TWI717102B - 基於影像辨識之交通路況車聯網系統 - Google Patents
基於影像辨識之交通路況車聯網系統 Download PDFInfo
- Publication number
- TWI717102B TWI717102B TW108141395A TW108141395A TWI717102B TW I717102 B TWI717102 B TW I717102B TW 108141395 A TW108141395 A TW 108141395A TW 108141395 A TW108141395 A TW 108141395A TW I717102 B TWI717102 B TW I717102B
- Authority
- TW
- Taiwan
- Prior art keywords
- road condition
- vehicle
- information
- condition
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/44—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
- G08G1/0141—Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/04—Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/024—Guidance services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/025—Services making use of location information using location based information parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q9/00—Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/16—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
本發明揭露一種基於影像辨識之交通路況車聯網系統,具有複數個車載裝置、與一後端平台;主要應用邊緣計算概念,將行車影像中路況辨識之任務交付予各車載裝置,各車載裝置擷取行車影像,分析其所見之交通路況資訊,並將資訊區分為「靜態易察覺資訊」、「動態易察覺資訊」及「靜態不易察覺資訊」,並透過無線傳輸提交至後端平台,該後端平台主要功能係以交叉驗證機制,確認交通路況資訊之有效性,再輔以動態預測機制,建立交通路況地圖,並將交通路況資訊依據各駕駛人位置傳遞給各車載裝置,提點各駕駛人,供駕駛人參考注意,進而形成一低頻寬、自動化之路況車聯網。
Description
本發明係有關一種基於影像辨識之交通路況車聯網系統。
隨著車用電子設備的普及化,越來越多的電子設備應用在協助駕駛人,例如最常見的衛星導航系統,係透過全球衛星定位(GPS)以及地圖資訊系統,以語音及地圖協同呈現的方式引導駕駛人,依循路徑指示駕駛達到輸入之目的地。除此外,越來越多車輛也配置多個鏡頭、感應裝置、以及程式控制的方式,達到警示車距、自動停車、甚至自動駕駛的目的。然而,在道路上交通狀況難測,因此,傳統的交通電台廣播的方式仍然是許多駕駛賴以獲知交通路況的資訊來源。
一般來說,駕駛人在駕駛時主要是依賴視覺系統,辨識其所能見之交通路況,以作出合適之行車決策。為了方便分析,一般可將交通路況資訊相對於駕駛人的關係分為三類:第一類為「易察覺資訊」,係屬於在駕駛人可視範圍內,且駕駛人可直接在行車決策時所使用的路況資訊,例如正前方的車輛,以及與前車之距離;第二類為「不易察覺資訊」,係屬於在駕駛人可視範圍內,但駕駛人無法自知之路況資訊,因此為駕駛人無法直接在行車決策時所使用的路況資訊,例如駕駛人無法預測之前方的公共汽車是否即將變換車道、或右左轉等;第三類為「不可察覺資訊」,係屬於不在駕駛人可視範圍內之路況資訊,例如駕駛人前方500公尺因道路施工而縮減車道。此外,各類資訊又可細分為動態資訊及靜態資訊,意即該路況之所在地是否會隨時間而改變其位置,例如道路施工、事故屬靜態資訊,而行進中的腳踏車、高速公路掃街車、以及緊急救難車輛(例如救護車、消防車)的所在位置則屬動態資訊。
現有警示系統,例如碰撞警示及完全主動剎車系统(Collision Warning with Full Auto Brake,CWFAB)、自動避撞設計(Automatic Collision Avoidance System,ACAS)、盲點警示系統(Blind Spot Information System,BSIS)、以及車道保持輔助系統(Lane keeping assistance system,LKAS)等系統的運作,係透過感應與自動控制方式防止駕駛人未注意周邊路況的警示作用。同樣地,專利申請案105134417號所揭露之技術,也同樣屬於防止駕駛人因分心而未注意周邊路況,危害行車安全,而提出的預警方案。換句話說,這些警示系統所提供的皆屬上述第一類「易察覺資訊」。然而,對一個行為合格且注重安全之謹慎駕駛人而言,這些技術或裝置所提供的「易察覺資訊」所能增進行車的安全性在駕駛人執行其行車決策時相對較小的。
在現有行車環境中,前述第二類的「不易察覺資訊」多半必須仰賴其他駕駛人提供,例如前方之駕駛係透過方向燈來警示後方之駕駛人即將有行車動態的改變。被警示之駕駛人獲取這種「不易察覺資訊」是被動的,以車輛轉彎為例,倘若前方駕駛人的駕駛行為不良,未正確使用方向燈,或方向燈無法明確指出轉彎意圖,後方之駕駛人就容易陷入危險。雖然專利申請案104126916號所揭露之技術,可提示駕駛人需特別留意前方駕駛之動向,卻未能提供明確之「不易察覺資訊」。
至於不在可視範圍內的屬於第三類的「不可察覺資訊」則需仰賴第三方(其他駕駛人、路人、施工單位等)的提供並傳遞。從資訊流的參與者來區分,可區分為資訊提供方及資訊傳遞方。舉例來說,前述的廣播電台,例如警察廣播電台或交通廣播電台即屬資訊傳遞方;相對地,以電話通報交通事故及路況的熱心民眾則為資訊提供方。然而,這類型的資訊流通或通報方式主要有以下缺點,其一是以人力做為資訊提供方,容易造成資訊通報的延遲或失誤,例如延遲通報、詳確位置不明等缺失;其二是資訊傳遞方無資訊收集的主動性,且條列式的大量無差別性的資訊播報方式,也不免降低資訊傳遞與接收之效率。
再者,如前所述,拜科技進步所賜,市場上也有許多扮演主動式資訊傳遞方的裝置,可過濾所有交通資訊,並僅警示與駕駛人相關之交通路況資訊,如Garmin Connect、Waze等。這些裝置搭配專利申請案106121909號所揭露之技術,確實可成為有效之預警系統,但仍無法解決以人力做為資訊提供方所產生的問題。
另外,在專利申請案104128876號所揭露之技術中,係將行車影像即時上傳,並由後方車輛接收,使得後方駕駛人可直接看見前方車輛駕駛人所見影像。然而,該技術方案之影像串流會造成佔用大量頻寬,且所用裝置本身即為容易導致駕駛人分心的視覺裝置,因此其潛在因分心而造成交通事故的危險性亦不容忽視。
另,專利申請案100146222號所揭露之技術則是藉著分析行車動態感測資料以辨識特定路況事件,再透過無線傳輸至一後台資料庫,進行資料彙整及更新,用以警示與駕駛人相關之特定路況事件。然而,該揭露技術並無法提供詳確之行車路況資訊,其主要原因係在於該技術所分析的行車動態係前方駕駛人因某事件所做出之反應,例如因前方車速降低而煞車、因前方車道上有施工而切換車道閃避等,而分析其反應並無法反向推得明確之路況資訊,例如切換車道閃避之肇因可能為道路施工,也可能為行為不當之腳踏車行人,因此僅透過分析該車輛的行車動態資訊無法確定其造成該行車動態的路況原因,也導致無法警示駕駛確切之交通路況資訊。尤有甚者,當所面對的是動態路況,例如有狗隻或野生動物誤闖高速公路時,駕駛人之行車反應也會隨著移動性的動態路況,例如狗隻的位置而改變,更是限制了可辨識路況之種類。此外,因為該揭露技術中同一車輛無法重複辨識相同事件,導致該揭露技術需倚靠多個車輛重複地驗證所得之資訊,因此也降低了系統運作效率,無法提供充裕之路況資訊,難以推動其發展。
隨著物聯網(Internet of Things)技術的逐步開發,相同的概念也可應用於建置一交通路況車聯網,主要是透過分散性的佈建,例如,透過路口監視器做為交通路況資訊來源;然而,像這類「固定式來源」的交通路況車聯網,僅能以相對稀疏來源來取得相等稀疏的交通路況資訊,並無法達到「以稀疏來源取得稠密資訊」的關鍵原則來達到建構一有效且即時資訊分享的交通路況系統。究其原因,其主要關鍵在於固定式的路況資訊來源,無論佈建如何密集跟廣泛,還是比不上透過交通路況資訊來源端的移動來取得稠密資訊。目前在市場上所提出之技術皆尚無法達此關鍵要求。因此,雖然在概念上具吸引力,習知技術卻尚未提出實際技術來達到有效交通路況車聯網的目的。
鑒於上述習知技術的不足,本發明之主要目的係提供一種基於影像辨識之交通路況車聯網系統,透過交通路況資訊來源端的移動來取得稠密資訊,以達到「以稀疏來源取得稠密資訊」的關鍵原則。
本發明之又一目的係一種基於影像辨識之交通路況車聯網系統,具有車載裝置與後端平台,主要應用邊緣計算(edge computing)概念,將行車影像中,交通路況辨識之任務交付予各車載裝置,各車載裝置擷取行車影像,分析其所見之交通路況資訊,並將資訊區分為「靜態易察覺資訊」、「動態易察覺資訊」及「靜態不易察覺資訊」,並透過無線傳輸提交至後端平台,該後端平台主要功能係以交叉驗證機制,確認交通路況資訊之有效性,再輔以動態預測機制,建立交通路況地圖,並將交通路況資訊依據各駕駛人位置傳遞給各車載裝置,提點各駕駛人,供駕駛人參考注意,進而形成一低頻寬(low bandwidth)、自動化之路況車聯網。
本發明之再一目的係提供一種基於影像辨識之交通路況車聯網系統,具有一後端平台,該後端平台之交叉驗證機制能夠透過重複接收相同地點之事件,確認該地點是否確有交通路況,再參考所建立之路況地圖,以決定新增、更新或解除路況地圖上標示之靜態交通路況資訊;或調整動態交通路況資訊之預測條件,並更新其預測之未來位置,以作預警。
本發明之實施例揭露一種基於影像辨識之交通路況車聯網系統,包含:至少一個車載裝置(in-vehicle device)和一後端平台(backend platform),每個車載裝置係用於擷取複數個路況影像、處理所擷取的該路況影像以決定相關的路況資訊、將該路況資訊以原始路況的方式傳遞至該後端平台;該後端平台整合從每個車載裝置傳來的該原始路況以成為已確認路況,並根據每一個車載裝置的所在位置將整合後的已確認路況轉發到相關的車載裝置;其中,該車載裝置還包括:一視覺模組(visual module),用於擷取複數個路況影像、以及處理所擷取的該路況影像以決定相關的路況資訊;一車況模組(vehicle condition module),以提供一GPS定位、一即時時間戳、車速等其他車況相關資訊、以及根據該等車況資訊而獲得的最佳加、減速度及平均加、減速度等行車資訊;一警示模組(alarm module),係用於接收一警示事件並發出一警示訊號;一裝置儲存模組(device storage module),係用於儲存該車載裝置內各模組之資料;以及一控制模組(control module),係分別連接到該視覺模組、該車況模組、該警示模組、以及該儲存模組,並用於控制該車載裝置的運作與該後端平台之間的資料傳遞;該後端平台還包括:一資料傳輸模組(data transmission module),係用於依據來自各車載裝置的請求而提供所需之資料;一路況處理模組(traffic condition processing module),係用於接收並處理來自各車載裝置所提交的各原始路況,且將處理結果的已確認路況依據各車載裝置的GPS位置傳遞相關車況至該車載裝置;以及一平台儲存模組(platform storage module),係用於儲存該後端平台各模組之資料。
在一較佳實施例中,該視覺模組更包括:一影像擷取單元(image capture unit),係用於擷取一連串之複數個連續影像;一即時影像分析與路況資訊辨識單元(real-time image analysis and traffic condition identification unit),係連接於該影像擷取單元,用於接收並分析該擷取的複數個連續影像,以辨識出影像中所包含的路況資訊;以及一路況提交單元(traffic condition filing unit),係連接於該即時影像分析與路況資訊辨識單元,用於確認所辨識出的該路況資訊。
在一較佳實施例中, 該車況模組更包含一GPS單元(GPS unit),以提供該GPS定位;一時鐘單元(clock unit),以提供該即時時間戳;至少一感應器單元(sensor unit),以提供至少一車況資訊;其中該車況資訊至少包含一車速資訊;以及一車況分析單元(vehicle condition analysis unit),該車況分析單元可分析該等車況資訊,計算而獲得最佳加、減速度及平均加、減速度等行車資訊,並將該等行車資訊存至該裝置儲存模組。
在一較佳實施例中,該警示模組更包含至少一聲音警示單元(audio alarm unit)、一影像警示單元(visual alarm unit),或以上之任意組合;係用於接收一警示事件並發出一警示訊號,該警示訊號可為聲音警示訊號、影像警示訊號、或其任意組合。
在一較佳實施例中,該裝置儲存模組儲存至少一已確認路況地圖、一固定路線車輛的路線和停靠資料、以及至少一緊急車輛之位置資訊;且該緊急車輛之位置資訊係以動態、不可察覺資訊呈現於車載裝置。
在一較佳實施例中, 該控制模組更包含:一事件處理單元(event handling unit),係連接於該視覺模組,以接收並處理來自該視覺模組的資料請求事件、以及路況提交事件;一路況處理單元(traffic condition handling unit),係連接於該事件處理單元、該車況模組與該裝置儲存模組,以接收路況,並依據自身車況決定是否傳輸一警示事件至該警示模組;以及一資料閘道單元(data gateway unit),係連接於該事件處理單元、該裝置儲存模組、並與該後端平台進行資料之存取,以回應資料給該資料請求事件。
在一較佳實施例中, 該資料傳輸模組更包含:一資料請求接收單元(data request receiving unit),用於接收來自各車載裝置的資料請求;一資料請求處理單元(data request handling unit),係連接於該資料請求接收單元,以用於處理該資料請求;以及一資料提點單元(data relay unit),係連接於該資料請求處理單元,以將該資料提點給各車載裝置。
在一較佳實施例中,該路況處理模組更包含:一路況整合單元(traffic condition consolidation unit),係用於接收來自各車載裝置所提交的各個路況,並將所提交的路況與儲存於該平台儲存模組的一原始路況地圖裡的各原始路況整合;一路況位置預測單元(traffic condition location prediction unit),係連接於該路況整合單元並針對各路況預測該路況在不同未來時間點的可能位置;一原始路況地圖更新單元(raw traffic condition map update unit),係連接該路況位置預測單元以將所預測之路況之未來可能位置更新至該原始路況地圖;一路況信心量測單元(traffic condition confidence measurement unit),係連接於該原始路況地圖更新單元以計算各路況的信心度;一已確認路況地圖更新單元(confirmed traffic condition map update unit),係連接該路況信心量測單元,以將信心度高於一門檻值之路況更新至一已確認路況地圖;以及一路況提點單元(traffic condition relay unit),係連接於該已確認路況地圖更新單元,以將已確認路況地圖內的各路況依據各車載裝置的GPS位置傳遞相關車況至該車載裝置。
在一較佳實施例中,該路況位置預測單元所預測的路況包含靜態路況及動態路況,皆經由該路況位置預測單元處理後,再交由該原始路況地圖更新單元。
在一較佳實施例中,該路況位置預測單元所預測的靜態路況係視為動態路況的特例,將靜態路況的未來預測位置皆設為該路況的一初始位置。
在一較佳實施例中,該平台儲存模組係至少儲存一原始路況地圖以及一已確認路況地圖,分別包含各原始路況、以及各已確認路況。
在一較佳實施例中,該平台儲存模組係至少儲存一固定路線車輛的路線和停靠資料、以及至少一動態路況的歷史預測條件,該動態路況的歷史預測條件係供該路況位置預測單元使用。
在一較佳實施例中,該動態路況至少包括緊急救難車輛位置、腳踏車位置、砂石車位置,且其儲存之歷史預測條件至少包括緊急救難車輛在某時間某路段的時速。
透過本發明之一種基於影像辨識之交通路況車聯網系統之豐富路況資訊,駕駛人得以作最佳的行車決策,進而增進行車安全。如在一般道路上,駕駛人除可得知前方可視範圍外之路況資訊,也可得知前方固定路線車輛如公車等之可能動態,使駕駛人在前車以方向燈提示之前,即可得知其動態,轉被動為主動;更可藉由後端平台之動態預測機制,取得將遇緊急救難車輛之事前提醒,適當避讓以增進社會福祉。此外,於狹窄道路或極彎曲道路上,在前視狀況不佳情境下,駕駛人也可藉動態預測機制,取得將與對向來車相會之資訊,避免不當的超車決策。
以下係藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。本發明亦可藉由其他不同的具體實例加以施行或應用,本發明說明書中的各項細節亦可基於不同觀點與應用在不悖離本發明之精神下進行各種修飾與變更。
須知,本說明書所附圖式繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應落在本發明所揭示之技術內容得能涵蓋之範圍內。
參考圖1、圖2、圖3;圖1為本發明之基於影像辨識之交通路況車聯網系統的示意圖;圖2所示為本發明之基於影像辨識之交通路況車聯網系統之車載裝置的結構示意圖;圖3所示為本發明之基於影像辨識之交通路況車聯網系統之後端平台的結構示意圖。如圖1、圖2、圖3所示,本發明之基於影像辨識之交通路況車聯網系統包含: 至少一個車載裝置(in-vehicle device)100和一後端平台(backend platform)200,每個車載裝置100係用於擷取複數個路況影像、處理所擷取的該路況影像以決定相關的路況資訊、將該路況資訊以原始路況的方式傳遞至該後端平台200;該後端平台200整合從每個車載裝置100傳來的該原始路況以成為已確認路況,並根據每一個車載裝置100的所在位置將整合後的已確認路況轉發到相關的車載裝置100;其中,該車載裝置100還包括:一視覺模組(visual module)110,用於擷取複數個路況影像、以及處理所擷取的該路況影像以決定相關的路況資訊;一車況模組(vehicle condition module),以提供一GPS定位、一即時時間戳、車速等其他車況相關資訊、以及根據該等車況資訊而獲得的最佳加、減速度及平均加、減速度等行車資訊;一警示模組(alarm module)130,係用於接收一警示事件並發出一警示訊號;一裝置儲存模組(device storage module)140,係用於儲存該車載裝置100內各模組之資料;以及一控制模組(control module)150,係分別連接到該視覺模組110、該車況模組120、該警示模組130、以及該儲存模組140,並用於控制該車載裝置100的運作與該後端平台200之間的資料傳遞;該後端平台200還包括:一資料傳輸模組(data transmission module)210,係用於依據來自各車載裝置100的請求而提供所需之資料;一路況處理模組(traffic condition processing module)220,係用於接收並處理來自各車載裝置100所提交的各原始路況,且將處理結果的已確認路況依據各車載裝置100的GPS位置傳遞相關路況至該車載裝置100;以及一平台儲存模組(platform storage module)230,係用於儲存該後端平台200各模組之資料。
如前所述,在本發明中將交通路況資訊進行分類,將其區分為第一類之「易察覺資訊」、第二類之「不易察覺資訊」及第三類之「不可察覺資訊」;其中,該第一類「易察覺資訊」係指於駕駛人可視範圍內,且可自知之交通路況資訊;該第二類之「不易察覺資訊」係指於駕駛人可視範圍內,但其不自知之交通路況資訊;該第三類之「不可察覺資訊」則係指於駕駛人可視範圍外之交通路況資訊。更進一步地,各類資訊又可依其所在位置是否隨時間而改變,再細分為靜態與動態資訊。
如駕駛人可視範圍內之事故、道路施工等資訊皆屬第一類的「易察覺資訊」,又因其發生位置不隨時間而改變,故為「靜態之易察覺資訊」;而駕駛人可視範圍內之前車動態則屬第二類的「不易察覺資訊」,又因其位置會隨時間而改變,故為「動態之不易察覺資訊」;而駕駛人前方500公尺之可視範圍外的(動、靜態)交通資訊,則屬第三類「(動、靜態)不可察覺資訊」。例如,前述之「靜態易察覺資訊」可包含事故、道路施工等,但不限於此;「動態易察覺資訊」可包含行駛中的車輛之位置,如救護車、消防車、掃街車、公車、垃圾車等車輛之位置,但不限於此;「靜態不易察覺資訊」可包含公車即將右或左轉、切至內車道或停靠站,以及垃圾車即將迴轉等行車動態,但不限於此。
在此路況資訊的分類架構下,本發明之技術特徵之一係在於各駕駛人可藉由該視覺模組110所擷取的複數個路況影像中直接獲得第一類的路況資訊;而藉由儲存於該裝置儲存模組140的資料或透過該控制模組150以及該後端平台200之資料傳輸模組210存取該平台儲存模組230之資料,例如,有固定路線之公共汽車、校車或垃圾回收車等的路線及停靠站的相關資料,以辨識獲取第二類的路況資訊。然後,各車載裝置可將該第一類及第二類路況資訊提交至該後端平台200,經過該後端平台200的彙整後,以第三類路況資訊的方式提點各駕駛人;再者,該第一類與第二類路況不僅會由事件處理單元提交至後端平台,還會由事件處理單元直接傳至所屬的車載裝置的路況處理單元,決定最適時機警示。換言之,各駕駛人所需要但無法直接獲取的第三類路況資訊係由其他駕駛人的第一類與第二類路況資訊整合而得。
其中,該後端平台200的彙整主要係以交叉驗證的方式,確認各提交的路況資訊之有效性,再輔以動態預測的方式,建立路況地圖,並將路況資訊依據各駕駛人位置傳遞給各車載裝置100,提點各駕駛人,供駕駛人參考注意。具體而言,該後端平台200之交叉驗證機制能夠透過重複接收相同地點之事件,確認該地點是否確有交通路況,再參考所建立之路況地圖,以決定新增、更新或解除路況地圖上標示之靜態交通路況資訊;或調整動態交通路況資訊之預測條件,並更新其預測之未來位置,以作預警。此外,該後端平台200還在本發明之系統中扮演「不可察覺資訊」的傳遞者,其依據所建立之路況地圖,參考車載裝置100之行車位置,回傳相對於該車載裝置100所需之第三類「(動、靜態)不可察覺資訊」,再由該車載裝置100之路況處理單元152決定最適當警示時機。而該路況處理單元152依據車況模組120所提供之自身的各種車況資訊及行車資訊,意即依特定車況、行車環境計算出最適警示時機,將預警訊息傳送至警示單元以警告駕駛人。上述之特定車況可包含最佳加減速度、平均加減速度等,但不限於此;而行車環境可包含前、後方車流量大小及是否行駛於上、下坡路段,但亦不限於此。例如,該車況模組120可提供一GPS定位、一即時時間戳、車速等其他車況相關資訊、以及根據該等車況資訊而獲得的最佳加、減速度及平均加、減速度等行車資訊;其中,最佳加、減速度可由分析一連續時間內的車速及相關感測器資訊取得。值得說明的是,該等行車資訊可用於後續計算針對一路況的最佳警示時機;所謂最佳警示時機,對於一般轎車及砂石車於高速公路上的最佳警示時機可能不同,因為其所需的減速或剎車的時間跟距離不同,可能差5秒或更多;再者,車上是否載有貨物之加減速也可能會有極大差異。
如圖4所示,在一較佳實施例中,該視覺模組110更包括:一影像擷取單元111,係用於擷取一連串之複數個連續影像;一即時影像分析與路況資訊辨識單元112,係連接於該影像擷取單元111,用於接收並分析該擷取的複數個連續影像,以辨識出影像中所包含的路況資訊;以及一路況提交單元113,係連接於該即時影像分析與路況資訊辨識單元112,用於確認所辨識出的該路況資訊;其中,該影像擷取單元111可為一攝影機。具體而言,該即時影像分析與路況資訊辨識單元112所辨識出的路況資訊更包含了前述的第一類的「易察覺資訊」與第二類的「不易察覺資訊」;對於第一類的「易察覺資訊」,車載裝置100透過該控制模組150即時提交上傳至後端平台200,對於第二類的「不易察覺資訊」中如固定路線車輛的靜態資訊,則透過控制模組150取得所需相關資料後,再提交上傳至後端平台200。並且,該第一類及第二類路況還會直接傳給路況處理單元152,以決定最適時機警示。
具體而言,該即時影像分析與路況資訊辨識單元112在察覺有第二類路況時,便通知該路況提交單元113,由該路況提交單元113在獲取所需的資料後,以完成建構第二類路況資訊。再者,若無偵測到任何路況,該路況提交單元113可提交一定時通報行車資訊,代表偵測無任何路況。
同樣地,該車況模組120更包含一GPS單元121,以提供該GPS定位;一時鐘單元122,以提供該即時時間戳;至少一感應器單元123,以提供至少一車況資訊;其中該車況資訊至少包含一車速資訊;以及一車況分析單元124,該車況分析單元可分析該等車況資訊,計算而獲得最佳加、減速度及平均加、減速度等行車資訊。該警示模組130更包含至少一聲音警示單元、一影像警示單元,或以上之任意組合;係用於接收一警示事件並發出一警示訊號,該警示訊號可為聲音警示訊號、影像警示訊號、或其任意組合。而且,該裝置儲存模組140儲存至少一已確認路況地圖、一固定路線車輛的路線和停靠資料、以及至少一緊急車輛之位置資訊;且該緊急車輛之位置資訊係以動態、不可察覺資訊呈現於車載裝置;其中,該已確認路況地圖係包含由該視覺模組110所辨識而得之第一類的「易察覺資訊」與第二類的「不易察覺資訊」的相關路況,以及由該後端平台200所傳來提點的第三類「不可察覺資訊」的相關路況,換言之,即是由其他駕駛人提交之路況,也經由後端平台200經過交叉驗證後之已確認路況的地圖;再者,該已確認路況地圖、固定路線車輛的路線和停靠資料、以及至少一緊急車輛之位置資訊;且該緊急車輛之位置資訊係以動態、不可察覺資訊呈現於車載裝置等係與該視覺模組110在辨識第二類的路況時或該控制模組150在計算適當警示時機時所需的相關資料。值得說明的是,若固定路線車輛的路線和停靠資料不在該裝置儲存模組140,則可透過該控制模組150至該後端平台200的平台儲存模組230中取得。
同樣地,在一較佳實施例中, 該控制模組150更包含:一事件處理單元151,係連接於該視覺模組110,以接收並處理來自該視覺模組110的資料請求事件、以及路況提交事件;一路況處理單元152,係連接於該事件處理單元151、該車況模組120、該警示模組130與該裝置儲存模組140,以接收路況,並依據存於該裝置儲存模組140的行車資訊及車況決定最佳警示時機,並將未達警示時機的路況儲存至裝置儲存模組140;以及一資料閘道單元153,係連接於該事件處理單元151、該裝置儲存模組140、並與該後端平台200進行資料之存取,以回應資料給該資料請求事件。值得說明的是,該資料閘道單元153可在該路況提交單元113建構第二類路況資訊時,自該裝置儲存模組140或者從後端平台200獲取所需資料,再傳至該路況提交單元113。
綜而言之,本發明之車載裝置100透過視覺模組110之即時影像分析與路況資訊辨識單元112辨識出該影像擷取單元111所擷取之複數個連續影像中所包含的第一類、且提示該路況提交單元113有第二類路況須建構第二類路況資訊,該路況提交單元113透過控制模組150取得資訊,完成第二類資訊的建構;最後再經由該路況提交單元113提交所辨識的第一類與第二類路況,經由該控制模組150的事件處理單元151將所提交之第一類與第二類路況傳遞至後端平台200。另一方面,從該後端平台200傳來提點的第三類路況傳遞至控制模組150後,由該路況處理單元152與原本儲存於裝置儲存模組140的其他路況依據該車況模組120所提供的車況資訊一併處理,決定一適當之警示時機,透過該警示模組130,提醒駕駛人應注意之路況。
換言之,該路況處理單元152係負責一併處理該路況提交單元113提交所辨識的第一類與第二類路況、從該後端平台200傳來提點的第三類路況、以及由該路況處理單元152本身決定暫存於該裝置儲存模組140的先前尚未達到適當警示時機之路況等。
同樣地,如圖5所示,在一較佳實施例中, 該資料傳輸模組210更包含:一資料請求接收單元211,用於接收來自各車載裝置的資料請求;一資料請求處理單元212,係連接於該資料請求接收單元,以用於處理該資料請求;以及一資料提點單元213,係連接於該資料請求處理單元,以將該資料提點給各車載裝置。具體而言,資料傳輸模組210係接收來自各車載裝置100中控制模組150的資料閘道單元153所傳來的資料請求事件,該資料請求事件係為要求如固定路線車輛之路線與停靠站等相關之靜態相關資料。更詳盡地,該路況提交單元113需要建構第二類路況資訊時,首先發出資料請求給該事件處理單元151,該事件處理單元151再轉發給該資料閘道單元153;該資料閘道單元153首先檢查所需資料是否已儲存於儲存模組140,若是則直接回傳,否則再發出資料請求至該後端平台200,並將自該後端平台200取回之資料儲存於該裝置儲存模組140中。
更進一步地,該路況處理模組220更包含:一路況整合單元221、一路況位置預測單元222、一原始路況地圖更新單元223、一路況信心量測單元224、一已確認路況地圖更新單元225、以及一路況提點單元226;其中該後端平台200的交叉驗證機制係始於該路況整合單元221,結束於該單元已確認路況地圖更新單元225。
其中,該路況整合單元221係用於接收來自各車載裝置100所提交的各個路況,並將所接收到的路況與已存在於該平台儲存模組230的一原始路況地圖裡的各原始路況比對,此為識別動作,再輸出為一已存在路況或一新路況至該路況位置預測單元222。由於一個路況可能在不同時間點被不同車載裝置提交,因此,此單元之主要功能係在於將各回報提交的同一個路況整合。值得注意的是,在此時,尚未對任何路況進行確認,亦即,接下來的信心度計算。
該路況位置預測單元222係連接於該路況整合單元221並針對各路況預測該路況在不同未來時間點的可能位置,若為靜態路況,未來可能位置就是該路況的目前位置;該原始路況地圖更新單元223係連接該路況位置預測單元222以將所預測之動態路況之未來可能位置更新至該原始路況地圖。
該路況信心量測單元224,係連接於該原始路況地圖更新單元223以計算各路況的一信心度,並基於該信心度決定該路況是否確實存在;該已確認路況地圖更新單元225係連接該路況信心量測單元224,以將信心度高於一門檻值之路況更新至一已確認路況地圖,換言之,可加入新路況、更新已存在路況、或者移除已經解決的路況;以及該路況提點單元226係連接於該已確認路況地圖更新單元225及該平台儲存模組230,以將已確認路況地圖內的各路況依據各車載裝置100的GPS位置傳遞相關車況至該車載裝置100。
值得說明的是,該路況整合單元221及該路況信心量測單元224即是前述以交叉驗證的方式,執行確認各個提交的路況資訊之有效性的單元;該路況整合單元221能夠透過識別重複接收相同地點之事件,再經由該路況信心量測單元224確認該地點是否確有交通路況,再參考所建立之已確認路況地圖,以決定新增、更新或解除該已確認路況地圖上標示之交通路況資訊。而該路況位置預測單元222則是前述之輔以動態預測的方式,參考平台儲存模組230所存的相關資料,來調整各交通路況資訊之預測條件,並更新其預測之未來位置,以作預警。
該路況信心量測單元224計算各路況的一信心度;該信心度係表示該路況的是否存在的信心度;由於許多路況會隨著時間的過去而被排除,例如,車禍事故的現場、或道路整修而封閉改道等。因此,本發明中的各提交路況均賦予一提報時間以及一解除時間;當該提交路況在解除時間之前則可視為適用路況,例如有五個駕駛人分別在不同時間提交同一交通事故路況。藉由計算該五個不同時間提交的路況及其解除時間的情況,可得出該交通事故路況持續存在的信心度。當該路況的信心度高於一門檻值時,藉由該已確認路況地圖更新單元225更新至一已確認路況地圖;以及最後由該路況提點單元226將已確認路況地圖內的各路況依據各車載裝置100的GPS位置傳遞相關車況至該車載裝置100。
綜而言之,後端平台的整個交叉驗證機制始於該路況整合單元221,結束於該已確認路況地圖更新單元225。該路況整合單元221將接收到的路況與已存在的路況做比對,此為識別動作,輸出為一已存在路況或一新路況,做為該路況位置預測單元222的輸入。該路況位置預測單元222預測輸入之路況的未來可能位置(若為靜態路況,未來可能位置就是目前位置),並要求該原始路況地圖更新單元223更新原始路況地圖。該原始路況地圖更新單元223更新原始路況地圖後,由該路況信心量測單元224決定該路況是否確實存在,並要求該已確認路況地圖更新單元225更新已確認路況地圖。
值得說明的是,該路況信心度的計算可由不同的方式實現,以下僅以一較佳實施例說明,但不以此為限。
令一個交通狀況回報(report)以一個二元組(T, χ)表示,其中T代表回報偵測該交通狀況的時間(detection time),亦即,該車載裝置發現並回報該交通狀況的時間,值得注意的是,該交通狀況可能更早發生;χ 代表偵測結果(detection result),χ=0表示無交通狀況,χ=1表示有交通狀況,這樣的設計主要目的是在於讓車載裝置可以在偵測無交通狀況時,也可以回報,以當作後續跟其他相關交通狀況回報交叉比對的參考依據;亦即,可視為一定時通報行車資訊。換言之,所謂定時通報行車資訊係指當無路況時,可由車載裝置提交一特殊的第一類路況資訊,代表偵測無任何路況。此定時通報行車資訊可用於後續的各種路況資訊的交叉驗證與整合,以及信心度的計算。藉由包含代表無路況的定時通報行車資訊的信心度計算,可以將已解決的交通路況移除。
再者,一個交通狀況紀錄(record)可以一個三元組(T, χ, Γ)表示,其中Γ代表該交通狀況紀錄的到期時間(expiration time),Γ=T+Ơ,Ơ表示有效期限(valid duration)。換言之,對於任一時間點T
0,若T
0>Γ,交通狀況三元組(T, χ, Γ)則是個有效的交通狀況記錄。值得說明的是,該交通狀況紀錄過期並不一定代表所屬的該交通狀況也已經結束。
當各個車載裝置偵測到每個交通狀況時,便回報該交通狀況,並由後端平台產生一對應的交通狀況紀錄。
以一交通事故的路況為例,假設每次計算信心度時最多用到M個有效的交通狀況紀錄,Ơ表示系統賦予每個交通事故路況的預定有效期限。對於時間點T,令N為交通狀況紀錄總個數,m=min{M, n},其中n為有效交通狀況紀錄的個數(n≤N),且令(T
1, χ
1, Γ
1)、(T
2, χ
2, Γ
2) … (T
m, χ
m, Γ
m)表示最新的m個交通狀況紀錄。
依此,該交通事故路況在時間點T的信心度conf可定義為:
換言之,每一個交通狀況紀錄的信心度跟該交通狀況紀錄在其到期時間前所剩的時間相關。將所有納入計算的有效交通狀況紀錄的信心度加權平均,便是所屬交通狀況的信心度。當然,不以此為限;信心度也可採用其他的函數,而不影響本發明的應用範圍。
例如,具體而言,在上述例子中,當M=5、Ơ = 30時,假設所有跟該交通事故路況有關的交通狀況紀錄如下:
當T=14:01時,N=n=m=1; conf = 0.1
當T=14:04時,N=n=m=3; conf =
當T=14:34時,N=5, n=m=2; conf =
Ɍ 1 | Ɍ 2 | Ɍ 3 | Ɍ 4 | Ɍ 5 | |
T j | 14:00 | 14:03 | 14:03 | 14:05 | 14:33 |
χ j | 1 | 1 | 0 | 1 | 1 |
Γ j | 14:30 | 14:33 | 14:33 | 14:35 | 15:03 |
在一較佳實施例中,該平台儲存模組230係至少儲存一原始路況地圖以及一已確認路況地圖,分別包含各原始路況、以及各已確認路況;該平台儲存模組230係至少儲存一固定路線車輛的路線和停靠資料、以及動態路況的歷史預測條件。所謂的動態路況的歷史預測條件係指根據過往交通路況所得到的動態路況預測的規則;例如,一輛緊急車輛被偵測在某一路段以40KM/H速度行進,便以此為依據進行預測其動態路況;一段時間後,該緊急車輛被偵測到比預測的速度快(例如,45KM/H),因此,可以依此產生新的預測規則是依照速度為,例如,42.5KM/H。前述的該路況位置預測單元222即是依據此等動態路況的歷史預測條件來預測路況未來的位置。
綜而言之,該後端平台200主要係透過維護該原始路況地圖以及該已確認路況地圖,分別將各車載裝置100所提交的路況,經過整合、動態預測、以及路況信心度量測的方式,持續地更新,再將更新後的相關路況資訊回傳提點至各車載裝置100。
圖6為本發明之基於影像辨識之交通路況車聯網系統,實際於道路上多台車輛中運作之示意圖。圖6之交通路況資訊包括行駛中的緊急救難車輛20(動態交通路況資訊)、事故地點10(靜態交通路況資訊),以及行駛中車輛30、31、32、33及34,其中車輛30、31、32、33與34皆裝有本發明之車載裝置。
如圖6所示,其中所述事件之一為車輛30行駛於緊急救難車輛20後方,且因跟隨其後方行駛一段時間,車輛30之車載裝置重複辨識到前方有行駛中的緊急救難車輛20。該車載裝置即將這些連續辨識之動態、易察覺的路況資訊(40、41、42),合併相關的定位資訊,上傳至後端平台200。經後端平台200接收來自車輛30、連續發送之路況資訊後,即以交叉驗證機制,確認新增該動態路況資訊,並依據過往緊急車輛之動向預測條件及車輛30之行車定位資訊,產生初始預測條件,以進行動態路況資訊(緊急救難車輛20)之未來位置預測,如圖6中所示之位置21、22係分別為緊急救難車輛20在2秒後、7秒後的預測位置。
另外,根據圖6,其中所述之另一事件為車輛31於定時通報行車資訊時,後端平台200據其之預測結果,揭露該車輛31將在2秒後與緊急救難車輛20相遇,即將此動態路況資訊(亦即,對於車輛31為第三類的動態不可察覺資訊路況),提點回傳至車輛31之車載裝置,並由車輛31之車載裝置,依其所分析的自身車況資訊以及行車資訊,決定最佳警示時機,據以警示該駕駛人。
再者,所述之另一事件為車輛32、33於同一條道路上同向而行,由車輛33之車載裝置辨識到事故10,並將此靜態、易察覺交通路況資訊43回傳至後端平台200。同時,同道路對向車道上之車輛34之車載裝置也偵測到同一事故10,並將此資訊44回傳至後端平台200。
接著,後端平台200自車輛33與車輛34接收到事件43與44後,即以交叉驗證機制,確認新增該靜態交通路況資訊至路況地圖。並將此交通路況資訊50、51、52分別回報給車輛31、32、34之車載裝置(亦即,對於車輛32為第三類的靜態不可察覺資訊路況),另由車輛32之車載裝置,依其所搜集之車況資訊,決定最佳警示時機,據以警示該駕駛人。其中,交通路況資訊50、51、52分別為:2秒後前方有緊急救難車輛20、7秒後前方有緊急救難車輛20、前方300公尺處有交通事故(由43及44確認之路況)且7秒後前方將遇緊急救難車輛20。
圖6所述事件之一為車輛35之車載裝置辨識到對向車道有行駛中之緊急救難車輛20,即將此動態、易察覺交通路況資訊45,併目前行車定位資訊上傳至後端平台200,後者藉交叉驗證機制,驗證並更新該動態交通路況資訊(緊急救難車輛20之動態)的預測條件及其未來可能之位置。
圖6的應用情境說明各車載裝置如何處理「動、靜態易察覺資訊」及後端平台如何將判定相對於各車載裝置之「動、靜態不可察覺資訊」。圖7則以公車為例子,簡述車載裝置如何判定第二類的靜態不易察覺資訊並警示駕駛人。如圖7所示,當車載裝置辨識到前方有行駛中的公車,即嘗試以其路線牌或車牌,並參考目前的行車位置與相關圖資,以辨識其行駛之路線。再取得該路線之資訊,據以警示駕駛人其可能的動向;例如,前方130公尺即將右轉至XX路、前方50公尺有該路線公車之站牌、即將於前方切至內線前往公車專用道等。
值得說明的是,在本發明中,各車載裝置首先針對所擷取的單張影像,辨識車道、車輛、行人、事故及道路施工等物件,再結合多張影像之辨識結果及目前車速等相關車況資訊,進行路況資訊辨識,並針對各路況計算信心程度。以下以偵測同向救護車輛為例,講解信心程度之計算、交通路況確立之判定及動、靜態之判定。
假設車載裝置100之影像擷取單元111每秒可擷取60張影像,為提升準確率,可使用每20張影像判斷其所見之路況資訊。首由車載裝置之即時影像分析與路況資訊辨識單元112,針對單張影像作救護車輛之辨識,若所得之20個結果中,有10張影像中偵測到救護車輛,則信心程度計為50%;若信心程度大於依車速而定之門檻值,該即時影像分析與路況資訊辨識單元112即認定所視範圍內,確實出現救護車輛之交通路況資訊;此外,該即時影像分析與路況資訊辨識單元112更藉由分析10張連續影像中救護車輛之位置,參考目前車速以判定其是否在移動,進而判定其為動態資訊或靜態資訊。
經由該即時影像分析與路況資訊辨識單元112確定之動、靜態路況資訊之確立後,其根據車載裝置所儲存之路況地圖,判定前車是否有相關之「不易察覺資訊」。以公車為例,一旦確定前方有行駛中的公車,即時影像分析與路況資訊辨識單元112即提示該路況提交單元113有第二類路況,再經由該路況提交單元113依據目前行車位置、圖資、辨識所得之公車之路線牌與車牌等資訊,判定其公車路線,並取得其詳細行車路線,進而取得「靜態不易察覺資訊」。值得注意的是,此例可套用至任何以各種方式公開其行駛路線之車輛。
上述車載裝置所辨識之靜態交通路況資訊,至少包含事故、車輛故障拋錨、道路施工、車道異物等;另動態交通路況資訊,則至少包含所視範圍內,移動之同向與對向車輛數量及種類、行為異常或行動不便之行人;其中,車輛種類至少包含緊急救難車,如救火車、救護車等、自行車、機車、大型重型機車、小客車、貨車、砂石車、公車、遊覽車及垃圾車。此外,車載裝置與後端平台溝通時,皆會傳送其定位資訊,更可包含GPS資訊、高度計資訊、所在車道資訊等。
另一方面,對於後端平台而言,路況資訊僅有「動態」與「靜態」之分。當接收到來自車載裝置之靜態交通路況資訊,後端平台首先查驗其路況地圖上,同一或相近位置是否已存在相同之路況。若無,則給予其一預設解除時間與一預設信心程度,並將其標記於路況地圖;若有,則更新其預設解除時間,並提升其事件之信心程度。當接收到來自車載裝置之動態路況資訊,後端平台首先搜尋路況地圖上,相近位置是否已有相同之交通路況預測位置的標記。若無,則決定初始預測條件,並依此條件預測一固定時間內之可能位置,以預設之信心程度標記於路況地圖上;反之,則與過往之預測位置進行交叉驗證,以更新其預測條件,進而將新的預測位置標記於路況地圖上,並提升其事件之信心程度。
另一方面,若後端平台接收到車載裝置所傳送的無任何交通路況之定時回報,則檢查路況地圖上是否有標記之動、靜態交通路況資訊。若有,則降低其信心程度,當信心程度降低至一門檻值,即將其事件自路況地圖上刪除。
在本發明所提出之交通路況動態預測機制中,後端平台參考回報車輛之行車定位資訊,以及過往類似事件之歷史預測紀錄,產生初始預測條件,並依此估算未來不同時間點的可能所在地點;爾後,在接收自其它車載裝置通報之同一動態路況時,藉由分析先前通報位置與目前通報位置及其相對時間,可得該動態路況的實際速度,據以下修或上調其模擬條件之車速,以產生新的模擬結果。值得說明的是,動態路況實際速度的取得可由不同的方式實現,在此僅以較佳實施例說明,但不以此為限。後端平台接收車載裝置回報之資訊後,參考其所建立之路況地圖,視車載裝置之行車位置,回傳信心程度高於一門檻值、且對於該裝置為「不可察覺」之資訊。
另外,車載裝置取得需警示之已確認路況後,尚需決定最佳警示時機。然而,其判斷需將相關包括車況等資訊,例如,駕駛處理資訊之反應時間、目前車速、目前車道、周圍交通狀況、車輛狀況、以及路況位置納入考量。在一較佳實施例中,因駕駛人較無法於過彎時應對緊急事件,路況位置資訊更可包含真實位置、以及應處理位置;當路況事件發生於彎道中,則可將該事件視為發生於入彎處(亦即、應處理位置),在此情況下真實位置與應處理位置就不相同;另一方面,當真實位置位於直路上,則二者位置可設為相同。
此外,需考量之車況資訊至少包含最佳加減速度、及平均加減速度,而其資訊之搜集,可由GPS定位資訊、或加速度計、或OBD資訊、感應器、或其組合之數據取得。假定車載裝置係以聲音為警示傳遞媒介,欲警示路況資訊為:「前方1000公尺內側車道施工」,當行駛於直路上,其真實位置與應處理位置相同,目前車輛以100KM/H行駛於內側車道,周圍車輛不多,車輛降速至50KM/H需8秒,且駕駛人需2秒處理資訊。此時,車載裝置則認定在靠近事故地點的8+2+bias(bias為一固定數值)秒前警示駕駛係最佳時機。然而,倘若周圍車輛多,則修改降速參數為車輛降速至0KM/H之所需時間,並據此修改計算警示駕駛之最佳時機。另,倘若目前車輛並非行駛於內側車道,尤為因應行駛於內側車道車輛之變換車道動態,仍需以相同參數計算警示駕駛之最佳時機,惟需告知此事件發生於內側車道,由駕駛自行決策降速程度,避免影響行車效率。車載裝置依上述程序計算出最佳預警時機後,若時間小於一門檻值,如5秒,車載裝置立即警示駕駛人;反之,則以計算所得之最佳預警時機,警示駕駛人。
更進一步地,本發明之一種基於影像辨識之交通路況車聯網系統可更包含至少一第三方路況資料介面單元以接收來自第三方的路況資訊、以及其他公開於公共運輸整合資訊流通服務平台(PTX)上的路況資訊。以公車之動態路況為例,因各公車之即時位置皆公開於上述之公共運輸整合資訊流通服務平台,藉由該第三方資料介面單元取得各路公車之即時位置,參考儲存於該平台儲存模組內之該公車路線資訊,即可建立該公車之動態路況資訊,以及該公車即將左右轉、變換車道等靜態路況資訊,爾後再提交給該路況處理單元進行後續處理,以提點各駕駛人。再者,該第三方路況資料介面單元可設置於該後端平台、或是設置於該車載裝置。
總而言之,透過本發明之一種基於影像辨識之交通路況車聯網系統之豐富路況資訊,駕駛人得以作最佳的行車決策,進而增進行車安全。如在一般道路上,駕駛人除可得知前方可視範圍外之路況資訊,也可得知前方固定路線車輛如公車等之可能動態,使駕駛人在前車以方向燈提示之前,即可得知其動態,轉被動為主動;更可藉由後端平台之動態預測機制,取得將遇緊急救難車輛之事前提醒,適當避讓以增進社會福祉。此外,於狹窄道路或極彎曲道路上,在前視狀況不佳情境下,駕駛人也可藉動態預測機制,取得將與對向來車相會之資訊,避免不當的超車決策。
然而,上述實施例僅例示性說明本發明之功效,而非用於限制本發明,任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修飾與改變。此外,在上述該些實施例中之元件的數量僅為例示性說明,亦非用於限制本發明。因此本發明之權利保護範圍,應如以下之申請專利範圍所列。
100:車載裝置
110:視覺模組
111:影像擷取單元
112:即時影像分析與路況資訊辨識單元
113:路況提交單元
120:車況模組
121:GPS單元
122:時鐘單元
123:感應器單元
124:車況分析單元
130:警示模組
140:裝置儲存模組
150:控制模組
151:事件處理單元
152:路況處理單元
153:資料閘道單元
200:後端平台
210:資料傳輸模組
211:資料請求接收單元
212:資料請求處理單元
213:資料提點單元
220:路況處理模組
221:路況整合單元
222:路況位置預測單元
223:原始路況地圖更新單元
224:路況信心量測單元
225:已確認路況地圖更新單元
226:路況提點單元
230:平台儲存模組
10:事故路況
20:緊急救難車輛
21、22:緊急救難車輛預測位置
30、31、32、33、34:車輛
40、41、42 、43、44、45:路況資訊
50、51、52:路況資訊
圖1為本發明之基於影像辨識之交通路況車聯網系統的示意圖;
圖2所示為本發明之基於影像辨識之交通路況車聯網系統之車載裝置的結構示意圖;
圖3所示為本發明之基於影像辨識之交通路況車聯網系統之後端平台的結構示意圖;
圖4所示為本發明之基於影像辨識之交通路況車聯網系統之車載裝置的細部結構示意圖;
圖5所示為本發明之基於影像辨識之交通路況車聯網系統之後端平台的結構示意圖;
圖6所示為本發明之基於影像辨識之交通路況車聯網系統,實際於道路上多台車輛中運作之示意圖;以及
圖7所示為以公車為例,說明車載裝置如何判定第二類的靜態不易察覺資訊並警示駕駛人之示意圖。
100:車載裝置
200:後端平台
Claims (18)
- 一種基於影像辨識之交通路況車聯網系統,包含:至少一個車載裝置和一後端平台;其中,每個車載裝置係用於擷取複數個路況影像、處理所擷取的該路況影像以決定相關的路況資訊、將該路況資訊以原始路況的方式傳遞至該後端平台;該後端平台整合從每個車載裝置傳來的該原始路況以成為已確認路況,並根據每一個車載裝置的所在位置將整合後的已確認路況轉發到相關的車載裝置;其中,該車載裝置還包括:一視覺模組,用於擷取複數個路況影像、以及處理所擷取的該路況影像以決定相關的路況資訊;一車況模組,以提供一GPS定位、一即時時間戳、車速之車況相關資訊、以及根據該等車況資訊而獲得的最佳加、減速度及平均加、減速度之行車資訊;一警示模組,係用於接收一警示事件並發出一警示訊號;一裝置儲存模組,係用於儲存該車載裝置內各模組之資料;以及一控制模組,係分別連接到該視覺模組、該車況模組、該警示模組、以及該裝置儲存模組,並用於控制該車載裝置的運作與該後端平台之間的資料傳遞;該後端平台還包括:一資料傳輸模組,係用於依據來自各車載裝置的請求而提供所需之資料;一路況處理模組,係用於接收並處理來自各車載裝置所提交的各原始路況,且將處理結果的已確認路況依據各車載裝置的GPS位置傳遞相關車況至該車載裝置;以及一平台儲存模組,係用於儲存該後端平台各模組之資料; 其中,該路況處理模組更包含:一路況整合單元,係用於接收來自各車載裝置所提交的各個路況,並將所提交的路況與儲存於該平台儲存模組的一原始路況地圖裡的各原始路況整合;一路況位置預測單元,係連接於該路況整合單元並針對各路況預測該路況的在不同未來時間點的可能位置;一原始路況地圖更新單元,係連接該路況位置預測單元以將所預測之動態路況之未來可能位置更新至該原始路況地圖;一路況信心量測單元,係連接於該原始路況地圖更新單元以計算各路況的信心度;一已確認路況地圖更新單元,係連接該路況信心量測單元,以將信心度高於一門檻值之路況更新至一已確認路況地圖;以及一路況提點單元,係連接於該已確認路況地圖更新單元,以將已確認路況地圖內的各路況依據各車載裝置的GPS位置傳遞相關車況至該車載裝置。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該視覺模組更包括:一影像擷取單元,係用於擷取一連串之複數個連續影像;一即時影像分析與路況資訊辨識單元,係連接於該影像擷取單元,用於接收並分析該擷取的複數個連續影像,以辨識出影像中所包含的路況資訊;以及一路況提交單元,係連接於該即時影像分析與路況資訊辨識單元,用於確認所辨識出的該路況資訊。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該車況模組更包含一GPS單元,以提供該GPS定位;一時鐘單元, 以提供該即時時間戳;至少一感應器單元,以提供至少一車況資訊;其中該車況資訊至少包含一車速資訊;以及一車況分析單元,該車況分析單元可分析該等車況資訊,計算而獲得最佳加、減速度及平均加、減速度之行車資訊,並將該等行車資訊存至該裝置儲存模組。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該警示模組更包含至少一聲音警示單元、一影像警示單元,或以上之任意組合;係用於接收一警示事件並發出一警示訊號,該警示訊號可為聲音警示訊號、影像警示訊號、或其任意組合。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該裝置儲存模組儲存至少一已確認路路況地圖、一固定路線車輛的路線和停靠資料、以及至少一緊急車輛之位置資訊;且該緊急車輛之位置資訊係以動態、不可察覺資訊呈現於車載裝置。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該控制模組更包含:一事件處理單元,係連接於該視覺模組,以接收並處理來自該視覺模組的資料請求事件、以及路況提交事件;一路況處理單元,係連接於該事件處理單元、該車況模組、該警示模組與該裝置儲存模組,以接收路況,並依據自身車況決定是否傳輸一警示事件至該警示模組;以及一資料閘道單元,係連接於該事件處理單元、該裝置儲存模組、並與該後端平台進行資料之存取,以回應資料給該資料請求事件。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該資料傳輸模組更包含:一資料請求接收單元,用於接收來自各 車載裝置的資料請求;一資料請求處理單元,係連接於該資料請求接收單元,以用於處理該資料請求;以及一資料提點單元,係連接於該資料請求處理單元,已將該資料提點給各車載裝置。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該路況位置預測單元所預測的路況包含靜態路況及動態路況,皆經由該路況位置預測單元處理後,再交由該原始路況地圖更新單元。
- 如請求項8所述之基於影像辨識之交通路況車聯網系統,其中,該路況位置預測單元所預測的靜態路況係視為動態路況的特例,將靜態路況的未來預測位置皆設為該路況的一初始位置。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,該原始路況地圖以及該已確認路況地圖係儲存於該平台儲存模組,分別包含各原始路況、以及各已確認路況。
- 如請求項8所述之基於影像辨識之交通路況車聯網系統,其中,該平台儲存模組係至少儲存一固定路線車輛的路線和停靠資料、以及至少一動態路況的歷史預測條件,該動態路況的歷史預測條件係供該路況位置預測單元使用。
- 如請求項11所述之基於影像辨識之交通路況車聯網系統,其中,該動態路況至少包括緊急救難車輛位置、腳踏車位置、砂石車位置,且其儲存之歷史預測條件至少包括緊急救難車輛在某時間某路段的時速。
- 如請求項2所述之基於影像辨識之交通路況車聯網系統,其中,當車載裝置辨識到前方有行駛中的固定路線車輛,即以其路線牌 或車牌,並參考目前的行車位置與相關圖資,以辨識其行駛之路線,再取得該路線之資訊,據以警示駕駛人其可能的動向;其中,一旦確定前方有行駛中的固定路線車輛,即時影像分析與路況資訊辨識單元即提示該路況提交單元前方有行駛中的固定路線車輛,再經由該路況提交單元依據目前行車位置、圖資、辨識所得之公車之路線牌與車牌之資訊,判定其公車路線,並取得其詳細行車路線,並依此提示示警。
- 如請求項6所述之基於影像辨識之交通路況車聯網系統,其中,該車載裝置之路況處理單元該路況處理單元依據車況模組所提供之自身的各種特定車況資訊及行車環境計算出最適警示時機,所需考量之車況資訊至少包含最佳加減速度、及平均加減速度,而其資訊之搜集,可由GPS定位資訊、或加速度計、或OBD資訊、感應器、或其組合之數據取得,且該最佳加、減速度可由分析一連續時間內的車速及相關感測器資訊取得;並可根據前、後方車流量大小、是否行駛於上、下坡路段及因應自身車輛目前所在之車道,修改降速參數為車輛降速至停止之所需最短時間,並據此修改計算警示駕駛之最佳時機。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,令一路況紀錄以一三元組(Tj,χj,Γj)表示;Tj代表該車載裝置偵測到該路況的時間、χj代表偵測結果,χj=0表示無交通狀況,χj=1表示有交通狀況;Γj代表該路況的一預設到期時間,Γj=Tj+Ơ,Ơ表示有效期限;M為每次計算路況信心度時最多用到的有效的路況紀錄個數,對於時間點T,N為交通狀況紀錄總個數,m=min{M,n},其中nN為尚 未到期的路況紀錄的個數,且(T1,χ1,Γ1)、(T2,χ2,Γ2)...(Tm,χm,Γm)表示最新的m個交通狀況紀錄;一路況在時間點T的信心度可定義為: 當N>1時,否則,conf=0.1;其中,當Ơ=∞時,。
- 如請求項1所述之基於影像辨識之交通路況車聯網系統,其中,更包含至少一第三方路況資料介面單元以接收來自第三方的路況資訊、以及其他公開於公共運輸整合資訊流通服務平台(PTX)上的路況資訊。
- 如請求項16所述之基於影像辨識之交通路況車聯網系統,其中,該第三方路況資料介面單元係設置於該後端平台。
- 如請求項16所述之基於影像辨識之交通路況車聯網系統,其中,該第三方路況資料介面單元係設置於該車載裝置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108141395A TWI717102B (zh) | 2019-11-14 | 2019-11-14 | 基於影像辨識之交通路況車聯網系統 |
JP2019228961A JP2021082236A (ja) | 2019-11-14 | 2019-12-19 | 画像認識に基づく車内向けインタネット用交通状況システム |
US16/736,817 US11151867B2 (en) | 2019-11-14 | 2020-01-08 | Traffic condition system for internet of vehicles based on image recognition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108141395A TWI717102B (zh) | 2019-11-14 | 2019-11-14 | 基於影像辨識之交通路況車聯網系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI717102B true TWI717102B (zh) | 2021-01-21 |
TW202119834A TW202119834A (zh) | 2021-05-16 |
Family
ID=75237577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108141395A TWI717102B (zh) | 2019-11-14 | 2019-11-14 | 基於影像辨識之交通路況車聯網系統 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11151867B2 (zh) |
JP (1) | JP2021082236A (zh) |
TW (1) | TWI717102B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113140118A (zh) * | 2021-06-22 | 2021-07-20 | 华砺智行(武汉)科技有限公司 | 分布式单路口控制系统、多路口控制系统、方法及介质 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11282388B2 (en) * | 2020-01-31 | 2022-03-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Edge-assisted alert system |
US12001958B2 (en) * | 2020-03-19 | 2024-06-04 | Nvidia Corporation | Future trajectory predictions in multi-actor environments for autonomous machine |
JP7351805B2 (ja) * | 2020-07-01 | 2023-09-27 | トヨタ自動車株式会社 | 情報処理方法、プログラム、車載装置及び車両 |
US11322017B1 (en) * | 2021-01-28 | 2022-05-03 | Hayden Ai Technologies, Inc. | Systems and methods for managing traffic rules using multiple mapping layers with traffic management semantics |
TWI809401B (zh) * | 2021-05-24 | 2023-07-21 | 宏佳騰動力科技股份有限公司 | 車輛後視警示系統 |
CN115482020A (zh) * | 2021-05-31 | 2022-12-16 | 英业达科技有限公司 | 车行纪录路况情资收集反馈之奖励系统及其方法 |
CN113628449A (zh) * | 2021-07-15 | 2021-11-09 | 张雨 | 行车安全风险的预警方法及系统 |
JP7548163B2 (ja) * | 2021-08-30 | 2024-09-10 | トヨタ自動車株式会社 | 車両運転支援装置及び車両運転支援プログラム |
US11451955B2 (en) | 2021-09-01 | 2022-09-20 | Autonomous Roadway Intelligence, Llc | V2X and vehicle localization by local map exchange in 5G or 6G |
CN113949720A (zh) * | 2021-10-13 | 2022-01-18 | 安徽淘云科技股份有限公司 | 一种基于车辆座舱的互联方法、装置、设备及存储介质 |
CN113823095B (zh) * | 2021-11-22 | 2022-05-03 | 浙江大华技术股份有限公司 | 交通状态的确定方法、装置、存储介质及电子装置 |
CN113850837B (zh) * | 2021-11-25 | 2022-02-08 | 腾讯科技(深圳)有限公司 | 视频处理方法、装置、电子设备、存储介质及计算机产品 |
CN117558129B (zh) * | 2023-11-14 | 2024-06-11 | 长沙云软信息技术有限公司 | 一种用于高速公路建设用的智能定位系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130033603A1 (en) * | 2010-03-03 | 2013-02-07 | Panasonic Corporation | Road condition management system and road condition management method |
TW201333896A (zh) * | 2012-02-14 | 2013-08-16 | yan-hong Jiang | 使用視訊雷達的遠距交通管理系統 |
TW201437985A (zh) * | 2013-03-18 | 2014-10-01 | Create Electronic Optical Co Ltd | 具安全範圍內路況偵測及警示功能之行車記錄器 |
TW201800290A (zh) * | 2016-06-17 | 2018-01-01 | 陳朝烈 | 交通工具用主動安全系統及其控制方法 |
TW201816745A (zh) * | 2016-10-25 | 2018-05-01 | 慧穩科技股份有限公司 | 智慧多功能行車輔助駕駛記錄方法及系統 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3988683B2 (ja) * | 2003-06-12 | 2007-10-10 | 株式会社日立製作所 | 画像情報取得システム及び車載端末 |
US8576069B2 (en) * | 2009-10-22 | 2013-11-05 | Siemens Corporation | Mobile sensing for road safety, traffic management, and road maintenance |
TW201227381A (en) * | 2010-12-20 | 2012-07-01 | Ind Tech Res Inst | Real-time traffic situation awareness system and method |
US8532914B2 (en) * | 2011-11-11 | 2013-09-10 | Verizon Patent Licensing Inc. | Live traffic congestion detection |
WO2015094228A1 (en) * | 2013-12-18 | 2015-06-25 | Intel Corporation | Aggregated analytics for intelligent transportation systems |
US9918001B2 (en) * | 2014-08-21 | 2018-03-13 | Toyota Motor Sales, U.S.A., Inc. | Crowd sourcing exterior vehicle images of traffic conditions |
US9596096B2 (en) * | 2014-09-15 | 2017-03-14 | Verizon Patent And Licensing Inc. | Navigation crowd sourcing based on LTE multicast |
US10867510B2 (en) * | 2018-04-05 | 2020-12-15 | Toyota Jidosha Kabushiki Kaisha | Real-time traffic monitoring with connected cars |
-
2019
- 2019-11-14 TW TW108141395A patent/TWI717102B/zh active
- 2019-12-19 JP JP2019228961A patent/JP2021082236A/ja active Pending
-
2020
- 2020-01-08 US US16/736,817 patent/US11151867B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130033603A1 (en) * | 2010-03-03 | 2013-02-07 | Panasonic Corporation | Road condition management system and road condition management method |
TW201333896A (zh) * | 2012-02-14 | 2013-08-16 | yan-hong Jiang | 使用視訊雷達的遠距交通管理系統 |
TW201437985A (zh) * | 2013-03-18 | 2014-10-01 | Create Electronic Optical Co Ltd | 具安全範圍內路況偵測及警示功能之行車記錄器 |
TW201800290A (zh) * | 2016-06-17 | 2018-01-01 | 陳朝烈 | 交通工具用主動安全系統及其控制方法 |
TW201816745A (zh) * | 2016-10-25 | 2018-05-01 | 慧穩科技股份有限公司 | 智慧多功能行車輔助駕駛記錄方法及系統 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113140118A (zh) * | 2021-06-22 | 2021-07-20 | 华砺智行(武汉)科技有限公司 | 分布式单路口控制系统、多路口控制系统、方法及介质 |
CN113140118B (zh) * | 2021-06-22 | 2021-09-17 | 华砺智行(武汉)科技有限公司 | 分布式单路口控制系统、多路口控制系统、方法及介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2021082236A (ja) | 2021-05-27 |
US20210150895A1 (en) | 2021-05-20 |
US11151867B2 (en) | 2021-10-19 |
TW202119834A (zh) | 2021-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI717102B (zh) | 基於影像辨識之交通路況車聯網系統 | |
TWI691927B (zh) | 移動載具用外部座標即時三維路況輔助裝置及該系統 | |
CN109756867B (zh) | 一种基于lte-v的车路协同车载终端应用系统 | |
US7804423B2 (en) | Real time traffic aide | |
Zeng et al. | Potential connected vehicle applications to enhance mobility, safety, and environmental security. | |
CN114586082A (zh) | 增强的车载装备 | |
JP4923736B2 (ja) | 道路通信システムおよび道路通信方法 | |
US10369995B2 (en) | Information processing device, information processing method, control device for vehicle, and control method for vehicle | |
US20120296539A1 (en) | Driver assistance system | |
CN111524362A (zh) | 基于多数据融合的车辆安全行驶保障系统与方法 | |
CN109606377A (zh) | 一种紧急驾驶行为防御提示方法及系统 | |
US20230118619A1 (en) | Parking-stopping point management device, parking-stopping point management method, and vehicle device | |
CN114604252A (zh) | 基于自主和半自主驾驶系统的情境信息的对速度限制的间接验证 | |
CN114245340A (zh) | 基于c-v2x的城市道路车路协同云控车辆引导系统 | |
US10282996B1 (en) | Collision prevention based on connected devices | |
JP2024109936A (ja) | 制御装置、制御方法、および、制御装置用プログラム | |
US20230415764A1 (en) | Post drop-off passenger assistance | |
CN115808924A (zh) | 用于运载工具的方法和系统 | |
CN113748448A (zh) | 基于车辆的虚拟停止线和让行线检测 | |
CN115936466A (zh) | 用于运载工具的方法、系统和计算机可读介质 | |
GB2614579A (en) | Graph exploration for rulebook trajectory generation | |
CN110491153A (zh) | 一种车联网智慧型管理系统 | |
KR102715389B1 (ko) | 상황 평가를 이용한 작동 엔벨로프 검출 | |
CN115092159A (zh) | 一种车道线自主智能测绘系统和方法 | |
CN115240470A (zh) | 基于nr-v2x的弱势交通参与者碰撞预警系统与方法 |