TWI717250B - Semiconductor device and electrostatic discharge protection method - Google Patents

Semiconductor device and electrostatic discharge protection method Download PDF

Info

Publication number
TWI717250B
TWI717250B TW109111511A TW109111511A TWI717250B TW I717250 B TWI717250 B TW I717250B TW 109111511 A TW109111511 A TW 109111511A TW 109111511 A TW109111511 A TW 109111511A TW I717250 B TWI717250 B TW I717250B
Authority
TW
Taiwan
Prior art keywords
region
source
electrostatic discharge
voltage
power supply
Prior art date
Application number
TW109111511A
Other languages
Chinese (zh)
Other versions
TW202139412A (en
Inventor
王世鈺
黃文聰
徐誌緯
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW109111511A priority Critical patent/TWI717250B/en
Application granted granted Critical
Publication of TWI717250B publication Critical patent/TWI717250B/en
Publication of TW202139412A publication Critical patent/TW202139412A/en

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

The present disclosure relates to a semiconductor device, including a first source/drain region, a second source/drain region, a base region, a first electrostatic discharge region and a second electrostatic discharge region. The first source/drain region is configured to receive a first power voltage. The second source/drain region is configured to receive a second power voltage. The first source/drain region and the second source/drain region are formed on the base region. The first electrostatic discharge region includes a first doped region of a first type and a first well of a second type. The first doped region is configured to receive the second power voltage, and formed in the first well. The second electrostatic discharge region includes a second doped region of the first type and a second well of the second type. The second doped region is configured to receive the first power voltage, and formed in the second well. The first source/drain region and the second source/drain region are disposed between the first electrostatic discharge region and the second electrostatic discharge region.

Description

半導體元件及靜電放電防護方法Semiconductor components and electrostatic discharge protection methods

本揭示內容關於一種半導體元件及靜電放電防護方法,特別是能將靜電從半導體元件洩放至外界之技術。The present disclosure relates to a semiconductor device and an electrostatic discharge protection method, especially a technology that can discharge static electricity from the semiconductor device to the outside world.

在半導體元件設計上,由於人體放電或機器放電的因素,靜電放電造成的電流容易對電路內部造成損害。因此,半導體元件中需要設置靜電放電防護電路,達到靜電保護的目的。In the design of semiconductor components, due to human body discharge or machine discharge, the current caused by electrostatic discharge is likely to cause damage to the circuit. Therefore, an electrostatic discharge protection circuit needs to be provided in the semiconductor element to achieve the purpose of electrostatic protection.

本揭示內容之一種態樣為半導體元件,包括第一源/汲極區、第二源/汲極區、基極區、第一靜電放電區及第二靜電放電區。第一源/汲極區用以接收第一電源電壓。第二源/汲極區用以接收第二電源電壓。第一源/汲極區及第二源/汲極區係形成於基極區上。第一靜電放電區包含第一型之第一摻雜區及第二型之第一井區。第一摻雜區用以接收第二電源電壓,且形成於第一井區中。第二靜電放電區包含第一型之第二摻雜區及第二型之第二井區。第二摻雜區用以接收第一電源電壓,且形成於第二井區中。第一源/汲極區及該第二源/汲極區係設置於第一靜電放電區及第二靜電放電區之間。One aspect of the present disclosure is a semiconductor device including a first source/drain region, a second source/drain region, a base region, a first electrostatic discharge region, and a second electrostatic discharge region. The first source/drain region is used for receiving the first power voltage. The second source/drain region is used for receiving the second power voltage. The first source/drain region and the second source/drain region are formed on the base region. The first electrostatic discharge region includes a first doped region of a first type and a first well region of a second type. The first doped region is used for receiving the second power supply voltage and is formed in the first well region. The second electrostatic discharge region includes a first-type second doped region and a second-type second well region. The second doped region is used for receiving the first power voltage and is formed in the second well region. The first source/drain region and the second source/drain region are arranged between the first electrostatic discharge region and the second electrostatic discharge region.

本揭示內容之另一態樣為靜電放電防護方法,包含下列步驟:導通第一型之第一摻雜區至第二型之第一源/汲極區間的第一靜電放電路徑。第一型之基極區及第二型之第一井區係耦接於第一摻雜區及第一源/汲極區之間。導通第一型之第二摻雜區至第二型之第二源/汲極區之第二靜電放電路徑。基極區及第二型之第二井區係耦接於第二摻雜區及第二源/汲極區之間。Another aspect of the present disclosure is an electrostatic discharge protection method, which includes the following steps: conducting a first electrostatic discharge path from the first doped region of the first type to the first source/drain region of the second type. The base region of the first type and the first well region of the second type are coupled between the first doped region and the first source/drain region. A second electrostatic discharge path connecting the second doped region of the first type to the second source/drain region of the second type. The base region and the second-type second well region are coupled between the second doped region and the second source/drain region.

本揭示內容之一種態樣為半導體元件,包含電壓控制元件及第一控制電路。電壓控制元件包含第一源/汲極區、第二源/汲極區及閘極區。第一源/汲極區用以接收第一電源電壓。第二源/汲極區用以接收第二電源電壓。第一控制電路包含接收電路及控制開關。接收電路用以接收第一電源電壓及第二電源電壓,且接收電路還用以根據第一電源電壓及第二電源電壓中的較高者輸出第一控制電壓。控制開關用以響應於第一電源電壓而導通,以將第一控制電壓輸出至電壓控制元件之閘極區。One aspect of the present disclosure is a semiconductor device including a voltage control device and a first control circuit. The voltage control element includes a first source/drain region, a second source/drain region, and a gate region. The first source/drain region is used for receiving the first power voltage. The second source/drain region is used for receiving the second power voltage. The first control circuit includes a receiving circuit and a control switch. The receiving circuit is used for receiving the first power supply voltage and the second power supply voltage, and the receiving circuit is used for outputting the first control voltage according to the higher of the first power supply voltage and the second power supply voltage. The control switch is used for turning on in response to the first power supply voltage to output the first control voltage to the gate region of the voltage control element.

本揭示內容係透過半導體元件內的雙向靜電放電路徑洩放靜電放電電流。同時,透過第一控制電路,將能確保半導體元件於關閉狀態下能完全關斷,而不會產生漏電路徑。The present disclosure is to discharge the electrostatic discharge current through the bidirectional electrostatic discharge path in the semiconductor element. At the same time, through the first control circuit, it can be ensured that the semiconductor element can be completely turned off in the off state, and no leakage path will be generated.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。Hereinafter, multiple embodiments of the present invention will be disclosed in the form of drawings. For clear description, many practical details will be described in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, in order to simplify the drawings, some conventionally used structures and elements will be shown in a simple schematic manner in the drawings.

於本文中,當一元件被稱為「連接」或「耦接」時,可指「電性連接」或「電性耦接」。「連接」或「耦接」亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用「第一」、「第二」、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。In this text, when a component is referred to as “connected” or “coupled”, it can be referred to as “electrically connected” or “electrically coupled”. "Connected" or "coupled" can also be used to mean that two or more components cooperate or interact with each other. In addition, although terms such as “first”, “second”, etc. are used herein to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless clearly indicated by the context, the terms do not specifically refer to or imply order or sequence, nor are they used to limit the present invention.

本揭示內容係關於一種半導體元件及靜電放電防護方法。請參閱第1圖所示,半導體元件100包含電壓控制元件200。電壓控制元件200包含第一源/汲極區210、第二源/汲極區220、基極區230、第一靜電放電區250及第二靜電放電區260。第一源/汲極區210用以接收第一電源電壓VDD。第二源/汲極區220用以接收一第二電源電壓VDD0。第一源/汲極區210及第二源/汲極區220係形成於基極區230中。The present disclosure relates to a semiconductor device and a method for preventing electrostatic discharge. Please refer to FIG. 1, the semiconductor device 100 includes a voltage control device 200. The voltage control element 200 includes a first source/drain region 210, a second source/drain region 220, a base region 230, a first electrostatic discharge region 250, and a second electrostatic discharge region 260. The first source/drain region 210 is used for receiving the first power voltage VDD. The second source/drain region 220 is used for receiving a second power voltage VDD0. The first source/drain region 210 and the second source/drain region 220 are formed in the base region 230.

在部份實施例中,電壓控制元件200還包含閘極區240。閘極區240設置於第一源/汲極區210及第二源/汲極區220的上方,且位在第一源/汲極區210及第二源/汲極區220之間。在一些實施例中,第一源/汲極區210及第二源/汲極區220為P型摻雜區、基極區230為N型摻雜區。如此一來,第一源/汲極區210、第二源/汲極區220、基極區230及閘極區240可用以共同操作為P型金屬氧化物半導體場效電晶體(PMOS)。在一些實施例中,「源/汲極區」此一用語是指可作為源極區或是汲極區。舉例來說,當第一源/汲極區210作為P型金屬氧化物半導體場效電晶體的「源極」時,第二源/汲極區220作為P型金屬氧化物半導體場效電晶體的「汲極」。同理,當第一源/汲極區210作為P型金屬氧化物半導體場效電晶體的「汲極」時,第二源/汲極區220作為P型金屬氧化物半導體場效電晶體的「源極」。In some embodiments, the voltage control device 200 further includes a gate region 240. The gate region 240 is disposed above the first source/drain region 210 and the second source/drain region 220 and is located between the first source/drain region 210 and the second source/drain region 220. In some embodiments, the first source/drain region 210 and the second source/drain region 220 are P-type doped regions, and the base region 230 is an N-type doped region. In this way, the first source/drain region 210, the second source/drain region 220, the base region 230, and the gate region 240 can be used to jointly operate as a P-type metal oxide semiconductor field effect transistor (PMOS). In some embodiments, the term "source/drain region" refers to a source region or a drain region. For example, when the first source/drain region 210 is used as the "source" of the P-type metal oxide semiconductor field effect transistor, the second source/drain region 220 is used as the P-type metal oxide semiconductor field effect transistor. "Dip pole". Similarly, when the first source/drain region 210 is used as the "drain" of the P-type metal oxide semiconductor field effect transistor, the second source/drain region 220 is used as the "drain" of the P-type metal oxide semiconductor field effect transistor. "Source".

為清楚說明本案技術,下述實施例係以第一源/汲極區210、第二源/汲極區220、基極區230及閘極區240共同操作為P型金屬氧化物半導體場效電晶體為例來做說明,但不以此為限。換言之,在其他部份實施例中,第一源/汲極區210、第二源/汲極區220、基極區230及閘極區240亦可做不同配置,以實現N型金屬氧化物半導體場效電晶體。To clearly illustrate the technology of the present case, the following embodiment uses the first source/drain region 210, the second source/drain region 220, the base region 230 and the gate region 240 to jointly operate as a P-type metal oxide semiconductor field effect. The transistor is taken as an example for illustration, but it is not limited to this. In other words, in some other embodiments, the first source/drain region 210, the second source/drain region 220, the base region 230, and the gate region 240 can also be configured in different configurations to realize N-type metal oxide Semiconductor field effect transistor.

在操作上,當電壓控制元件200運作於電晶體的「線性區」時,根據閘極區240所接收到的電壓值的不同,電壓控制元件200具有不同的阻抗特性,而第一源/汲極區210及第二源/汲極區220間的跨壓也會隨之改變。在部份實施例中,半導體元件100應用於線性穩壓器(Low dropout regulator,LDO),在操作上,電壓控制元件200用以接收第一電源電壓VDD,且輸出第二電源電壓VDD0,且第二電源電壓VDD0將略低於第一電源電壓VDD,但本揭示內容的應用並不以此為限。In operation, when the voltage control element 200 operates in the "linear region" of the transistor, the voltage control element 200 has different impedance characteristics according to the voltage value received by the gate region 240, and the first source/drain The voltage across the pole region 210 and the second source/drain region 220 will also change accordingly. In some embodiments, the semiconductor device 100 is applied to a low dropout regulator (LDO). In operation, the voltage control device 200 is used to receive the first power supply voltage VDD and output the second power supply voltage VDD0, and The second power supply voltage VDD0 will be slightly lower than the first power supply voltage VDD, but the application of the present disclosure is not limited to this.

如第1圖所示,P型金屬氧化物半導體場效電晶體係位於第一靜電放電區250及第二靜電放電區260之間。意即,第一源/汲極區210及第二源/汲極區220係設置於第一靜電放電區250及第二靜電放電區260之間,藉此與第一靜電放電區250及第二靜電放電區260分別形成靜電放電路徑。As shown in FIG. 1, the P-type metal oxide semiconductor field effect transistor system is located between the first electrostatic discharge region 250 and the second electrostatic discharge region 260. That is, the first source/drain region 210 and the second source/drain region 220 are disposed between the first ESD region 250 and the second ESD region 260, thereby being connected to the first ESD region 250 and the second ESD region. The two electrostatic discharge regions 260 respectively form an electrostatic discharge path.

第一靜電放電區250包含N型之第一摻雜區251及P型之一第一井區252。第一摻雜區251用以接收第二電源電壓VDD0,且形成於第一井區252中。第二靜電放電區260包含N型之第二摻雜區261及P型之第二井區262。第二摻雜區261用以接收第一電源電壓VDD,且形成於第二井區262中。The first electrostatic discharge region 250 includes an N-type first doped region 251 and a P-type first well region 252. The first doped region 251 is used to receive the second power supply voltage VDD0 and is formed in the first well region 252. The second electrostatic discharge region 260 includes an N-type second doped region 261 and a P-type second well region 262. The second doped region 261 is used to receive the first power supply voltage VDD and is formed in the second well region 262.

如第1圖所示,第一源/汲極區210、基極區230、第一井區252及第一摻雜區251形成「P-N-P-N」的半導體結構。該半導體結構可等效為矽控整流器(Silicon Controlled Rectifier,SCR),作為第一靜電放電路徑SCR1。意即,在靜電放電狀態中,第一靜電放電電流將從第一源/汲極區210輸入半導體元件100,且從第一靜電放電區250輸出。As shown in FIG. 1, the first source/drain region 210, the base region 230, the first well region 252, and the first doped region 251 form a "P-N-P-N" semiconductor structure. The semiconductor structure can be equivalent to a silicon controlled rectifier (SCR) as the first electrostatic discharge path SCR1. That is, in the electrostatic discharge state, the first electrostatic discharge current will be input from the first source/drain region 210 to the semiconductor device 100 and output from the first electrostatic discharge region 250.

同理,第二源/汲極區220、基極區230、第二井區262及第二摻雜區261同樣能形成SCR結構及第二靜電放電路徑SCR2。在靜電放電狀態中,第二靜電放電電流將從第二源/汲極區220輸入半導體元件100,且從第二靜電放電區260輸出。In the same way, the second source/drain region 220, the base region 230, the second well region 262, and the second doped region 261 can also form an SCR structure and a second electrostatic discharge path SCR2. In the electrostatic discharge state, the second electrostatic discharge current will be input to the semiconductor device 100 from the second source/drain region 220 and output from the second electrostatic discharge region 260.

在部份實施例中,第一井區252及第二井區262係形成於基極區230中。在一些實施例中,基極區230可以N型的摻雜井區來實現。In some embodiments, the first well region 252 and the second well region 262 are formed in the base region 230. In some embodiments, the base region 230 may be implemented as an N-type doped well region.

請參閱第1圖所示,在部份實施例中,半導體元件100還包含第一控制電路300。第一控制電路300包含接收電路310及控制開關320。接收電路310用以接收第一電源電壓VDD及第二電源電壓VDD0。接收電路310還用以根據第一電源電壓VDD及第二電源電壓VDD0中較高的一者輸出第一控制電壓V1。控制開關320用以響應於第一電源電壓VDD而導通,以將第一控制電壓V1輸出至該電壓控制元件200之閘極區240。在該實施例中,控制開關320為P型電晶體,因此,當第一電源電壓VDD為高電壓位準時,控制開關320將依據第一電源電壓VDD被關斷。反之,當第一電源電壓VDD為低高電壓位準時,控制開關320將依據第一電源電壓VDD被導通。Please refer to FIG. 1. In some embodiments, the semiconductor device 100 further includes a first control circuit 300. The first control circuit 300 includes a receiving circuit 310 and a control switch 320. The receiving circuit 310 is used for receiving the first power supply voltage VDD and the second power supply voltage VDD0. The receiving circuit 310 is further used for outputting the first control voltage V1 according to the higher one of the first power supply voltage VDD and the second power supply voltage VDD0. The control switch 320 is used to turn on in response to the first power supply voltage VDD to output the first control voltage V1 to the gate region 240 of the voltage control element 200. In this embodiment, the control switch 320 is a P-type transistor. Therefore, when the first power supply voltage VDD is at a high voltage level, the control switch 320 will be turned off according to the first power supply voltage VDD. Conversely, when the first power supply voltage VDD is at a low and high voltage level, the control switch 320 will be turned on according to the first power supply voltage VDD.

在部份實施例中,半導體元件100還包含第二控制電路400。第二控制電路400用以傳遞第二控制電壓V2至閘極區240,以控制閘極區240上之電壓值。在一些實施例中,第二控制電路400為線性穩壓器內之運作電路,其包含誤差放大器(error amplifier,或稱誤差檢測用運算放大器)(未繪示)及反饋電路(未繪示),分別耦接於第一電源電壓VDD及第二電源電壓VDD0。在操作上,第二控制電路400用以檢測第二電源電壓VDD0的大小,以動態調整輸出至閘極區240的第二控制電壓V2,藉此調整電壓控制元件200的阻抗特性。由於本領域人士能理解線性穩壓器之電路結構與原理,故在此不另贅述。In some embodiments, the semiconductor device 100 further includes a second control circuit 400. The second control circuit 400 is used for transmitting the second control voltage V2 to the gate region 240 to control the voltage value on the gate region 240. In some embodiments, the second control circuit 400 is an operating circuit in a linear regulator, which includes an error amplifier (error amplifier, or operational amplifier for error detection) (not shown) and a feedback circuit (not shown) , Respectively coupled to the first power supply voltage VDD and the second power supply voltage VDD0. In operation, the second control circuit 400 is used to detect the magnitude of the second power supply voltage VDD0 to dynamically adjust the second control voltage V2 output to the gate region 240, thereby adjusting the impedance characteristic of the voltage control element 200. Since those skilled in the art can understand the circuit structure and principle of the linear regulator, it will not be repeated here.

在一些實施例中,第一控制電路300係用以在半導體元件100無須運作時,確保電壓控制元件200被完全關斷。據此,將可避免電壓控制元件200中的二極體結構形成漏電路徑。在此分別說明當半導體元件100於不同工作狀態下時,第一控制電路300的運作方式。In some embodiments, the first control circuit 300 is used to ensure that the voltage control device 200 is completely turned off when the semiconductor device 100 does not need to operate. Accordingly, it is possible to prevent the diode structure in the voltage control element 200 from forming a leakage path. The operation modes of the first control circuit 300 when the semiconductor device 100 is in different operating states are respectively described here.

請參閱第1及2圖所示,在部份實施例中,半導體元件100係應用於第一積體電路Die1上,且第一積體電路Die1之輸入輸出焊墊(I/O Pad)P1及第二積體電路Die2之輸入輸出焊墊P2係相互耦接共用。在「正常運作狀態」下,半導體元件100接收第一電源電壓VDD,且透過電壓控制元件200,輸出電壓略低於第一電源電壓VDD的第二電源電壓VDD0。如上所述,控制開關320係響應於第一電源電壓VDD的高高電壓位準而被關斷。因此,在「正常運作狀態」下,第一控制電路300並不會影響電壓控制元件200的運作。此時,電壓控制元件200的阻抗特性將根據第二控制電路400輸出的第二控制電壓V2作改變。Please refer to Figures 1 and 2. In some embodiments, the semiconductor device 100 is applied to the first integrated circuit Die1, and the I/O Pad P1 of the first integrated circuit Die1 And the input/output pad P2 of the second integrated circuit Die2 are mutually coupled and shared. In the "normal operation state", the semiconductor device 100 receives the first power supply voltage VDD, and through the voltage control device 200, the output voltage is slightly lower than the second power supply voltage VDD0 of the first power supply voltage VDD. As described above, the control switch 320 is turned off in response to the high voltage level of the first power supply voltage VDD. Therefore, in the "normal operation state", the first control circuit 300 does not affect the operation of the voltage control element 200. At this time, the impedance characteristic of the voltage control element 200 will be changed according to the second control voltage V2 output by the second control circuit 400.

另一方面,在「關閉狀態」下,此時第一電源電壓VDD可能具有接地電位或被控制於低電壓位準,以減少電力消耗。然而,如第2圖所示,若此時第二積體電路Die2處於運作狀態,致使輸入輸出焊墊P2上具有高電壓,則電壓控制元件200必須完全關斷,否則輸入輸出焊墊P2上的高電壓將會傳遞至輸入輸出焊墊P1,形成具有高電壓位準的第二電源電壓VDD0,而反向導通電壓控制元件200(如第2圖中穿越電壓控制元件200的虛線路徑),損害半導體元件100或者影響第二積體電路Die2的訊號完整性。本揭示內容正是透過第一控制電路300的操作,確保電壓控制元件200在「關閉狀態」時被完全關斷,具體如下所述。On the other hand, in the “off state”, at this time, the first power supply voltage VDD may have a ground potential or be controlled at a low voltage level to reduce power consumption. However, as shown in Figure 2, if the second integrated circuit Die2 is in operation at this time, resulting in a high voltage on the input and output pad P2, the voltage control element 200 must be completely turned off, otherwise the input and output pad P2 The high voltage will be transmitted to the input and output pad P1 to form a second power supply voltage VDD0 with a high voltage level, and the reverse conduction voltage control element 200 (such as the dashed path across the voltage control element 200 in Figure 2), Damage to the semiconductor device 100 or affect the signal integrity of the second integrated circuit Die2. The present disclosure is to ensure that the voltage control element 200 is completely turned off in the "off state" through the operation of the first control circuit 300, as described below.

承上,如第1圖所示,在「關閉狀態」時,第二電源電壓VDD0大於第一電源電壓VDD,且控制開關320將響應於第一電源電壓VDD的低電壓位準而導通。因此,第一控制電路300會輸出禁能電壓(亦即具有相對高電壓位準的第二電源電壓VDD0)至閘極區240。此時,由於第二源/汲極區220及閘極區240皆被施加相同的第二電源電壓VDD0,故電壓控制元件200內部將不會形成漏電流路徑。在部份實施例中,第一控制電路300還會輸出禁能電壓至電壓控制元件200的基極區230。In conclusion, as shown in Figure 1, in the "off state", the second power supply voltage VDD0 is greater than the first power supply voltage VDD, and the control switch 320 will be turned on in response to the low voltage level of the first power supply voltage VDD. Therefore, the first control circuit 300 outputs the disable voltage (that is, the second power supply voltage VDD0 with a relatively high voltage level) to the gate region 240. At this time, since the second source/drain region 220 and the gate region 240 are both applied with the same second power supply voltage VDD0, no leakage current path will be formed inside the voltage control element 200. In some embodiments, the first control circuit 300 also outputs a disable voltage to the base region 230 of the voltage control element 200.

此外,在「靜電放電狀態」下,靜電放電電壓可能從第一源/汲極區210或第二源/汲極區220輸入至電壓控制元件200。如前所述,透過電壓控制元件200內的兩個SCR結構,將能形成不同方向的靜電放電路徑(如:SCR1及SCR2),確保靜電放電電壓不會損害到半導體元件100。In addition, in the “electrostatic discharge state”, the electrostatic discharge voltage may be input to the voltage control element 200 from the first source/drain region 210 or the second source/drain region 220. As mentioned above, through the two SCR structures in the voltage control device 200, electrostatic discharge paths (such as SCR1 and SCR2) in different directions can be formed to ensure that the electrostatic discharge voltage will not damage the semiconductor device 100.

在部份實施例中,第一控制電路300還包含儲能元件C1。在一些實施例中,儲能元件C1為電容器。基極區230中形成有N型的重摻雜區,作為緩衝區231。儲能元件C1耦接於緩衝區231。在「靜電放電狀態」下,儲能元件C1與第一控制電路300的內部等效電阻將形成一個延遲電路,使基極區230維持在浮接(floating)狀態。In some embodiments, the first control circuit 300 further includes an energy storage element C1. In some embodiments, the energy storage element C1 is a capacitor. An N-type heavily doped region is formed in the base region 230 as a buffer zone 231. The energy storage element C1 is coupled to the buffer zone 231. In the “electrostatic discharge state”, the internal equivalent resistance of the energy storage element C1 and the first control circuit 300 will form a delay circuit to maintain the base region 230 in a floating state.

在一些實施例中,緩衝區231的摻雜濃度係大於基極區230其他區域的摻雜濃度。如第1圖所示,當第一源/汲極區210或第二源/汲極區220接收靜電放電電壓時,靜電放電電壓會透過基極區230上的緩衝區231傳送至儲能元件C1,以使基極區230的電壓在延遲期間內仍保持浮接。在一些實施例中,上述延遲期間的長度係依據儲能元件C1及第一控制電路300的內部阻抗來決定,例如:100ns~1ms。In some embodiments, the doping concentration of the buffer zone 231 is greater than the doping concentration of other regions of the base region 230. As shown in Figure 1, when the first source/drain region 210 or the second source/drain region 220 receives the electrostatic discharge voltage, the electrostatic discharge voltage will be transferred to the energy storage device through the buffer 231 on the base region 230 C1, so that the voltage of the base region 230 remains floating during the delay period. In some embodiments, the length of the aforementioned delay period is determined according to the internal impedance of the energy storage element C1 and the first control circuit 300, for example, 100 ns to 1 ms.

在前述實施例中,儲能元件C1係透過重摻雜之緩衝區231耦接於基極區230。在其他實施例中,儲能元件C1亦可直接耦接於基極區230,以使基極區230在半導體元件100之「靜電放電狀態」時保持浮接。In the foregoing embodiment, the energy storage device C1 is coupled to the base region 230 through the heavily doped buffer 231. In other embodiments, the energy storage device C1 can also be directly coupled to the base region 230, so that the base region 230 remains floating when the semiconductor device 100 is in the "static discharge state".

在部份實施例中,接收電路310包含第一開關元件311及第二開關元件312。第一開關元件311用以響應於第一電源電壓VDD導通。第一開關元件311之第一端用以接收第二電源電壓VDD0,第一開關元件311之第二端耦接於控制開關320。第二開關元件312用以響應於第二電源電壓VDD0導通。第二開關元件312之第一端用以接收第一電源電壓VDD,第二開關元件312之第二端耦接於該控制開關320。此外,在該實施例中,第一開關元件311及第二開關元件312的基極係相互耦接。In some embodiments, the receiving circuit 310 includes a first switching element 311 and a second switching element 312. The first switching element 311 is used for turning on in response to the first power supply voltage VDD. The first terminal of the first switch element 311 is used to receive the second power voltage VDD0, and the second terminal of the first switch element 311 is coupled to the control switch 320. The second switching element 312 is used to turn on in response to the second power supply voltage VDD0. The first terminal of the second switch element 312 is used to receive the first power supply voltage VDD, and the second terminal of the second switch element 312 is coupled to the control switch 320. In addition, in this embodiment, the bases of the first switching element 311 and the second switching element 312 are coupled to each other.

請參閱第3圖所示,係本揭示內容的另一實施例。相較於第1圖,在該實施例中,第一靜電放電區250及第二靜電放電區260之位置相互對調,但在結構上仍與第1圖所示的結構實質上相同。Please refer to Figure 3, which is another embodiment of the present disclosure. Compared with FIG. 1, in this embodiment, the positions of the first electrostatic discharge region 250 and the second electrostatic discharge region 260 are reversed, but the structure is still substantially the same as the structure shown in FIG. 1.

請參閱第4圖所示,係本揭示內容的其他實施例。於第4圖中,與第1圖之實施例有關的相似元件係以相同的參考標號表示以便於理解,且相似元件之具體原理已於先前段落中詳細說明,若非與第4圖之元件間具有協同運作關係而必要介紹者,於此不再贅述。Please refer to FIG. 4, which is another embodiment of the present disclosure. In Figure 4, similar elements related to the embodiment in Figure 1 are denoted by the same reference numerals for ease of understanding, and the specific principles of the similar elements have been described in detail in the previous paragraphs, if not between the elements in Figure 4 Those who have a cooperative operation relationship and are necessary to introduce will not be repeated here.

在一些實施例中,上述第1圖的第一井區252及第二井區262係以一相同的摻雜井區來實現。相較於第1圖,如第4圖所示,半導體元件100包含P型之摻雜井區270,其中對應於上述第一井區252及第二井區262的井區結構係以摻雜井區270來實現。意即,摻雜井區270可作為第1圖中之第一井區252及第二井區262來實現對應的半導體結構。此外,如第4圖所示,基極區230亦形成於摻雜井區270中。In some embodiments, the first well region 252 and the second well region 262 of Figure 1 above are implemented by the same doped well region. Compared to Figure 1, as shown in Figure 4, the semiconductor device 100 includes a P-type doped well region 270, wherein the well region structure corresponding to the first well region 252 and the second well region 262 is doped Well area 270 to achieve. That is, the doped well region 270 can be used as the first well region 252 and the second well region 262 in Figure 1 to realize the corresponding semiconductor structure. In addition, as shown in FIG. 4, the base region 230 is also formed in the doped well region 270.

在部份實施例中,摻雜井區270中還形成有N型之第三井區251B及第四井區261B。如第4圖所示,第一摻雜區251A形成於第三井區251B中,且透過第三井區251B耦接摻雜井區270。第二摻雜區261A形成於第四井區261B中,且透過第四井區261B耦接摻雜井區270。透過第三井區251B及第四井區261B,將能縮短SCR結構中陽極到陰極的等效距離(如:N-P之間的距離),以提昇靜電放電電流的洩放速度。In some embodiments, an N-type third well 251B and a fourth well 261B are also formed in the doped well 270. As shown in FIG. 4, the first doped region 251A is formed in the third well region 251B, and is coupled to the doped well region 270 through the third well region 251B. The second doped region 261A is formed in the fourth well region 261B, and is coupled to the doped well region 270 through the fourth well region 261B. Through the third well area 251B and the fourth well area 261B, the equivalent distance between the anode and the cathode in the SCR structure (such as the distance between N-P) can be shortened to increase the discharge speed of the electrostatic discharge current.

第5圖係本揭示內容之靜電放電防護方法的流程圖。如第1圖及第5圖所示,在步驟S501中,在「關閉狀態下」,接收電路310接收第一電源電壓VDD或第二電源電壓VDD0,並根據第一電源電壓VDD及第二電源電壓VDD0中的較高的一者輸出第一控制電壓V1。在步驟S502中,控制開關320將第一控制電壓V1輸出至閘極區240,以關斷電壓控制元件200。例如:當第二電源電壓VDD0大於第一電源電壓VDD時,控制開關320將導通,且第一控制電壓V1將作為禁能電壓,使電壓控制元件200保持關斷。Figure 5 is a flow chart of the electrostatic discharge protection method of the present disclosure. As shown in Figures 1 and 5, in step S501, in the "off state", the receiving circuit 310 receives the first power supply voltage VDD or the second power supply voltage VDD0, and according to the first power supply voltage VDD and the second power supply The higher one of the voltages VDD0 outputs the first control voltage V1. In step S502, the control switch 320 outputs the first control voltage V1 to the gate region 240 to turn off the voltage control element 200. For example: when the second power supply voltage VDD0 is greater than the first power supply voltage VDD, the control switch 320 will be turned on, and the first control voltage V1 will be used as the disable voltage to keep the voltage control element 200 turned off.

在步驟S503中,在「正常運作狀態」下,控制開關320被第一電源電壓VDD關斷,且電壓控制元件200根據第二控制電路400輸出之第二控制電壓V2控制閘極區240上之電壓值。In step S503, in the "normal operation state", the control switch 320 is turned off by the first power supply voltage VDD, and the voltage control element 200 controls the gate region 240 according to the second control voltage V2 output by the second control circuit 400 Voltage value.

在步驟S504中,當半導體元件100處於「靜電放電狀態」,且第一源/汲極區210接收靜電放電電壓時,導通第一摻雜區251至第一源/汲極區210間的第一靜電放電路徑SCR1,使第一靜電放電電流從第一源/汲極區210流至第一靜電放電區250並輸出至電壓控制元件200外。In step S504, when the semiconductor device 100 is in the "electrostatic discharge state" and the first source/drain region 210 receives the electrostatic discharge voltage, the first doped region 251 to the first source/drain region 210 is turned on. An electrostatic discharge path SCR1 allows the first electrostatic discharge current to flow from the first source/drain region 210 to the first electrostatic discharge region 250 and output to the outside of the voltage control element 200.

在步驟S505中,當半導體元件100處於「靜電放電狀態」,且第二源/汲極區220接收靜電放電電壓時,導通第二摻雜區261至第二源/汲極區220之第二靜電放電路徑SCR2,使第二靜電放電電流從第二源/汲極區220流至第二靜電放電區260並輸出至電壓控制元件200外。In step S505, when the semiconductor device 100 is in the "electrostatic discharge state" and the second source/drain region 220 receives the electrostatic discharge voltage, the second doped region 261 to the second source/drain region 220 is turned on. The electrostatic discharge path SCR2 allows the second electrostatic discharge current to flow from the second source/drain region 220 to the second electrostatic discharge region 260 and output to the outside of the voltage control element 200.

請參閱第1及2圖所示,在此以另一角度說明本揭示內容之半導體元件100。在部份實施例中,半導體元件100包含電壓控制元件200、第一控制電路300及第二控制電路400。電壓控制元件200包含第一源/汲極區210、第二源/汲極區22及閘極區240。第一源/汲極區210用以接收第一電源電壓VDD。第二源/汲極區220用以接收第二電源電壓VDD0。Please refer to FIGS. 1 and 2 to illustrate the semiconductor device 100 of the present disclosure from another perspective. In some embodiments, the semiconductor device 100 includes a voltage control device 200, a first control circuit 300, and a second control circuit 400. The voltage control device 200 includes a first source/drain region 210, a second source/drain region 22 and a gate region 240. The first source/drain region 210 is used for receiving the first power voltage VDD. The second source/drain region 220 is used for receiving the second power voltage VDD0.

承上,第一控制電路300包含接收電路310及控制開關320。接收電路310用以接收第一電源電壓VDD及第二電源電壓VDD0,且接收電路310還用以根據第一電源電壓VDD及第二電源電壓VDD0中的較高的一者輸出第一控制電壓V1。控制開關320用以響應於第一電源電壓VDD而導通,以將第一控制電壓V1輸出至電壓控制元件200之閘極區240。第二控制電路400用以傳遞第二控制電壓V2至該閘極區240,以控制閘極區240上之電壓值。In summary, the first control circuit 300 includes a receiving circuit 310 and a control switch 320. The receiving circuit 310 is used for receiving the first power supply voltage VDD and the second power supply voltage VDD0, and the receiving circuit 310 is further used for outputting the first control voltage V1 according to the higher one of the first power supply voltage VDD and the second power supply voltage VDD0 . The control switch 320 is turned on in response to the first power supply voltage VDD to output the first control voltage V1 to the gate region 240 of the voltage control element 200. The second control circuit 400 is used to transmit the second control voltage V2 to the gate region 240 to control the voltage value on the gate region 240.

前述各實施例中的各項元件、方法步驟或技術特徵,係可相互結合,而不以本揭示內容中的文字描述順序或圖式呈現順序為限。The various elements, method steps, or technical features in the foregoing embodiments can be combined with each other, and are not limited to the order of description or presentation of figures in the present disclosure.

雖然本發明內容已以實施方式揭露如上,然其並非用以限定本發明內容,任何熟習此技藝者,在不脫離本發明內容之精神和範圍內,當可作各種更動與潤飾,因此本發明內容之保護範圍當視後附之申請專利範圍所界定者為準。Although the content of the present invention has been disclosed in the above embodiments, it is not intended to limit the content of the present invention. Anyone who is familiar with the art can make various changes and modifications without departing from the spirit and scope of the content of the present invention. Therefore, the present invention The scope of protection of the content shall be subject to the scope of the attached patent application.

100:半導體元件 200:電壓控制元件 210:第一源/汲極區 220:第二源/汲極區 230:基極區 231:緩衝區 240:閘極區 250:第一靜電放電區 251:第一摻雜區 251A:第一摻雜區 251B:第三井區 252:第一井區 260:第二靜電放電區 261:第二摻雜區 261A:第二摻雜區 261B:第四井區 262:第二井區 270:摻雜井區 300:第一控制電路 310:接收電路 311:第一開關元件 312:第二開關元件 320:控制開關 400:第二控制電路 VDD:第一電源電壓 VDD0:第二電源電壓 C1:儲能元件 SCR1:第一靜電放電路徑 SCR2:第二靜電放電路徑 Die1:第一積體電路 Die2:第二積體電路 V1:第一控制電壓 V2:第二控制電壓 P1:輸入輸出焊墊 P2:輸入輸出焊墊 S501~S505:步驟100: Semiconductor components 200: Voltage control element 210: first source/drain region 220: second source/drain region 230: base area 231: Buffer 240: gate area 250: The first electrostatic discharge zone 251: first doped region 251A: first doped region 251B: The third well area 252: The first well area 260: second electrostatic discharge zone 261: second doped region 261A: second doped region 261B: The fourth well area 262: Second Well Area 270: doped well 300: The first control circuit 310: receiving circuit 311: first switching element 312: second switching element 320: control switch 400: second control circuit VDD: first power supply voltage VDD0: second power supply voltage C1: Energy storage element SCR1: The first electrostatic discharge path SCR2: second electrostatic discharge path Die1: The first integrated circuit Die2: second integrated circuit V1: first control voltage V2: second control voltage P1: Input and output pads P2: Input and output pads S501~S505: steps

第1圖為根據本揭示內容之部分實施例所繪示的半導體元件的示意圖。 第2圖為根據本揭示內容之部分實施例的半導體元件應用於積體電路的示意圖。 第3圖為根據本揭示內容之其他實施例所繪示的半導體元件的示意圖。 第4圖為根據本揭示內容之其他實施例所繪示的半導體元件的示意圖。 第5圖為根據本揭示內容之部分實施例所繪示的靜電放電防護方法之流程圖。 FIG. 1 is a schematic diagram of a semiconductor device according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram of a semiconductor device applied to an integrated circuit according to some embodiments of the present disclosure. FIG. 3 is a schematic diagram of a semiconductor device according to other embodiments of the present disclosure. FIG. 4 is a schematic diagram of a semiconductor device according to other embodiments of the present disclosure. FIG. 5 is a flowchart of an electrostatic discharge protection method according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in the order of deposit institution, date and number) no Foreign hosting information (please note in the order of hosting country, institution, date and number) no

100:半導體元件 100: Semiconductor components

200:電壓控制元件 200: Voltage control element

210:第一源/汲極區 210: first source/drain region

220:第二源/汲極區 220: second source/drain region

230:基極區 230: base area

231:緩衝區 231: Buffer

240:閘極區 240: gate area

250:第一靜電放電區 250: The first electrostatic discharge zone

251:第一摻雜區 251: first doped region

252:第一井區 252: The first well area

260:第二靜電放電區 260: second electrostatic discharge zone

261:第二摻雜區 261: second doped region

262:第二井區 262: Second Well Area

300:第一控制電路 300: The first control circuit

310:接收電路 310: receiving circuit

311:第一開關元件 311: first switching element

312:第二開關元件 312: second switching element

320:控制開關 320: control switch

400:第二控制電路 400: second control circuit

VDD:第一電源電壓 VDD: first power supply voltage

VDD0:第二電源電壓 VDD0: second power supply voltage

C1:儲能元件 C1: Energy storage element

SCR1:第一靜電放電路徑 SCR1: The first electrostatic discharge path

SCR2:第二靜電放電路徑 SCR2: second electrostatic discharge path

V1:第一控制電壓 V1: first control voltage

V2:第二控制電壓 V2: second control voltage

Claims (10)

一種半導體元件,包括: 一第一源/汲極區,用以接收一第一電源電壓; 一第二源/汲極區,用以接收一第二電源電壓;及 一基極區,該第一源/汲極區及該第二源/汲極區係形成於該基極區上; 一第一靜電放電區,包含第一型之一第一摻雜區及一第二型之一第一井區,其中該第一摻雜區用以接收該第二電源電壓,且形成於該第一井區中;以及 一第二靜電放電區,包含第一型之一第二摻雜區及第二型之一第二井區,其中該第二摻雜區用以接收該第一電源電壓,且形成於該第二井區中,該第一源/汲極區及該第二源/汲極區係設置於該第一靜電放電區及該第二靜電放電區之間。 A semiconductor component, including: A first source/drain region for receiving a first power voltage; A second source/drain region for receiving a second power supply voltage; and A base region, the first source/drain region and the second source/drain region are formed on the base region; A first electrostatic discharge region includes a first doped region of a first type and a first well region of a second type, wherein the first doped region is used to receive the second power voltage and is formed in the In the first well area; and A second electrostatic discharge region includes a second doped region of the first type and a second well region of the second type, wherein the second doped region is used to receive the first power voltage and is formed in the first In the second well area, the first source/drain area and the second source/drain area are arranged between the first electrostatic discharge area and the second electrostatic discharge area. 如請求項1所述之半導體元件,其中當該第一源/汲極區接收一靜電放電電壓時,該第一源/汲極區、該基極區、該第一井區及該第一摻雜區形成一第一靜電放電路徑;當該第二源/汲極區接收一靜電放電電壓時,該第二源/汲極區、該基極區、該第二井區及該第二摻雜區形成一第二靜電放電路徑。The semiconductor device according to claim 1, wherein when the first source/drain region receives an electrostatic discharge voltage, the first source/drain region, the base region, the first well region, and the first The doped region forms a first electrostatic discharge path; when the second source/drain region receives an electrostatic discharge voltage, the second source/drain region, the base region, the second well region, and the second The doped region forms a second electrostatic discharge path. 如請求項1所述之半導體元件,其中該第一井區與該第二井區係以相同之一摻雜井區來實現,且該基極區係形成於該摻雜井區中。The semiconductor device according to claim 1, wherein the first well region and the second well region are realized by the same doped well region, and the base region is formed in the doped well region. 如請求項1所述之半導體元件,還包含一第一控制電路,該第一控制電路包含: 一接收電路,用以接收該第一電源電壓及該第二電源電壓,且該接收電路還用以根據該第一電源電壓及該第二電源電壓中的較高的一者輸出一第一控制電壓;以及 一控制開關,用以響應於該第一電源電壓而導通,以將該第一控制電壓輸出至該半導體元件之一閘極區。 The semiconductor device according to claim 1, further comprising a first control circuit, the first control circuit comprising: A receiving circuit for receiving the first power supply voltage and the second power supply voltage, and the receiving circuit is also used for outputting a first control according to the higher one of the first power supply voltage and the second power supply voltage Voltage; and A control switch is used to turn on in response to the first power supply voltage to output the first control voltage to a gate region of the semiconductor device. 如請求項4所述之半導體元件,還包含一第二控制電路,該第二控制電路用以傳遞一第二控制電壓至該閘極區,以控制該閘極區上之電壓值。The semiconductor device according to claim 4, further comprising a second control circuit for transmitting a second control voltage to the gate region to control the voltage value on the gate region. 如請求項4所述之半導體元件,其中該第一控制電路還包含: 一儲能元件,係耦接於該基極區。 The semiconductor device according to claim 4, wherein the first control circuit further includes: An energy storage element is coupled to the base region. 一種靜電放電防護方法,包含: 導通第一型之一第一摻雜區至第二型之一第一源/汲極區間的一第一靜電放電路徑,其中第一型之一基極區及第二型之一第一井區係耦接於該第一摻雜區及該第一源/汲極區之間;以及 導通第一型之一第二摻雜區至第二型之一第二源/汲極區之一第二靜電放電路徑,其中該基極區及第二型之一第二井區係耦接於該第二摻雜區及該第二源/汲極區之間。 An electrostatic discharge protection method, including: A first electrostatic discharge path from a first doped region of the first type to a first source/drain region of the second type, wherein a base region of the first type and a first well of the second type are conducted The region is coupled between the first doped region and the first source/drain region; and Conducting a second doped region of the first type to a second electrostatic discharge path of a second source/drain region of the second type, wherein the base region and a second well region of the second type are coupled Between the second doped region and the second source/drain region. 如請求項7所述之靜電放電防護方法,其中該第一井區與該第二井區係以相同之一摻雜井區來實現,且該基極區係形成於該摻雜井區中。The electrostatic discharge protection method according to claim 7, wherein the first well region and the second well region are implemented by the same doped well region, and the base region is formed in the doped well region . 如請求項7所述之靜電放電防護方法,還包含: 透過一接收電路,接收一第一電源電壓或一第二電源電壓; 根據該第一電源電壓及該第二電源電壓中的較高的一者輸出一第一控制電壓;以及 透過一控制開關,將該第一控制電壓輸出至該第一源/汲極區及該第二源/汲極區之間的一閘極區。 The electrostatic discharge protection method described in claim 7 further includes: Receiving a first power supply voltage or a second power supply voltage through a receiving circuit; Outputting a first control voltage according to the higher one of the first power supply voltage and the second power supply voltage; and Through a control switch, the first control voltage is output to a gate region between the first source/drain region and the second source/drain region. 如請求項9所述之靜電放電防護方法,還包含: 在該第二電源電壓大於該第一電源電壓的情況下,根據該第一電源電壓導通該控制開關,以對該閘極區施加一禁能電壓。 The electrostatic discharge protection method described in claim 9 further includes: When the second power supply voltage is greater than the first power supply voltage, the control switch is turned on according to the first power supply voltage to apply a disable voltage to the gate region.
TW109111511A 2020-04-06 2020-04-06 Semiconductor device and electrostatic discharge protection method TWI717250B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109111511A TWI717250B (en) 2020-04-06 2020-04-06 Semiconductor device and electrostatic discharge protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109111511A TWI717250B (en) 2020-04-06 2020-04-06 Semiconductor device and electrostatic discharge protection method

Publications (2)

Publication Number Publication Date
TWI717250B true TWI717250B (en) 2021-01-21
TW202139412A TW202139412A (en) 2021-10-16

Family

ID=75237137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109111511A TWI717250B (en) 2020-04-06 2020-04-06 Semiconductor device and electrostatic discharge protection method

Country Status (1)

Country Link
TW (1) TWI717250B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421444A (en) * 2022-01-04 2022-04-29 格兰菲智能科技有限公司 Electrostatic discharge protection circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065895A1 (en) * 2002-06-25 2004-04-08 Chen-Shang Lai Silicon controlled rectifier structure with guard ring controlled circuit
US20130328125A1 (en) * 2012-06-12 2013-12-12 Macronix International Co., Ltd. Protection component and electrostatic discharge protection device with the same
TW201415601A (en) * 2012-10-03 2014-04-16 Macronix Int Co Ltd Electrostatic discharge protection device
US20180247927A1 (en) * 2017-02-24 2018-08-30 Nxp B.V. Device and method for electrostatic discharge (esd) protection
US20190198493A1 (en) * 2017-12-21 2019-06-27 Nxp B.V. Device and method for electrostatic discharge (esd) protection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065895A1 (en) * 2002-06-25 2004-04-08 Chen-Shang Lai Silicon controlled rectifier structure with guard ring controlled circuit
US20130328125A1 (en) * 2012-06-12 2013-12-12 Macronix International Co., Ltd. Protection component and electrostatic discharge protection device with the same
TW201415601A (en) * 2012-10-03 2014-04-16 Macronix Int Co Ltd Electrostatic discharge protection device
US20180247927A1 (en) * 2017-02-24 2018-08-30 Nxp B.V. Device and method for electrostatic discharge (esd) protection
US20190198493A1 (en) * 2017-12-21 2019-06-27 Nxp B.V. Device and method for electrostatic discharge (esd) protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421444A (en) * 2022-01-04 2022-04-29 格兰菲智能科技有限公司 Electrostatic discharge protection circuit

Also Published As

Publication number Publication date
TW202139412A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
JP4850387B2 (en) Semiconductor device
JP5449676B2 (en) ESD protection device
US5760446A (en) Electrostatic discharge structure of semiconductor device
US20180012883A1 (en) Electrostatic discharge protection device and electronic device having the same
JP2015211463A (en) Electrostatic discharge protection circuit
TW200908496A (en) Electrostatic discharge avoiding circuit
US6677803B1 (en) Semiconductor integrated circuit device
US11119522B2 (en) Substrate bias generating circuit
KR100318298B1 (en) Semiconductor device
TW201906268A (en) Power protection circuit
JP2006270027A (en) Semiconductor device and complementary mis logic circuit
JP2008085571A (en) Semiconductor integrated circuit
US11482520B2 (en) Semiconductor device and electrostatic discharge protection method
TWI717250B (en) Semiconductor device and electrostatic discharge protection method
JP2012203528A (en) Voltage regulator
TWI412228B (en) Input/output port circuit and operating method of same
JP3875285B2 (en) Intermediate voltage generation circuit for semiconductor integrated circuit
US6834007B2 (en) Semiconductor memory device
US20150008970A1 (en) Period signal generation circuit
TWI518867B (en) Protection component and electrostatic discharge protection device with the same
JP2003051548A (en) Semiconductor integrated circuit device and portable terminal using the device
JP2011239185A (en) Semiconductor integrated circuit device
Patel et al. Leakage current reduction techniques for CMOS circuits
TWI823291B (en) Protection circuit
TWI555334B (en) Buffer circuit with regulating function and regulating circuit thereof