊處理科技公司
Publication of TW201603480A publication Critical patent/TW201603480A/en
Application granted granted Critical
Publication of TWI719936B publication Critical patent/TWI719936B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/321Use of a microprocessor in an amplifier circuit or its control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3224Predistortion being done for compensating memory effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

A power amplifier system front end measures both forward and reverse power associated with an RF transmit signal. A processor is configured to use measurements derived from the measured forward and reverse power output to adjust the RF transmit signal in order to compensate for one or more memory effects of the power amplifier system.

Description

功率放大器系統、行動裝置及用於特徵化無線裝置之前端模組的方法 Power amplifier system, mobile device and method for characterizing front-end module of wireless device

以引用方式併入任何優先權申請案中 Incorporate by reference into any priority application

一國外或國內優先權主張在本申請案之申請書資料表中識別的任何及所有申請案特此根據37 CFR 1.57之規定以引用方式併入本文中。 Any and all applications identified in the application data sheet for a foreign or domestic priority claim are hereby incorporated by reference in accordance with 37 CFR 1.57.

本發明之實施例係關於電子系統,且特定而言係關於包含用於射頻(RF)電子裝置之功率放大器之系統。 The embodiments of the present invention are related to electronic systems, and in particular to systems including power amplifiers for radio frequency (RF) electronic devices.

行動裝置中可包含功率放大器以放大一RF信號用於經由一天線傳輸。舉例而言,在具有一分時多重存取(TDMA)架構之行動裝置中,諸如在全球行動通信系統(GSM)、分碼多重存取(CDMA)及寬頻分碼多重存取(W-CDMA)系統中發現之彼等行動裝置,可使用一功率放大器來放大具有一相對低功率之一RF信號。功率放大器可包含於行動裝置前端模組中,該行動裝置前端模組亦包含雙工器、天線開關模組及耦合器。現代前端模組可在某些環境下經歷顯著效能減損,包含降級線性。 The mobile device may include a power amplifier to amplify an RF signal for transmission via an antenna. For example, in mobile devices with a time division multiple access (TDMA) architecture, such as the Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), and Broadband Code Division Multiple Access (W-CDMA) ) The mobile devices found in the system can use a power amplifier to amplify an RF signal with a relatively low power. The power amplifier can be included in a mobile device front-end module, which also includes a duplexer, an antenna switch module, and a coupler. Modern front-end modules can experience significant performance degradation in certain environments, including degraded linearity.

本文中闡述用於解決此等及其他問題之實施例。舉例而言,降級線性可對跨越多個頻帶且在多個模式(諸如一平均功率追蹤(APT)模式、包絡追蹤(ET)模式、數位預失真(DPD)模式(例如,固定供應或ET DPD模式)等中之一或多者)中操作之前端模組特別重要。當在天線處呈現不匹配時,一個問題係降級線性(例如,毗鄰頻道洩漏比[ACLR])。當藉助諸如一50資源區塊長期演進信號(50 RB LTE)之一寬頻信號驅動功率放大器時在ET DPD模式下情形可尤為如此。在此一情形中,例如,當在天線處呈現一5:1電壓駐波比(VSWR)時,可存在10分貝(dB)之一降級。當調變頻寬增加時此降級可逐漸地變得更糟。因此,在ET及高調變頻寬情形下補償此降級可係尤其有益的。 Embodiments for solving these and other problems are described herein. For example, degraded linearity can span multiple frequency bands and in multiple modes (such as an average power tracking (APT) mode, envelope tracking (ET) mode, digital predistortion (DPD) mode (e.g., fixed supply or ET DPD). It is particularly important to operate the front-end module in one or more of the modes). When a mismatch is present at the antenna, one problem is degraded linearity (for example, adjacent channel leakage ratio [ACLR]). This is especially true in the ET DPD mode when the power amplifier is driven by a broadband signal such as a 50-resource-block long-term evolution signal (50 RB LTE). In this case, for example, when a 5:1 voltage standing wave ratio (VSWR) is present at the antenna, there may be a one-tenth decibel (dB) degradation. This degradation can gradually get worse as the frequency modulation bandwidth increases. Therefore, it can be particularly beneficial to compensate for this degradation in ET and high-frequency bandwidth situations.

諸如當系統位於ET模式中時,雙工器可使效能降級惡化。舉例而言,雙工器中固有之群組延遲連同不良匹配可導致記憶效應,例如,其中系統增益形狀(例如,AM-AM/AM-PM)跨越傳輸RB頻寬(亦即,頻道)變化。此外,由於不匹配期間之PA壓縮點變化所致而通常跨越各種不匹配條件(甚至針對窄頻信號)經歷AM-AM(振幅對振幅)及/或AM/PM(振幅對相位)回應變化。典型開環、無記憶體DPD通常不足以解決傳輸頻寬內之增益形狀變化。因此,本文中所揭示之某些實施例調整記憶體之DPD或以其他方式計及記憶體(亦即,跨越頻道之增益形狀變化)以及天線處之特定不匹配狀態。另外,在調變器與RF信號(針對ET操作)之間應用之恰當(例如,最佳)延遲亦隨VSWR狀態而變且在TX頻道內變化。因此,本文中所闡述之某些實施例亦適應傳輸頻寬內之此延遲。 For example, when the system is in ET mode, the duplexer can degrade performance. For example, the inherent group delay in the duplexer together with poor matching can lead to memory effects, for example, where the system gain shape (eg, AM-AM/AM-PM) varies across the transmission RB bandwidth (ie, channel) . In addition, due to changes in the PA compression point during the mismatch period, AM-AM (amplitude-to-amplitude) and/or AM/PM (amplitude-to-phase) response changes are usually experienced across various mismatch conditions (even for narrowband signals). The typical open-loop, memoryless DPD is usually not enough to solve the gain shape change within the transmission bandwidth. Therefore, certain embodiments disclosed herein adjust the DPD of the memory or otherwise account for the memory (that is, the gain shape change across the channel) and the specific mismatch state at the antenna. In addition, the appropriate (e.g., optimal) delay applied between the modulator and the RF signal (for ET operation) also varies with the VSWR state and within the TX channel. Therefore, certain embodiments described in this article also adapt to this delay within the transmission bandwidth.

根據本發明之某些態樣,提供用於改良不匹配期間之行動裝置前端模組效能(例如,線性)之系統及方法。上述情況可在於正常條件下不招致大量額外效能或效能損失之情況下達成。取決於特定實施方案,本文中提供之實施例可在以下模式中提供此等益處:ET模式、 APT模式、DPD模式,或其之組合(諸如在一組合DPD/ET模式中)。 According to some aspects of the present invention, a system and method for improving the performance (for example, linearity) of a mobile device front-end module during a mismatch period is provided. The above situation can be achieved under normal conditions without incurring a large amount of additional performance or performance loss. Depending on the specific implementation, the examples provided herein can provide these benefits in the following modes: ET mode, APT mode, DPD mode, or a combination thereof (such as in a combined DPD/ET mode).

根據本發明之至少一項態樣提供功率放大器系統。該系統包含經組態以產生一射頻(RF)傳輸信號之一調變器及一前端模組。該前端模組可包含經組態以放大該RF傳輸信號以產生一經放大RF傳輸信號之一功率放大器。該前端模組亦可包含定位於一天線與該功率放大器之間的一耦合器。該耦合器可經組態以輸出與該RF傳輸信號相關聯之前向功率及逆向功率兩者之一量度。在某些實施例中,該耦合器係一雙向耦合器。該系統可另外包含儲存一等化器表之一非揮發性記憶體。該等化器表可具有在該前端模組之一預特徵化期間所產生之複數個項目。該系統亦可包含一處理器,該處理器經組態以(a)接收自由該耦合器輸出之該前向功率及該逆向功率導出之電壓駐波比(VSWR)量測值,(b)至少部分地基於該等VSWR量測值而存取該等化器表中之項目,及(c)基於該等所存取項目而調整該RF傳輸信號以補償存在於該功率放大器系統中之一或多個記憶效應。舉例而言,該系統可包含一數位預失真表(DPD),其中該處理器經組態以藉由基於該等化器表中之該等所存取項目調適該DPD表中之值來調整該RF傳輸信號。該系統可呈一行動裝置之形式,該行動裝置可進一步包含經組態以自該前端模組接收該經放大RF信號之一天線。 According to at least one aspect of the present invention, a power amplifier system is provided. The system includes a modulator and a front-end module configured to generate a radio frequency (RF) transmission signal. The front-end module may include a power amplifier configured to amplify the RF transmission signal to generate an amplified RF transmission signal. The front-end module may also include a coupler positioned between an antenna and the power amplifier. The coupler can be configured to output one of the forward power and reverse power measurements associated with the RF transmission signal. In some embodiments, the coupler is a two-way coupler. The system may additionally include a non-volatile memory storing an equalizer table. The equalizer table may have a plurality of entries generated during a pre-characterization period of one of the front-end modules. The system may also include a processor configured to (a) receive the voltage standing wave ratio (VSWR) measurement value derived from the forward power and the reverse power output from the coupler, (b) Access items in the equalizer table based at least in part on the VSWR measurement values, and (c) adjust the RF transmission signal based on the accessed items to compensate for one of the power amplifier systems Or multiple memory effects. For example, the system may include a digital predistortion table (DPD), where the processor is configured to adjust by adapting the values in the DPD table based on the accessed items in the equalizer table The RF transmission signal. The system may be in the form of a mobile device, which may further include an antenna configured to receive the amplified RF signal from the front-end module.

該功率放大器系統之該前端模組可以各種不同方式組態。該等化器表在某些情形中係使用一可程式化天線調諧器而產生,該可程式化天線調諧器用以將該前端模組調諧至所期望VSWR點。在某些組態中,該前端模組不包含一整合式天線調諧器。在某些實施方案中,一可程式化天線調諧器可包含於該前端模組中且定位於該天線與該耦合器之間。該可程式化天線調諧器可調整以調諧該功率放大器所經歷之一阻抗以便在該功率放大器系統中提供一粗略非線性校正。基於該等所存取項目對該RF傳輸信號之該調整可在該功率放大器系統內提供 精細非線性校正。前端模組可包含定位於該功率放大器與該雙向耦合器之間的一或多個雙工器。在某些情形中,該雙工器促成該等記憶效應中之至少某些記憶效應。 The front-end module of the power amplifier system can be configured in various ways. The equalizer table is generated by using a programmable antenna tuner in some cases, and the programmable antenna tuner is used to tune the front-end module to the desired VSWR point. In some configurations, the front-end module does not include an integrated antenna tuner. In some implementations, a programmable antenna tuner can be included in the front-end module and positioned between the antenna and the coupler. The programmable antenna tuner can be adjusted to tune an impedance experienced by the power amplifier to provide a rough nonlinear correction in the power amplifier system. The adjustment of the RF transmission signal based on the accessed items can be provided in the power amplifier system Fine nonlinear correction. The front-end module may include one or more duplexers positioned between the power amplifier and the bidirectional coupler. In some cases, the duplexer contributes to at least some of the memory effects.

功率放大器系統可另外包含一包絡追蹤系統,該包絡追蹤系統經組態以提供一電源供應控制信號至該功率放大器以基於一成形包絡信號而控制該功率放大器之一電壓位準。該處理器在某些情形中進一步經組態以基於包含於該等所存取等化器表項目中之延遲值而調整該RF傳輸信號與該供應控制信號之間的一延遲。 The power amplifier system may additionally include an envelope tracking system configured to provide a power supply control signal to the power amplifier to control a voltage level of the power amplifier based on a shaped envelope signal. The processor is further configured in some cases to adjust a delay between the RF transmission signal and the supply control signal based on the delay value included in the accessed equalizer table entries.

根據本發明之額外態樣提供特徵化一無線裝置之一前端模組的一方法。該方法可包含:使用一可程式化天線調諧器來調諧該前端模組之一功率放大器之一輸出處之一阻抗負載以便達成與複數個前端模組特徵化狀態中之一第一特徵化狀態相關聯之一電壓駐波比(VSWR)值。該方法亦可包含:藉助一RF傳輸信號驅動該前端模組。該RF傳輸信號可根據與該第一特徵化狀態相關聯之一或多個額外參數值驅動。該方法可進一步包含:在藉由該RF傳輸信號驅動該前端模組且將其調諧至該等VSWR值時,量測與該前端模組之行為相關聯之一或多個變數。該一或多個所記錄變數可包含一功率放大器壓縮、一最大包絡功率,及/或該功率放大器之一電力控制信號與該RF傳輸信號之間的一延遲。該方法亦可包含:將與該第一特徵化狀態相關聯之該一或多個所量測變數記錄於非揮發性記憶體中之一表中。針對該複數個前端模組特徵化狀態中之複數個額外特徵化狀態可重複該等使用、驅動、量測及記錄步驟。該可程式化天線調諧器在某些情形中與該前端模組分離,其中該前端模組不包含一天線調諧器。該可程式化天線調諧器在某些其他實施方案中整合至該前端模組中。 According to an additional aspect of the present invention, a method of characterizing a front-end module of a wireless device is provided. The method may include: using a programmable antenna tuner to tune an impedance load at an output of a power amplifier of the front-end module so as to achieve a first characteristic state with one of a plurality of front-end module characteristic states One of the associated voltage standing wave ratio (VSWR) values. The method may also include: driving the front-end module with an RF transmission signal. The RF transmission signal may be driven according to one or more additional parameter values associated with the first characterization state. The method may further include: when the front-end module is driven by the RF transmission signal and tuned to the VSWR values, measuring one or more variables associated with the behavior of the front-end module. The one or more recorded variables may include a power amplifier compression, a maximum envelope power, and/or a delay between a power control signal of the power amplifier and the RF transmission signal. The method may also include: recording the one or more measured variables associated with the first characterization state in a table in a non-volatile memory. The steps of using, driving, measuring, and recording can be repeated for a plurality of additional characterization states of the plurality of front-end module characterization states. The programmable antenna tuner is separated from the front-end module in some cases, where the front-end module does not include an antenna tuner. The programmable antenna tuner is integrated into the front-end module in some other implementations.

根據又一些態樣之一功率放大器系統包含一前端模組,該前端模組包含經組態以放大一RF傳輸信號以產生一經放大RF傳輸信號之 一功率放大器。該前端模組亦可包含耦合至一天線之一可程式化天線調諧器。該前端模組之一耦合器可定位於該功率放大器與該天線調諧器之間,該耦合器經組態以輸出與該RF信號相關聯之前向功率及逆向功率兩者之一量度。該天線調諧器可調整以調諧該功率放大器所經歷之一阻抗以便在該功率放大器系統內提供一粗略非線性校正。該系統可進一步包含儲存一等化器表之非揮發性記憶體,該等化器表具有在該前端模組之一預特徵化期間所產生之複數個項目。該系統亦可包含處理器,該處理器經組態以(a)接收自由該耦合器輸出之該前向功率及該逆向功率導出之電壓駐波比(VSWR)量測值,(b)至少部分地基於該VSWR而存取該等化器表中之項目,及(c)基於該等所存取項目而調整該RF傳輸信號。該前端模組在某些組態中可另外包含一雙工器。 According to still other aspects, a power amplifier system includes a front-end module that is configured to amplify an RF transmission signal to generate an amplified RF transmission signal A power amplifier. The front-end module may also include a programmable antenna tuner coupled to an antenna. A coupler of the front-end module can be positioned between the power amplifier and the antenna tuner, and the coupler is configured to output one of the forward power and reverse power measurements associated with the RF signal. The antenna tuner can be adjusted to tune an impedance experienced by the power amplifier to provide a coarse non-linear correction in the power amplifier system. The system may further include a non-volatile memory storing an equalizer table having a plurality of items generated during a pre-characterization period of one of the front-end modules. The system may also include a processor configured to (a) receive the voltage standing wave ratio (VSWR) measurement value derived from the forward power and the reverse power output from the coupler, and (b) at least Access items in the equalizer table based in part on the VSWR, and (c) adjust the RF transmission signal based on the accessed items. The front-end module may additionally include a duplexer in some configurations.

10‧‧‧功率放大器模組 10‧‧‧Power Amplifier Module

11‧‧‧無線裝置 11‧‧‧Wireless device

12‧‧‧射頻前端/前端模組 12‧‧‧RF Front End/Front End Module

13‧‧‧收發器 13‧‧‧Transceiver

14‧‧‧天線 14‧‧‧antenna

15‧‧‧傳輸路徑 15‧‧‧Transmission path

16‧‧‧接收路徑/路徑 16‧‧‧Receiving path/path

17‧‧‧功率放大器 17‧‧‧Power Amplifier

18‧‧‧控制組件 18‧‧‧Control components

19‧‧‧電腦可讀媒體/電腦可讀記憶體 19‧‧‧Computer readable media/computer readable memory

20‧‧‧處理器 20‧‧‧Processor

21‧‧‧電池 21‧‧‧Battery

22‧‧‧供應控制區塊/供應控制件 22‧‧‧Supply Control Block/Supply Control Unit

26‧‧‧功率放大器系統 26‧‧‧Power Amplifier System

30‧‧‧供應控制驅動器 30‧‧‧Supply control driver

33‧‧‧延遲組件 33‧‧‧Delay component

34‧‧‧基頻處理器 34‧‧‧Baseband processor

35‧‧‧供應成形區塊或電路 35‧‧‧Supply forming blocks or circuits

36‧‧‧數位轉類比轉換器 36‧‧‧Digital to Analog Converter

37‧‧‧正交(I/Q)調變器 37‧‧‧Quadrature (I/Q) Modulator

38‧‧‧混合器 38‧‧‧Mixer

39‧‧‧類比轉數位轉換器 39‧‧‧Analog to Digital Converter

40‧‧‧數位預失真表 40‧‧‧Digital Predistortion Meter

41‧‧‧等化器表/查找表/等化表 41‧‧‧Equalizer Table/Lookup Table/Equalizer Table

42‧‧‧傳輸表 42‧‧‧Transmission Table

43‧‧‧供應控制表 43‧‧‧Supply Control Table

44‧‧‧複阻抗偵測器/阻抗偵測器 44‧‧‧Complex Impedance Detector/Impedance Detector

45‧‧‧前端模組 45‧‧‧Front-end module

47‧‧‧回饋信號 47‧‧‧Feedback signal

48‧‧‧供應成形分支/供應控制路徑/包絡追蹤器路徑/供應控制分支 48‧‧‧Supply shaping branch/supply control path/envelope tracker path/supply control branch

49‧‧‧射頻傳輸信號 49‧‧‧RF transmission signal

50‧‧‧雙工器 50‧‧‧Duplexer

51‧‧‧天線開關模組 51‧‧‧Antenna Switch Module

52‧‧‧雙向耦合器/耦合器 52‧‧‧Bidirectional Coupler/Coupler

53‧‧‧量測開關 53‧‧‧Measuring switch

54‧‧‧整合式天線調諧器/天線調諧器 54‧‧‧Integrated antenna tuner/antenna tuner

55‧‧‧輸入開關 55‧‧‧Input switch

600‧‧‧等化器查找表/部分表/表 600‧‧‧Equalizer lookup table/partial table/table

602‧‧‧第一列 602‧‧‧first column

604‧‧‧第二列 604‧‧‧second column

650‧‧‧部分查找表/部分表/表 650‧‧‧Partial Lookup Table/Partial Table/Table

802‧‧‧功率放大器供應電壓 802‧‧‧Power amplifier supply voltage

804‧‧‧射頻信號 804‧‧‧RF signal

805‧‧‧信號包絡 805‧‧‧Signal envelope

807‧‧‧信號包絡/包絡 807‧‧‧Signal Envelope/Envelope

808‧‧‧功率放大器供應電壓/放大器供應電壓 808‧‧‧Power amplifier supply voltage/amplifier supply voltage

810‧‧‧射頻信號 810‧‧‧RF signal

814‧‧‧功率放大器供應電壓 814‧‧‧Power amplifier supply voltage

815‧‧‧信號包絡 815‧‧‧Signal envelope

816‧‧‧射頻信號 816‧‧‧RF signal

RF_IN‧‧‧射頻信號 RF_IN‧‧‧RF signal

RF_OUT‧‧‧經放大射頻信號 RF_OUT‧‧‧Amplified RF signal

Vcc_pa‧‧‧功率放大器供應電壓 Vcc_pa‧‧‧Power amplifier supply voltage

圖1係用於放大一射頻(RF)信號之一功率放大器模組之一示意圖。 Figure 1 is a schematic diagram of a power amplifier module used to amplify a radio frequency (RF) signal.

圖2係一實例性無線裝置之一示意性方塊圖。 Figure 2 is a schematic block diagram of an exemplary wireless device.

圖3係根據某些實施例之包含一收發器及一前端模組之一功率放大器系統之一項實例之一示意性方塊圖。 FIG. 3 is a schematic block diagram of an example of a power amplifier system including a transceiver and a front-end module according to some embodiments.

圖4A係不具有一整合式天線調諧器之一前端模組之一項實施例之一示意圖。 FIG. 4A is a schematic diagram of an embodiment of a front-end module without an integrated antenna tuner.

圖4B係具有一整合式可程式化天線調諧器之一前端模組之一項實施例之一示意圖。 FIG. 4B is a schematic diagram of an embodiment of a front-end module with an integrated programmable antenna tuner.

圖5係繪示用於預特徵化一前端模組之一程序之一流程圖。 FIG. 5 is a flowchart showing a procedure for pre-characterizing a front-end module.

圖6A至圖6B展示一例示性前端模組之部分等化器查找表之實例,展示在不同特徵化狀態下之選擇變數之預特徵化值。 6A to 6B show an example of a partial equalizer look-up table of an exemplary front-end module, showing the pre-characterized values of selected variables in different characterization states.

圖7A展示用於使用一等化器查找表來補償前端模組操作之一程 序之一流程圖。 Figure 7A shows a process used to compensate the operation of the front-end module using the first equalizer look-up table Flow chart of the first order.

圖7B展示繪示透過藉助一整合式天線調諧器之粗略調諧與使用一等化器查找表之精細調諧之組合使用而補償前端模組操作之另一程序之一流程圖。 FIG. 7B shows a flowchart showing another procedure of compensating the operation of the front-end module through the combined use of coarse tuning with an integrated antenna tuner and fine tuning using an equalizer look-up table.

圖8A至圖8C展示關於分別以一固定供應電壓模式、平均功率追蹤模式及包絡追蹤模式操作之功率放大器之功率放大器信號及供應波形。 8A to 8C show power amplifier signals and supply waveforms for power amplifiers operating in a fixed supply voltage mode, an average power tracking mode, and an envelope tracking mode, respectively.

圖9展示用於判定複阻抗之一程序之一項實施例。 Fig. 9 shows an embodiment of a procedure for determining complex impedance.

本文中所提供之標題(若存在)僅為了方便起見而未必影響提出專利申請之本發明之範疇或意義。 The title (if any) provided in this article is for convenience only and does not necessarily affect the scope or meaning of the invention for which the patent application is filed.

圖1係用於放大一射頻(RF)信號之一功率放大器模組(PAM)10之一示意圖。所圖解說明之功率放大器模組10可經組態以放大一RF信號RF_IN以產生一經放大RF信號RF_OUT。如本文中所闡述,功率放大器模組10可包含一或多個功率放大器。 FIG. 1 is a schematic diagram of a power amplifier module (PAM) 10 used to amplify a radio frequency (RF) signal. The illustrated power amplifier module 10 can be configured to amplify an RF signal RF_IN to generate an amplified RF signal RF_OUT. As explained herein, the power amplifier module 10 may include one or more power amplifiers.

圖2係可包括圖1之功率放大器模組10中之一或多者之一實例性無線裝置11之一示意性方塊圖。無線裝置11可包括實施本發明之一或多個特徵之功率放大器17及一RF前端12。舉例而言,功率放大器17及RF前端12根據某些實施例經組態以補償非線性,包含因由功率放大器17所經歷之阻抗不匹配所致之記憶效應造成之彼等非線性。特定而言,耦合至輸出功率放大器17之雙工器可包含或操作為濾波器,該等濾波器將對應頻率回應分量添加至系統在其他失真之上,從而形成記憶效應。舉例而言,雙工器可呈現跨越傳輸頻道/頻帶不平坦之不匹配,造成非線性功率放大器行為。 FIG. 2 is a schematic block diagram of an exemplary wireless device 11 that may include one or more of the power amplifier modules 10 of FIG. 1. The wireless device 11 may include a power amplifier 17 and an RF front end 12 implementing one or more of the features of the present invention. For example, the power amplifier 17 and the RF front-end 12 are configured according to certain embodiments to compensate for non-linearity, including their non-linearity due to the memory effect caused by the impedance mismatch experienced by the power amplifier 17. In particular, the duplexer coupled to the output power amplifier 17 may include or operate as filters that add corresponding frequency response components to the system on top of other distortions, thereby forming a memory effect. For example, duplexers can exhibit uneven mismatches across transmission channels/bands, resulting in non-linear power amplifier behavior.

此類補償可涉及利用一查找表或其他資料結構,其中基於在操作期間取得之量測值(諸如電壓駐波比(VSWR)量測值或與功率放大器 17所經歷之複阻抗相關之其他量測值)存取適當查找表項目。根據某些實施方案之查找表中之值係在一特徵化階段期間獲得,其中一可程式化天線調諧器用於記錄特徵化系統之行為之特定變數。舉例而言,可跨越各種操作狀態擷取功率放大器17之AM-AM及/或AM-PM回應曲線。本文中將進一步詳細地闡述此等技術及相關聯補償。 Such compensation may involve the use of a look-up table or other data structure, which is based on measurements taken during operation (such as voltage standing wave ratio (VSWR) measurements or power amplifiers 17 Other measured values related to the experienced complex impedance) Access the appropriate look-up table items. According to some implementations, the values in the look-up table are obtained during a characterization phase, in which a programmable antenna tuner is used to record specific variables that characterize the behavior of the system. For example, the AM-AM and/or AM-PM response curve of the power amplifier 17 can be captured across various operating states. This article will further elaborate on these technologies and associated compensations.

雖然功率放大器17及RF前端12在某些情形中經闡述為單獨組件,但功率放大器17之某些或全部功率放大器亦可形成RF前端12之一部分,諸如在其中RF前端12係包含功率放大器17之一高度整合式組件之實施例中。功率放大器17與RF前端12之組合可一起稱作為一前端模組。 Although the power amplifier 17 and the RF front-end 12 are described as separate components in some cases, some or all of the power amplifiers of the power amplifier 17 may also form part of the RF front-end 12, such as where the RF front-end 12 includes a power amplifier 17 In an embodiment of highly integrated components. The combination of the power amplifier 17 and the RF front-end 12 can be collectively referred to as a front-end module.

圖2中所繪示之實例性無線裝置11可表示一多頻帶及/或多模式裝置,諸如一多頻帶/多模式行動電話。以舉例之方式,全球行動通信系統(GSM)標準係世界上諸多地方使用之一數位蜂巢式通信模式。GSM模式行動電話可在以下四個頻帶中之一或多者下操作:850MHz(大約824MHz至849MHz用於傳輸,869MHz至894MHz用於接收),900MHz(大約880MHz至915MHz用於傳輸,925MHz至960MHz用於接收),1800MHz(大約1710MHz至1785MHz用於傳輸,1805MHz至1880MHz用於接收),及1900MHz(大約1850MHz至1910MHz用於傳輸,1930MHz至1990MHz用於接收)。世界上不同地方亦使用GSM頻帶之變化形式及/或地區/國家實施方案。 The exemplary wireless device 11 depicted in FIG. 2 may represent a multi-band and/or multi-mode device, such as a multi-band/multi-mode mobile phone. By way of example, the Global System for Mobile Communications (GSM) standard is a digital cellular communication mode used in many parts of the world. GSM mode mobile phones can operate in one or more of the following four frequency bands: 850MHz (approximately 824MHz to 849MHz for transmission, 869MHz to 894MHz for reception), 900MHz (approximately 880MHz to 915MHz for transmission, 925MHz to 960MHz) For receiving), 1800MHz (about 1710MHz to 1785MHz for transmission, 1805MHz to 1880MHz for receiving), and 1900MHz (about 1850MHz to 1910MHz for transmission, and 1930MHz to 1990MHz for receiving). Different places in the world also use variations of the GSM frequency band and/or regional/national implementation schemes.

分碼多重存取(CDMA)係可實施於行動電話裝置中之另一標準。在某些實施方案中,CDMA裝置可在800MHz、900MHz、1800MHz及1900MHz頻帶中之一或多者中操作,而某些W-CDMA及長期演進(LTE)裝置可在(舉例而言)約22個射頻頻譜頻帶上操作。 Code Division Multiple Access (CDMA) is another standard that can be implemented in mobile phone devices. In some implementations, CDMA devices can operate in one or more of the 800MHz, 900MHz, 1800MHz, and 1900MHz frequency bands, while certain W-CDMA and Long Term Evolution (LTE) devices can operate in, for example, about 22 Operate on two radio frequency spectrum bands.

本發明之一或多個特徵可實施於前述實例性模式及/或頻帶中,及實施於其他通信標準中。舉例而言,3G及4G係此等標準之非限制 性實例。 One or more features of the present invention can be implemented in the aforementioned exemplary modes and/or frequency bands, and implemented in other communication standards. For example, 3G and 4G are non-restrictive of these standards 性例。 Sexual examples.

所圖解說明無線裝置11包含一RF前端12、一收發器13、一天線14、功率放大器17、一控制組件18、一電腦可讀媒體19、一處理器20、一電池21及一供應控制區塊22。 The illustrated wireless device 11 includes an RF front end 12, a transceiver 13, an antenna 14, a power amplifier 17, a control component 18, a computer-readable medium 19, a processor 20, a battery 21, and a supply control area Block 22.

收發器13可產生RF信號用於經由天線14傳輸。此外,收發器13可自天線14接收傳入RF信號。 The transceiver 13 can generate RF signals for transmission via the antenna 14. In addition, the transceiver 13 can receive incoming RF signals from the antenna 14.

將理解,與傳輸及接收RF信號相關聯之各種功能性可由在圖2中共同表示為收發器13之一或多個組件來達成。舉例而言,一單個組件可經組態以提供傳輸及接收功能性兩者。在另一實例中,傳輸及接收功能性可由單獨組件提供。 It will be understood that various functionalities associated with transmitting and receiving RF signals can be achieved by one or more components collectively represented as transceiver 13 in FIG. 2. For example, a single component can be configured to provide both transmission and reception functionality. In another example, the transmission and reception functionality may be provided by separate components.

類似地,將理解,與傳輸及接收RF信號相關聯之各種天線功能性可由在圖2中共同表示為天線14之一或多個組件達成。舉例而言,一單個天線可經組態以提供傳輸及接收功能性兩者。在另一實例中,傳輸及接收功能性可由單獨天線提供。在又一實例中,可藉助不同天線提供與無線裝置11相關聯之不同頻帶。 Similarly, it will be understood that various antenna functionalities associated with transmitting and receiving RF signals can be achieved by one or more components collectively represented as antenna 14 in FIG. 2. For example, a single antenna can be configured to provide both transmission and reception functionality. In another example, transmission and reception functionality may be provided by separate antennas. In yet another example, different frequency bands associated with the wireless device 11 may be provided by different antennas.

在圖2中,繪示來自收發器13之一或多個輸出信號經由一或多個傳輸路徑15提供至天線14。在所展示之實例中,不同傳輸路徑15可表示與不同頻帶及/或不同功率輸出相關聯之輸出路徑。舉例而言,所展示之兩個實例性功率放大器17可表示與不同功率輸出組態(例如,低功率輸出及高功率輸出)相關聯之放大及/或與不同頻帶相關聯之放大。儘管圖2將無線裝置11圖解說明為包含兩個傳輸路徑15,但無線裝置11可經調適以包含更多或更少之傳輸路徑15。 In FIG. 2, one or more output signals from the transceiver 13 are shown to be provided to the antenna 14 via one or more transmission paths 15. In the example shown, the different transmission paths 15 may represent output paths associated with different frequency bands and/or different power outputs. For example, the two exemplary power amplifiers 17 shown may represent amplifications associated with different power output configurations (eg, low power output and high power output) and/or amplifications associated with different frequency bands. Although FIG. 2 illustrates the wireless device 11 as including two transmission paths 15, the wireless device 11 may be adapted to include more or fewer transmission paths 15.

在圖2中,將來自天線14之一或多個所偵測信號繪示為經由一或多個接收路徑16提供至收發器13。在所展示之實例中,不同接收路徑16可表示與不同頻帶相關聯之路徑。舉例而言,所展示之四個實例性路徑16可表示某些無線裝置具備之四頻帶能力。儘管圖2將無線裝置 11圖解說明為包括四個接收路徑16,但無線裝置11可經調適以包含更多或更少之接收路徑16。 In FIG. 2, one or more detected signals from the antenna 14 are shown as being provided to the transceiver 13 via one or more receiving paths 16. In the example shown, different receive paths 16 may represent paths associated with different frequency bands. For example, the four exemplary paths 16 shown may represent the quad-band capabilities of certain wireless devices. Although Figure 2 shows the wireless device 11 is illustrated as including four receive paths 16, but the wireless device 11 may be adapted to include more or fewer receive paths 16.

為促進在接收與傳輸路徑之間切換,RF前端12中之一或多個開關可經組態以將天線14電連接至一選定傳輸或接收路徑。因此,開關可提供與無線裝置11之操作相關聯之眾多切換功能性。在某些實施例中,開關可包含眾多開關,其經組態以提供與(舉例而言)不同頻帶之間的切換、不同功率模式之間的切換、傳輸與接收模式之間的切換或其某一組合相關聯之功能性。開關亦可經組態以提供額外功能性,包含信號之濾波及/或雙工。 To facilitate switching between receiving and transmission paths, one or more switches in the RF front end 12 may be configured to electrically connect the antenna 14 to a selected transmission or reception path. Therefore, the switch can provide numerous switching functionality associated with the operation of the wireless device 11. In some embodiments, the switch may include numerous switches that are configured to provide switching between, for example, different frequency bands, switching between different power modes, switching between transmission and reception modes, or The functionality associated with a certain combination. The switch can also be configured to provide additional functionality, including signal filtering and/or duplexing.

圖2展示,在某些實施例中,可提供一控制組件18用於控制與RF前端、功率放大器17、供應控制件22及/或其他操作組件之操作相關聯之各種控制功能性。舉例而言,控制組件18可在某些情形中包含於圖2中所示之另一組件(諸如收發器13)內。 FIG. 2 shows that, in some embodiments, a control component 18 may be provided for controlling various control functionalities associated with the operation of the RF front-end, power amplifier 17, supply control 22, and/or other operating components. For example, the control component 18 may be included in another component (such as the transceiver 13) shown in FIG. 2 in some cases.

在某些實施例中,一處理器20可經組態以促進本文中所闡述之各種處理程序之實施。在某些實施方案中,處理器20可使用電腦程式指令操作。在某些實施例中,此等電腦程式指令亦可儲存於一電腦可讀記憶體19中,該電腦可讀記憶體可引導一電腦或其他可程式化資料處理設備以一特定方式操作。舉例而言,出於闡述之目的,亦可參考方法、設備(系統)及電腦程式產品之流程圖圖解說明及/或方塊圖來闡述本發明之實施例。將理解,該等流程圖圖解說明及/或方塊圖之每一方塊及該等流程圖圖解說明及/或方塊圖中之方塊之組合可由電腦程式指令來實施。此等電腦程式指令可被提供至一通用電腦、專用電腦或其他可程式化資料處理設備之一處理器,以產生一機器,以使得該等指令(其經由電腦或其他可程式化資料處理設備之處理器執行)形成用於實施該(等)流程圖及/或方塊圖方塊中所規定之動作之手段。 In some embodiments, a processor 20 may be configured to facilitate the implementation of the various processing procedures described herein. In some embodiments, the processor 20 can be operated using computer program instructions. In some embodiments, these computer program instructions can also be stored in a computer-readable memory 19, which can guide a computer or other programmable data processing equipment to operate in a specific manner. For example, for the purpose of illustration, the flowchart illustrations and/or block diagrams of methods, equipment (systems) and computer program products can also be referred to to illustrate the embodiments of the present invention. It will be understood that each block of the flowchart illustrations and/or block diagrams and combinations of blocks in the flowchart illustrations and/or block diagrams can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a dedicated computer, or other programmable data processing equipment to generate a machine so that the instructions (which pass through the computer or other programmable data processing equipment) The processor execution) forms a means for implementing the actions specified in the flowchart(s) and/or block diagrams.

在某些實施例中,此等電腦程式指令亦可儲存於一電腦可讀記 憶體19中,該電腦可讀記憶體19可引導一電腦或其他可程式化資料處理設備以一特定方式操作,以使得儲存於該電腦可讀記憶體中之指令產生一製品,該製品包含實施該(等)流程圖及/或方塊圖方塊中所規定之動作之指令手段。亦可將該等電腦程式指令載入至一電腦或其他可程式化資料處理設備上以致使在該電腦或其他可程式化設備上執行一系列操作,以產生一電腦實施處理程序,以使得在該電腦或其他可程式化設備上執行之指令提供用於實施該(等)流程圖及/或方塊圖方塊中所規定之動作之步驟。 In some embodiments, these computer program instructions can also be stored in a computer readable memory In the memory 19, the computer-readable memory 19 can guide a computer or other programmable data processing equipment to operate in a specific manner, so that the instructions stored in the computer-readable memory generate a product, and the product includes The instruction means to implement the actions specified in the flow chart(s) and/or block diagram. The computer program instructions can also be loaded into a computer or other programmable data processing equipment to cause a series of operations to be performed on the computer or other programmable equipment to generate a computer-implemented processing program, so that the The instructions executed on the computer or other programmable devices provide steps for implementing the actions specified in the flowchart(s) and/or block diagrams.

供應控制區塊22可電連接至電池21,且供應控制區塊22可經組態以(例如)基於經放大之RF信號之一包絡而改變提供至功率放大器17之電壓。電池21可係供在無線裝置11中使用之任一適合電池,包含(舉例而言)一鋰離子電池。如下文將進一步詳細闡述,藉由控制提供至功率放大器之功率放大器供應電壓之電壓位準,可減少電池21之功率消耗,藉此改良無線裝置11之效能。如圖2中所圖解說明,包絡信號可自收發器13提供至供應控制區塊22。然而,可以其他方式判定包絡。舉例而言,可藉由處理RF信號(例如,使用任一適合包絡偵測器來偵測包絡)來判定包絡或其他類型之供應控制信號。 The supply control block 22 may be electrically connected to the battery 21, and the supply control block 22 may be configured to, for example, change the voltage supplied to the power amplifier 17 based on an envelope of the amplified RF signal. The battery 21 can be any suitable battery for use in the wireless device 11, including, for example, a lithium ion battery. As will be described in further detail below, by controlling the voltage level of the power amplifier supply voltage provided to the power amplifier, the power consumption of the battery 21 can be reduced, thereby improving the performance of the wireless device 11. As illustrated in FIG. 2, the envelope signal may be provided from the transceiver 13 to the supply control block 22. However, the envelope can be determined in other ways. For example, the envelope or other types of supply control signals can be determined by processing the RF signal (for example, using any suitable envelope detector to detect the envelope).

一種用於減小一功率放大器之功率消耗之技術係包絡追蹤(ET),其中相對於RF信號之包絡而改變功率放大器之電源供應器之電壓位準。舉例而言,當RF信號之包絡增加時,可使功率放大器之電源供應器之電壓位準增加。同樣,當RF信號之包絡減小時,可減小功率放大器之電源供應器之電壓位準以減小功率消耗。另一形式之功率追蹤係平均功率追蹤(APT),其中類似於包絡追蹤,相對於包絡而改變功率放大器17之電源供應器之電壓位準。然而,在操作之APT模式中,電源供應器基於包絡之一平均位準而在兩個或兩個以上離散值之間改變。舉例而言,功率位準可以逐狹槽為基礎改變,其中每一狹槽 對應於一不同電力控制位準。此可以低功率改良效率同時以高於ET追蹤之位準導致較少功率節省。電源供應控制之另一模式係一固定供應或直接電池連接,其中至功率放大器17之電源供應保持在一固定量,處於或高於RF信號之包絡之最大位準。分別在圖8A、圖8B及圖8C中展示在實例性固定電源供應期間所產生之實例性功率及信號波形、平均功率追蹤及包絡追蹤操作。 One technique for reducing the power consumption of a power amplifier is envelope tracking (ET), in which the voltage level of the power supply of the power amplifier is changed relative to the envelope of the RF signal. For example, when the envelope of the RF signal increases, the voltage level of the power supply of the power amplifier can be increased. Similarly, when the envelope of the RF signal is reduced, the voltage level of the power supply of the power amplifier can be reduced to reduce power consumption. Another form of power tracking is average power tracking (APT), in which similar to envelope tracking, the voltage level of the power supply of the power amplifier 17 is changed relative to the envelope. However, in the APT mode of operation, the power supply changes between two or more discrete values based on an average level of one of the envelopes. For example, the power level can be changed on a slot-by-slot basis, where each slot Corresponds to a different power control level. This can improve efficiency at low power and at the same time result in less power saving at a level higher than ET tracking. Another mode of power supply control is a fixed supply or direct battery connection, where the power supply to the power amplifier 17 is maintained at a fixed amount, at or above the maximum level of the envelope of the RF signal. Exemplary power and signal waveforms, average power tracking, and envelope tracking operations generated during an exemplary fixed power supply period are shown in FIGS. 8A, 8B, and 8C, respectively.

圖3係一功率放大器系統26之一項實例之一示意性方塊圖。舉例而言,功率放大器系統26可併入至無線裝置11中。所圖解說明功率放大器系統26包含一RF前端12、一天線14、一電池21、一供應控制驅動器30、一功率放大器17及一收發器13。所圖解說明收發器13包含一基頻處理器34、一供應成形區塊或電路35、一延遲組件33、一數位轉類比轉換器(DAC)36、一正交(I/Q)調變器37、一混合器38及一類比轉數位轉換器(ADC)39。供應成形區塊35、延遲組件33、DAC 36及供應控制驅動器30一起形成一供應成形分支48。 FIG. 3 is a schematic block diagram of an example of a power amplifier system 26. For example, the power amplifier system 26 may be incorporated into the wireless device 11. The illustrated power amplifier system 26 includes an RF front end 12, an antenna 14, a battery 21, a supply control driver 30, a power amplifier 17 and a transceiver 13. The illustrated transceiver 13 includes a baseband processor 34, a supply shaping block or circuit 35, a delay component 33, a digital-to-analog converter (DAC) 36, and a quadrature (I/Q) modulator 37. A mixer 38 and an analog-to-digital converter (ADC) 39. The supply shaping block 35, the delay component 33, the DAC 36 and the supply control driver 30 together form a supply shaping branch 48.

基頻處理器34可用於產生對應於一所要振幅、頻率及相位之一正弦波或信號之信號分量的一I信號及一Q信號。舉例而言,I信號可用於表示正弦波之一同相分量且Q信號可用於表示正弦波之一正交分量,該I信號及Q信號可係正弦波之一等效表示。在某些實施方案中,I信號及Q信號可以一數位格式提供至I/Q調變器37。基頻處理器34可係經組態以處理一基頻信號之任一適合處理器。舉例而言,基頻處理器34可包含一數位信號處理器、一微處理器、一可程式化核心或其任一組合。此外,在某些實施方案中,兩個或兩個以上基頻處理器34可包含於功率放大器系統26中。 The baseband processor 34 can be used to generate an I signal and a Q signal corresponding to a sine wave or signal component of a desired amplitude, frequency, and phase. For example, the I signal can be used to represent an in-phase component of a sine wave and the Q signal can be used to represent a quadrature component of a sine wave. The I signal and the Q signal can be an equivalent representation of the sine wave. In some embodiments, the I signal and the Q signal can be provided to the I/Q modulator 37 in a digital format. The baseband processor 34 can be any suitable processor configured to process a baseband signal. For example, the baseband processor 34 may include a digital signal processor, a microprocessor, a programmable core, or any combination thereof. In addition, in some implementations, two or more baseband processors 34 may be included in the power amplifier system 26.

I/Q調變器37可經組態以自基頻處理器34接收I信號及Q信號並處理I信號及Q信號以產生一RF信號。舉例而言,I/Q調變器37可包含經組態以將I信號及Q信號轉換成一類比格式之DAC,用於將I信號及Q 信號升頻轉換成射頻之混合器及用於將經升頻轉換之I及Q信號組合成適於由功率放大器17放大之一RF信號之一信號組合器。在某些實施方案中,I/Q調變器37可包含經組態以濾波其中所處理之信號之頻率含量之一或多個濾波器。 The I/Q modulator 37 can be configured to receive the I signal and Q signal from the baseband processor 34 and process the I signal and Q signal to generate an RF signal. For example, the I/Q modulator 37 may include a DAC configured to convert the I signal and the Q signal into an analog format for converting the I signal and the Q signal A mixer for up-converting a signal into a radio frequency and a signal combiner for combining the up-converted I and Q signals into an RF signal suitable for amplification by the power amplifier 17. In certain implementations, the I/Q modulator 37 may include one or more filters configured to filter the frequency content of the signal processed therein.

取決於實施例,供應成形區塊35可用於將與I信號及Q信號相關聯之一包絡或振幅信號轉換成一成形電源供應控制信號,諸如一平均功率追蹤(APT)信號或一包絡追蹤(ET)信號。使來自基頻處理器34之包絡信號成形可有助於增強功率放大器系統26之效能。在(諸如)其中供應成形區塊經組態以實施一包絡追蹤功能之某些實施方案中,供應成形區塊35係經組態以產生一數位成形包絡信號之一數位電路,且DAC 36用於將數位成形包絡信號轉換成適於由供應控制驅動器30使用之一類比成形包絡信號。然而,在其他實施方案中,DAC 36可被省略以有利於為供應控制驅動器30提供一數位包絡信號以輔助供應控制驅動器30進一步處理包絡信號。 Depending on the embodiment, the supply shaping block 35 can be used to convert an envelope or amplitude signal associated with the I signal and the Q signal into a shaped power supply control signal, such as an average power tracking (APT) signal or an envelope tracking (ET) signal. )signal. Shaping the envelope signal from the baseband processor 34 can help enhance the performance of the power amplifier system 26. In certain implementations, such as where the supply shaping block is configured to implement an envelope tracking function, the supply shaping block 35 is a digital circuit configured to generate a digitally shaped envelope signal, and the DAC 36 is used It converts the digital shaped envelope signal into an analog shaped envelope signal suitable for use by the supply control driver 30. However, in other embodiments, the DAC 36 may be omitted to facilitate the provision of a digital envelope signal for the supply control driver 30 to assist the supply control driver 30 to further process the envelope signal.

供應控制驅動器30可接收來自收發器13之供應控制信號(例如,一類比成形包絡信號或APT信號)及來自電池21之一電池電壓VBATT,且可使用供應控制信號信號來產生相對於傳輸信號而改變之用於功率放大器17之一功率放大器供應電壓VCC_PA。功率放大器17可自收發器13之I/Q調變器37接收RF傳輸信號,且可透過RF前端12將一經放大RF信號提供至天線14。在其他情形中,將一固定功率放大器供應電壓VCC_PA提供至功率放大器17。在某些此等實施例中,可不包含供應成形區塊35、DAC 36及供應控制驅動器30中之一或多者。在圖8A、圖8B及圖8C中分別展示針對固定供應、APT及ET電源供應控制操作之功率放大器供應電壓VCC_PA及對應RF傳輸信號之例示性波形。在某些實施例中,功率放大器系統26能夠執行兩個或兩個以上供應控制技術。舉例而言,功率放大器系統26允許選擇(例如,經由韌體程式化 或其他適當機制)ET、APT及固定電源供應控制模式中之兩個或兩個以上者。在此等情形中,基頻處理器或其他適當控制器或處理器可指示供應成形區塊35進入適當選定模式中。 The supply control driver 30 can receive a supply control signal (for example, an analog shaped envelope signal or an APT signal) from the transceiver 13 and a battery voltage V BATT from the battery 21, and can use the supply control signal signal to generate a signal relative to the transmission The change is used for the power amplifier supply voltage V CC_PA of one of the power amplifiers 17. The power amplifier 17 can receive the RF transmission signal from the I/Q modulator 37 of the transceiver 13 and can provide an amplified RF signal to the antenna 14 through the RF front end 12. In other cases, a fixed power amplifier supply voltage V CC_PA is provided to the power amplifier 17. In some of these embodiments, one or more of the supply shaping block 35, the DAC 36, and the supply control driver 30 may not be included. Exemplary waveforms of the power amplifier supply voltage V CC_PA and corresponding RF transmission signals for fixed supply, APT and ET power supply control operations are shown in FIGS. 8A, 8B, and 8C, respectively. In some embodiments, the power amplifier system 26 can perform two or more supply control techniques. For example, the power amplifier system 26 allows selection (for example, through firmware programming or other appropriate mechanisms) of two or more of ET, APT, and fixed power supply control modes. In these situations, the baseband processor or other appropriate controller or processor can instruct the supply shaping block 35 to enter the appropriate selected mode.

延遲組件33實施供應控制路徑中之一可選擇延遲。如將進一步詳細闡述,上述情況可在某些情形中用於補償非線性及/或信號降級之其他潛在來源。所圖解說明延遲組件在數位域中經展示為收發器13之一部分,且可包括一FIFO或其他類型之基於記憶體之延遲元件。 舉例而言,然而,延遲組件33可以任一適當方式實施,且在其他實施例中可整合為供應成形區塊35之一部分,或可在類比域中實施在DAC 36之後。 The delay component 33 implements a selectable delay in one of the supply control paths. As will be explained in further detail, the above situation can be used in some cases to compensate for other potential sources of nonlinearity and/or signal degradation. The illustrated delay element is shown in the digital domain as part of the transceiver 13 and may include a FIFO or other type of memory-based delay element. For example, however, the delay component 33 can be implemented in any suitable manner, and in other embodiments can be integrated as part of the supply shaping block 35, or can be implemented after the DAC 36 in the analog domain.

RF前端12接收功率放大器17之輸出,且可包含各種組件,包含一或多個雙工器、開關(例如,形成於一天線開關模組中)、方向耦合器及諸如此類。下文關於圖4A及圖4B展示並闡述相容RF前端之詳細實例。 The RF front end 12 receives the output of the power amplifier 17, and may include various components, including one or more duplexers, switches (for example, formed in an antenna switch module), directional couplers, and the like. Detailed examples of compatible RF front-ends are shown and described below with respect to FIGS. 4A and 4B.

RF前端12內之方向耦合器(未展示)可係一雙向耦合器或能夠將一所感測輸出信號提供至混合器38之其他適當耦合器或其他裝置。根據包含所圖解說明實施例之某些實施例,方向耦合器能夠將入射信號及反射信號(例如,前向功率及逆向功率)兩者提供至混合器38。舉例而言,方向耦合器可具有至少四個埠,該至少四個埠包含經組態以接收由功率放大器17產生之信號之一輸入埠、耦合至天線14之一輸出埠,經組態以將前向功率提供至混合器38之一第一量測埠以及經組態以將逆向功率提供至混合器38之一第二量測埠。 The directional coupler (not shown) in the RF front end 12 may be a bidirectional coupler or other suitable coupler or other device capable of providing a sensed output signal to the mixer 38. According to certain embodiments including the illustrated embodiments, the directional coupler can provide both the incident signal and the reflected signal (eg, forward power and reverse power) to the mixer 38. For example, the directional coupler may have at least four ports, the at least four ports including an input port configured to receive the signal generated by the power amplifier 17, an output port coupled to the antenna 14, configured to Forward power is provided to a first measurement port of the mixer 38 and configured to provide reverse power to a second measurement port of the mixer 38.

混合器38可將所感測輸出信號乘以一控制頻率(圖3中未圖解說明)之一參考信號以便將所感測輸出信號之頻譜下頻移。可將經下頻移信號提供至ADC 39,ADC 39可將經下頻移之信號轉換成呈適於由基頻處理器34處理之一數位格式之一回饋信號47。如將進一步詳細論 述,藉由在功率放大器17之輸出與基頻處理器34之一輸入包含一回饋路徑,基頻處理器34可經組態以動態地調整I信號及Q信號及/或與I信號及Q信號相關聯之電力控制信號以使功率放大器系統26之操作最佳化。舉例而言,以此方式組態功率放大器系統26可輔助控制功率放大器32之功率附加效率(PAE)及/或線性。在某些實施例中,混合器38、ADC 39及/或其他適當組件可通常執行一正交(I/Q)解調變功能。 The mixer 38 can multiply the sensed output signal by a reference signal of a control frequency (not illustrated in FIG. 3) so as to shift down the frequency spectrum of the sensed output signal. The down-shifted signal can be provided to the ADC 39, and the ADC 39 can convert the down-shifted signal into a feedback signal 47 in a digital format suitable for processing by the baseband processor 34. As will be discussed in further detail As mentioned, by including a feedback path at the output of the power amplifier 17 and one of the inputs of the baseband processor 34, the baseband processor 34 can be configured to dynamically adjust the I signal and the Q signal and/or the I signal and the Q signal. The signal is associated with a power control signal to optimize the operation of the power amplifier system 26. For example, configuring the power amplifier system 26 in this manner can assist in controlling the power added efficiency (PAE) and/or linearity of the power amplifier 32. In some embodiments, the mixer 38, the ADC 39, and/or other suitable components may generally perform a quadrature (I/Q) demodulation function.

儘管功率放大器系統26經圖解說明為包含一單個功率放大器,但本文中之教示適用於包含多個功率放大器之功率放大器系統,包含(舉例而言)多模式及/或多模式功率放大器系統。 Although the power amplifier system 26 is illustrated as including a single power amplifier, the teachings herein are applicable to power amplifier systems that include multiple power amplifiers, including, for example, multi-mode and/or multi-mode power amplifier systems.

另外,儘管圖3圖解說明一收發器之一特定組態,但其他組態係可能的,包含(舉例而言)其中收發器13包含更多或更少組件及/或一不同組件配置之組態。 In addition, although FIG. 3 illustrates a specific configuration of a transceiver, other configurations are possible, including (for example) where the transceiver 13 includes more or fewer components and/or a group of different component configurations state.

如所展示,基頻處理器34可包含一數位預失真(DPD)表40、一等化器表41及一複阻抗偵測器44。DPD表40可儲存於可由基頻處理器34存取之收發器13之一非揮發性記憶體(例如,快閃記憶體、唯讀記憶體(ROM)等)中。根據某些實施例,基頻處理器34存取DPD表40中之項目以輔助線性化功率放大器17。舉例而言,基頻處理器34基於所感測之回饋信號47而選擇DPD表40中之適當項目,且在將傳輸信號輸出至I/Q調變器37之前相應地調整該傳輸信號。舉例而言,DPD可用於補償功率放大器17之某些非線性效應,包含(舉例而言)信號分佈圖(constellation)失真及/或信號頻譜擴散。根據包含所圖解說明實施例之某些實施例,DPD表40實施無記憶體之DPD,例如,其中DPD校正之傳輸信號之當前輸出僅取決於當前輸入。 As shown, the baseband processor 34 may include a digital predistortion (DPD) table 40, an equalizer table 41, and a complex impedance detector 44. The DPD table 40 can be stored in a non-volatile memory (for example, flash memory, read-only memory (ROM), etc.) of the transceiver 13 that can be accessed by the baseband processor 34. According to some embodiments, the baseband processor 34 accesses entries in the DPD table 40 to assist in the linearization of the power amplifier 17. For example, the baseband processor 34 selects an appropriate item in the DPD table 40 based on the sensed feedback signal 47, and adjusts the transmission signal accordingly before outputting the transmission signal to the I/Q modulator 37. For example, DPD can be used to compensate for certain non-linear effects of the power amplifier 17, including, for example, signal constellation distortion and/or signal spectrum spreading. According to certain embodiments including the illustrated embodiments, the DPD table 40 implements memoryless DPD, for example, where the current output of the DPD-corrected transmission signal depends only on the current input.

使用具有藉由預特徵化RF前端獲得之值之一查找表來等化之概述Overview of equalization using a lookup table with one of the values obtained by the pre-characterized RF front-end

某些因素可促成經由DPD表40使用純無記憶體DPD難以處理之記憶效應,諸如RF前端12之雙工器中固有之群組延遲連同功率放大器 17所經歷之不良阻抗匹配。為補償此等記憶效應及/或促成非線性或其他信號降級之其他因素,功率放大器系統26可採用等化器表41。等化器表41可儲存於一非揮發性記憶體(例如,快閃記憶體,唯讀記憶體(ROM),等)中,取決於實施例,該非揮發性記憶體可係DPD表40儲存於其中之相同記憶體,或一不同記憶體。雖然出於圖解說明之目的DPD表40及等化器表41經展示為駐存於基頻處理器34內,但含有該等表之記憶體裝置可駐存於收發器13上之任一適當位置或無線裝置11中之別處中。 Certain factors can contribute to the memory effect that is difficult to handle using pure memoryless DPD through the DPD table 40, such as the inherent group delay in the duplexer of the RF front-end 12 and the power amplifier 17 Poor impedance matching experienced. To compensate for these memory effects and/or other factors that contribute to non-linearity or other signal degradation, the power amplifier system 26 may employ an equalizer table 41. The equalizer table 41 can be stored in a non-volatile memory (eg, flash memory, read-only memory (ROM), etc.). Depending on the embodiment, the non-volatile memory can be stored in the DPD table 40 The same memory in it, or a different memory. Although the DPD table 40 and the equalizer table 41 are shown as resident in the baseband processor 34 for the purpose of illustration, the memory device containing these tables may be resident on any suitable transceiver 13 Location or elsewhere in the wireless device 11.

等化器表41在一特徵化階段期間經填充,該特徵化階段可在製造時實施,舉例而言,其中在選擇輸入條件下特徵化功率放大器系統26。在特徵化期間,功率放大器系統26可在選擇複阻抗點處經特徵化,其中在每一複阻抗點處記錄某些變數。舉例而言,一可程式化天線調諧器可在特徵化期間連接至功率放大器系統26以設定所要複阻抗點。可另外跨越其他適當參數特徵化系統。作為一實例,在某些實施例中,另外跨越不同頻道及頻帶記錄變數,此可允許跨越一傳輸頻道將功率放大器系統26(例如,DPD表40)應用於雙工器漣波,計及某些記憶效應、以及其他益處。雙向耦合器或其他適當組件可用於在每一設定點(例如,相位、VSWR、頻道及頻帶之每一經特徵化組合)處擷取功率放大器系統26之行為。所記錄變數中之每一者可連同對應特徵化設定點值儲存於該表中。 The equalizer table 41 is populated during a characterization phase, which can be implemented at manufacturing, for example, where the power amplifier system 26 is characterized under selected input conditions. During characterization, the power amplifier system 26 may be characterized at selected complex impedance points, where certain variables are recorded at each complex impedance point. For example, a programmable antenna tuner can be connected to the power amplifier system 26 during characterization to set the desired complex impedance point. The system can additionally be characterized across other appropriate parameters. As an example, in some embodiments, the variables are additionally recorded across different channels and frequency bands, which may allow the power amplifier system 26 (e.g., DPD meter 40) to be applied to the duplexer ripple across a transmission channel, taking into account certain These memory effects, and other benefits. A bidirectional coupler or other suitable component can be used to capture the behavior of the power amplifier system 26 at each set point (e.g., each characterized combination of phase, VSWR, channel, and frequency band). Each of the recorded variables can be stored in the table along with the corresponding characterization set point value.

形成關於每一設定點之特徵化資訊之所記錄變數可包含以下各項中之某些者或全部:(1)遞送至功率放大器17之RF信號與通過供應控制分支48之供應成形信號之間的一所要(例如,最佳)相對延遲;(2)功率放大器17之一壓縮等級,其可對應於功率放大器17在峰值包絡功率期間操作之一壓縮程度;及(3)一最大包絡功率。圖6A至圖6B提供包含特徵化一功率放大器系統之實施例之所記錄變數之表之部分 600、650之實例。舉例而言,此等表可形成或用於產生等化器表41之一部分。本文中將(例如)關於圖4A、圖4B、圖5及圖6A至圖6B進一步詳細地闡述特徵化程序。 The recorded variables that form the characteristic information about each set point may include some or all of the following: (1) Between the RF signal delivered to the power amplifier 17 and the supply shaping signal through the supply control branch 48 A desired (e.g., optimal) relative delay of the power amplifier 17; (2) a compression level of the power amplifier 17, which can correspond to a compression level of the power amplifier 17 during peak envelope power operation; and (3) a maximum envelope power. 6A to 6B provide a portion of a table containing recorded variables that characterize an embodiment of a power amplifier system Examples of 600 and 650. For example, these tables may form or be used to generate part of the equalizer table 41. The characterization procedure will be described in further detail herein, for example, with respect to FIGS. 4A, 4B, 5, and 6A to 6B.

在操作期間,藉助阻抗偵測器44偵測複阻抗(例如,VSWR及/或相位)。阻抗偵測器44可以任一適當方式實施,且可包含數位或類比電路。舉例而言,阻抗偵測器44之某些部分或全部可實施於基頻處理器34內,如所展示。在某些實施例中,阻抗偵測器之某些部分或全部駐存於基頻處理器34外部之回饋路徑中。用於偵測複阻抗之相容組件之某些實例提供於標題為「Integrated VSWR Detector for Monolithic Microwave Integrated Circuits」之美國專利第8,723,531號(其以引用方式併入本文中)中。本文中參考圖9展示並闡述用於判定複阻抗之一程序之一項實施例。 During operation, the impedance detector 44 is used to detect complex impedance (for example, VSWR and/or phase). The impedance detector 44 can be implemented in any suitable manner, and can include digital or analog circuits. For example, some or all of the impedance detector 44 may be implemented in the baseband processor 34, as shown. In some embodiments, some or all of the impedance detector resides in the feedback path outside the baseband processor 34. Some examples of compatible components for detecting complex impedance are provided in US Patent No. 8,723,531 entitled "Integrated VSWR Detector for Monolithic Microwave Integrated Circuits" (which is incorporated herein by reference). Herein, an embodiment of a procedure for determining complex impedance is shown and explained with reference to FIG. 9.

如所展示,等化器表41可包含一傳輸表42及一供應控制表43中之一者或兩者。傳輸表42可用於補償DPD表40以計及不匹配、非線性等,而供應控制表43可用於控制供應控制分支48之延遲組件33之一延遲,(例如)基於RF傳輸信號49與供應成形信號之間的所要相對延遲。 As shown, the equalizer table 41 may include one or both of a transmission table 42 and a supply control table 43. The transmission table 42 can be used to compensate the DPD table 40 to account for mismatches, non-linearities, etc., and the supply control table 43 can be used to control the delay of one of the delay components 33 of the supply control branch 48, for example, based on the RF transmission signal 49 and the supply shaping The desired relative delay between signals.

如由自傳輸表42延伸至傳輸信號49之虛線表示,替代補償DPD表40或除補償DPD表40外,傳輸表42亦可用於直接補償傳輸信號49。舉例而言,在某些情形中,功率放大器系統26可處於其中DPD經關斷之一模式中,且傳輸表42用於補償傳輸信號49。作為一實例,在達到一特定傳輸功率位準(例如,100毫瓦)(此時接通包絡追蹤及DPD變得更能量低效)之前,停用DPD及包絡追蹤。此外,在某些情形中,在任一給定時間處利用傳輸表42及供應控制表43中之僅一者。舉例而言,在某些實施例中,僅當功率放大器系統26處於一包絡追蹤模式中時才採用供應控制表43,且當功率放大器系統26未處於包絡追蹤模式中時(例如,在處於APT或固定供應模式中時),才採用傳輸表42。在某些 實施例中,等化器表41包含傳輸表42及供應控制表43中之僅一者。此外,等化器表41中含有之資訊可以各種不同方式組織。舉例而言,當經展示為單獨表時,傳輸表42及供應控制表43可組合成一單個表,或者,在某些實施例中,提供於等化器表41中之資訊與DPD表40組合在一起。 As indicated by the dashed line extending from the transmission table 42 to the transmission signal 49, instead of the compensation DPD table 40 or in addition to the compensation DPD table 40, the transmission table 42 can also be used to directly compensate the transmission signal 49. For example, in some cases, the power amplifier system 26 may be in a mode in which the DPD is turned off, and the transmission table 42 is used to compensate the transmission signal 49. As an example, before reaching a certain transmission power level (for example, 100 milliwatts) (when envelope tracking is turned on and DPD becomes more energy inefficient), DPD and envelope tracking are disabled. Furthermore, in some cases, only one of the transmission table 42 and the supply control table 43 is utilized at any given time. For example, in some embodiments, the supply control table 43 is used only when the power amplifier system 26 is in an envelope tracking mode, and when the power amplifier system 26 is not in the envelope tracking mode (for example, when in the APT Or in the fixed supply mode), the transmission table 42 is used. In some In the embodiment, the equalizer table 41 includes only one of the transmission table 42 and the supply control table 43. In addition, the information contained in the equalizer table 41 can be organized in various ways. For example, when shown as separate tables, the transmission table 42 and the supply control table 43 can be combined into a single table, or, in some embodiments, the information provided in the equalizer table 41 is combined with the DPD table 40 Together.

針對諸如50資源區塊(RB)LTE信號之寬頻信號,記憶效應可由於跨越RB頻率跨距之負載線及延遲變化而變成一特別顯著問題。在2:1或更大之VSWR下,一無記憶體DPD表40可不足以解決跨越頻道之AM-AM/AM-PM回應變化。在此等情形中,基頻傳輸信號(例如,I/Q信號)之等化可係適當的,例如,使用等化器表41,該等化器表可用記憶係數來增強DPD表40。等化器表41之使用可實施等化功率放大器17之壓縮等級及/或達成跨越頻帶之功率放大器17之所要(例如,最佳)延遲之一等化器功能。因此,可包含跨越頻道提取之上文所闡述之變數之等化器表41可用於對一大RB信號(例如,50或100 RB或上行鏈路CA 40兆赫寬)執行一等化器功能。根據某些實施例,等化可提供一雙重作用:添加記憶效應補償至無記憶體DPD以及使DPD適應在各種特徵化條件(例如,特徵化VSWR條件)下工作。如所闡述,等化器功能可具有兩個路徑,一個用於RF傳輸信號49(例如,透過傳輸表42之使用),且一個用於(舉例而言)可係一包絡追蹤器之供應控制路徑48(例如,透過供應控制表43之使用)。 For broadband signals such as 50 resource block (RB) LTE signals, the memory effect can become a particularly significant problem due to the load line and delay variation across the RB frequency span. Under a VSWR of 2:1 or greater, a memoryless DPD table 40 may not be sufficient to resolve AM-AM/AM-PM response changes across channels. In these situations, the equalization of the baseband transmission signal (for example, I/Q signal) may be appropriate, for example, using an equalizer table 41, which can enhance the DPD table 40 with memory coefficients. The use of the equalizer table 41 can implement an equalizer function that equalizes the compression level of the power amplifier 17 and/or achieves the desired (eg, optimal) delay of the power amplifier 17 across the frequency band. Therefore, the equalizer table 41, which can include the variables described above for cross-channel extraction, can be used to perform an equalizer function on a large RB signal (for example, 50 or 100 RB or uplink CA 40 MHz wide). According to some embodiments, equalization can provide a dual effect: adding memory effect compensation to the memoryless DPD and adapting the DPD to work under various characterization conditions (eg, characterization VSWR conditions). As explained, the equalizer function can have two paths, one for RF transmission signal 49 (for example, through the use of transmission table 42), and one for (for example) supply control that can be an envelope tracker Path 48 (for example, through the use of supply control table 43).

根據某些實施方案,等化表41包含僅適用於RF傳輸信號49的關於每一個別RB之單獨增益及延遲,其而不存在對供應控制路徑48之單獨等化。在另一實施例中,等化表41經由以下兩個單獨路徑實施接近一經刪項渥爾特拉級數(truncated Volterra series)之一功能:一個路徑用於RF傳輸信號49且一個路徑用於包絡追蹤器路徑48。此一實施方案可由一有限脈衝回應(FIR)濾波器組成,該有限脈衝回應(FIR)濾 波器後續接著一非線性查找表,該非線性查找表後續接著另一FIR。一個區塊應用於RF信號而另一區塊應用於調變器信號。自等化表及標稱狀態無記憶體DPD表導出FIR係數以及非線性查找表。 According to some implementations, the equalization table 41 includes individual gains and delays for each individual RB that are only applicable to the RF transmission signal 49, and there is no individual equalization of the supply control path 48. In another embodiment, the equalization table 41 implements a function close to a truncated Volterra series via the following two separate paths: one path is used for the RF transmission signal 49 and one path is used for Envelope tracker path 48. This implementation can be composed of a finite impulse response (FIR) filter, the finite impulse response (FIR) filter The wave device is followed by a non-linear look-up table, which is followed by another FIR. One block is applied to the RF signal and the other block is applied to the modulator signal. The self-equalization table and the nominal state memoryless DPD table derive FIR coefficients and non-linear look-up tables.

例示性前端模組Exemplary Front End Module

圖4A及圖4B展示例示性前端模組45,其中每一者與圖1至圖3中所示之系統相容且可併入其中。參考圖4A及圖4B兩者,所圖解說明前端模組45包含一輸入開關55、一組功率放大器17、一組雙工器50、一天線開關模組51、一雙向耦合器52及一量測開關53。圖4B中所示之前端模組45亦包含一整合式天線調諧器54。 4A and 4B show exemplary front-end modules 45, each of which is compatible with the system shown in FIGS. 1 to 3 and can be incorporated therein. 4A and 4B, the illustrated front-end module 45 includes an input switch 55, a set of power amplifiers 17, a set of duplexers 50, an antenna switch module 51, a two-way coupler 52 and a quantity测开关53。 Test switch 53. The front-end module 45 shown in FIG. 4B also includes an integrated antenna tuner 54.

輸入開關55在不同功率放大器17與對應雙工器50之間切換經調變RF傳輸信號。經接通功率放大器17將所接收信號放大且將經放大信號轉發至雙工器50。雙工器50經組態以將所傳輸信號轉發至天線開關模組51。為簡潔起見,圖4A至圖4B中僅展示傳輸路徑。然而,將理解,雙工器50經組態以允許收發器13與天線14之間的雙向通信。舉例而言,雙工器50可另外經組態以接受來自天線開關模組51之一接收信號並轉發所接收信號用於遞送至收發器13。雙工器50可另外實施濾波或其他適當功能性。舉例而言,雙工器50可提供對接收頻率下傳輸器雜訊之拒絕、用以防止接收減敏之隔離等等。 The input switch 55 switches the modulated RF transmission signal between different power amplifiers 17 and corresponding duplexers 50. The power amplifier 17 is turned on to amplify the received signal and forward the amplified signal to the duplexer 50. The duplexer 50 is configured to forward the transmitted signal to the antenna switch module 51. For brevity, only the transmission path is shown in FIGS. 4A to 4B. However, it will be understood that the duplexer 50 is configured to allow two-way communication between the transceiver 13 and the antenna 14. For example, the duplexer 50 may be additionally configured to receive the received signal from one of the antenna switch modules 51 and forward the received signal for delivery to the transceiver 13. The duplexer 50 may additionally implement filtering or other appropriate functionality. For example, the duplexer 50 can provide rejection of transmitter noise at the receiving frequency, isolation to prevent reception desensitization, and so on.

天線開關模組51可經組態以將天線14電連接至一選定傳輸或接路徑。因此,天線開關模組51可提供與前端模組45之操作相關聯之眾多切換功能性。在某些實施例中,天線開關模組51可包含眾多開關,該等開關經組態以提供與(舉例而言)不同頻帶之間的切換、不同功率模式之間的切換、傳輸模式與接收模式之間的切換或其某一組合相關聯之功能性。天線開關模組51亦可經組態以提供額外功能性,包括信號之濾波及/或雙工。 The antenna switch module 51 can be configured to electrically connect the antenna 14 to a selected transmission or connection path. Therefore, the antenna switch module 51 can provide many switching functions associated with the operation of the front-end module 45. In some embodiments, the antenna switch module 51 may include a large number of switches that are configured to provide, for example, switching between different frequency bands, switching between different power modes, transmission mode, and reception. The functionality associated with switching between modes or a certain combination. The antenna switch module 51 can also be configured to provide additional functionality, including signal filtering and/or duplexing.

所圖解說明實施例包含能夠將一所感測輸出信號提供至量測開 關53之一雙向耦合器52。舉例而言,量測開關53可係一單極雙投(SPDT)開關。根據包含所圖解說明實施例之某些實施例,方向耦合器能夠提供傳輸路徑中之入射及反射信號(例如,前向功率及逆向功率)兩者之一量度。舉例而言,雙向耦合器52可具有至少四個埠,該四個埠可包含經組態以接收由功率放大器17產生之信號之一輸入埠、耦合至天線14之一輸出埠、經組態以提供前向功率至量測開關53之一第一量測埠及經組態以提供逆向功率至量測開關53之一第二量測埠。雖然所圖解說明實施例包含一雙向耦合器52,但在某些實施例中可使用其他類型之裝置或裝置組合。一般而言,可使用能夠偵測傳輸路徑中之入射及反射信號(例如,前向功率及逆向功率)兩者之任一裝置。雙向耦合器52輸出傳輸信號用於遞送至天線並將前向功率信號及逆向功率信號輸出至量測開關53。量測開關53在兩個埠之間(例如,在所偵測前向功率信號與逆向功率信號之間)切換,並將所切換輸出轉發以用於遞送至阻抗偵測器。 The illustrated embodiment includes the ability to provide a sensed output signal to the measurement switch Off 53 is a two-way coupler 52. For example, the measurement switch 53 can be a single pole double throw (SPDT) switch. According to certain embodiments including the illustrated embodiments, the directional coupler can provide a measure of both incident and reflected signals (e.g., forward power and reverse power) in the transmission path. For example, the bidirectional coupler 52 may have at least four ports. The four ports may include an input port configured to receive the signal generated by the power amplifier 17, an output port coupled to the antenna 14, and a configured To provide forward power to a first measurement port of the measurement switch 53 and configured to provide reverse power to a second measurement port of the measurement switch 53. Although the illustrated embodiment includes a bidirectional coupler 52, other types of devices or combinations of devices may be used in some embodiments. Generally speaking, any device capable of detecting both incident and reflected signals (for example, forward power and reverse power) in the transmission path can be used. The bidirectional coupler 52 outputs the transmission signal for delivery to the antenna and outputs the forward power signal and the reverse power signal to the measurement switch 53. The measurement switch 53 switches between the two ports (for example, between the detected forward power signal and the reverse power signal), and forwards the switched output for delivery to the impedance detector.

與圖4B中所示之前端模組45相比,圖4A中所示之前端模組45不包含一可程式化天線調諧器。在此一實施例中,可使用等化器表41準確地補償諸如由於不匹配所致之彼等記憶效應之記憶效應,而無需使用一整合式天線調諧器,藉此減少成本及複雜性,且亦避免可由併入一天線調諧器引起之損失。在此等情形中,一可程式化天線調諧器可暫時地連接至系統,例如,介於雙向耦合器52與天線之間以便特徵化系統。舉例而言,天線調諧器可在製造期間用於設定針對每一特徵化設定點設定複阻抗值。圖4A中所示之組態可根據某些實施例結合預特徵化等化器表41用於達成至少6dB之一線性改良。 Compared with the front-end module 45 shown in FIG. 4B, the front-end module 45 shown in FIG. 4A does not include a programmable antenna tuner. In this embodiment, the equalizer table 41 can be used to accurately compensate for memory effects such as their memory effects due to mismatches without using an integrated antenna tuner, thereby reducing cost and complexity. And also avoid the loss caused by incorporating an antenna tuner. In these situations, a programmable antenna tuner can be temporarily connected to the system, for example, between the bidirectional coupler 52 and the antenna to characterize the system. For example, the antenna tuner can be used to set the complex impedance value for each characterization set point during manufacturing. The configuration shown in FIG. 4A can be used in conjunction with the pre-characterized equalizer table 41 to achieve a linear improvement of at least 6 dB according to some embodiments.

在某些其他實施例(諸如圖4B中所示之實施例)中,一整合式天線調諧器54經提供於前端模組45內。天線調諧器54在某些實施例中包含一電路,該電路包含一pi網路及/或T網路。天線調諧器54係可程式化 以提供阻抗調諧且在某些實施例中結合等化器表41用於補償記憶效應。舉例而言,可程式化天線調諧器54可用於提供對某些非線性(例如,AM-AM及/或AM-PM回應變化,記憶效應等)之一粗略校正。天線調諧器54可經調整以提供一阻抗調諧功能,使得功率放大器17經歷接近於一所要值(例如,50歐姆)之一特定阻抗,藉此提供VSWR補償。另一方面,等化器表41可用於為某些非線性(例如,AM-AM及/或AM-PM回應變化、記憶效應等)提供精細校正。包含一整合式天線調諧器54可提供為雙向耦合器52提供校準之一額外益處。舉例而言,耦合器52之指向性可係在校準之後藉由解除嵌入、線性變換等而增強之軟體或韌體。整合式調諧器54亦可在伺服器不匹配條件下提供經改良效能。 In some other embodiments (such as the embodiment shown in FIG. 4B ), an integrated antenna tuner 54 is provided in the front-end module 45. The antenna tuner 54 includes a circuit in some embodiments, and the circuit includes a pi network and/or a T network. Antenna tuner 54 series can be programmed To provide impedance tuning and in some embodiments combined with the equalizer table 41 to compensate for the memory effect. For example, the programmable antenna tuner 54 can be used to provide a rough correction for certain non-linearities (for example, AM-AM and/or AM-PM response changes, memory effects, etc.). The antenna tuner 54 can be adjusted to provide an impedance tuning function so that the power amplifier 17 experiences a specific impedance close to a desired value (for example, 50 ohms), thereby providing VSWR compensation. On the other hand, the equalizer table 41 can be used to provide fine corrections for certain non-linearities (for example, AM-AM and/or AM-PM response changes, memory effects, etc.). The inclusion of an integrated antenna tuner 54 can provide an additional benefit of providing calibration for the bidirectional coupler 52. For example, the directivity of the coupler 52 may be software or firmware enhanced by de-embedding, linear transformation, etc. after calibration. The integrated tuner 54 can also provide improved performance under server mismatch conditions.

前端模組45之特徵化可以任何所要頻率進行,包含以逐部分為基礎,或為減少校準成本,以每批一部分為基礎或每數批一部分為基礎。 The characterization of the front-end module 45 can be performed at any desired frequency, including on a part-by-part basis, or on a part-by-part basis or part-by-part basis in order to reduce calibration costs.

用於預特徵化前端模組的方法之實例Examples of methods used to pre-characterize front-end modules

圖5係繪示用於預特徵化一前端模組之一程序之一流程圖500。程序500可導致每一個別特徵化狀態之AM-AM及/或AM-PM回應曲線之一量測值。一或多個處理器及/或一無線裝置之其他適當組件可實施程序之某些部分。舉例而言,雖然程序之某些部分出於圖解說明之目的闡述為實施為圖3及圖4A至圖4B中所示之裝置之某些組件實施,但程序可使用圖1之無線裝置11或任何其他相容無線裝置11實施。 FIG. 5 shows a flowchart 500 of a process used to pre-characterize a front-end module. The procedure 500 can result in one measurement of the AM-AM and/or AM-PM response curve for each individual characterization state. One or more processors and/or other suitable components of a wireless device may implement certain parts of the program. For example, although some parts of the program are described as being implemented as certain components of the device shown in FIGS. 3 and 4A to 4B for the purpose of illustration, the program can use the wireless device 11 of FIG. 1 or Any other compatible wireless device 11 is implemented.

在方塊502處,程序包含:使用一可程式化天線調諧器來針對當前特徵設定點狀態將VSWR設定成適當值。舉例而言,參考圖6A中所示之實例性部分等化器查找表600中所展示之第一列602,天線調諧器可用於將VSWR設定成對應於當前特徵化設定點狀態之值(1.2)。在一整合式天線調諧器54提供(圖4B)於前端模組45中之情況下,整合式調 諧器54可用於調整VSWR。出於特徵化之目的,在不提供整合式調諧器(圖4A)之情況下,一天線調諧器可暫時附接至前端模組45。可在使用整合式阻抗偵測器44或其他偵測器來監視VSWR點時調整天線調諧器,直至達到設定點。 At block 502, the process includes: using a programmable antenna tuner to set the VSWR to an appropriate value for the current feature set point state. For example, referring to the first column 602 shown in the example partial equalizer look-up table 600 shown in FIG. 6A, the antenna tuner can be used to set the VSWR to a value corresponding to the current characterization set point state (1.2 ). In the case that an integrated antenna tuner 54 (FIG. 4B) is provided in the front-end module 45, the integrated tuning The tuner 54 can be used to adjust VSWR. For characterization purposes, an antenna tuner can be temporarily attached to the front-end module 45 without providing an integrated tuner (FIG. 4A ). The antenna tuner can be adjusted when the integrated impedance detector 44 or other detectors are used to monitor the VSWR point until the set point is reached.

在方塊504處,對應於當前特徵化設定點之其他參數經設定為適當值。舉例而言,再次參考對應於圖6A中所示之部分查找表600中之第一列602之實例性設定點,複阻抗之相位、頻道及頻帶可設定為適當值(0度、20525、B5)。此等設定點中之某些或全部設定點可藉由使用一信號產生器或其他適當工具來調整一測試輸入信號來達成。 At block 504, other parameters corresponding to the current characterization set point are set to appropriate values. For example, referring again to the exemplary setting points corresponding to the first column 602 in the partial lookup table 600 shown in FIG. 6A, the phase, frequency channel and frequency band of the complex impedance can be set to appropriate values (0 degrees, 20525, B5 ). Some or all of these set points can be achieved by using a signal generator or other suitable tools to adjust a test input signal.

在方塊506處,以當前特徵化狀態特徵化系統。舉例而言,在506處記錄與前端模組45之行為相關聯之一組變數。該等變數可通常包含可用於補償前端模組45之非線性之任何適當變數或量測值。舉例而言,再次參考圖6A中所示之部分表600之第一列602,變數在彼例示性實施例中包含(1)遞送至功率放大器17之RF信號與通過供應控制分支48之供應成形信號之間的一所量測所要(例如,最佳)相對延遲(1.11奈秒[ns]);(2)功率放大器17之一壓縮等級(2.0dB),其可對應於壓縮功率放大器17在峰值包絡功率期間操作之一程度;及(3)一最大包絡功率(29分貝毫瓦[dBm])。參考圖6B(其包含一部分查找表650之另一實例),所記錄變數亦可包含:特徵化AM-AM及AM-PM回應曲線之AM-AM係數(Var B)及AM-PM係數(Var C)。 At block 506, the system is characterized with the current characterization state. For example, at 506, a set of variables associated with the behavior of the front-end module 45 is recorded. These variables can generally include any suitable variables or measured values that can be used to compensate for the non-linearity of the front-end module 45. For example, referring again to the first column 602 of the partial table 600 shown in FIG. 6A, the variables in the exemplary embodiment include (1) the RF signal delivered to the power amplifier 17 and the supply shaping through the supply control branch 48 A measured (for example, the best) relative delay between signals (1.11 nanoseconds [ns]); (2) A compression level (2.0dB) of the power amplifier 17, which can correspond to the compression power amplifier 17 at A degree of operation during peak envelope power; and (3) a maximum envelope power (29 decibels milliwatt [dBm]). Referring to FIG. 6B (which includes another example of a part of the lookup table 650), the recorded variables may also include: AM-AM coefficients (Var B) and AM-PM coefficients (Var C).

在方塊508處,變數經記錄至查找表41中,或以其他方式儲存於非揮發性記憶體中。在某些實施方案中,變數在特徵化時直接記錄至收發器13內之一非揮發性記憶體中(例如,以形成等化器表41)。在其他情形中,變數經記錄至某些單獨儲存媒體(例如,一快速磁碟機、磁碟機或諸如此類),且在一稍後時間點處經下載至無線裝置11內之基頻處理器34或其他適當位置中。舉例而言,在某些情形中,前端模 組12在無線裝置11之組裝之前經特徵化,且所記錄值在組裝無線裝置11或其部分時下載至可由基頻處理器34存取之非揮發性記憶體或無線裝置11內之某一其他適當位置中。 At block 508, the variables are recorded in the lookup table 41 or otherwise stored in the non-volatile memory. In some embodiments, the variables are directly recorded in a non-volatile memory in the transceiver 13 during characterization (for example, to form an equalizer table 41). In other cases, the variables are recorded to some separate storage medium (for example, a fast drive, disk drive, or the like), and downloaded to the baseband processor in the wireless device 11 at a later point in time 34 or other suitable locations. For example, in some cases, the front-end module The group 12 is characterized before the wireless device 11 is assembled, and the recorded value is downloaded to a non-volatile memory accessible by the baseband processor 34 or one of the wireless devices 11 when the wireless device 11 or part of it is assembled In other suitable locations.

然後針對下一特徵化設定點重複程序。再次參考圖6A,下一設定點可對應於部分表600中之第二列604,其中相位值經設定為45度。 The procedure is then repeated for the next characterization set point. Referring again to FIG. 6A, the next set point may correspond to the second column 604 in the partial table 600, where the phase value is set to 45 degrees.

圖6A僅展示特徵化表之一部分,其中相位經掃描為值增加同時保持其他設定點參數(VSWR、頻道及頻帶)恆定。將理解,為了完成特徵化且藉此獲得供等化表41中使用之一完整所記錄值集,相位可經掃描通過額外值(例如,通過360度),且其他設定點參數中之每一者亦可經掃描同時保持其他參數中之某些或全部參數恆定。 Figure 6A shows only part of the characterization table, where the phase is scanned as the value increases while keeping the other set point parameters (VSWR, channel and frequency band) constant. It will be understood that in order to complete the characterization and thereby obtain a complete set of recorded values for use in the equalization table 41, the phase can be scanned through additional values (e.g., through 360 degrees), and each of the other set point parameters It can also be scanned while keeping some or all of the other parameters constant.

雖然圖6A至圖6B中所示之部分表600、650在本文中稱作為形成一等化器表41之一部分,但部分表600、650中之值在某些情形中並非實質上直接儲存於等化器表41中。替代地,來自表600、650之所記錄值用於導出等化器表41中包含之值。舉例而言,圖6B之部分表650中所示之AM-AM係數(Var B)及AM-PM係數(Var C)可係自在特徵化期間記錄之其他變數導出。 Although the partial tables 600 and 650 shown in FIGS. 6A to 6B are referred to herein as forming part of the equalizer table 41, the values in the partial tables 600 and 650 are not substantially directly stored in some cases. Equalizer table 41. Alternatively, the recorded values from the tables 600, 650 are used to derive the values contained in the equalizer table 41. For example, the AM-AM coefficient (Var B) and AM-PM coefficient (Var C) shown in the partial table 650 of FIG. 6B can be derived from other variables recorded during the characterization.

根據某些實施例,在DPD經停用時執行特徵化程序500之某一部分或全部。 According to some embodiments, some or all of the characterization process 500 is executed when DPD is disabled.

圖7A及圖7B展示用於使用具有在前端模組之一特徵化期間獲得之值之一等化器表來補償前端模組操作之實例性程序。舉例而言,程序可涉及使用圖3中所展示之等化器表41,該等化器表可係使用圖5中所展示之程序或一類似程序獲得。雖然程序之某些部分出於圖解說明之目的經闡述為由圖3之功率放大器系統26之收發器13內之基頻處理器34實施,但程序可藉由任一其他適當處理器(諸如,藉由圖3之功率放大器系統26之收發器13內之另一處理器,藉由圖2之無線裝置11內之一處理器等)實施。 Figures 7A and 7B show an example procedure for compensating the operation of the front-end module using an equalizer table having a value obtained during the characterization of one of the front-end modules. For example, the procedure may involve the use of the equalizer table 41 shown in FIG. 3, and the equalizer table may be obtained using the procedure shown in FIG. 5 or a similar procedure. Although some parts of the program are described as being implemented by the baseband processor 34 in the transceiver 13 of the power amplifier system 26 of FIG. 3 for illustrative purposes, the program may be implemented by any other suitable processor, such as It is implemented by another processor in the transceiver 13 of the power amplifier system 26 in FIG. 3, by a processor in the wireless device 11 in FIG. 2, etc.).

參考圖7A,在方塊702處,基頻處理器34接收在信號傳輸期間由阻抗偵測器44感測到之一複阻抗值(例如,VSWR及/或相位)。 Referring to FIG. 7A, at block 702, the baseband processor 34 receives a complex impedance value (for example, VSWR and/or phase) sensed by the impedance detector 44 during signal transmission.

在方塊704處,基頻處理器34使用所感測阻抗值來自等化器表41存取適當記錄。舉例而言,參考圖6A至圖6B中所展示之部分表600、650,VSWR可連同其他特徵化設定點參數(例如,相位、頻道及頻帶資訊)來將等化器表41加索引。相位、頻道及頻帶資訊可基於無線裝置11之當前操作設定由基頻處理器34知曉,或在某些情形中相位、頻道及頻帶中之一或多者可自所感測回饋信號導出。 At block 704, the baseband processor 34 uses the sensed impedance value to access the appropriate record from the equalizer table 41. For example, referring to the partial tables 600, 650 shown in FIGS. 6A to 6B, the VSWR can index the equalizer table 41 along with other characterization set point parameters (eg, phase, channel, and frequency band information). The phase, channel, and frequency band information can be known by the baseband processor 34 based on the current operating settings of the wireless device 11, or in some cases one or more of the phase, channel, and frequency band can be derived from the sensed feedback signal.

在方塊706處,基頻處理器34基於所存取記錄而應用一校正。取決於實施例,來自等化表41之所存取記錄可包含在特徵化期間所記錄之變數中之一或多者之值(例如,RF對包絡追蹤器延遲、壓縮位準及Pmax)。在此等情形中,基頻處理器34可處理變數以應用適當校正。作為一實例,追蹤功率放大器壓縮,基頻處理器34可調整輸入信號以達成所要壓縮等級。舉例而言,若所存取記錄中規定2.0dBm之一壓縮等級,則當前增益經判定為2.7dBm,基頻處理器34可相應地降低輸入信號位準。關於延遲偏移量,基頻處理器34可根據所存取記錄中規定之延遲偏移而設定延遲組件33之可程式化延遲。 At block 706, the baseband processor 34 applies a correction based on the accessed record. Depending on the embodiment, the accessed record from the equalization table 41 may include the value of one or more of the variables recorded during the characterization (eg, RF vs. envelope tracker delay, compression level, and Pmax). In such situations, the baseband processor 34 may process the variables to apply appropriate corrections. As an example, to track the power amplifier compression, the baseband processor 34 can adjust the input signal to achieve the desired compression level. For example, if a compression level of 2.0 dBm is specified in the accessed record, the current gain is determined to be 2.7 dBm, and the baseband processor 34 can reduce the input signal level accordingly. Regarding the delay offset, the baseband processor 34 can set the programmable delay of the delay element 33 according to the delay offset specified in the accessed record.

經加索引記錄可在某些情形中包含自變數導出之值。舉例而言,在記錄用於補償DPD表之情況下,校正值可自所記錄變數導出且儲存於等化器表41中。 Indexed records may contain values derived from independent variables in some cases. For example, in the case of recording for compensating the DPD table, the correction value can be derived from the recorded variable and stored in the equalizer table 41.

圖7B展示使用一預特徵化查找表來補償前端模組操作之另一程序750。類似於圖7A之程序700,在方塊752處,基頻處理器34接收所感測複阻抗值。 Figure 7B shows another procedure 750 that uses a pre-characterized look-up table to compensate for front-end module operation. Similar to the procedure 700 of FIG. 7A, at block 752, the baseband processor 34 receives the sensed complex impedance value.

在方塊754處,使用整合於前端模組45內之一天線調諧器54來執行一粗略調諧功能。如先前關於圖4B所闡述,可程式化天線調諧器54可經調諧以在一定程度上補償所感測不匹配,例如將由功率放大器 17經歷之阻抗負載調諧為接近於一所要值(例如,接近於50歐姆),藉此減少VSWR。 At block 754, an antenna tuner 54 integrated in the front-end module 45 is used to perform a coarse tuning function. As previously explained in relation to FIG. 4B, the programmable antenna tuner 54 can be tuned to compensate to a certain extent for the sensed mismatch, for example by a power amplifier The impedance load experienced by 17 is tuned to be close to a desired value (for example, close to 50 ohms), thereby reducing VSWR.

在方塊756處,基頻處理器34使用所感測阻抗值來自等化器表41存取適當記錄,類似於圖7A之程序700之方塊圖704。在方塊758處,基頻處理器34以類似於圖7B之程序700之方塊706之一方式基於所存取記錄而應用一精細調諧校正。舉例而言,精細調諧可補償相對小於藉由使用天線調諧器54達成之粗略校正計及之非線性之量值的非線性(例如,記憶效應)。 At block 756, the baseband processor 34 uses the sensed impedance value to access the appropriate record from the equalizer table 41, similar to the block diagram 704 of the procedure 700 of FIG. 7A. At block 758, baseband processor 34 applies a fine tuning correction based on the accessed records in a manner similar to block 706 of procedure 700 of FIG. 7B. For example, fine tuning can compensate for non-linearities (eg, memory effects) that are relatively smaller than the magnitude of the non-linearities that can be accounted for by the coarse correction achieved by using the antenna tuner 54.

功率放大器應用模式之實例Examples of power amplifier application modes

圖8A至圖8C展示關於分別以一固定供應電壓模式、一平均功率追蹤(APT)模式及一包絡追蹤模式操作之功率放大器之波形。 8A to 8C show the waveforms of power amplifiers operating in a fixed supply voltage mode, an average power tracking (APT) mode, and an envelope tracking mode, respectively.

在圖8A中,一圖800圖解說明一RF信號804之電壓及一功率放大器供應電壓802對時間。RF信號804具有一信號包絡805。功率放大器之功率放大器供應電壓802具有大於RF信號804之電壓位準之一電壓位準可係重要的。舉例而言,將具有小於RF信號804之量值之一量值的一供應電壓提供至一功率放大器可將信號截波,藉此形成信號失真及/或其他問題。因此,功率放大器供應電壓802大於信號包絡805之電壓可係重要的。然而,可期望減小功率放大器供應電壓802與RF信號804之信號包絡805之間的一電壓差,此乃因功率放大器供應電壓802與信號包絡805之間的區域可表示損失能量,其可減少電池壽命且增加一行動裝置中產生之熱。 In FIG. 8A, a graph 800 illustrates the voltage of an RF signal 804 and a power amplifier supply voltage 802 versus time. The RF signal 804 has a signal envelope 805. It may be important that the power amplifier supply voltage 802 of the power amplifier has a voltage level greater than the voltage level of the RF signal 804. For example, providing a supply voltage having a magnitude less than the magnitude of the RF signal 804 to a power amplifier can cut the signal, thereby causing signal distortion and/or other problems. Therefore, it may be important that the power amplifier supply voltage 802 is greater than the voltage of the signal envelope 805. However, it can be expected to reduce a voltage difference between the power amplifier supply voltage 802 and the signal envelope 805 of the RF signal 804. This is because the area between the power amplifier supply voltage 802 and the signal envelope 805 can represent a loss of energy, which can reduce Battery life and increase the heat generated in a mobile device.

圖8B係一圖806解說明相對於RF信號810之信號包絡807變化或改變之一功率放大器供應電壓808之一曲線圖。圖8B中所示之曲線圖可對應於功率放大器操作之一平均功率追蹤(APT)模式。與圖8A之功率放大器供應電壓802相比,圖4B之功率放大器供應電壓808使離散電壓增量在不同時槽(由虛線繪示)期間改變。舉例而言,在一特定時槽 期間之放大器供應電壓808可基於在彼時槽期間之包絡807之平均功率而經調整。舉例而言,右側之時槽可對應於低於左側之時槽之一操作功率模式。藉由在特定時槽期間降低供應電壓,與圖8A中所展示之固定供應操作相比,APT操作可改良功率效率。 FIG. 8B is a graph 806 illustrating the change or change of a power amplifier supply voltage 808 with respect to the signal envelope 807 of the RF signal 810. The graph shown in FIG. 8B may correspond to an average power tracking (APT) mode of power amplifier operation. Compared with the power amplifier supply voltage 802 of FIG. 8A, the power amplifier supply voltage 808 of FIG. 4B causes the discrete voltage increments to change during different time slots (shown by dashed lines). For example, at a specific time slot The amplifier supply voltage 808 during the period can be adjusted based on the average power of the envelope 807 during that time slot. For example, the time slot on the right side may correspond to a lower operating power mode than the time slot on the left side. By reducing the supply voltage during a specific time slot, the APT operation can improve power efficiency compared to the fixed supply operation shown in FIG. 8A.

在圖8C中,一圖812圖解說明一RF信號816之電壓及一功率放大器供應電壓814對時間。圖8C中所示之曲線圖可對應於功率放大器操作之一包絡追蹤模式。與圖8A之功率放大器供應電壓802相比,圖8B之功率放大器供應電壓814相對於信號包絡815變化或改變。圖8C中功率放大器供應電壓814與信號包絡815之間的區域小於圖8A中功率放大器供應電壓802與信號包絡805之間的區域,且因此圖8CB之曲線圖可與具有較大能量效率之一功率放大器系統相關聯。藉由追蹤供應電壓至包絡,如與圖8A中所示之固定供應操作及圖8B中所示之APT模式兩者相比,包絡追蹤操作可改良功率效率。 In FIG. 8C, a graph 812 illustrates the voltage of an RF signal 816 and a power amplifier supply voltage 814 versus time. The graph shown in FIG. 8C may correspond to an envelope tracking mode of the power amplifier operation. Compared with the power amplifier supply voltage 802 of FIG. 8A, the power amplifier supply voltage 814 of FIG. 8B changes or changes with respect to the signal envelope 815. The area between the power amplifier supply voltage 814 and the signal envelope 815 in FIG. 8C is smaller than the area between the power amplifier supply voltage 802 and the signal envelope 805 in FIG. The power amplifier system is associated. By tracking the supply voltage to the envelope, the envelope tracking operation can improve power efficiency as compared with both the fixed supply operation shown in FIG. 8A and the APT mode shown in FIG. 8B.

儘管圖8A至圖8C圖解說明功率放大器供應電壓對時間之三項實例,但本文中之教示適用於電源供應產生之其他組態。舉例而言,本文中之教示適用於其中一供應電壓模組限制功率放大器供應電壓之一最小電壓位準之組態。 Although FIGS. 8A to 8C illustrate three examples of power amplifier supply voltage versus time, the teachings in this article are applicable to other configurations of power supply generation. For example, the teaching in this article is applicable to a configuration in which a supply voltage module limits a minimum voltage level of the power amplifier supply voltage.

判定複阻抗之實例性方法Example method to determine complex impedance

圖9展示用於判定複阻抗之一項實例性方法900之一流程圖。舉例而言,所判定阻抗可用於在等化器表41及/或在特徵化程序期間存取記錄。 FIG. 9 shows a flowchart of an exemplary method 900 for determining complex impedance. For example, the determined impedance can be used to access records in the equalizer table 41 and/or during the characterization process.

在方塊902處,方法900包含:取樣入射傳輸信號路徑,例如,在量測開關53經切換以自雙向耦合器52之對應埠接收前向功率信號。在方塊904處,方法包含:自基頻處理器34獲得理想I/Q資料。舉例而言,I/Q資料可對應於在所傳輸資料串流受前端模組45內之不匹配及其他效應影響之前的該資料串流。在方塊906處,基頻處理器34或其 他適當組件使理想I/Q資料與針對入射路徑自前端模組45接收之I/Q資料交叉相關且時間對準。舉例而言,基頻處理器34可使用一子樣本移位技術。在方塊908處,基頻處理器34或其他適當組件計算與入射信號相關聯之一複相量,該複相量可根據圖9之方塊908中所示之例示性方程式計算。 At block 902, the method 900 includes sampling the incident transmission signal path, for example, the measurement switch 53 is switched to receive the forward power signal from the corresponding port of the bidirectional coupler 52. At block 904, the method includes obtaining ideal I/Q data from the baseband processor 34. For example, the I/Q data can correspond to the data stream before the transmitted data stream is affected by the mismatch in the front-end module 45 and other effects. At block 906, the baseband processor 34 or its Other appropriate components make the ideal I/Q data cross-correlated and time aligned with the I/Q data received from the front-end module 45 for the incident path. For example, the baseband processor 34 may use a sub-sample shift technique. At block 908, the baseband processor 34 or other appropriate component calculates a complex phasor associated with the incident signal, which can be calculated according to the exemplary equation shown in block 908 of FIG. 9.

在方塊910處,功率放大器系統26切換量測開關53使得開關耦合至來自雙向耦合器52之對應埠之逆向功率信號。在方塊912處,對反射傳輸信號路徑進行取樣。在方塊914處,方法包含:自基頻處理器34獲得理想I/Q資料,理想I/Q資料可對應於在所傳輸資料串流受前端模組45內之不匹配及其他效應影響之前的該資料串流。在方塊916處,基頻處理器34或其他適當組件使理想I/Q資料與針對入射路徑自前端模組45接收之I/Q資料交叉相關且時間對準。舉例而言,基頻處理器34可使用一子樣本移位技術。在方塊918處,基頻處理器34或其他適當組件計算與入射信號相關聯之一複相量,該複相量可根據圖9之方塊918中所示之例示性方程式計算。 At block 910, the power amplifier system 26 switches the measurement switch 53 so that the switch is coupled to the reverse power signal from the corresponding port of the bidirectional coupler 52. At block 912, the reflected transmission signal path is sampled. At block 914, the method includes: obtaining ideal I/Q data from the baseband processor 34. The ideal I/Q data may correspond to the data stream before the transmission is affected by the mismatch in the front-end module 45 and other effects. The data stream. At block 916, the baseband processor 34 or other suitable components cross-correlate and time-align the ideal I/Q data with the I/Q data received from the front-end module 45 for the incident path. For example, the baseband processor 34 may use a sub-sample shift technique. At block 918, the baseband processor 34 or other appropriate component calculates a complex phasor associated with the incident signal, which can be calculated according to the exemplary equation shown in block 918 of FIG. 9.

在方塊920處,基頻處理器34、阻抗偵測器44或其他適當組件計算原始伽馬(例如,複阻抗)。舉例而言,藉由所計算反射複相量除以入射複相位來計算原始伽馬。 At block 920, the baseband processor 34, impedance detector 44, or other appropriate component calculates the original gamma (eg, complex impedance). For example, the original gamma is calculated by dividing the calculated amount of reflected complex phase by the incident complex phase.

應用application

上文所闡述之實施例中之某些實施例已結合行動電話提供了實例。然而,該等實施例之原理及優點可用於需要功率放大器系統之任何其他系統或設備。 Some of the above-explained embodiments have provided examples in conjunction with mobile phones. However, the principles and advantages of these embodiments can be applied to any other systems or devices that require a power amplifier system.

此等功率放大器系統可實施於各種電子裝置中。該等電子裝置之實例可包含但不限於消費型電子產品、消費型電子產品之部件、電子測試設備等。該等電子裝置之實例亦可包含但不限於記憶體晶片、記憶體模組、光學網路或其他通信網路之電路及磁碟機電路。消費型 電子產品可包含但不限於一行動電話、一電話、一電視機、一電腦監視器、一電腦、一手持式電腦、一個人數位助理(PDA)、一微波爐、一電冰箱、一汽車、一立體聲系統、一卡式記錄器或播放器、一DVD播放器、一CD播放器、一VCR、一MP3播放器、一收音機、一攝錄影機、一相機、一數位相機、一可攜式記憶體晶片、一清洗機、一乾燥機、一清洗機/乾燥機、一影印機、一傳真機、一掃描器、一多功能周邊裝置、一腕錶、一時鐘等。此外,該等電子裝置可包含非成品。 These power amplifier systems can be implemented in various electronic devices. Examples of such electronic devices may include, but are not limited to, consumer electronic products, components of consumer electronic products, electronic test equipment, and the like. Examples of such electronic devices may also include, but are not limited to, circuits of memory chips, memory modules, optical networks or other communication networks, and disk drive circuits. Consumer Electronic products may include, but are not limited to, a mobile phone, a telephone, a television, a computer monitor, a computer, a handheld computer, a digital assistant (PDA), a microwave oven, a refrigerator, a car, and a stereo System, a card recorder or player, a DVD player, a CD player, a VCR, an MP3 player, a radio, a camcorder, a camera, a digital camera, a portable memory Body chip, a washing machine, a drying machine, a washing machine/drying machine, a photocopier, a fax machine, a scanner, a multi-function peripheral device, a watch, a clock, etc. In addition, these electronic devices may include non-finished products.

結論in conclusion

除非內容脈絡另外明確要求,否則在說明及申請專利範圍通篇 中,措詞「包括(comprise)」、「包括(comprising)」及諸如此類應解釋為在與一排他性或窮盡性意義相反之一包含性意義上;亦即,在「包含但不限於」之意義上。如本文中通常所使用,措詞「經耦合(coupled)」係指可直接連接或藉助於一或多個中間元件連接之兩個或兩個以上元件。同樣,如本文中通常所使用,措詞「經連接(connected)」係指可直接連接或藉助於一或多個中間元件連接之兩個或兩個以上元件。另外,當在本申請案中使用時,措辭「本文中」、「上文」、「下文」及類似意思之措辭應將本申請案視為一整體而非本申請案之任何特定部分。在內容脈絡許可之情形下,在上文實施方式中使用單數或複數之措辭亦可分別包含複數或單數。參考含兩個或兩個以上項目之一清單之措詞「或」,彼措詞涵蓋該措詞之以下解釋中之全部:該清單中之項目中之任一者、該清單中之項目之全部及該清單中之項目之任一組合。 Unless the content context clearly requires otherwise, the description and the scope of the patent application are described throughout , The terms "comprise", "comprising" and the like should be interpreted as in the inclusive sense opposite to an exclusive or exhaustive sense; that is, in the sense of "including but not limited to" on. As commonly used herein, the term "coupled" refers to two or more elements that can be directly connected or connected by means of one or more intermediate elements. Likewise, as commonly used herein, the term "connected" refers to two or more elements that can be connected directly or by means of one or more intermediate elements. In addition, when used in this application, the wording "herein", "above", "below" and words of similar meaning should treat this application as a whole rather than any specific part of this application. Where the content context permits, the words using the singular or plural number in the above embodiments may also include the plural or singular number, respectively. Refer to the wording "or" in a list containing two or more items. That wording covers all of the following interpretations of the wording: any one of the items in the list, all the items in the list And any combination of items in the list.

此外,除非另外特定陳述或另外在內容脈絡內如所使用而理解,本文中所使用之條件語言(諸如「可(can)」、「可(could)」、「可(might)」、「可(can)」、「例如(e.g.)」、「舉例而言(for example)」、「諸如 (such as)」及其他等)通常意欲傳達某些實施例包含而其他實施例不包含某些特徵、元件及/或狀態。因此,此條件語言通常不意欲暗示一或多個實施例以任一方式需要特徵、元件及/或狀態或一或多個實施例必然包含在有或沒有作者輸入或提示之情形下決定在任一特定實施例中是否包含或執行此等特徵、元件及/或狀態之邏輯。 In addition, unless otherwise specified or otherwise understood as used in the context of the content, the conditional language used in this article (such as "can", "could", "may", "可 (may)" (can)", "for example", "for example", "such as (such as)” and others) are generally intended to convey that certain embodiments include certain features, elements, and/or states while other embodiments do not. Therefore, this conditional language is generally not intended to imply that one or more embodiments require features, elements, and/or states in any way or that one or more embodiments are necessarily included in any decision with or without author input or prompting. Does a particular embodiment include or execute the logic of these features, elements, and/or states.

上文對本發明實施例之詳細說明並非旨在為窮盡性或將本發明限定於上文所揭示之精確形式。雖然上文出於解釋闡述之目的闡述本發明之具體實施例及實例,但如熟習此項技術者將辨識,可在本發明之範疇內做出各種等效修改。舉例而言,雖然按一既定次序來呈現程序及方塊,但替代實施例亦可按一不同次序來執行具有步驟之常式,或採用具有方塊之系統,且可刪除、移動、添加、再分、組合及/或修改某些程序或方塊。可以各種不同方式實施此等程序或方塊中之每一者。同樣,儘管程序或方塊有時展示為連續執行,但此等程序或方塊可替代地並行執行,或可在不同時間執行。 The above detailed description of the embodiments of the present invention is not intended to be exhaustive or to limit the present invention to the precise form disclosed above. Although the specific embodiments and examples of the present invention are described above for the purpose of explanation, those skilled in the art will recognize that various equivalent modifications can be made within the scope of the present invention. For example, although the procedures and blocks are presented in a predetermined order, alternative embodiments can also execute routines with steps in a different order, or use a system with blocks, and can delete, move, add, and subdivide. , Combine and/or modify certain programs or blocks. Each of these procedures or blocks can be implemented in a variety of different ways. Likewise, although procedures or blocks are sometimes shown as being executed continuously, these procedures or blocks may alternatively be executed in parallel, or may be executed at different times.

本文提供之本發明之教示可應用於其他系統,未必上文所述之系統。可組合上文所闡述之各種實施例之元件及動作以提供另外實施例。 The teachings of the present invention provided herein can be applied to other systems, not necessarily the systems described above. The elements and actions of the various embodiments described above can be combined to provide further embodiments.

雖然已闡述了本發明的某些實施例,但此等實施例僅以實例方式呈現,且並非旨在限定本發明之範疇。實際上,本文所述之新穎方法及系統可以各種其他形式體現;此外,可在不背離本發明精神之情況下對本文闡述之方法及系統之形式作出各種省略、替換及改變。隨附申請專利範圍及其等效範圍旨在涵蓋將歸屬於本發明之範疇及精神之此等形式或修改。 Although certain embodiments of the present invention have been described, these embodiments are presented only by way of example and are not intended to limit the scope of the present invention. In fact, the novel methods and systems described herein can be embodied in various other forms; in addition, various omissions, substitutions and changes can be made to the forms of the methods and systems described herein without departing from the spirit of the present invention. The scope of the attached patent application and its equivalent scope are intended to cover these forms or modifications that will belong to the scope and spirit of the present invention.

12‧‧‧射頻前端/前端模組 12‧‧‧RF Front End/Front End Module

13‧‧‧收發器 13‧‧‧Transceiver

14‧‧‧天線 14‧‧‧antenna

17‧‧‧功率放大器 17‧‧‧Power Amplifier

26‧‧‧功率放大器系統 26‧‧‧Power Amplifier System

30‧‧‧供應控制驅動器 30‧‧‧Supply control driver

33‧‧‧延遲組件 33‧‧‧Delay component

34‧‧‧基頻處理器 34‧‧‧Baseband processor

35‧‧‧供應成形區塊或電路 35‧‧‧Supply forming blocks or circuits

36‧‧‧數位轉類比轉換器 36‧‧‧Digital to Analog Converter

37‧‧‧正交(I/Q)調變器 37‧‧‧Quadrature (I/Q) Modulator

38‧‧‧混合器 38‧‧‧Mixer

39‧‧‧類比轉數位轉換器 39‧‧‧Analog to Digital Converter

40‧‧‧數位預失真表 40‧‧‧Digital Predistortion Meter

41‧‧‧等化器表/查找表/等化表 41‧‧‧Equalizer Table/Lookup Table/Equalizer Table

42‧‧‧傳輸表 42‧‧‧Transmission Table

43‧‧‧供應控制表 43‧‧‧Supply Control Table

44‧‧‧複阻抗偵測器/阻抗偵測器 44‧‧‧Complex Impedance Detector/Impedance Detector

45‧‧‧前端模組 45‧‧‧Front-end module

47‧‧‧回饋信號 47‧‧‧Feedback signal

48‧‧‧供應成形分支/供應控制路徑/包絡追蹤器路徑/供應控制分支 48‧‧‧Supply shaping branch/supply control path/envelope tracker path/supply control branch

49‧‧‧射頻傳輸信號 49‧‧‧RF transmission signal

Vcc_pa‧‧‧功率放大器供應電壓 Vcc_pa‧‧‧Power amplifier supply voltage

Claims (20)

一種功率放大器系統,其包括:一調變器,其經組態以產生一射頻傳輸信號;一前端模組,其包含經組態以放大該射頻傳輸信號以產生一經放大射頻傳輸信號之一功率放大器及定位於一天線與該功率放大器之間的一耦合器,該耦合器經組態以輸出與該經放大射頻傳輸信號相關聯之前向功率及逆向功率兩者之一量度;一或多個非揮發性記憶體裝置,其儲存一等化器表,該等化器表具有在對應於不同輸入條件之複數個特徵化狀態下且在該前端模組之一預特徵化期間所產生之複數個項目,該一或多個非揮發性記憶體裝置儲存一數位預失真表,該數位預失真表經組態以在該射頻傳輸信號上實施無記憶體數位預失真;及一處理器,其經組態以:(a)接收自由該耦合器輸出之該前向功率及該逆向功率導出之電壓駐波比量測值,(b)至少部分地基於該等電壓駐波比量測值而存取該等化器表中之項目,及(c)藉由該功率放大器放大該射頻傳輸信號之前,基於該數位預失真表及來自該等化器表之該等所存取項目而調整該射頻傳輸信號以補償存在於該功率放大器系統中之一或多個記憶效應。 A power amplifier system includes: a modulator configured to generate a radio frequency transmission signal; a front-end module including a power configured to amplify the radio frequency transmission signal to generate an amplified radio frequency transmission signal An amplifier and a coupler positioned between an antenna and the power amplifier, the coupler configured to output one of the forward power and reverse power measurements associated with the amplified radio frequency transmission signal; one or more A non-volatile memory device that stores an equalizer table, the equalizer table having a plurality of characterization states corresponding to different input conditions and generated during a pre-characterization period of one of the front-end modules Items, the one or more non-volatile memory devices store a digital predistortion table, the digital predistortion table is configured to implement memoryless digital predistortion on the radio frequency transmission signal; and a processor, which It is configured to: (a) receive the measured voltage standing wave ratio derived from the forward power and the reverse power output from the coupler, (b) be based at least in part on the measured voltage standing wave ratio Access the items in the equalizer table, and (c) before amplifying the radio frequency transmission signal by the power amplifier, adjust the digital predistortion table and the accessed items from the equalizer table before The radio frequency transmits the signal to compensate for one or more memory effects existing in the power amplifier system. 如請求項1之功率放大器系統,其中該等化器表係使用一可程式化天線調諧器而產生,該可程式化天線調諧器用以將該前端模組調諧至所期望電壓駐波比點。 Such as the power amplifier system of claim 1, wherein the equalizer table is generated using a programmable antenna tuner, and the programmable antenna tuner is used to tune the front-end module to a desired voltage standing wave ratio point. 如請求項1之功率放大器系統,其中該前端模組不包含一整合式天線調諧器。 Such as the power amplifier system of claim 1, wherein the front-end module does not include an integrated antenna tuner. 如請求項1之功率放大器系統,其中該前端模組進一步包含定位於該天線與該耦合器之間的一可程式化天線調諧器。 The power amplifier system of claim 1, wherein the front-end module further includes a programmable antenna tuner positioned between the antenna and the coupler. 如請求項1之功率放大器系統,其中該前端模組進一步包含一或多個雙工器,該一或多個雙工器定位於該功率放大器與雙向耦合器之間且促成該等記憶效應中之至少某些記憶效應。 The power amplifier system of claim 1, wherein the front-end module further includes one or more duplexers, and the one or more duplexers are positioned between the power amplifier and the bidirectional coupler and contribute to the memory effects At least some memory effects. 如請求項4之功率放大器系統,其中該可程式化天線調諧器可調整以調諧該功率放大器所經歷之一阻抗以便在該功率放大器系統內提供一粗略非線性校正,且基於該等所存取項目對該射頻傳輸信號之該調整在該功率放大器系統內提供精細非線性校正。 The power amplifier system of claim 4, wherein the programmable antenna tuner can be adjusted to tune an impedance experienced by the power amplifier so as to provide a rough nonlinear correction in the power amplifier system, and based on the accessed The project's adjustment of the radio frequency transmission signal provides fine non-linear correction in the power amplifier system. 如請求項1之功率放大器系統,其中該耦合器係一雙向耦合器。 Such as the power amplifier system of claim 1, wherein the coupler is a bidirectional coupler. 如請求項1之功率放大器系統,其中該處理器經進一步組態以藉由基於該等化器表中之該等所存取項目調適該數位預失真表中之值來調整該射頻傳輸信號。 Such as the power amplifier system of claim 1, wherein the processor is further configured to adjust the radio frequency transmission signal by adapting the values in the digital predistortion table based on the accessed items in the equalizer table. 如請求項1之功率放大器系統,其進一步包括一包絡追蹤系統,該包絡追蹤系統經組態以提供該電源供應控制信號至該功率放大器以基於一成形包絡信號而控制該功率放大器之一電壓位準,該處理器進一步經組態以基於包含於該等所存取等化器表項目中之延遲值而調整該RF傳輸信號與該供應控制信號之間的一延遲。 The power amplifier system of claim 1, further comprising an envelope tracking system configured to provide the power supply control signal to the power amplifier to control a voltage level of the power amplifier based on a shaped envelope signal Therefore, the processor is further configured to adjust a delay between the RF transmission signal and the supply control signal based on the delay value included in the accessed equalizer table entries. 一種行動裝置,其包括:一調變器,其經組態以產生一射頻傳輸信號;一前端模組,其包含經組態以放大該射頻傳輸信號以產生一經放大射頻傳輸信號之一功率放大器及經組態以接收該經放大射頻傳輸信號之一耦合器,該功率放大器經組態以接收一功率放大器供應電壓以用於為該功率放大器供電,該耦合器經組態以輸出與該經放大射頻傳輸信號相關聯之前向功率及逆向功率兩者之一量度; 一天線,其經組態以傳輸該經放大射頻傳輸信號;一或多個非揮發性記憶體裝置,其儲存一等化器表,該等化器表具有在對應於不同輸入條件之複數個特徵化狀態下且在該前端模組之一預特徵化期間所產生之複數個項目,該一或多個非揮發性記憶體裝置儲存一數位預失真表,該數位預失真表經組態以在該射頻傳輸信號上實施無記憶體數位預失真;及一處理器,其經組態以:(a)接收自由該耦合器輸出之該前向功率及該逆向功率導出之電壓駐波比量測值,(b)至少部分地基於該等電壓駐波比量測值而存取該等化器表中之項目,及(c)藉由該功率放大器放大該射頻傳輸信號之前,基於該數位預失真表及該等所存取項目而調整該射頻傳輸信號以補償存在於該功率放大器系統中之一或多個記憶效應。 A mobile device includes: a modulator configured to generate a radio frequency transmission signal; a front-end module including a power amplifier configured to amplify the radio frequency transmission signal to generate an amplified radio frequency transmission signal And a coupler configured to receive the amplified radio frequency transmission signal, the power amplifier is configured to receive a power amplifier supply voltage for powering the power amplifier, the coupler is configured to output and the Amplify one of the measurement of the forward power and the reverse power associated with the radio frequency transmission signal; An antenna configured to transmit the amplified radio frequency transmission signal; one or more non-volatile memory devices, which store an equalizer table, the equalizer table has a plurality of corresponding to different input conditions For a plurality of items generated during a pre-characterization period of one of the front-end modules under the characterization state, the one or more non-volatile memory devices store a digital predistortion table, and the digital predistortion table is configured to Implement memoryless digital predistortion on the radio frequency transmission signal; and a processor configured to: (a) receive the forward power output from the coupler and the voltage standing wave ratio derived from the reverse power (B) access the items in the equalizer table based at least in part on the measured values of the voltage standing wave ratio, and (c) before amplifying the radio frequency transmission signal by the power amplifier, based on the digital The predistortion table and the accessed items adjust the radio frequency transmission signal to compensate for one or more memory effects existing in the power amplifier system. 如請求項10之行動裝置,其中該前端模組進一步包含促成該一或或多個記憶效應中之至少某些效應之一或多個雙工器。 The mobile device of claim 10, wherein the front-end module further includes one or more duplexers that promote at least some of the one or more memory effects. 如請求項10之行動裝置,其中該等化器表係使用一可程式化天線調諧器而產生,該可程式化天線調諧器用以將該前端模組調諧至所期望電壓駐波比點。 Such as the mobile device of claim 10, wherein the equalizer table is generated using a programmable antenna tuner, and the programmable antenna tuner is used to tune the front-end module to a desired voltage standing wave ratio point. 如請求項10之行動裝置,其中該前端模組不包含一整合式天線調諧器。 Such as the mobile device of claim 10, wherein the front-end module does not include an integrated antenna tuner. 如請求項10之行動裝置,其中該前端模組進一步包含定位於該天線與該耦合器之間的一可程式化天線調諧器。 Such as the mobile device of claim 10, wherein the front-end module further includes a programmable antenna tuner positioned between the antenna and the coupler. 一種功率放大器系統,其包括:一前端模組,其包含經組態以放大一射頻傳輸信號以產生一經放大射頻傳輸信號之一功率放大器、耦合至一天線之一可程式化天線調諧器及定位於該功率放大器與該可程式化天線調諧器之間的一耦合器,該耦合器經組態以輸出與該經放大射頻傳 輸信號相關聯之前向功率及逆向功率兩者之一量度,該可程式化天線調諧器可調整以調諧該功率放大器所經歷之一阻抗以便在該功率放大器系統內提供一粗略非線性校正;一或多個非揮發性記憶體裝置,其儲存一等化器表,該等化器表具有在對應於不同輸入條件之複數個特徵化狀態下且在該前端模組之一預特徵化期間所產生之複數個項目,該一或多個非揮發性記憶體裝置儲存一數位預失真表,該數位預失真表經組態以在該射頻傳輸信號上實施數位預失真;及一處理器,經組態以:(a)接收自由該耦合器輸出之該前向功率及該逆向功率導出之電壓駐波比量測值,(b)至少部分地基於該電壓駐波比而存取該等化器表中之項目,及(c)藉由該功率放大器放大該射頻傳輸信號之前,基於該數位預失真表及該等所存取項目而調整該射頻傳輸信號。 A power amplifier system, comprising: a front-end module, which includes a power amplifier configured to amplify a radio frequency transmission signal to generate an amplified radio frequency transmission signal, a programmable antenna tuner coupled to an antenna, and positioning A coupler between the power amplifier and the programmable antenna tuner, the coupler is configured to output and the amplified radio frequency transmission The output signal is associated with one of the forward power and the reverse power measurement. The programmable antenna tuner can be adjusted to tune an impedance experienced by the power amplifier to provide a rough nonlinear correction in the power amplifier system; Or a plurality of non-volatile memory devices, which store an equalizer table, the equalizer table having a plurality of characterization states corresponding to different input conditions and during a pre-characterization period of the front-end module Generates a plurality of items, the one or more non-volatile memory devices store a digital predistortion table, the digital predistortion table is configured to implement digital predistortion on the radio frequency transmission signal; and a processor, It is configured to: (a) receive the measured value of the voltage standing wave ratio derived from the forward power and the reverse power output from the coupler, (b) access the equalization based at least in part on the voltage standing wave ratio And (c) adjust the radio frequency transmission signal based on the digital predistortion table and the accessed items before amplifying the radio frequency transmission signal by the power amplifier. 如請求項15之功率放大器系統,其中該前端模組進一步包含一雙工器。 Such as the power amplifier system of claim 15, wherein the front-end module further includes a duplexer. 如請求項15之功率放大器系統,其中該雙工器係定位於該功率放大器與該耦合器之間。 The power amplifier system of claim 15, wherein the duplexer is positioned between the power amplifier and the coupler. 如請求項15之功率放大器系統,其中該耦合器係一雙向耦合器。 Such as the power amplifier system of claim 15, wherein the coupler is a bidirectional coupler. 如請求項15之功率放大器系統,其中該處理器經進一步組態以藉由基於該等化器表中之該等所存取項目調適該數位預失真表中之值來調整該射頻傳輸信號。 Such as the power amplifier system of claim 15, wherein the processor is further configured to adjust the radio frequency transmission signal by adapting the values in the digital predistortion table based on the accessed items in the equalizer table. 如請求項15之功率放大器系統,其進一步包括一包絡追蹤系統,該包絡追蹤系統經組態以提供該電源供應控制信號至該功率放大器以基於一成形包絡信號及延遲而控制該功率放大器之一電壓位準。 The power amplifier system of claim 15, which further includes an envelope tracking system configured to provide the power supply control signal to the power amplifier to control one of the power amplifiers based on a shaped envelope signal and delay Voltage level.
TW104117570A 2014-05-30 2015-05-29 Power amplifier system, mobile device, and method for characterizing a front end module of a wireless device TWI719936B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462005769P 2014-05-30 2014-05-30
US62/005,769 2014-05-30
US14/715,307 2015-05-18
US14/715,307 US10333474B2 (en) 2014-05-19 2015-05-18 RF transceiver front end module with improved linearity

Publications (2)

Publication Number Publication Date
TW201603480A TW201603480A (en) 2016-01-16
TWI719936B true TWI719936B (en) 2021-03-01

Family

ID=54699823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104117570A TWI719936B (en) 2014-05-30 2015-05-29 Power amplifier system, mobile device, and method for characterizing a front end module of a wireless device

Country Status (4)

Country Link
KR (2) KR102381231B1 (en)
CN (1) CN106464392B (en)
TW (1) TWI719936B (en)
WO (1) WO2015184174A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10542498B2 (en) * 2017-05-01 2020-01-21 Ets-Lindgren, Inc. System and method for power control of an over-the-air RF environment emulator
US10148296B2 (en) * 2016-12-02 2018-12-04 Mediatek, Inc. Transmitter, communication unit and methods for limiting spectral re-growth
CN108333585B (en) 2018-01-31 2021-03-16 广东美的厨房电器制造有限公司 Radio frequency detection device, detection method and microwave oven
CN112202508B (en) * 2019-07-08 2022-09-27 中兴通讯股份有限公司 Wireless signal performance adjusting device and method and wireless communication terminal
CN110290577B (en) * 2019-07-15 2022-06-07 Oppo(重庆)智能科技有限公司 Power compensation method, antenna assembly and electronic equipment
CN112311415B (en) * 2019-07-24 2023-07-25 三星电子株式会社 Electronic device and wireless communication system thereof
CN110943947B (en) * 2019-12-13 2022-09-20 维沃移动通信有限公司 Digital predistortion control method and electronic equipment
WO2022000341A1 (en) * 2020-06-30 2022-01-06 华为技术有限公司 Signal processing method and apparatus
US20220255567A1 (en) * 2020-12-31 2022-08-11 Skyworks Solutions, Inc. Conglomerating transmission contours to improve transmission performance for radio-frequency communications
WO2023075773A1 (en) * 2021-10-28 2023-05-04 Zeku, Inc. Power tracking at a radio frequency chip based on a two-dimensional digital pre-distortion circuit
KR102411826B1 (en) * 2021-12-14 2022-06-23 주식회사 휴미디어 Protocol converter for multi-digital signal
TWI818833B (en) * 2022-12-16 2023-10-11 稜研科技股份有限公司 Radio frequency device calibration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090033418A1 (en) * 2007-08-03 2009-02-05 M/A-Com, Inc. Training sequence and digital linearization process for power amplifier
US20090054016A1 (en) * 2007-08-21 2009-02-26 Texas Instruments Incorporated Apparatus and Method for Adaptive Cartesian Transmitter Linearization and Wireless Transmitter Employing the Same
US20120200354A1 (en) * 2011-02-07 2012-08-09 Nujira Ltd Apparatus and methods for envelope tracking calibration
US20130027129A1 (en) * 2011-07-27 2013-01-31 Intel Mobile Communications GmbH Transmit circuit, method for adjusting a bias of a power amplifier and method for adapting the provision of a bias information
US20130226489A1 (en) * 2012-02-29 2013-08-29 Intel Mobile Communications GmbH Distortion estimation apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737621B1 (en) * 2005-09-09 2007-07-10 엘지노텔 주식회사 Signal converter and combine performance improving method of the transmitter of RF signal
US8185066B2 (en) * 2009-10-23 2012-05-22 Sony Mobile Communications Ab Multimode power amplifier with predistortion
US8183917B2 (en) * 2010-06-04 2012-05-22 Quantance, Inc. RF power amplifier circuit with mismatch tolerance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090033418A1 (en) * 2007-08-03 2009-02-05 M/A-Com, Inc. Training sequence and digital linearization process for power amplifier
US20090054016A1 (en) * 2007-08-21 2009-02-26 Texas Instruments Incorporated Apparatus and Method for Adaptive Cartesian Transmitter Linearization and Wireless Transmitter Employing the Same
US20120200354A1 (en) * 2011-02-07 2012-08-09 Nujira Ltd Apparatus and methods for envelope tracking calibration
US20130027129A1 (en) * 2011-07-27 2013-01-31 Intel Mobile Communications GmbH Transmit circuit, method for adjusting a bias of a power amplifier and method for adapting the provision of a bias information
US20130226489A1 (en) * 2012-02-29 2013-08-29 Intel Mobile Communications GmbH Distortion estimation apparatus and method

Also Published As

Publication number Publication date
TW201603480A (en) 2016-01-16
CN106464392A (en) 2017-02-22
KR102381231B1 (en) 2022-04-01
CN106464392B (en) 2019-05-03
KR20170012275A (en) 2017-02-02
KR102508414B1 (en) 2023-03-09
KR20220044867A (en) 2022-04-11
WO2015184174A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US11496101B2 (en) RF transceiver front end module with improved linearity
TWI719936B (en) Power amplifier system, mobile device, and method for characterizing a front end module of a wireless device
US9866176B2 (en) Apparatus and methods for envelope shaping in mobile devices
US10382147B2 (en) Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment
US9876471B2 (en) Apparatus and methods for power amplifiers with phase compensation
TWI575866B (en) Method and apparatus for correcting inconvenient power amplifier load characteristics in an envelope tracking based system
US8548398B2 (en) Envelope power supply calibration of a multi-mode radio frequency power amplifier
JP6705918B2 (en) Wireless device and wireless communication method
KR101023258B1 (en) A transmitter in digital RF system and a linearization method of transmitter in digital RF system