TWI719598B - 車輛路面摩擦係數估測方法 - Google Patents

車輛路面摩擦係數估測方法 Download PDF

Info

Publication number
TWI719598B
TWI719598B TW108129950A TW108129950A TWI719598B TW I719598 B TWI719598 B TW I719598B TW 108129950 A TW108129950 A TW 108129950A TW 108129950 A TW108129950 A TW 108129950A TW I719598 B TWI719598 B TW I719598B
Authority
TW
Taiwan
Prior art keywords
vehicle
slip
tire
estimated
information
Prior art date
Application number
TW108129950A
Other languages
English (en)
Other versions
TW202108420A (zh
Inventor
甘銘凱
陳柏全
簡士哲
蕭簡浩
蕭有崧
張峰嘉
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW108129950A priority Critical patent/TWI719598B/zh
Application granted granted Critical
Publication of TWI719598B publication Critical patent/TWI719598B/zh
Publication of TW202108420A publication Critical patent/TW202108420A/zh

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

一種車輛摩擦係數估測方法,步驟包括:提供一車輛;建立一縱向力估測模組,該縱向力估測模組量測該車輛之輪胎以獲得一估測縱向力資訊;建立一車速估測模組,該車速估測模組量測該車輛行進速度以獲得一估測車速資訊;建立一最佳滑差估測器,該最佳滑差估測器依該估測縱向力資訊及該估測車速資訊進行運算後獲得一估測最佳滑差資訊。

Description

車輛路面摩擦係數估測方法
本發明係關於一種摩擦係數估測方法,特別是關於一種用於車輛路面之摩擦係數估測方法。
由於機車安全性的議題逐漸受到重視,使機車ABS被推行並實際被研發販售,但是因為其需要的感知器成本過高,使得這些產品普遍價格昂貴;又習知的路面摩擦係數判別系統中,需要取得車輛車速和車輛縱向力外,還需要車輛正向力,所需的感知器眾多,使得生產成本過高,故目前業界需要一種僅提供一個只需利用加速規與輪速感知器,估測車速與估測車輛縱向力,並判別路面摩擦係數,可大幅減少感知器安裝數量與增加防鎖死煞車系統效率,使其成本降低並能普遍應用。
鑒於上述習知技術之缺點,本發明之主要目的為針對機動車輛設計僅需現有感知器即可實現的ABS系統,此系統由三個子估測器所組成,主要提供三項功能:一、車輛縱向力的估測;二、藉由車輛車速估測計算輪胎滑差;三、最佳滑差目標值判別。
為了達到上述目的,根據本發明所提出之一方案,提供一種車輛摩擦係數估測方法,步驟可包括:提供一車輛;建立一縱向力估測模組,該縱向力估測模組量測該車輛之輪胎以獲得一估測縱向力資訊;建立一車速估測模組,該車速估測模組量測該車輛行進速度以獲得一估測車速資訊;建立一最佳滑差估測器,該最佳滑差估測器依該估測縱向力資訊及該估測車速資訊進行運算後獲得一估測最佳滑差資訊。
本發明所提出之車輛摩擦係數估測方法,其中,該最佳滑差估測運算器之運算式可為:
Figure 108129950-A0305-02-0004-1
其中,M矩陣為煞車力值
Figure 108129950-A0305-02-0004-127
之集合,Λ矩陣為滑差值
Figure 108129950-A0305-02-0004-128
之集合,
Figure 108129950-A0305-02-0004-129
M矩陣內最大的摩擦係數值,
Figure 108129950-A0305-02-0004-130
Figure 108129950-A0305-02-0004-131
分別是Λ矩陣內最大及最小的滑差值,i r i l 則分別是最大值與最小值的指標,估測最佳滑差資訊即為
Figure 108129950-A0305-02-0004-132
對應之
Figure 108129950-A0305-02-0004-133
本發明所提出之車輛摩擦係數估測方法,其 中,該縱向力估測模組之運算式可為:
Figure 108129950-A0305-02-0005-2
Φlf與Γlf分別代表離散系統的縱向力估測器系統矩陣與縱向力估測器輸入矩陣,Llf為估測器增益值矩陣,
Figure 108129950-A0305-02-0005-126
為狀態矩陣,包含輪胎轉角、輪胎轉速、縱向煞車力資訊,uk為煞車扭矩,y k 為輪胎轉角資訊,該估測縱向力資訊可透過輸入到輪胎模型的煞車扭矩與輪胎模型輸出項的輪胎轉角關係求得。
本發明所提出之車輛摩擦係數估測方法,其中,該車速估測模組之運算式可為:
Figure 108129950-A0305-02-0005-3
其中ω f 為前輪輪胎角速度,ω r 為後輪輪胎角速度,K f 為前輪輪速增益值,K r 為後輪輪速增益值,該車速估測模組根據各輪滑差判定各輪輪速及加速規權重比例。
本發明所提出之車輛摩擦係數估測方法,其中,該車輛與路面之摩擦係數估測方法更包含步驟:提供一滑差控制器,該滑差控制器依估測最佳滑差資訊進行運算後控制該車輛之剎車系統。
本發明所提出之車輛摩擦係數估測方法,其中,該滑差控制器之運算式可為:
Figure 108129950-A0305-02-0005-4
Figure 108129950-A0305-02-0006-5
其中,
Figure 108129950-A0305-02-0006-45
Figure 108129950-A0305-02-0006-46
代表右邊界及左邊界摩擦係數,state表示目前該滑差控制器之狀態,upd代表更新狀態,則該滑差控制器控制該剎車系統變更剎車力度,hld為保持狀態,則該滑差控制器控制該剎車系統維持剎車力度,
Figure 108129950-A0305-02-0006-47
為當下路面最大縱向力估測值,
Figure 108129950-A0305-02-0006-134
Figure 108129950-A0305-02-0006-135
的暫存值,在滑差控制器每一次判斷
Figure 108129950-A0305-02-0006-117
落在的位置時,
Figure 108129950-A0305-02-0006-118
的值都會暫存在
Figure 108129950-A0305-02-0006-119
,在斷
Figure 108129950-A0305-02-0006-120
>
Figure 108129950-A0305-02-0006-121
情況下,判斷
Figure 108129950-A0305-02-0006-122
目前所在位置,若
Figure 108129950-A0305-02-0006-123
落在右邊界,stateupd;若
Figure 108129950-A0305-02-0006-136
落在左邊界,statehld;若
Figure 108129950-A0305-02-0006-137
兩個條件都不成立,stateupd
以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。
S101-S104:步驟
710:低通濾波器
720:Time Window模組
730:卡爾曼濾波器
740:車速估測
750:權重
第一圖係為本發明車輛摩擦係數估測方法流程圖;第二圖係為輪胎自由體示意圖;第三圖係為輪胎轉角量測示意圖; 第四圖係為輪速平均架構圖;第五圖係為輪速訊號模擬圖;第六圖係為各輪滑差對車速估測權重增益圖;第七圖係為車速估測架構圖;第八圖係為Time window方塊示意圖;第九圖係為F b -λ曲線示意圖。
以下係藉由特定的具體實例說明本創作之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本創作之優點及功效。
請參閱第一圖,係為本發明之車輛摩擦係數估測方法流程圖,其步驟可包括:提供一車輛S101;建立一縱向力估測模組,該縱向力估測模組量測該車輛之輪胎以獲得一估測縱向力資訊S102;建立一車速估測模組,該車速估測模組量測該車輛行進速度以獲得一估測車速資訊S103;建立一最佳滑差估測器,該最佳滑差估測器依該估測縱向力資訊及該估測車速資訊進行運算後獲得一估測最佳滑差資訊S104。
其中,該縱向力估測模組可為輪胎動態模型, 利用輪胎轉動方程式進行設計,該車速估測模組可為車速估測器,包含輪速感知器及加速規訊號以進行絕對車速的估測,該最佳滑差估測器之運算式可為:
Figure 108129950-A0305-02-0008-6
其中,M矩陣為煞車力值
Figure 108129950-A0305-02-0008-48
之集合,Λ矩陣為滑差值
Figure 108129950-A0305-02-0008-109
之集合,
Figure 108129950-A0305-02-0008-110
M矩陣內最大的摩擦係數值,
Figure 108129950-A0305-02-0008-111
Figure 108129950-A0305-02-0008-112
分別是Λ矩陣內最大及最小的滑差值,i r i l 則分別是最大值與最小值的指標,估測最佳滑差資訊即為
Figure 108129950-A0305-02-0008-138
對應之
Figure 108129950-A0305-02-0008-114
本發明的估測方法可針對機動車輛設計僅需現有感知器即可實現的ABS系統,以下提供一實施例,該實施例之系統由三個子估測器所組成,主要提供三項功能:一、車輛縱向力的估測;二、藉由車輛車速估測計算輪胎滑差;三、最佳滑差目標值判別。當車輛發動後,首先透過第二部分的車速估測系統估測當下輪胎滾動有效半徑及加速規偏移量,並透過融合上述資訊估測較為精準的車輛絕對速度,若駕駛者遇到突發狀況需要緊急煞車,駕駛者所需煞車力高於 路面所能提供,此時輪胎與地面間會開始產生打滑導致失控,因此透過第一部分縱向力估測,估測ABS做動前之煞車力,並藉由煞車力與滑差關係設計第三部分之最佳滑差目標值估測,估測當前路面最佳滑差目標,並提供給滑差控制器進行滑差控制,本發明所稱車輛可包含機車、汽車、聯結車等各式車輛。
縱向力的估測是利用輪胎動態模型進行估測器的設計,採用的卡爾曼濾波器來進行估測器之設計,此方法主要是利用輪胎轉動方程式進行設計,根據輪胎模型之公式,可找出輪胎的煞車力、煞車扭力與輪減速度之間的關係式,其方程式如算式1所示:
Figure 108129950-A0305-02-0009-108
其中ω為輪胎角速度,T b 為煞車扭矩,b w 為輪胎軸承阻尼係數,I w 為輪胎的轉動慣量,Fx為輪胎縱向力。
請參閱第二圖,輪胎縱向滑差變化後,必須經過一段滾動距離才會產生穩態輪胎力Fx,此現象即為輪胎暫態表現,本實施例利用一階低通濾波器模擬車輪滑差動態變化,如圖所示,其中時間常數主要是取決輪胎鬆弛長度(Relaxation Length)及車速的大小,低通濾波器之轉移函數可表示為:
Figure 108129950-A0305-02-0009-8
Figure 108129950-A0305-02-0010-9
其中τLPF為低通濾波器之時間常數,lrel為輪胎之鬆弛長度,λl為經過低通濾波器之輪胎滑差。
縱向力估測方面,採用的干擾估測器與卡爾曼濾波器,其狀態向量x=[θ ω F x ]T,輸入訊號u=T b ,該訊號方程式如(4)式所示,輸出訊號y=θ,狀態空間表示式如算式5、算式6所示:T b =P w/c A w/c μ pad r disc (算式4)
Figure 108129950-A0305-02-0010-106
y=C lf x (算式6)其中P w/c 為煞車分泵油壓,並假設該參數可由一特定ABS模組中,回油泵電壓與出油閥開度關係查表取得,A w/c 為分泵活塞面積,μ pad 為分泵活塞與碟盤之間的摩擦係數,r disc 為碟盤半徑,A lf為縱向力估測器系統矩陣,B lf為縱向力估測器輸入矩陣,C lf為縱向力估測器輸出矩陣,上述矩陣可表示如下:
Figure 108129950-A0305-02-0010-10
最後利用一閉迴路干擾估測器估測各輪縱向力,其方程式如下:
Figure 108129950-A0305-02-0010-11
Figure 108129950-A0305-02-0010-12
其中Φ lfΓ lf分別代表離散系統的A lfB lf矩陣,L lf為估測器增益值矩陣,
Figure 108129950-A0305-02-0010-107
為狀態矩陣,包含輪胎轉角、輪胎轉速、縱向 煞車力資訊,uk為煞車扭矩,y k 為輪胎轉角資訊,縱向力估測的方法是透過輸入到輪胎模型的煞車扭矩與輪胎模型輸出項的輪胎轉角關係求得,在L lf值的設計部分,可利用求解Riccati方程式來得知,本實施例回饋增益設計方法,如算式10、算式11所示:
Figure 108129950-A0305-02-0011-13
Figure 108129950-A0305-02-0011-14
其中P k為誤差斜方差矩陣,M k為預估斜方差矩陣之更新法則。進而得到卡爾曼回饋增益矩陣L,如算式12所示:L lf=P lf,k H lf TR-1 (算式12)
為了增加車速估測系統的強健性,本實施例採用輪速感知器結合加速規訊號進行絕對車速的估測,然而輪速感知器量測的輪速資訊與加速規量測的絕對加速度資訊尚有雜訊及偏移量問題待解決,因此進行車速估測之前必須先校正輪速與加速度訊號。
請參閱第三圖,輪速資訊方面,本實施例先建立一目標車進行模擬,目標車搭配ABS標準的50齒輪速感知器,第三圖為霍爾感知器量測輪胎轉角的示意圖,如圖所示,模擬霍爾感知器在目標車定速(25km/hr)行駛中,產生固定週期的方波訊號,下圖模擬數位訊號處理器(Digital Signal Processor,DSP)中QEP(Quadrature Encoder Pulse,QEP)計數的過程,並在每個取樣點輸出其計數值。當DSP運作時,上 QEP偵測其上升邊緣進行計數,並在每個取樣點後將計數值輸出,同時重置計數器,儘管輪胎轉速一致,也會因QEP取樣時間與脈波上升緣時間無法一致,造成由計數器數值上下跳動。
本實施例針對QEP實際擷取霍爾感知器的輪胎轉角訊號進行模擬,將動態模擬軟體的輪胎轉角訊號進行量化,使其符合每圈50齒的解析度,作為QEP實際擷取霍爾感知器的轉角訊號,由於DSP的QEP接收到的霍爾訊號為輪胎轉角訊號,因此將此訊號進行差分,得到輪胎轉角速度資訊。
請參閱第四圖,最後將經量化後的輪速訊號取一定時間內的訊號進行平均,降低量化輪胎轉角產生的解析度問題,其輪速平均架構如圖所示。
請參閱第五圖,如圖所示,Measurement為模擬由QEP擷取霍爾感知器實際量測的輪轉角速訊號,因此經量化後的輪轉角速度上下跳動,透過TimeWindow(時間窗)平均一定筆數的輪速訊號,使得量化輪轉角速度產生的解析度問題有所改善,平均後的輪速訊號因而較為平緩,與BikeSim的真實輪速訊號誤差也較小,BikeSim是一種車輛模擬軟體,本發明不限於僅使用BikeSim進行車輛模擬。
絕對加速度與輪胎滾動有效半徑資訊方面,若縱向加速規安裝未放置水平,訊號易受到偏移量影響,輪胎 滾動有效半徑也會隨著負載變動而改變,本實施例考慮加速規量測偏移量與輪胎滾動半徑之改變,假設輪胎與地面的滑差很小時,可採用卡爾曼濾波器同時估測出輪胎有效滾動半徑與加速度量測偏移量,其狀態向量為
Figure 108129950-A0305-02-0013-16
,輸出訊號
Figure 108129950-A0305-02-0013-103
,方程式如下所示:x k+1=A acc x k (算式13)
y k =C acc,k x k (算式14)
Figure 108129950-A0305-02-0013-17
其中A acc 為系統矩陣,C acc 為輸出矩陣,a m 為加速度量測項,ε為加速度量測偏移量,
Figure 108129950-A0305-02-0013-104
為輪胎角加速度,r為輪胎有效滾動半徑。
根據上述推導之模型,使用卡爾曼濾波器器配合回饋增益矩陣,進行閉迴路狀態估測:
Figure 108129950-A0305-02-0013-18
Figure 108129950-A0305-02-0013-19
其中Φ acc Γ acc 分別代表離散系統的A acc B acc 矩陣,L acc 為估測器增益值矩陣。
L acc 值的設計部分,可利用求解Riccati方程式來得知,本實施例回請增益設計方法,如算式18、算式19所示:
Figure 108129950-A0305-02-0013-20
Figure 108129950-A0305-02-0013-42
其中P acc,k 為誤差斜方差矩陣,M acc,k 為預估斜方差矩陣之更新法則,進而得到卡爾曼回饋增益矩陣L acc ,如算式20所示:L acc =P acc,k H acc T R -1 (算式20)
當地面與輪胎之間的滑差過大,則估測器的適用條件將不再成立,估測加速度偏移量誤差隨之增加,為了解決此問題,判斷前後輪滑差小於門檻值且持續一段時間後,才將加速度量測偏移量更新。
車速估測器是利用權重方式結合輪速與加速度資訊,其方法依據滑差大小判定輪速或加速度權重比例,當地面與輪胎之間的滑差較大,代表此時車速估測器應選擇加速度作為主要資訊;反之,若地面與輪胎之間的滑差較小,代表車速故測器則應選擇輪速資訊,其方程式如下所示:
Figure 108129950-A0305-02-0014-23
Figure 108129950-A0305-02-0014-25
Figure 108129950-A0305-02-0014-26
其中a x 為縱向車輛加速度,T s 為系統單位時間,
Figure 108129950-A0305-02-0014-102
為車速估測器估測的車速,K 1為輪速估測器之增益值,K v 車速估測器之增益值。
請參閱第六圖,上述車速估測模型完全仰賴單輪滑差判定車速估測的權重比,若輪速成為主要資訊時,量化後的輪胎轉角產生的解析度問題會直接影響車速估測結 果,導致估測車速上下震盪,因此本實施例依據各輪滑差大小判定各輪輪速或加速度權重比例,其方程式如下所示:
Figure 108129950-A0305-02-0015-27
其中ω f 為前輪輪胎角速度,ω r 為後輪輪胎角速度,K f 為前輪輪速增益值,K r 為後輪輪速增益值,此方法根據各輪滑差判定各輪輪速及加速規權重比例,滑差計算方程式如算式25所示:
Figure 108129950-A0305-02-0015-28
其中λ為地面與輪胎間的滑差,並經由各輪滑差查表獲得車速估測權重增益如圖所示,其中i為用來表示前後輪輪速增益值的下標,當該輪滑差較小,亦為該輪與絕對車速較為接近,此時該輪輪速權重增加,因而該輪成為車速估測器中的主要資訊,若兩輪滑差均較大,則使縱向加速度成為車速估測器中的主要資訊,由於考慮各輪輪速與縱向加速度的權重,故更有效率使車速估測準確率提高。
請參閱第七圖,最後統整車速估測的流程,如圖所示,本實施例結合結合加速規的加速度訊號a m 和輪速感知器的輪胎轉角θ m 進行一車速估測(740),由於加速規量測縱向加速度時會受到偏移量和高頻雜訊的影響,因此本實施例先透過一低通濾波器(710)進行濾波,降低加速規訊號高頻雜訊的問題,再透過一卡爾曼濾波器(730)估測之量測偏移量ε 進行量測偏移量的消除,即可得到準確的車輛縱向加速度資訊a x ,此外,輪速感知器量測訊號為輪胎的轉角θ m ,為了獲得輪胎角速度訊號ω,本實施例採用一Time Window模組(720)除了取得輪胎角速度資訊外,解決輪胎轉角解析度的問題,並結合該卡爾曼濾波器(730)估測之輪胎半徑r獲得輪速資訊,最後,透過一權重(750)之K f K r 結合輪速和加速度資訊估測車速資訊,其中該權重(750)的取得是透過滑差λ查表取得,該Time Window模組(720)可將該量測數據在一定時間間隔內取平均值,以減少雜訊影響。
請參閱第八圖,由上述估測器得到的資訊,進而發展路面識別的方法,路面狀況識別主要目的是為了找出輪胎與地面接觸,地面所能提供最大減速度,即判斷當下路面提供最大縱向力,路面狀況識別的方法是透過輪胎縱向力經過Time window,使當下縱向力的訊號與前幾個取樣點的縱向力作為一矩陣同時輸出,如第八圖所示,輪胎滑差計算是利用車速估測器之車速配合量測輪速所求得,此時同一輪胎的滑差訊號也必須經過Time window,原因是摩擦係數與滑差必須有相同的資訊,兩者必須互相對照,經過Time window的摩擦係數與輪胎滑差訊號,兩者所輸出的矩陣表示如下:
Figure 108129950-A0305-02-0016-29
Figure 108129950-A0305-02-0017-30
其中n為Time window取樣數量。
求得經過Time window的矩陣後,接著需判斷此時的取樣點,M矩陣內最大的煞車力值、Λ矩陣內最大的滑差值、Λ矩陣內最小的滑差值,利用滑差的最大最小值去尋找所對應的縱向力,上述關係式如下:
Figure 108129950-A0305-02-0017-31
Figure 108129950-A0305-02-0017-32
Figure 108129950-A0305-02-0017-33
其中
Figure 108129950-A0305-02-0017-94
M矩陣內最大的摩擦係數值,
Figure 108129950-A0305-02-0017-95
Figure 108129950-A0305-02-0017-96
分別是Λ矩陣內最大及最小的滑差值,i r i l 則分別是最大值與最小值的指標,由算式29及算式30式可根據滑差接續找出各自所對應的縱向力值,其關係式如下:
Figure 108129950-A0305-02-0017-34
其中
Figure 108129950-A0305-02-0017-140
Figure 108129950-A0305-02-0017-141
代表右邊界及左邊界摩擦係數。
請參閱第九圖,當
Figure 108129950-A0305-02-0017-142
時,代表目前輪胎所使用到的摩擦係數值還並未超過最大值,還在F b -λ曲線的穩定區域;若
Figure 108129950-A0305-02-0017-139
,代表目前輪胎所使用到的煞車力已超過最大值,已經進入到F b -λ曲線的不穩定區域;最後假設
Figure 108129950-A0305-02-0017-143
既不等於左邊界也不等於右邊界縱向力時,則表示目前輪胎所使用到的縱向力在最大值
Figure 108129950-A0305-02-0017-101
附近,其F b -λ曲線如圖 所示。
由上述的情況來尋找
Figure 108129950-A0305-02-0018-144
,其判斷式如下:
Figure 108129950-A0305-02-0018-35
其中state表示目前估測器狀態,upd代表更新狀態,hld為保持狀態,估測器的輸出會依據不同狀態下,判斷
Figure 108129950-A0305-02-0018-81
的修正,其判斷式如下:
Figure 108129950-A0305-02-0018-36
其中
Figure 108129950-A0305-02-0018-82
為當下路面最大縱向力估測值,
Figure 108129950-A0305-02-0018-83
Figure 108129950-A0305-02-0018-84
的暫存值,在估測器每一次判斷
Figure 108129950-A0305-02-0018-85
落在的位置時,
Figure 108129950-A0305-02-0018-86
的值都會暫存在
Figure 108129950-A0305-02-0018-145
最後統整上述所有條件,整體估測器流程分為兩個部分,第一部分為邏輯判斷,首先判斷
Figure 108129950-A0305-02-0018-146
>
Figure 108129950-A0305-02-0018-147
,表示目前輪胎所使用的煞車力大於前一取樣點的最大煞車力,若此情況成立,接著判斷
Figure 108129950-A0305-02-0018-148
目前所在位置,若
Figure 108129950-A0305-02-0018-91
落在右邊界,stateupd;若
Figure 108129950-A0305-02-0018-92
落在左邊界,statehld;若
Figure 108129950-A0305-02-0018-93
兩個條件都不成立,stateupd
上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本創作之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實施例進行修飾與變化,因此,本創作之權利保護範圍,應如 後述之申請專利範圍所列。
S101-S104:步驟

Claims (5)

  1. 一種車輛摩擦係數估測方法,步驟包括:提供一車輛;建立一縱向力估測模組,其中,該縱向力估測模組之運算式係為:
    Figure 108129950-A0305-02-0020-37
    其中,Φlf與Γlf分別代表離散系統的縱向力估測器系統矩陣與縱向力估測器輸入矩陣,Llf為估測器增益值矩陣,
    Figure 108129950-A0305-02-0020-78
    為狀態矩陣,包含輪胎轉角、輪胎轉速、縱向煞車力資訊,uk為煞車扭矩,y k 為輪胎轉角資訊,C lf為縱向力估測器輸出短陣,該縱向力估測模組量測該車輛之輪胎係透過輸入到輪胎模型的煞車扭矩與輪胎模型輸出項的輪胎轉角關係求得一估測縱向力資訊;建立一車速估測模組,該車速估測模組量測該車輛行進速度以獲得一估測車速資訊;建立一最佳滑差估測器,該最佳滑差估測器依該估測縱向力資訊及該估測車速資訊進行運算後獲得一估測最佳滑差資訊。
  2. 如請求項1所述之車輛摩擦係數估測方法,其中,該車速估測模組之運算式係為:
    Figure 108129950-A0305-02-0021-38
    其中,ω f 為前輪輪胎角速度,ω r 為後輪輪胎角速度,K f 為前輪輪速增益值,K r 為後輪輪速增益值,前輪胎半徑r f ,後輪胎半徑r r ,縱向車輛加速度a x T s 為系統單位時間,該車速估測模組根據各輪滑差判定各輪輪速及加速規權重比例。
  3. 如請求項1所述之車輛摩擦係數估測方法,其中,該最佳滑差估測器之運算式係為:
    Figure 108129950-A0305-02-0021-40
    其中,M矩陣為煞車力值
    Figure 108129950-A0305-02-0021-73
    之集合,Λ矩陣為滑差值
    Figure 108129950-A0305-02-0021-74
    之集合,
    Figure 108129950-A0305-02-0021-75
    M矩陣內最大的摩擦係數值,
    Figure 108129950-A0305-02-0021-76
    Figure 108129950-A0305-02-0021-77
    分別是Λ矩陣內最大及最小的滑差值,i r i l 則分別是最大值與最小值的指標,估測最佳滑差資訊即為
    Figure 108129950-A0305-02-0021-52
    對應之
    Figure 108129950-A0305-02-0021-53
  4. 如請求項3所述之車輛摩擦係數估測方法,其中,該車輛摩擦係數估測方法更包含步驟:提供一滑差控制器,該滑差控制器依估測最佳滑差資訊進行運算後控制該車輛之剎車系統。
  5. 如請求項4所述之車輛摩擦係數估測方法,其中,該滑差控制器之運算式係為:
    Figure 108129950-A0305-02-0022-41
    其中,
    Figure 108129950-A0305-02-0022-59
    Figure 108129950-A0305-02-0022-60
    代表右邊界及左邊界摩擦係數,state表示目前該滑差控制器之狀態,upd代表更新狀態,則該滑差控制器控制該剎車系統變更剎車力度,hld為保持狀態,則該滑差控制器控制該剎車系統維持剎車力度,
    Figure 108129950-A0305-02-0022-61
    為當下路面最大縱向力估測值,
    Figure 108129950-A0305-02-0022-62
    Figure 108129950-A0305-02-0022-63
    的暫存值,在滑差控制器每一次判斷
    Figure 108129950-A0305-02-0022-64
    落在的位置時,
    Figure 108129950-A0305-02-0022-65
    的值都會暫存在
    Figure 108129950-A0305-02-0022-66
    ,在判斷
    Figure 108129950-A0305-02-0022-67
    >
    Figure 108129950-A0305-02-0022-68
    情況下,判斷
    Figure 108129950-A0305-02-0022-69
    目前所在位置,若
    Figure 108129950-A0305-02-0022-70
    落在右邊界,stateupd;若
    Figure 108129950-A0305-02-0022-71
    落在左邊界,statehld;若
    Figure 108129950-A0305-02-0022-72
    兩個條件都不成立,stateupd
TW108129950A 2019-08-20 2019-08-20 車輛路面摩擦係數估測方法 TWI719598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108129950A TWI719598B (zh) 2019-08-20 2019-08-20 車輛路面摩擦係數估測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108129950A TWI719598B (zh) 2019-08-20 2019-08-20 車輛路面摩擦係數估測方法

Publications (2)

Publication Number Publication Date
TWI719598B true TWI719598B (zh) 2021-02-21
TW202108420A TW202108420A (zh) 2021-03-01

Family

ID=75745865

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129950A TWI719598B (zh) 2019-08-20 2019-08-20 車輛路面摩擦係數估測方法

Country Status (1)

Country Link
TW (1) TWI719598B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463879A (zh) * 2002-06-20 2003-12-31 汉翔航空工业股份有限公司 机车液压式防滑制动系统
TW200925008A (en) * 2007-12-12 2009-06-16 Chung Shan Inst Of Science A vehicle sideslip angle estimation device
TW201134706A (en) * 2010-04-13 2011-10-16 Univ Nat Taipei Technology Traction anti-skid control system of electric vehicle and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463879A (zh) * 2002-06-20 2003-12-31 汉翔航空工业股份有限公司 机车液压式防滑制动系统
TW200925008A (en) * 2007-12-12 2009-06-16 Chung Shan Inst Of Science A vehicle sideslip angle estimation device
TW201134706A (en) * 2010-04-13 2011-10-16 Univ Nat Taipei Technology Traction anti-skid control system of electric vehicle and control method thereof

Also Published As

Publication number Publication date
TW202108420A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5141778B2 (ja) 車両状態推定装置
US8639412B2 (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
US6662097B2 (en) System for computing a road surface frictional coefficient
US8825333B2 (en) Device for controlling vehicle wheel slip using variable slip ratio thresholds
KR102484938B1 (ko) 차량의 휠 속도 추정 장치 및 방법
US6697728B2 (en) Vehicle motion control system
CN108819950B (zh) 汽车稳定性控制系统的车速估计方法及系统
US11648933B2 (en) Method for controlling wheel slip of vehicle
CN107117178A (zh) 考虑换挡和道路坡度因素的车辆质量估计方法
KR20160040667A (ko) 전기 또는 하이브리드 차량의 회생 제동 제어
JP2004515402A (ja) 車両の運転モード中に発生するアクアプレーニングの危険性を検出するための装置
CN111114551B (zh) 一种车辆坡道坡度识别方法和装置
CN110304070A (zh) 一种分布式独立驱动汽车纵向车速估计方法
JP2008265545A (ja) 車両の重心位置推定装置及び重心位置/ヨー慣性モーメント推定装置。
TWI719598B (zh) 車輛路面摩擦係數估測方法
JP2011037338A (ja) 車両のスリップ判定装置
CN110525441B (zh) 坡度检测方法、系统及车辆
JP3271956B2 (ja) 車両の路面摩擦係数推定装置
CN115848375A (zh) 无人驾驶车辆的车轮防滑控制方法
CN115675400A (zh) 用于控制车辆的制动和/或牵引的方法
KR20080022771A (ko) 4륜 구동 차량의 차량안전 시스템 제어방법
KR102003336B1 (ko) 차량의 무게중심 속도 추정방법
TWI672235B (zh) 車輪抓地力裕度估測方法
JP3426512B2 (ja) 車両の旋回挙動状態検出装置
CN111469842B (zh) 用于车辆的扭矩恢复方法、扭矩恢复装置和车辆