TWI718052B - 調製器裝置及其形成方法 - Google Patents

調製器裝置及其形成方法 Download PDF

Info

Publication number
TWI718052B
TWI718052B TW109113238A TW109113238A TWI718052B TW I718052 B TWI718052 B TW I718052B TW 109113238 A TW109113238 A TW 109113238A TW 109113238 A TW109113238 A TW 109113238A TW I718052 B TWI718052 B TW I718052B
Authority
TW
Taiwan
Prior art keywords
waveguide
heater
modulator device
region
conductive body
Prior art date
Application number
TW109113238A
Other languages
English (en)
Other versions
TW202117375A (zh
Inventor
林詩瑋
劉銘棋
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/733,488 external-priority patent/US11209673B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Application granted granted Critical
Publication of TWI718052B publication Critical patent/TWI718052B/zh
Publication of TW202117375A publication Critical patent/TW202117375A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/287Structuring of light guides to shape optical elements with heat application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本發明的各種實施例涉及一種包括第一波導及加熱器結 構的調製器裝置。輸入端子被配置成接收入射光。所述第一波導具有第一輸出區及耦合到所述輸入端子的第一輸入區。第二波導光學耦合到所述第一波導。所述第二波導具有第二輸出區及耦合到所述輸入端子的第二輸入區。輸出端子被配置成提供基於所述入射光而調製的出射光。所述輸出端子耦合到所述第一輸出區及所述第二輸出區。所述加熱器結構上覆在所述第一波導上。所述加熱器結構的底表面與所述第一波導的底表面對齊。所述第一波導橫向間隔在所述加熱器結構的多個側壁之間。

Description

調製器裝置及其形成方法
本發明實施例是有關於一種調製器裝置及其形成方法。
光學電路可包括多個光子功能/裝置及光學波導。光學波導被配置成以最小的衰減將光從積體晶片(integrated chip,IC)上的第一位置局限及導引到所述IC上的第二位置。調製器裝置中的光學波導可被配置成選擇性地改變通過光學波導的光的相位、波長、頻率及/或其他性質。
根據本發明的實施例,一種調製器裝置,包括輸入端子、第一波導、第二波導、輸出端子以及加熱器結構。輸入端子被配置成接收入射光。第一波導具有第一輸入區及第一輸出區,其中所述第一輸入區耦合到所述輸入端子。第二波導光學耦合到所述第一波導,其中所述第二波導具有第二輸入區及第二輸出區,其中所述第二輸入區耦合到所述輸入端子。輸出端子被配置成提供 基於所述入射光而調製的出射光,其中所述輸出端子耦合到所述第一波導的所述第一輸出區及所述第二波導的所述第二輸出區。加熱器結構上覆在所述第一波導上,其中所述加熱器結構的底表面與所述第一波導的底表面對齊,其中所述第一波導橫向間隔在所述加熱器結構的多個側壁之間。
根據本發明的實施例,一種調製器裝置,包括:第一波導、第二波導、第一介電結構以及加熱器結構。第一波導佈置在基底之上,且包括被配置成調製光的主動區。第二波導佈置在所述基底之上,且光學耦合到所述第一波導。第一介電結構佈置在所述第一波導及所述第二波導之上。加熱器結構嵌置在所述第一介電結構內且上覆在所述第一波導的所述主動區上,其中所述加熱器結構包括上部導電本體以及加熱器柱結構。上部導電本體上覆在所述第一波導的所述主動區正上方。加熱器柱結構從所述上部導電本體連續延伸到所述第一波導的上表面之下的位置,其中所述第一波導橫向位於所述加熱器柱結構的多個內側壁之間,其中所述第一波導相對於所述加熱器柱結構的所述多個內側壁橫向偏移非零距離。
根據本發明的實施例,一種用於形成調製器裝置的方法,所述方法包括:在基底之上形成第一波導;在所述基底之上形成下部柱結構,其中所述第一波導橫向間隔在所述下部柱結構的多個內側壁之間;在所述第一波導及所述下部柱結構之上沉積介電結構;在所述下部柱結構之上形成上部柱結構,其中所述上 部柱結構嵌置在所述介電結構內;以及沿著所述介電結構的上表面及所述上部柱結構的上表面形成上部導電本體,從而界定加熱器結構,其中所述加熱器結構包括所述下部柱結構、所述上部柱結構及所述上部導電本體,其中所述上部導電本體上覆在所述第一波導正上方。
100、200a、200b、505:調製器裝置
101:輸入端子
103:輸出端子
107:入射光
108:加熱器柱結構
109:出射光
110:上部導電本體
111:加熱器結構
112:第一波導
112a:第一摻雜區
112b:第二摻雜區
112c:中心未摻雜區
112i:第一輸入區
112o:第一輸出區
115:第二波導
115i:第二輸入區
115o:第二輸出區
202:基底
204:塊狀介電結構
206:下部層間介電(ILD)結構
208:下部柱結構
209:上部柱結構
210:加熱器通孔
212:加熱器導線
214:上部ILD結構
216、518:導通孔
220:熱量波
300a、300b、300c、400a、400b:俯視圖
302:主動區
304:非主動區
402:第一示例性光路徑
404:第二示例性光路徑
406:第三示例性光路徑
500:積體晶片
501:光柵結構
502:光電二極體
502a:光電二極體p型側
502b:光電二極體n型側
502c:光電二極體未摻雜中心部分
502d:光電二極體p+部分
502e:光電二極體n+部分
502f:光電二極體接觸層
502g:側壁間隔件結構
502h:第一光電二極體絕緣體層
503:第一介電層
504:第二介電層
506:第三介電層
508:下部蝕刻停止層
509:層間介電(ILD)層
510:上部蝕刻停止層
512:第四介電層
520:導電導線
522:第一鈍化層
524:第二鈍化層
530:接合墊
600、700、800、900、1000、1100、1200:剖視圖
602:裝置層
604:半導體基底結構
902:介電層堆疊
1202:第二ILD層
1300:方法
1302、1304、1306、1308、1310:動作
A-A’、B-B’:線
Vf:第一端子
Vh:加熱器端子
Vs:第二端子
結合附圖閱讀以下詳細說明,會最佳地理解本發明的各方面。應注意,根據本行業中的標準慣例,各種特徵並非按比例繪製。事實上,為使論述清晰起見,可任意增大或減小各種特徵的尺寸。
圖1示出調製器裝置的一些實施例的立體圖,所述調製器裝置包括至少部分地橫向環繞波導結構的加熱器結構。
圖2A及圖2B示出橫向間隔在加熱器結構的多個內側壁之間的波導結構的一些實施例的剖視圖。
圖3A至圖3C示出調製器裝置的一些實施例的俯視圖,所述調製器裝置包括上覆在第一波導正上方並至少部分地橫向環繞第一波導的加熱器結構,其中第一波導直接連接到第二波導。
圖4A及圖4B示出調製器裝置的一些實施例的俯視圖,所述調製器裝置包括上覆在第一波導正上方並至少部分地橫向環繞第一波導的加熱器結構,其中第一波導相對於第二波導橫向偏移。
圖5示出積體晶片的一些實施例的剖視圖,所述積體晶片包 括設置在基底之上的調製器裝置、光柵結構及光電二極體。
圖6至圖12示出用於形成包括加熱器結構及第一波導的調製器裝置的方法的一些實施例的剖視圖,其中加熱器結構上覆在第一波導正上方並至少部分地橫向環繞第一波導。
圖13示出與圖6至圖12所示方法對應的一些實施例的流程圖。
以下公開內容提供用於實作所提供主題的不同特徵的許多不同的實施例或實例。以下闡述組件及構造的具體實例以簡化本發明。當然,這些僅為實例且不旨在進行限制。例如,以下說明中將第一特徵形成在第二特徵之上或第二特徵上可包括其中第一特徵與第二特徵被形成為直接接觸的實施例,且也可包括其中第一特徵與第二特徵之間可形成有額外特徵、從而使得所述第一特徵與所述第二特徵可能不直接接觸的實施例。另外,本發明可能在各種實例中重複使用參考編號及/或字母。這種重複使用是出於簡潔及清晰的目的,而不是自身表示所論述的各種實施例及/或配置之間的關係。
此外,為易於說明,本文中可能使用例如“在……之下(beneath)”、“在……下方(below)”、“下部的(lower)”、“在……上方(above)”、“上部的(upper)”等空間相對性用語來闡述圖中所示的一個元件或特徵與另一(其他)元件或特徵 的關係。所述空間相對性用語旨在除圖中所繪示的定向外還囊括裝置在使用或操作中的不同定向。設備可具有其他定向(旋轉90度或處於其他定向),且本文中所使用的空間相對性描述語可同樣相應地進行解釋。
在電子學及電信學中,調製是以使得信息能夠從傳送器傳送到接收器的方式改變週期性波形的一個或多個性質的過程。例如,可使用振幅調製(amplitude modulation,AM)、頻率調製(frequency modulation,FM)及相位調製來調製週期性波形,以在長距離或短距離上傳達信息。
調製器裝置可包括輸入端子及輸出端子。第一波導及第二波導可從輸入端子分支,且然後在輸出端子處重新組合,使得存在可使光穿過調製器裝置的兩個路徑或通道。第一波導可與第二波導緊密接近或直接接觸,使得第一波導及第二波導彼此光學耦合。在調製器裝置的操作期間,輸入光在輸入端子處以初始相位被接收,且然後被分離以沿著第一波導及第二波導經過,之後在輸出端子處被重新組合並作為輸出光被提供。由於第一波導及第二波導光學耦合在一起,因此由於由第一波導及第二波導引起的相長干涉或相消干涉,輸出光可被相移。
加熱器結構可佈置在第一波導之上、之下及/或旁邊,以產生並向第一波導施加熱量。此熱量可引發第一波導的溫度改變,這繼而改變第一波導相對於第二波導的折射率、載流子遷移率及/或其他特性。因此,穿過第一波導的光的速度及/或相位可相 對於穿過第二波導的光的速度及/或相位而變動,使得加熱器結構的溫度可控制在輸出端子處賦予出射光的相移。因此,調製器裝置可控制加熱器結構的溫度,使得輸入光被調製成提供調製與待傳送的各種數據狀態對應的輸出光。然而,加熱器結構可能上覆在第一波導上,使得加熱器結構的底表面相對於第一波導的上表面垂直偏移非零距離。介電材料設置在加熱器結構與第一波導之間。此外,熱量可能從加熱器結構沿所有方向輻射,使得熱量不朝向第一波導集中,且調製器裝置的熱效率降低。為了考慮到沿所有方向輻射的熱量,可增加遞送到加熱器結構的功率量(從而增加由加熱器結構產生的熱量),以補償遠離第一波導輻射的功率。此繼而可能增加調製器裝置的功率消耗,並進一步降低調製器裝置的熱效率。
本申請的各種實施例涉及一種包括加熱器結構的調製器裝置,所述加熱器結構上覆在波導結構上並至少部分地橫向圍封波導結構。例如,調製器裝置包括上覆在波導結構上的內連介電結構。加熱器結構設置在內連介電結構內,並上覆在波導結構上。加熱器結構可包括上部導電本體及加熱器柱結構。上部導電本體上覆在波導結構正上方,且通過內連介電結構相對於波導結構垂直偏移。加熱器柱結構位於上部導電本體之下,並從上部導電本體延伸到波導結構的上表面下方的位置。波導結構橫向間隔在加熱器柱結構的多個內側壁之間,使得加熱器結構上覆在波導結構正上方並至少部分地橫向環繞波導結構。加熱器結構被配置成將 熱量朝向波導結構集中,使得由加熱器結構產生的熱量可控制通過波導結構的光的相移。由於波導結構橫向間隔在加熱器結構的多個內側壁之間,因此熱量可更直接地朝向波導結構輻射。這在一定程度上可提高調製器裝置的熱效率,且可降低調製器裝置的功率消耗。
圖1示出調製器裝置100的一些實施例的立體圖,調製器裝置100包括橫向間隔在加熱器結構111的多個內側壁之間的第一波導112。
調製器裝置100包括輸入端子101及輸出端子103。第一波導112及第二波導115從輸入端子101分支,且然後在輸出端子103處重新組合,從而提供可使光穿過調製器裝置100的兩個路徑或通道。在一些實施例中,第一波導112及第二波導115在輸入端子101與輸出端子103之間對稱地分支。第一波導112可與第二波導115緊密接近或直接接觸,使得第一波導112及第二波導115彼此光學耦合。在一些實施例中,第一波導112具有耦合到輸入端子101的第一輸入區112i及耦合到輸出端子103的第一輸出區112o。此外,第二波導115具有耦合到輸入端子101的第二輸入區115i及耦合到輸出端子103的第二輸出區115o。在一些實施例中,第一波導112包含半導體材料(例如,矽),且可具有包括第一摻雜區112a及第二摻雜區112b的主動區。在一些實施例中,第一摻雜區112a包括第一摻雜類型(例如,p型),且第二摻雜區112b包括與第一摻雜類型相反的第二摻雜類型(例如, n型)。在其他實施例中,第一摻雜類型是n型,且第二摻雜類型是p型,反之亦然。
加熱器結構111上覆在第一波導112的主動區上。在一些實施例中,加熱器結構111包括上部導電本體110及加熱器柱結構108。上部導電本體110上覆在第一摻雜區112a及第二摻雜區112b正上方。加熱器柱結構108從上部導電本體110的下表面連續延伸到第一波導112的上表面下方的位置。此外,第一波導112的主動區橫向間隔在加熱器柱結構108的內側壁之間,使得加熱器結構111至少部分地橫向環繞第一波導112。在一些實施例中,加熱器柱結構108的底表面與第一波導112的底表面對齊。此外,上部導電本體110及加熱器柱結構108包含具有高熱導率的一種或多種材料。例如,在第一波導112及加熱器結構111周圍可設置有內連介電結構(未示出),其中加熱器結構111的所述一種或多種材料具有比構成所述內連介電結構的材料高的熱導率。
在一些實施例中,在調製器裝置100的操作期間,入射光107在輸入端子101處以初始相位被接收,且然後被分離以沿著第一波導112及第二波導115經過,之後在輸出端子103處重新組合並作為出射光109被提供。由於第一波導112及第二波導115光學耦合,因此,歸因於第一波導112及第二波導115引起的相長干涉或相消干涉,出射光109可被相移。在一些實施例中,加熱器結構111被配置成產生並向第一波導112的主動區施加熱 量。由加熱器結構111產生的熱量可引發第一波導的溫度改變,這繼而改變第一波導112相對於第二波導115的折射率、載流子遷移率及/或其他特性。因此,穿過第一波導112的光的速度及/或相位可相對於穿過第二波導115的光的速度及/或相位而變動,使得加熱器結構111的溫度可控制在輸出端子103處賦予出射光109的相移。此外,調製器裝置100被配置成基於將被及時傳送的數據狀態而及時控制由加熱器結構111產生的熱量的溫度,使得入射光107被調製成提供出射光109,所述出射光109的調製對應於待被傳送的各種數據狀態。應瞭解,儘管以上闡述了利用相位調製的調製實例,但在其他實施例中,也可使用其他類型的調製,例如振幅調製或頻率調製。
由於加熱器結構111上覆在第一波導112的主動區正上方且至少部分地橫向環繞第一波導112的主動區,加熱器結構111可將熱量朝向第一摻雜區112a及第二摻雜區112b引導。這繼而可減少可能朝向相鄰的結構及/或介電材料輻射及/或由相鄰的結構及/或介電材料吸收的熱量的量,從而提高調製器裝置100的熱效率。此外,加熱器結構111包含具有高熱導率的一種或多種材料,從而提高調製器裝置100的熱效率。因此,加熱器結構111可降低調製器裝置100的功率消耗並提高調製器裝置100的熱效率。
圖2A示出調製器裝置200a的一些實施例的剖視圖,調製器裝置200a具有加熱器結構111,加熱器結構111具有上部導 電本體110及加熱器柱結構108。
在一些實施例中,調製器裝置200a包括上覆在基底202上的第一波導112。塊狀介電結構204佈置在基底202之上,且可間隔在第一波導112與基底202之間。下部層間介電(inter-level dielectric,ILD)結構206上覆在塊狀介電結構204上。在一些實施例中,第一波導112直接佈置在塊狀介電結構204之上,且下部ILD結構206橫向圍封第一波導112。在一些實施例中,塊狀介電結構204可例如是或包含氧化物,例如二氧化矽、另一種合適的氧化物、低介電常數(低k)介電材料、前述材料的任一組合或另一種合適的介電材料。在其他實施例中,下部ILD結構206可例如是或包含氮化矽、碳化矽、氧化矽、低介電常數介電材料、極低介電常數介電材料、前述材料的任一組合或另一種合適的介電材料。在一些實施例中,基底202可例如是或包含半導體本體,例如單晶矽、絕緣體上矽(silicon-on-insulator substrate,SOI)基底或另一種合適的半導體基底材料。在各種實施例中,基底202及第一波導112包含相同的材料(例如,矽)。
在一些實施例中,第一波導112包含被配置成傳輸光的半導體材料(例如,矽)。第一波導112可具有彼此相鄰地橫向間隔開的第一摻雜區112a及第二摻雜區112b。在一些實施例中,第一摻雜區112a包括第一摻雜類型(例如,p型),且第二摻雜區112b包括與第一摻雜類型相反的第二摻雜類型(例如,n型)。在其他實施例中,第一摻雜類型是p型,且第二摻雜類型是n型, 反之亦然。在又一些實施例中,第一摻雜區112a及/或第二摻雜區112b電耦合到設置在下部ILD結構206及/或上部ILD結構214內的一個或多個導通孔及/或導電導線(未示出)。在各種實施例中,通過所述導通孔及/或導電導線(未示出),在第一方向上跨越第一波導112的第一摻雜區112a及第二摻雜區112b施加偏壓,以改變穿過第一波導112的主動區的光的相位。在此類實施例中,光沿垂直於第一方向的第二方向傳播。
加熱器結構111上覆在第一波導112上,並設置在下部ILD結構206及/或上部ILD結構214內。在一些實施例中,加熱器結構111包括上部導電本體110及加熱器柱結構108。加熱器柱結構108從上部導電本體110的下表面連續延伸到塊狀介電結構204的上表面。此外,第一波導112橫向間隔在加熱器柱結構108的多個內側壁之間。在各種實施例中,加熱器柱結構108包括下部柱結構208及上覆在下部柱結構208上的上部柱結構209。在一些實施例中,下部柱結構208可例如是或包含半導體基底材料、矽、本征矽、p摻雜矽、n摻雜矽、多晶矽或另一種合適的材料。在其他實施例中,下部柱結構208包含與第一波導112相同的材料(例如,矽)。此外,在一些實施例中,下部柱結構208的底表面與第一波導112的底表面對齊,且下部柱結構208的頂表面與第一波導112的頂表面對齊。上部柱結構209從上部導電本體110連續延伸到下部柱結構208。在一些實施例中,上部柱結構209包括加熱器通孔210及上覆在加熱器通孔210上的加熱器導線 212。導通孔216上覆在上部導電本體110上,並電耦合到加熱器結構111。在一些實施例中,導通孔216、加熱器通孔210及/或加熱器導線212可例如分別是或包含鎢、鋁、銅、前述材料的任一組合等。在又一些實施例中,上部導電本體110可例如是或包含鈦、鉭、氮化鈦、氮化鉭、前述材料的任一組合等。
此外,加熱器結構111包含在施加合適的訊號(例如,電壓、電流等)時產生熱量(如示例性熱量波220所示)的一種或多種材料。加熱器結構111被配置成向第一波導112施加熱量以改變第一波導112的折射率,從而在光穿過第一波導112的主動區時改變光的相位。在操作期間,光相位的改變依據以下公式而取決於第一波導112的溫度改變:
Figure 109113238-A0305-02-0015-3
,其中
Figure 109113238-A0305-02-0015-7
是第一波導112的材料的熱光係數(thermo-optic coefficient),△T是第一波導112的溫度改變,L是光在暴露於加熱器結構111時傳播的長度,且λ是光的波長。例如,在一些實施例中,第一波導112包含矽,其具有約為每開爾文(Kelvin)1.86×10-4的熱光係數,這表明對於每6開爾文(或6攝氏度)的溫度改變,矽的折射率改變1.1×10-3
由於上部導電本體110上覆在加熱器柱結構108上,熱量可從上部導電本體110傳導到上部柱結構209及下部柱結構208。由於上部柱結構209及下部柱結構208比上部導電本體110更接近第一波導112,因此熱量可更有效地被引導到第一波導 112。這繼而可提高調製器裝置100的熱效率,並降低調製器裝置100的功率消耗。此外,由於上部導電本體110上覆在第一波導112正上方且加熱器柱結構108至少部分地橫向圍封第一波導112,加熱器結構111可將示例性熱量波220局限在第一波導112的主動區(例如,第一摻雜區112a及/或第二摻雜區112b)周圍的區域。此可防止示例性熱量波220輻射到設置在基底202之上的另一裝置及/或結構,從而進一步提高調製器裝置100的熱效率。另外,此可進一步降低調製器裝置100的功率消耗。
此外,加熱器結構111可包含熱導率比周圍的介電材料及/或結構高的材料,使得加熱器結構111可有效地生成並朝向第一波導112的主動區引導熱量。在一些實施例中,下部柱結構208包含具有第一熱導率的第一材料(例如,本征矽),上部柱結構209包含具有第二熱導率的第二材料(例如,鋁、銅、鎢、前述材料的任一組合等),上部導電本體110包含具有第三熱導率的第三材料(例如,氮化鈦、氮化鉭、鈦等),且下部ILD結構206及/或上部ILD結構214包含具有第四熱導率的介電材料(例如,氧化矽、低介電常數介電材料、碳化矽、上述材料的組合等)。第四熱導率分別小於第一熱導率、第二熱導率及第三熱導率,使得由加熱器結構111產生的熱量可從上部導電本體110有效地傳導到加熱器柱結構108。由於加熱器柱結構108比上部導電本體110更接近第一波導112,因此熱量可更容易地朝向第一波導112引導。因此,與下部ILD結構206及/或上部ILD結構214將熱量遠離第一 波導112傳導相比較,加熱器結構111可更容易地朝向第一波導112傳導熱量。此繼而可進一步提高調製器裝置200a的熱效率及/或降低調製器裝置200a的功率消耗。
在一些實施例中,下部柱結構208的第一熱導率可為約150瓦每米開爾文(W/(m*K))或者在約125W/(m*K)至175W/(m*K)的範圍內。在一些實施例中,上部柱結構209的第二熱導率可為約225W/(m*K)、約400W/(m*K),或者在約210W/(m*K)至420W/(m*K)的範圍內。因此,在一些實施例中,下部柱結構208的第一熱導率可小於上部柱結構209的第二熱導率。在一些實施例中,上部導電本體110的第三熱導率可為約12W/(m*K)、約60W/(m*K),或者在約10W/(m*K)至100W/(m*K)的範圍內。在其他實施例中,環繞加熱器結構111及/或第一波導112的介電層及/或結構(例如,下部ILD結構206及/或上部ILD結構214)的第四熱導率可為約1W/(m*K)、約5W/(m*K),或者在約0.5W/(m*K)至50W/(m*K)的範圍內。
圖2B示出調製器裝置200b的一些實施例的剖視圖,調製器裝置200b包括上覆在第一波導112上並至少部分地橫向環繞第一波導112的加熱器結構111。
在一些實施例中,第一波導112包含基底材料(例如,矽),且包括第一摻雜區112a、第二摻雜區112b及橫向設置在第一摻雜區112a與第二摻雜區112b之間的中心未摻雜區112c。第一摻雜區112a可例如包括第一摻雜類型(例如,n型),且第二摻 雜區112b可例如包括與第一摻雜類型相反的第二摻雜類型(例如,p型)。在其他實施例中,中心未摻雜區112c可為或包含本征矽。在一些實施例中,第一摻雜區112a及第二摻雜區112b可具有設置在中心未摻雜區112c的最頂表面之下的最頂表面。在一些實施例中,第一摻雜區112a及第二摻雜區112b直接電耦合到一個或多個導通孔及/或導電導線(未示出)。在此類實施例中,可在第一方向上跨越第一摻雜區112a及第二摻雜區112b施加偏壓,以改變穿過第一波導112的主動區的光的相位,其中光沿垂直於第一方向的第二方向傳播。在其他實施例中,下部柱結構208的最頂表面與中心未摻雜區112c的最頂表面對齊。
圖3A示出調製器裝置的一些實施例的俯視圖300a,所述調製器裝置包括上覆在第一波導112正上方並至少部分地橫向環繞第一波導112的加熱器結構111,其中第一波導112直接連接到第二波導115。在一些實施例中,圖3A所示俯視圖300a對應於沿著圖2A所示線A-A’截取的圖2A所示調製器裝置200a的一些替代實施例。在其他實施例中,圖2A所示剖視圖可能是依據圖3A所示線B-B’而截取。
第一波導112的主動區302可包括第一波導112的第一摻雜區112a及第二摻雜區112b以及加熱器結構111的至少一部分。在一些實施例中,當從上方觀看時,第一波導112的主動區302類似於彎曲矩形結構。主動區302可與第一波導112的非主動區304連續連接。在一些實施例中,第一波導112的非主動區304 可例如是或者包含未摻雜矽、本征矽等。在其他實施例中,第二波導115直接接觸第一波導112,且可例如包含與第一波導112的非主動區304相同的材料(例如,本征矽)。因此,第一波導112光學耦合到第二波導115。此外,加熱器結構111上覆在主動區302上,且被配置成產生並向第一波導112的主動區302引導熱量。加熱器結構111包括上部導電本體110及加熱器柱結構108,使得第一波導112的主動區302橫向間隔在加熱器柱結構108的多個側壁之間。這在一定程度上有助於加熱器結構111產生熱量並將熱量局限到主動區302,使得熱量可影響穿過第一波導112的光的相位。在一些實施例中,上部導電本體110及/或加熱器柱結構108各自具有與第一波導112的主動區302的形狀一致的彎曲矩形結構。因此,加熱器結構111被配置成產生熱量並將熱量局限到第一波導112的主動區302,從而提高調製器裝置的熱效率並降低調製器裝置的功率消耗。
圖3B示出調製器裝置的一些實施例的俯視圖300b,所述調製器裝置包括上覆在第一波導112正上方並至少部分地橫向環繞第一波導112的加熱器結構111,其中第一波導112直接連接到第二波導115。在一些實施例中,圖3B所示俯視圖300b對應於沿著圖2A所示線A-A’截取的圖2A所示調製器裝置200a的一些替代實施例。在其他實施例中,圖2A所示剖視圖可能是依據圖3A所示線B-B’截取。
如圖3B的俯視圖300b所示,當從上方觀看時,上部導 電本體110及加熱器柱結構108各自具有與第一波導112的主動區302的彎曲矩形形狀不同的矩形形狀。因此,加熱器結構111上覆在主動區302上並至少部分地橫向環繞主動區302,使得加熱器結構111被配置成將熱量局限到第一波導112的主動區302。
圖3C示出包括加熱器結構111及第一波導112的調製器裝置的一些實施例的俯視圖300c,其中第一波導112直接連接到第二波導115。在一些實施例中,圖3C所示俯視圖300c對應於沿著圖2B所示線A-A’截取的圖2B所示調製器裝置200b的一些替代實施例。在其他實施例中,圖2B所示剖視圖可能是依據圖3C所示線B-B’截取。
第一波導112的中心未摻雜區112c橫向夾置在第一波導112的第一摻雜區112a與第二摻雜區112b之間。因此,主動區302包括中心未摻雜區112c、第一摻雜區112a及第二摻雜區112b。加熱器結構111的上部導電本體110上覆在第一波導112的主動區302上。此外,第一波導112的主動區302橫向間隔在加熱器柱結構108的多個內側壁之間。
圖4A示出調製器裝置的一些實施例的俯視圖400a,所述調製器裝置包括上覆在第一波導112正上方的加熱器結構111,其中第一波導112相對於第二波導115橫向偏移。在一些實施例中,圖4A所示俯視圖400a對應於沿著圖2B所示線A-A’截取的圖2B所示調製器裝置200b的一些替代實施例。在其他實施例中,圖2B所示剖視圖可能是依據圖4A所示線B-B’截取。此外,俯視 圖400a可對應於沿著圖2A所示線A-A’截取的圖2A所示調製器裝置200a的一些實施例,其中省略了中心未摻雜區112c,且第一摻雜區112a直接接觸第二摻雜區112b(未示出)。在此類實施例中,圖2A所示剖視圖可能是依據圖4A所示線B-B’截取。
在一些實施例中,當從上方觀看時,第一波導112類似於環狀結構。第一波導的主動區302可包括加熱器結構111、第一摻雜區112a、第二摻雜區112b及中心未摻雜區112c。主動區302可與第一波導112的非主動區304連續連接。非主動區304可包括中心未摻雜區112c。此外,第二波導115橫向緊鄰第一波導112設置。在一些實施例中,第二波導115包含與第一波導112的中心未摻雜區112c相同的材料。在一些實施例中,第二波導115可為實質上筆直的,使得輸入端子101、第二波導115及輸出端子103沿著平面內的線而共線。在其他實施例中,第二波導可包括一些彎曲部分(未示出)。第二波導115被配置成局限並傳輸光。第二波導115橫向佈置在第一波導112旁邊。在一些實施例中,第一波導112及第二波導115佈置成彼此足夠靠近,使得儘管第一波導112及第二波導115不彼此直接接觸,但第一波導112及第二波導115彼此光學耦合。在此類實施例中,第一波導112相對於第二波導115橫向偏移非零距離。在一些實施例中,第一波導112的非主動區304是第一波導112距第二波導115最近的部分。因此,加熱器結構111不直接干擾第一波導112的非主動區304與第二波導115之間的光學耦合。
如圖4A的俯視圖400a所示,加熱器結構111具有與第一波導112的環狀形狀一致的弧狀形狀。此外,在第一波導112的主動區302內,第一摻雜區112a、第二摻雜區112b及中心未摻雜區112c橫向間隔在加熱器柱結構108的多個側壁之間。這在一定程度上確保了加熱器結構111可將熱量引導及局限到第一波導的主動區302,從而將可能影響通過第二波導115的光傳輸的熱量最小化。
圖4B示出通過調製器裝置的示例性光路徑的一些實施例的俯視圖400b,所述調製器裝置具有設置在第一波導112的主動區302內及/或周圍的加熱器結構111。
在一些實施例中,在調製器裝置的操作期間,具有第一相位的光沿著第二波導115穿過第一示例性光路徑402。由於第一波導112及第二波導115光學耦合在一起,因此第一示例性光路徑402可通過第一輸入區112i傳播到第一波導112的非主動區304中。然後,光可進入第二示例性光路徑404,其中可在分別與第一波導112的第一摻雜區112a及第二摻雜區112b耦合的第一端子Vf及第二端子Vs之間選擇性地施加電壓。此外,在光穿過第二示例性光路徑404時,可向耦合到加熱器結構111的加熱器端子Vh選擇性地施加加熱器電壓,使得光在處於第一波導112的主動區302內時從第一相位改變成第二相位。在光沿著第二示例性光路徑404傳播時,加熱器結構111可將熱量引導及/或局限到第一波導112的主動區302,使得第一相位可準確且高效地改變成第二 相位。在通過第一波導112的主動區302之後,第二示例性光路徑404中的光然後可通過第一輸出區112o從第一波導112的非主動區304射出並與第一示例性光路徑402組合。隨後,在一些實施例中,在通過第一輸出區112o射出之後,光可進入第三示例性光路徑406,其中由於穿過第一示例性光路徑402的光與穿過第二示例性光路徑404的光之間的相長干涉及/或相消干涉,光具有第三相位。因此,當第一波導112的主動區302為“接通”(即,向第一端子Vf、第二端子Vs及/或加熱器端子Vh施加電壓)時,光可根據施加到第一端子Vf、第二端子Vs及/或加熱器端子Vh的電壓而從第一相位選擇性地改變或調製成第三相位,以通過光學訊號傳送數位數據。
參照圖3A、圖3B、圖3C、圖4A及圖4B,為了易於說明,已從圖3A、圖3B、圖3C、圖4A及圖4B中省略了圖2A或圖2B所示調製器裝置200a或200b中的若干結構及/或層,例如下部ILD結構(圖2A或圖2B的下部ILD結構206)及/或上部ILD結構(圖2A或圖2B的上部ILD結構214)。此外,加熱器結構111的上部導電本體110在圖3A、圖3B、圖3C、圖4A及圖4B中至少部分地透明,以更容易地示出在上部導電本體110之下的層及/或結構的位置/佈局。
圖5示出積體晶片500的一些實施例的剖視圖,積體晶片500包括緊鄰光電二極體502設置並上覆在基底202上的調製器裝置505。在一些實施例中,調製器裝置505被配置為圖2A或 圖2B所示調製器裝置200a或200b。
光柵結構501上覆在基底202上,使得光電二極體502橫向設置在調製器裝置505與光柵結構501之間。調製器裝置505包括加熱器結構111及第一波導112。光柵結構501可耦合到光源,且可將來自光源的光導引到上覆在基底202上的其他裝置(例如,光電二極體502、調製器裝置505等)中的一者或多者中。光電二極體502可被配置成接收光並將光傳送成數位訊號。在一些實施例中,一個或多個光電二極體502可耦合到第一波導112及/或第二波導(圖2A或圖2B的第二波導115)。光電二極體502及/或光柵結構501各自相對於加熱器結構111橫向偏移,使得由加熱器結構111產生的熱量與光電二極體502及/或光柵結構501隔離。此外,由於構成加熱器結構111的材料及/或加熱器結構111的形狀,熱量可被局限到第一波導112的主動區。
光電二極體502可直接接觸塊狀介電結構204,並設置在下部ILD結構206內。光電二極體502可包含半導體材料,且包括設置在光電二極體接觸層502f之上的光電二極體p型側502a、光電二極體n型側502b及光電二極體未摻雜中心部分502c。在一些實施例中,光電二極體p+部分502d可佈置在光電二極體p型側502a之上,且光電二極體n+部分502e可佈置在光電二極體n型側502b之上。光電二極體p+部分502d及光電二極體n+部分502e可各自耦合到導通孔518。第一光電二極體絕緣體層502h可佈置在光電二極體未摻雜中心部分502c之上,且側壁間隔件結構502g 橫向環繞第一光電二極體絕緣體層502h。在一些實施例中,光電二極體p型側502a、光電二極體n型側502b及光電二極體未摻雜中心部分502c可包含與第一波導112不同的半導體材料。在一些實施例中,第一波導112可包含矽,而光電二極體p型側502a、光電二極體n型側502b及光電二極體未摻雜中心部分502c可各自包含鍺。
在一些實施例中,多個導通孔518及多個導電導線520設置在內連結構內,所述內連結構上覆在基底202上。所述多個導通孔518及所述多個導電導線520被配置成將上覆在基底202上的半導體裝置彼此電耦合。在其他實施例中,導通孔518接觸及/或電耦合到第一波導112的第一摻雜區112a(未示出),且導通孔518接觸及/或電耦合到第一波導112的第二摻雜區112b。因此,可通過導通孔518及/或導電導線520對第一波導112施加訊號(例如電壓、電流等)。
所述多個導通孔518及/或所述多個導電導線520設置在多個介電層內,所述多個介電層上覆在基底上。例如,所述多個介電層包括上覆在下部ILD結構206上的第一介電層503及第二介電層504。在一些實施例中,第一介電層503及第二介電層504可例如被配置成保護光電二極體502,且可各自是或者包含碳化矽、氮化矽、二氧化矽等。第三介電層506上覆在第二介電層504上,且可例如是或包含氧化物,例如二氧化矽、低介電常數介電材料、氮氧化矽等。下部蝕刻停止層508上覆在第三介電層506 上。在一些實施例中,下部蝕刻停止層508可例如是或包含氮化矽、碳化矽等。層間介電(ILD)層509上覆在下部蝕刻停止層508上。在其他實施例中,ILD層509可例如是或包含二氧化矽、另一種氧化物、低介電常數介電材料、極低介電常數介電材料等。上部蝕刻停止層510上覆在ILD層509上。在其他實施例中,上部蝕刻停止層510可例如是或包含氮化矽、碳化矽、碳氧化矽或另一種合適的介電材料。第四介電層512上覆在上部蝕刻停止層510上。在一些實施例中,第四介電層512可例如是或包含正矽酸四乙酯(tetraethyl-orthosilicate,TEOS)或另一種合適的介電材料。此外,第一鈍化層522及第二鈍化層524設置在上部蝕刻停止層510之上。在一些實施例中,第一鈍化層522可例如是或包含未摻雜矽酸鹽玻璃或另一種合適的介電材料。在其他實施例中,第二鈍化層524可例如是或包含氮化矽、碳化矽等。在一些實施例中,接合墊530上覆在所述多個導通孔518及所述多個導電導線520上,使得接合墊530通過導通孔518及導電導線520電耦合到光電二極體502。接合墊530可被配置成將設置在基底202之上的半導體裝置電耦合到另一積體晶片(未示出)。
在一些實施例中,加熱器結構111的上部導電本體110沿著上覆在下部蝕刻停止層508上的ILD層509的上表面設置。此外,加熱器柱結構108的加熱器導線212被ILD層509及下部蝕刻停止層508橫向圍封。此外,在一些實施例中,加熱器導線212的底表面及頂表面分別與設置在所述多個導電導線520的最 底層內的導電導線520的底表面及頂表面對齊。在一些實施例中,所述多個導電導線520的最底層與加熱器導線212例如通過單鑲嵌製程或雙鑲嵌製程而同時形成。此外,加熱器通孔210通過第一介電層503、第二介電層504及第三介電層506從加熱器導線212延伸到下部柱結構208。在一些實施例中,加熱器通孔210的底表面及頂表面分別與設置在所述多個導通孔518的最底層內的導通孔518的底表面及頂表面對齊。在一些實施例中,所述多個導通孔518的最底層與加熱器通孔210例如通過單鑲嵌製程或雙鑲嵌製程而同時形成。在一些實施例中,導通孔518及加熱器通孔210可例如是或包含相同的材料,例如銅、鋁、鎢、前述材料的任一組合等。在其他實施例中,導電導線520及加熱器導線212可例如是或包含相同的材料,例如銅、鋁、鎢、前述材料的任一組合等。
圖6至圖12示出根據本發明用於形成調製器裝置的方法的一些實施例的剖視圖600至剖視圖1200,所述調製器裝置具有上覆在波導結構上並至少部分地橫向環繞波導結構的加熱器結構。儘管圖6至圖12中所示的剖視圖600至剖視圖1200是參照一種方法而闡述,但應瞭解,圖6至圖12中所示的結構並非僅限於所述方法,而是可獨立於所述方法。儘管圖6至圖12被闡述為一系列動作,但應瞭解,這些動作並不受限,因為在其他實施例中可更改動作的次序,且所公開的方法也適用於其他結構。在其他實施例中,所示出及/或闡述的一些動作可全部或部分地省略。
如圖6的剖視圖600所示,提供半導體基底結構604。在一些實施例中,半導體基底結構604可例如是或包括絕緣體上矽(SOI)基底。半導體基底結構604可包括基底202、塊狀介電結構204及裝置層602。塊狀介電結構204設置在裝置層602與基底202之間。在其他實施例中,塊狀介電結構204形成在基底202之上,且裝置層602形成在塊狀介電結構204之上。在一些實施例中,塊狀介電結構204可例如是或包含氧化物,例如二氧化矽或另一種合適的介電材料。在其他實施例中,基底202及/或裝置層602可例如分別是或包含本征矽、塊狀矽、另一種合適的塊狀基底材料等。在一些實施例中,裝置層602包含與基底202相同的材料。
如圖7的剖視圖700所示,對裝置層(圖6的裝置層602)進行圖案化,從而界定第一波導112及下部柱結構208。在一些實施例中,圖案化製程進一步界定光學耦合到第一波導112的第二波導(圖3A至圖3C或圖4A至圖4B的第二波導115)。在又一些實施例中,在圖7所示圖案化製程之後,第一波導112及/或第二波導(圖3A至圖3C或圖4A至圖4B的第二波導115)的俯視圖佈局可對應於圖3A至圖3C或圖4A至圖4B所示俯視圖300a至俯視圖300c或俯視圖400a至俯視圖400b。因此,在一些實施例中,第一波導112、第二波導(圖3A至圖3C或圖4A至圖4B的第二波導115)及下部柱結構208是同時形成。此外,第一波導112是以使得其橫向間隔在下部柱結構208的多個內側壁之間的方 式形成。在一些實施例中,圖案化製程可包括:在裝置層(圖6的裝置層602)之上形成掩蔽層(未示出);將裝置層(圖6的裝置層602)的未掩蔽區暴露於一種或多種蝕刻劑,從而界定第一波導112、下部柱結構208及第二波導(圖3A至圖3C或圖4A至圖4B的第二波導115);以及執行移除製程以移除掩蔽層。
如圖8的剖視圖800所示,對第一波導112執行離子植入製程,以在第一波導112內界定第一摻雜區112a及第二摻雜區112b。在一些實施例中,第一摻雜區112a包括第一摻雜類型(例如p型),且第二摻雜區112b包括與第一摻雜類型相反的第二摻雜類型(例如n型)。在各種實施例中,第一摻雜類型是n型,且第二摻雜類型是p型,反之亦然。在其他實施例中,離子植入製程包括根據一個或多個掩蔽層(未示出)將離子選擇性地植入到第一波導112中。例如,可執行第一選擇性離子植入製程以界定第一摻雜區112a,且可執行第二選擇性離子植入製程以界定第二摻雜區112b。在其他實施例中,離子植入製程界定第一波導112的主動區(例如,圖3A至圖3C或圖4A至圖4B的主動區302),如在圖3A至圖3C或圖4A至圖4B中所示及/或所述。
如圖9的剖視圖900所示,在塊狀介電結構204、第一波導112及下部柱結構208之上形成介電層堆疊902。在一些實施例中,介電層堆疊902包括下部層間介電(ILD)結構206、第一介電層503、第二介電層504、第三介電層506、下部蝕刻停止層508及ILD層509。在一些實施例中,介電層堆疊902內的層可例如 分別通過物理氣相沉積(physical vapor deposition,PVD)、化學氣相沉積(chemical vapor deposition,CVD)、原子層沉積(atomic layer deposition,ALD)或另一種合適的沉積製程來沉積。在一些實施例中,第一介電層503及第二介電層504可例如各自是或包含碳化矽、氮化矽、二氧化矽等。在其他實施例中,下部ILD結構206及/或第三介電層506可例如分別是或包含氮化矽、氮氧化矽、碳化矽、二氧化矽、硼矽酸鹽玻璃(borosilicate glass,BSG)、磷矽酸鹽玻璃(phosphoric silicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數介電材料或另一種合適的介電材料。在又一些實施例中,下部蝕刻停止層508可例如是或者包含氮化矽、碳化矽等。在一些實施例中,ILD層509可例如是或包含氧化物,例如二氧化矽、低介電常數介電材料、極低介電常數介電材料、前述材料的任一組合或另一種合適的介電材料。
如圖10的剖視圖1000所示,在下部柱結構208之上形成上部柱結構209,從而界定加熱器柱結構108。加熱器柱結構108可包括下部柱結構208及上部柱結構209。在一些實施例中,上部柱結構209包括加熱器通孔210及加熱器導線212。在各種實施例中,可在下部蝕刻停止層508沉積在第三介電層506上之前在第一介電層503、第二介電層504及第三介電層506內形成加熱器通孔210。在一些實施例中,加熱器通孔210可通過單鑲嵌製程形成,及/或可與導通孔(圖5的導通孔518)的最底層同時形成。 加熱器導線212形成在下部蝕刻停止層508及ILD層509內。在一些實施例中,加熱器導線212可通過單鑲嵌製程形成,及/或可與導電導線(圖5的導電導線520)的最底層同時形成。
在一些實施例中,用於界定加熱器通孔210的單鑲嵌製程可包括:在沉積下部蝕刻停止層508之前,在第三介電層506之上形成掩蔽層(未示出);對第一介電層503、第二介電層504及第三介電層506以及下部ILD結構206進行圖案化,從而暴露出下部柱結構208的上表面並界定多個加熱器通孔開口;在加熱器通孔開口中沉積(例如,通過CVD、PVD、濺鍍、無電鍍覆等)導電材料(例如,銅、鋁、鎢、前述材料的任一組合等);以及對所述導電材料執行平面化製程(例如,化學機械平面化(chemical mechanical planarization,CMP)製程),直到到達第三介電層506的上表面為止,從而界定加熱器通孔210。在一些實施例中,可執行類似的單鑲嵌製程以形成加熱器導線212,其中圖案化製程在下部蝕刻停止層508及ILD層509內界定多個加熱器導線開口且暴露出加熱器通孔210的上表面。
在又一些實施例中,加熱器通孔210及加熱器導線212可同時形成。在此類實施例中,用於形成上部柱結構209的製程可包括:在ILD層509之上形成掩蔽層(未示出);根據掩蔽層對介電層堆疊902進行圖案化,從而界定上部柱結構開口並暴露出下部柱結構208的上表面;在上部柱結構開口中沉積導電材料(例如,鎢、鋁、銅、前述材料的任一組合等);以及對所述導電材料 執行平面化製程(例如,CMP製程),直到到達ILD層509的上表面為止,從而界定包括加熱器通孔210及加熱器導線212的上部柱結構209。
如圖11的剖視圖1100所示,沿著加熱器導線212及ILD層509的上表面形成上部導電本體110,從而界定加熱器結構111。在一些實施例中,加熱器結構111的俯視圖佈局可對應於圖3A至圖3C或圖4A至圖4B中的加熱器結構111的佈局,使得加熱器結構111上覆在第一波導112的主動區正上方並至少部分地橫向環繞第一波導112的主動區。在各種實施例中,上部導電本體110是以使得其上覆在第一波導112正上方及/或在加熱器柱結構108的多個外側壁之間連續地橫向延伸的方式形成。在一些實施例中,用於形成上部導電本體110的製程包括:在ILD層509的上表面之上沉積(例如通過CVD、PVD、濺鍍、電鍍等)導電層(例如氮化鈦、氮化鉭、鈦等);在所述導電層之上形成掩蔽層(未示出);以及根據掩蔽層對所述導電層進行圖案化,從而界定上部導電本體110。
如圖12的剖視圖1200所示,在上部導電本體110及ILD層509之上形成上部蝕刻停止層510。在一些實施例中,上部蝕刻停止層510可例如是或包含氮化矽、碳化矽或另一種合適的介電材料。此外,上部蝕刻停止層510可沿著上部導電本體110的側壁及上表面延伸。在上部蝕刻停止層510之上形成第四介電層512。在一些實施例中,第四介電層512可例如是或包含正矽酸四 乙酯(TEOS)或另一種合適的介電材料。此外,在第四介電層512之上形成第二ILD層1202。在一些實施例中,上部蝕刻停止層510、第四介電層512及/或第二ILD層1202可例如分別通過PVD、CVD、ALD或另一種合適的沉積製程來沉積。在其他實施例中,第二ILD層1202包含與ILD層509相同的材料。
圖13示出根據本發明用於形成調製器裝置的方法1300,所述調製器裝置包括上覆在下伏波導結構正上方並至少部分地橫向環繞下伏波導結構的加熱器結構。儘管方法1300被示出及/或闡述為一系列動作或事件,但應瞭解,所述方法並非僅限於示出的次序或動作。因此,在一些實施例中,所述動作可以與示出的次序不同的次序執行,及/或可同時執行。此外,在一些實施例中,所示的動作或事件可被細分為多個動作或事件,所述多個動作或事件可在單獨的時間執行或者與其他動作或子動作同時執行。在一些實施例中,可省略一些示出的動作或事件,且可包括其他未示出的動作或事件。
在動作1302處,在基底之上形成第一波導。圖7示出與動作1302的一些實施例對應的剖視圖700。
在動作1304處,在基底之上形成下部柱結構,使得第一波導橫向間隔在下部柱結構的多個內側壁之間。圖7示出與動作1304的一些實施例對應的剖視圖700。
在動作1306處,在下部柱結構及第一波導之上形成介電結構。圖9示出與動作1306的一些實施例對應的剖視圖900。
在動作1308處,在介電結構內及下部柱結構之上形成上部柱結構,從而界定加熱器柱結構。第一波導橫向間隔在加熱器柱結構的多個內側壁之間。圖10示出與動作1308的一些實施例對應的剖視圖1000。
在動作1310處,在加熱器柱結構之上形成上部導電本體,從而界定加熱器結構。上部導電本體上覆在第一波導正上方,且在加熱器柱結構的多個外側壁之間連續地橫向延伸。圖11示出與動作1310的一些實施例對應的剖視圖1100。
因此,在一些實施例中,本發明涉及一種包括加熱器結構及波導結構的調製器裝置,其中加熱器結構上覆在波導結構正上方並至少部分地橫向環繞波導結構。
在一些實施例中,本申請提供一種調製器裝置,包括:輸入端子,被配置成接收入射光;第一波導,具有第一輸入區及第一輸出區,其中所述第一輸入區耦合到所述輸入端子;第二波導,光學耦合到所述第一波導,其中所述第二波導具有第二輸入區及第二輸出區,其中所述第二輸入區耦合到所述輸入端子;輸出端子,被配置成提供基於所述入射光而調製的出射光,其中所述輸出端子耦合到所述第一波導的所述第一輸出區及所述第二波導的所述第二輸出區;以及加熱器結構,上覆在所述第一波導上,其中所述加熱器結構的底表面與所述第一波導的底表面對齊,其中所述第一波導橫向間隔在所述加熱器結構的多個側壁之間。在實施例中,所述加熱器結構包括上部導電本體以及加熱器柱結 構。上部導電本體上覆在所述第一波導正上方。加熱器柱結構從所述上部導電本體的下表面連續延伸到與所述第一波導的所述底表面對齊的位置。在實施例中,所述加熱器柱結構的下部部分及所述第一波導包含相同的材料。在實施例中,所述上部導電本體的最大寬度大於所述加熱器柱結構的最大寬度。在實施例中,所述上部導電本體包含第一材料,且所述加熱器柱結構包含與所述第一材料不同的第二材料。在實施例中,所述上部導電本體相對於所述第一波導垂直偏移非零垂直距離,其中所述第一波導橫向設置在所述加熱器柱結構的多個內側壁之間,且其中所述第一波導相對於所述第二波導橫向偏移非零橫向距離。在實施例中,所述加熱器結構是U形的。在實施例中,所述第一波導包括第一摻雜區及鄰接所述第一摻雜區的第二摻雜區,其中所述第一摻雜區包括第一摻雜類型,且所述第二摻雜區包括與所述第一摻雜類型相反的第二摻雜類型。
在一些實施例中,本申請提供一種調製器裝置,包括:第一波導,佈置在基底之上,且包括被配置成調製光的主動區;第二波導,佈置在所述基底之上,且光學耦合到所述第一波導;第一介電結構,佈置在所述第一波導及所述第二波導之上;加熱器結構,嵌置在所述第一介電結構內且上覆在所述第一波導的所述主動區上,其中所述加熱器結構包括:上部導電本體,上覆在所述第一波導的所述主動區正上方;以及加熱器柱結構,從所述上部導電本體連續延伸到所述第一波導的上表面之下的位置,其 中所述第一波導橫向位於所述加熱器柱結構的多個內側壁之間,其中所述第一波導相對於所述加熱器柱結構的所述多個內側壁橫向偏移非零距離。在實施例中,所述加熱器柱結構包括上部柱結構及在所述上部柱結構之下的下部柱結構,其中所述下部柱結構包含與所述第一波導相同的材料。在實施例中,所述下部柱結構的底表面與所述第一波導的底表面對齊,且所述下部柱結構的頂表面與所述第一波導的頂表面對齊。在實施例中,所述上部柱結構包括加熱器導線及在所述加熱器導線之下的加熱器通孔,其中所述加熱器導線直接接觸所述上部導電本體。在實施例中,所述上部柱結構具有第一熱導率,且所述下部柱結構具有小於所述第一熱導率的第二熱導率。在實施例中,所述第一介電結構包含熱導率比所述加熱器結構的熱導率小的介電材料。在實施例中,所述加熱器柱結構包括第一柱段及第二柱段,其中所述第一柱段及所述第二柱段設置在所述第一波導的相對兩側上,使得所述第一波導橫向間隔在所述第一柱段與所述第二柱段之間。在實施例中,所述上部導電本體從所述第一柱段連續地橫向延伸到所述第二柱段。在實施例中,所述加熱器柱結構與所述第一波導之間的最小距離小於所述上部導電本體與所述第一波導之間的最小距離。
在一些實施例中,本申請提供一種用於形成調製器裝置的方法,所述方法包括:在基底之上形成第一波導;在所述基底之上形成下部柱結構,其中所述第一波導橫向間隔在所述下部柱 結構的多個內側壁之間;在所述第一波導及所述下部柱結構之上沉積介電結構;在所述下部柱結構之上形成上部柱結構,其中所述上部柱結構嵌置在所述介電結構內;以及沿著所述介電結構的上表面及所述上部柱結構的上表面形成上部導電本體,從而界定加熱器結構,其中所述加熱器結構包括所述下部柱結構、所述上部柱結構及所述上部導電本體,其中所述上部導電本體上覆在所述第一波導正上方。在實施例中,形成所述第一波導及所述下部柱結構包括:在所述基底之上形成裝置層,其中所述裝置層包含與所述基底相同的材料;以及對所述裝置層進行圖案化,從而界定所述第一波導及所述下部柱結構,其中所述第一波導及所述下部柱結構是同時形成。在實施例中,方法進一步包括:對所述第一波導執行離子植入製程,以在所述第一波導內界定第一摻雜區及第二摻雜區,其中所述第一摻雜區包括第一摻雜類型,且所述第二摻雜區包括與所述第一摻雜類型相反的第二摻雜類型。
以上內容概述了若干實施例的特徵以使所屬領域中的技術人員可更好地理解本發明的各方面。所屬領域中的技術人員應瞭解,他們可易於使用本發明作為基礎來設計或修改其他製程及結構以施行本文所介紹實施例的相同目的及/或實現本文所介紹實施例的相同優點。所屬領域中的技術人員還應認識到,此種等效構造並不背離本發明的精神及範圍,且在不背離本發明的精神及範圍的條件下,他們可對本文作出各種改變、替代及變更。
100:調製器裝置
101:輸入端子
103:輸出端子
107:入射光
108:加熱器柱結構
109:出射光
110:上部導電本體
111:加熱器結構
112:第一波導
112a:第一摻雜區
112b:第二摻雜區
112i:第一輸入區
112o:第一輸出區
115:第二波導
115i:第二輸入區
115o:第二輸出區

Claims (10)

  1. 一種調製器裝置,包括:輸入端子,被配置成接收入射光;第一波導,具有第一輸入區及第一輸出區,其中所述第一輸入區耦合到所述輸入端子;第二波導,光學耦合到所述第一波導,其中所述第二波導具有第二輸入區及第二輸出區,其中所述第二輸入區耦合到所述輸入端子;輸出端子,被配置成提供基於所述入射光而調製的出射光,其中所述輸出端子耦合到所述第一波導的所述第一輸出區及所述第二波導的所述第二輸出區;以及加熱器結構,上覆在所述第一波導上,其中所述加熱器結構的底表面與所述第一波導的底表面對齊,其中所述第一波導橫向間隔在所述加熱器結構的多個側壁之間。
  2. 如請求項1所述的調製器裝置,其中所述加熱器結構包括:上部導電本體,上覆在所述第一波導正上方;以及加熱器柱結構,從所述上部導電本體的下表面連續延伸到與所述第一波導的所述底表面對齊的位置。
  3. 如請求項2所述的調製器裝置,其中所述加熱器柱結構的下部部分及所述第一波導包含相同的材料。
  4. 如請求項2所述的調製器裝置,其中所述上部導電本體包含第一材料,且所述加熱器柱結構包含與所述第一材料不同的第二材料。
  5. 如請求項1所述的調製器裝置,其中所述第一波導包括第一摻雜區及鄰接所述第一摻雜區的第二摻雜區,其中所述第一摻雜區包括第一摻雜類型,且所述第二摻雜區包括與所述第一摻雜類型相反的第二摻雜類型。
  6. 一種調製器裝置,包括:第一波導,佈置在基底之上,且包括被配置成調製光的主動區;第二波導,佈置在所述基底之上,且光學耦合到所述第一波導;第一介電結構,佈置在所述第一波導及所述第二波導之上;加熱器結構,嵌置在所述第一介電結構內且上覆在所述第一波導的所述主動區上,其中所述加熱器結構包括:上部導電本體,上覆在所述第一波導的所述主動區正上方;以及加熱器柱結構,從所述上部導電本體連續延伸到所述第一波導的上表面之下的位置,其中所述第一波導橫向位於所述加熱器柱結構的多個內側壁之間,其中所述第一波導相對於所述加熱器柱結構的所述多個內側壁橫向偏移非零距離。
  7. 如請求項6所述的調製器裝置,其中所述第一介電結構包含熱導率比所述加熱器結構的熱導率小的介電材料。
  8. 如請求項6所述的調製器裝置,其中所述加熱器柱結構與所述第一波導之間的最小距離小於所述上部導電本體與所述第一波導之間的最小距離。
  9. 一種用於形成調製器裝置的方法,所述方法包括:在基底之上形成第一波導;在所述基底之上形成下部柱結構,其中所述第一波導橫向間隔在所述下部柱結構的多個內側壁之間;在所述第一波導及所述下部柱結構之上沉積介電結構;在所述下部柱結構之上形成上部柱結構,其中所述上部柱結構嵌置在所述介電結構內;以及沿著所述介電結構的上表面及所述上部柱結構的上表面形成上部導電本體,從而界定加熱器結構,其中所述加熱器結構包括所述下部柱結構、所述上部柱結構及所述上部導電本體,其中所述上部導電本體上覆在所述第一波導正上方。
  10. 如請求項9所述的方法,其中形成所述第一波導及所述下部柱結構包括:在所述基底之上形成裝置層,其中所述裝置層包含與所述基底相同的材料;以及對所述裝置層進行圖案化,從而界定所述第一波導及所述下部柱結構,其中所述第一波導及所述下部柱結構是同時形成。
TW109113238A 2019-10-30 2020-04-21 調製器裝置及其形成方法 TWI718052B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962927850P 2019-10-30 2019-10-30
US62/927,850 2019-10-30
US16/733,488 US11209673B2 (en) 2019-10-30 2020-01-03 Heater structure configured to improve thermal efficiency in a modulator device
US16/733,488 2020-01-03

Publications (2)

Publication Number Publication Date
TWI718052B true TWI718052B (zh) 2021-02-01
TW202117375A TW202117375A (zh) 2021-05-01

Family

ID=75688940

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113238A TWI718052B (zh) 2019-10-30 2020-04-21 調製器裝置及其形成方法

Country Status (2)

Country Link
KR (1) KR102435768B1 (zh)
TW (1) TWI718052B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044128A1 (en) * 2001-10-09 2008-02-21 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPICs) AND OPTICAL TRANSPORT NETWORK SYSTEM EMPLOYING TxPICs
JP2008249790A (ja) * 2007-03-29 2008-10-16 Sumitomo Osaka Cement Co Ltd 光導波路素子、及び光導波路素子の温度クロストーク抑止方法
WO2009088089A1 (ja) * 2008-01-10 2009-07-16 Nippon Telegraph And Telephone Corporation 光遅延干渉回路
CN105388637A (zh) * 2015-12-17 2016-03-09 东南大学 一种基于介质沉积型表面等离子波导的soi基mzi型1×2热光开关
CN107037532A (zh) * 2017-06-15 2017-08-11 天津大学 长周期波导光栅及波导制备方法、光调制器及光调制方法
US20170307810A1 (en) * 2016-04-20 2017-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
TW201827874A (zh) * 2015-03-12 2018-08-01 美商山姆科技公司 包含矽光晶片和耦合器晶片的光學模組
CN109738989A (zh) * 2019-03-01 2019-05-10 苏州科沃微电子有限公司 基于二氧化硅平面光波导的2×2集成光开关及制造方法
US20190179078A1 (en) * 2017-11-03 2019-06-13 Pacific Biosciences Of California, Inc. Systems, devices, and methods for improved optical waveguide transmission and alignment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954561B1 (en) * 2001-07-16 2005-10-11 Applied Materials Inc Methods for forming thermo-optic switches, routers and attenuators
KR101683543B1 (ko) * 2010-02-08 2016-12-07 삼성전자 주식회사 벌크 실리콘 기판을 사용하는 변조기
US9122085B2 (en) * 2010-10-07 2015-09-01 Alcatel Lucent Thermally controlled semiconductor optical waveguide
US8466054B2 (en) 2010-12-13 2013-06-18 Io Semiconductor, Inc. Thermal conduction paths for semiconductor structures
US8559769B2 (en) * 2011-01-27 2013-10-15 Alcatel Lucent All-optical phase shifter in silicon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044128A1 (en) * 2001-10-09 2008-02-21 Infinera Corporation TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPICs) AND OPTICAL TRANSPORT NETWORK SYSTEM EMPLOYING TxPICs
JP2008249790A (ja) * 2007-03-29 2008-10-16 Sumitomo Osaka Cement Co Ltd 光導波路素子、及び光導波路素子の温度クロストーク抑止方法
WO2009088089A1 (ja) * 2008-01-10 2009-07-16 Nippon Telegraph And Telephone Corporation 光遅延干渉回路
TW201827874A (zh) * 2015-03-12 2018-08-01 美商山姆科技公司 包含矽光晶片和耦合器晶片的光學模組
CN105388637A (zh) * 2015-12-17 2016-03-09 东南大学 一种基于介质沉积型表面等离子波导的soi基mzi型1×2热光开关
US20170307810A1 (en) * 2016-04-20 2017-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
CN107037532A (zh) * 2017-06-15 2017-08-11 天津大学 长周期波导光栅及波导制备方法、光调制器及光调制方法
US20190179078A1 (en) * 2017-11-03 2019-06-13 Pacific Biosciences Of California, Inc. Systems, devices, and methods for improved optical waveguide transmission and alignment
CN109738989A (zh) * 2019-03-01 2019-05-10 苏州科沃微电子有限公司 基于二氧化硅平面光波导的2×2集成光开关及制造方法

Also Published As

Publication number Publication date
TW202117375A (zh) 2021-05-01
KR20210053138A (ko) 2021-05-11
KR102435768B1 (ko) 2022-08-23

Similar Documents

Publication Publication Date Title
US10656442B2 (en) Semiconductor device and method of manufacturing same
US20180143462A1 (en) Efficient Thermo-Optic Phase Shifters Using Multi-Pass Heaters
US20190013452A1 (en) Methods and apparatus providing thermal isolation of photonic devices
TWI778399B (zh) 積體晶片及其形成方法
TWI480607B (zh) 電子/光子積體電路架構及其製造方法
CN105428431A (zh) 电介质平板波导的硅界面
US11226506B2 (en) Heater structure with a gas-filled isolation structure to improve thermal efficiency in a modulator device
US20120082412A1 (en) Communication Methods, Methods of Forming an Interconnect, Signal Interconnects, Integrated Circuit Structures, Circuits, and Data Apparatuses
US10553734B2 (en) Semiconductor device and manufacturing method thereof
US11714299B2 (en) Heater structure configured to improve thermal efficiency in a modulator device
CN106537202B (zh) 光学器件上的部件的温度控制
TWI718052B (zh) 調製器裝置及其形成方法
US10416382B2 (en) Semiconductor device
US10895683B1 (en) Semiconductor device
JP2017049504A (ja) 半導体装置およびその製造方法
US10416481B2 (en) Semiconductor device
US11698489B1 (en) Photonic package device and method for fabricating the same
US20230418002A1 (en) Light deflection structure to increase optical coupling
US11892681B2 (en) Fiber to chip coupler and method of making the same
US11908765B2 (en) Semiconductor structure with heating element
US20230384527A1 (en) Method of making photonic device
TW202245363A (zh) 半導體結構、光電元件及其製造方法
JP2020144211A (ja) 半導体装置及び半導体装置の製造方法