TWI714191B - 具有多孔磷光結構的發光裝置 - Google Patents

具有多孔磷光結構的發光裝置 Download PDF

Info

Publication number
TWI714191B
TWI714191B TW108127075A TW108127075A TWI714191B TW I714191 B TWI714191 B TW I714191B TW 108127075 A TW108127075 A TW 108127075A TW 108127075 A TW108127075 A TW 108127075A TW I714191 B TWI714191 B TW I714191B
Authority
TW
Taiwan
Prior art keywords
light
emitting device
holes
coating
refractive index
Prior art date
Application number
TW108127075A
Other languages
English (en)
Other versions
TW202020108A (zh
Inventor
丹尼爾 亞斯特拉
瑪賽爾 林內 波莫
賈克伯斯 喬翰尼斯 法蘭西斯克斯 傑拉得斯 修斯
清水 健太郎
麥可 大衛 坎拉斯
Original Assignee
美商亮銳公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/048,440 external-priority patent/US10797207B2/en
Application filed by 美商亮銳公司 filed Critical 美商亮銳公司
Publication of TW202020108A publication Critical patent/TW202020108A/zh
Application granted granted Critical
Publication of TWI714191B publication Critical patent/TWI714191B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

發光裝置包含一發光半導體二極體結構及一磷光材料。該磷光體包含孔,該等孔之至少一者含有一填充材料。該填充材料之一熱膨脹係數與該磷光材料之一熱膨脹係數之一比率的一絕對值在一實施例中至少為2,在另一實施例中至少為10,在另一實施例中至少為100,且在又一實施例中至少為1,000。

Description

具有多孔磷光結構的發光裝置
在光移動穿過具有不同折射率之兩個或更多個材料時,光在一定程度上被反射。兩個或更多個材料之折射率之間之差異愈大,則反射愈大(或透射愈少)。若兩個或更多個材料具有匹配或實質上匹配之折射率,則光將在具有較少反射或無反射(或更多透射)之情況下行進穿過材料。若不同折射率材料(諸如一黏結劑或基質材料中之不同折射率粒子)之間之介面非均勻,則反射光可在許多不同方向上散射。
發光裝置包含一發光半導體二極體結構及一磷光材料。磷光體包含孔,該等孔之至少一者含有一填充材料。該填充材料之一熱膨脹係數與該磷光材料之一熱膨脹係數之一比率的一絕對值在一實施例中至少為2,在另一實施例中至少為10,在另一實施例中至少為100,且在又一實施例中至少為1,000。
相關申請案之交叉參考
本申請案主張2018年7月30日申請之美國專利申請案第16/048,440號及2018年9月18日申請之歐洲專利申請案第18194607.0號之優先權利,該等案各者之全文以引用的方式併入本文中。
本申請案係關於以下共同擁有、同在申請中美國專利申請案:2017年8月28日申請之美國專利申請案第15/688,611號;2017年10月2日申請之美國專利申請案第15/722,903號;及2017年11月2日申請之美國專利申請案第15/802,273號。此等專利申請案之各者之全文以引用的方式併入本文中。
有時可期望在電流及發光裝置(LED)溫度降低時降低由LED發射之光的相關色溫(CCT)。例如,來自一些可調光LED之發射光之一CCT可合乎期望地變化(例如,自2700K至2200K)以在變暗時產生一更舒適的且放鬆的氣氛。在電流減小且燈泡變暗時,LED光在外觀上變暖(更低CCT)。在電流增大時,情況相反。在電流增大時,發射光之CCT增加且成為一更冷白光。
可藉由受控地調變使用具有不同折射率之兩個材料之光散射而達成CCT之調變:一個材料可具有一相對較低折射率,其中折射率對溫度具有一小相依性(例如,二氧化矽),且另一材料可具有一較高折射率,其中折射率對溫度具有一較大相依性(例如,聚矽氧)。對於此等材料,若材料之溫度升高,則第一材料與第二材料之間之折射率差異減小且因此散射減少。此將導致色點(較低u’)及色溫(較高CCT)之一偏移。
本文中描述之實施例提供LED,其利用由具有折射率之不同溫度相依性之材料引起之散射效應以在驅動電流及LED溫度增加時促進發射光之CCT之一增加(從較暖至較冷)。在實施例中,LED結構之至少一個層包含一第一材料,其中存在孔(在本文中亦稱為一多孔結構)且孔被注入具有比第一材料高之一熱膨脹係數的一第二材料。膨脹導致在材料之固化期間在高溫下對第一材料之多孔結構的一更完全填充。歸因於第二材料在冷卻時收縮,第二材料可從孔表面分層,而在兩個材料之間之介面處形成空隙或凹穴,該處之孔未被填充第二材料而是具有一氣體或真空。此等分離區具有約1.0之一折射率且因此具有第一材料與第二材料之間之一大折射率差異而引起額外散射。額外散射引起更多經產生光被散射回至轉換材料,其中其具有被重新吸收且隨後在較長波長下重新發射之另一機會,而導致一較低CCT及一較暖白光。
第二材料之熱膨脹係數與第一材料之一熱膨脹係數之一比率將取決於所選取之材料。例如,二氧化矽具有大約0.5 x 10-6 /°C之一極小CTE,而聚矽氧具有取決於類型及製程且可在大約200 x 10-6 /°C至600 x 10-6 /°C之範圍內的一較大CTE。因此,聚矽氧與二氧化矽之CTE比率可為大約1,000。YAG具有大約8 x 10-6 /°C之一CTE。因此,聚矽氧與YAG之CTE比率係大約100。藍寶石具有約5 x 10-6 /°C之一CTE且亦具有約100之聚矽氧與藍寶石之一CTE比率。許多氟化物、氯化物、溴化物及碘化物具有大約30 x 10-6 /°C或更大之一CTE,諸如LiF、NaF、MgF、PbF、KCl、RbCl、NaCl、TlCl、CsBr、KBr、RbBr、TlBr、AgBr、TlBr42 I58 、KI、RbI及CsI。因此,聚矽氧與此等氟化物、氯化物、溴化物及碘化物之CTE比率係約10。除聚矽氧以外,亦可使用尿烷、環氧樹脂及其等之混合物(諸如環氧聚矽氧)作為填充或注入第二材料。尿烷及環氧樹脂具有比聚矽氧低之一CTE,其中尿烷為大約80 x 10-6 /°C至100 x 10-6 /°C且環氧樹脂低至50 x 10-6 /°C。因此,環氧樹脂或環氧聚矽氧注入氟化物可具有約2之一比率。因此,取決於所選取之材料,第二材料與第一材料之CTE比率可在一些實施例中大於2,在一些實施例中大於10,在一些實施例中大於100且在一些實施例中大於1,000。
亦存在具有接近零及負熱膨脹係數之材料。接近零CTE材料之一實例係具有約0.05 x 10-6 /°C之一膨脹之肖特玻璃(Schott glass) zerodur®。使用此材料將給出遠遠超過1,000或甚至超過10,000之一材料2與材料1比率。另外,存在具有負熱膨脹係數(NTE)之材料。即,此等材料隨著溫度升高而收縮或縮小。此等材料之一些實例係MF3 ,其中M係Al、Ge、In、Sc、Ti、V、Cr、Mn、Fe、Co、Ir、Rh或Ru。大多數此等材料具有一立方ReO3 結構類型。其他實例係氟氧化物,諸如TaO2 F、NbO2 F及TiOF2 。ZrW2 O8 、NaZr2 P3 O12 (NZP)、LiO-Al2 O3 -2SiO2 、2MgO-2Al2 O3 -5SiO2 及ZrSiO4 係NTE材料之更多實例。隨著溫度升高,材料2之膨脹連同一NTE材料1之縮小一起幫助填充空隙或間隙以減少散射。類似地,當冷卻時,收縮填充或基質材料2以及使材料1膨脹將有助於產生空隙且增加散射。在一NTE材料1之情況中,材料2與材料1之CTE之比率可為負的。
在本文中定義為材料2與材料1之CTE比率之CTE差異的表達係任意的且可能已被定義為材料1與材料2之CTE比率,其將會較小,絕對值自約0至0.5。差異亦可能已被表達為一真實值差。
在一些實施例中,多孔結構可為一透明黏結劑或基質或一陶瓷磷光元件中之一磷光體粒子層。當多孔結構係波長轉換材料本身時,多孔結構本身內之散射可能引起更多色彩轉換。在其他實施例中,多孔結構可在安置於發光元件上方之一材料之一塗層中。當多孔結構被填充第二材料時,凹穴形成將在較低溫度下引起更多光散射回至磷光層中,而引起藉由波長轉換材料之更多色彩轉換。在此等實施例之任一者中,此可能導致藉由LED在較冷LED溫度下發射之光之一較暖外觀。隨著LED歸因於施加較高驅動電流而升溫,散射減少且發生較少色彩轉換。因此,由LED在較暖LED溫度下發射之光可能呈現為一較冷白光。
為在習知可調光LED燈泡中產生發射光之較暖/較冷外觀,多個LED可包含於燈泡中,許多LED可發射具有在暖光範圍內之CCT之光。在低驅動電流下,可開啟發射暖CCT光之許多LED,而導致在較低電流/LED溫度下之較暖外觀之發射光。此等可調光LED可能需要特殊驅動電路以達成該效應。本文中描述之實施例可運用一單色溫LED及/或運用較簡單驅動電路來達成相同或類似效應。
圖1A係一例示性發光元件(LEE) 100之一圖,其包含一發光半導體結構115、一波長轉換材料110及波長轉換材料110上之一選用塗層105。接觸件120及125可直接或經由另一結構(諸如一子基板(submount))耦合至發光半導體結構115以電連接至一電路板或另一基板或裝置。在實施例中,接觸件120及125可藉由可填充有一介電材料之一間隙127彼此電絕緣。發光半導體結構115可為發射可經由一波長轉換材料轉換成具有一不同色點之光之光的任何發光半導體結構。例如,發光半導體結構115可由以下各者形成:III-V族半導體,包含但不限於AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb;II-VI族半導體,包含但不限於ZnS、ZnSe、CdSe、CdTe;IV族半導體,包含但不限於Ge、Si、SiC;及其等之混合物或合金。此等例示性半導體在其中存在其等之LED的典型發射波長下具有在自約2.4至約4.1之範圍內的折射率。例如,III族氮化物半導體(諸如GaN)在500 nm下具有約2.4之折射率,且III族磷化物半導體(諸如InGaP)在600 nm下具有約3.7之折射率。接觸件120及125可由諸如AuSn、AuGa、AuSi或SAC焊料之一焊料形成。
圖1B係可包含於圖1A之LEE 100中的一例示性發光半導體結構115之一圖。所繪示實例係一覆晶結構。然而,一般技術者將瞭解,本文中描述之實施例可應用於其他類型之LED設計,諸如垂直、橫向及多接面裝置。
在圖1B中繪示之實例中,發光半導體結構115包含安置於一n型導電性半導體層或區(亦被稱為一n型區) 130與一p型導電性半導體層或區(亦被稱為一p型區) 140之間的一發光作用區135。接觸件145及150安置成與發光半導體結構115之一表面接觸,且藉由可由一介電材料(諸如矽之氧化物或氮化物(即,SiO2 或Si3 N4 ))填充的一間隙155彼此電絕緣。在所繪示實施例中,接觸件145 (亦稱為一p接觸件)與p型區140之一表面直接接觸,且接觸件150 (亦稱為一n接觸件)與n型區130之一表面直接接觸。儘管圖1B中未展示,然諸如安置於間隙155中之一介電材料亦可內襯於發光作用區135及p型區140之側壁以使該等區與接觸件150電絕緣而防止p-n接面短路。
n型區130可生長於一生長基板上且可包含一或多個半導體材料層。此一或多個層可包含不同組合物及摻雜物濃度,包含例如製備層(諸如緩衝層或成核層)及/或經設計以有利於移除生長基板之層。此等層可經n型摻雜或未經有意摻雜,或甚至可為p型裝置層。可針對發光區所期望之特定光學、材料或電氣性質設計該等層以有效率地發射光。如同n型區130,p型區140可包含具不同組合物、厚度及摻雜物濃度之多個層,包含未經有意摻雜之層或n型層。雖然層130在本文中描述為n型區且層140在本文中描述為p型區,但n型區及p型區亦可交換而不脫離本文中描述之實施例之範疇。
發光作用區135可為例如與p區140及n區135之介面相關聯的一p-n二極體接面。替代地,發光作用區135可包含摻雜為n型或p型或未經摻雜之一或多個半導體層。例如,發光作用區135可包含一單一厚或薄發光層。此包含一同質接面、單異質結構、雙異質結構或單量子井結構。替代地,發光作用區135可為一多量子井發光區,其可包含藉由障壁層分離之多個量子井發光層。
p接觸件145可形成於p型區140之一表面上。p接觸件145可包含多個導電層,諸如一反射金屬及一防護金屬,其可防止或減少反射金屬之電遷移。反射金屬可為銀或任何其他適合材料,且防護金屬可為TiW或TiWN。n接觸件150可形成為在其中已移除作用區135、n型區140及p接觸件145之部分以曝露n型區130之一表面之至少一部分的一區域中與n型區130之該表面接觸。經曝露台面或通孔之側壁可塗佈有一介電質以防止短路。接觸件145及150可為例如由包含但不限於以下各者之金屬形成的金屬接觸件:金、銀、鎳、鋁、鈦、鉻、鉑、鈀、銠、錸、釕、鎢及其等之混合物或合金。在其他實例中,一個或兩個接觸件145及150可由諸如氧化銦錫之透明導體形成。
n接觸件150及p接觸件145不限於圖1B中繪示之配置且可以任何數目個不同方式配置。在實施例中,一或多個n接觸通孔可形成於發光半導體結構115中以形成n接觸件150與n型層130之間之電接觸。替代地,n接觸件150及p接觸件145可經重佈以形成具有一介電質/金屬堆疊之接合墊,如此項技術中已知。p接觸件145及n接觸件150可分別直接或經由另一結構(諸如一子基板)電連接至圖1A之接觸件120及125。
波長轉換材料110可為任何發光材料,諸如一磷光體、一透明或半透明黏結劑或基質中之磷光體粒子,或一陶瓷磷光元件,其吸收一個波長之光且發射一不同波長之光。若波長轉換材料110係一陶瓷磷光元件,則陶瓷磷光元件可為例如用於產生一個色彩之光的一陶瓷磷光板(諸如一磷光體薄板),或用於產生不同色彩之光的一陶瓷磷光薄板堆疊。陶瓷磷光板在由發光半導體結構115發射之波長下可具有1.4或更大(例如,1.7或更大)之一RI。
波長轉換材料110可應用於具有一厚度之一層中,該厚度可取決於所使用之波長轉換材料或與依據驅動電流增強色點偏移有關之其他因數,如下文更詳細描述。例如,波長轉換材料110之一層之厚度可為大約50 μm,而其他波長轉換材料可形成為薄至20 μm或厚至200 μm之層。在實施例中,諸如一陶瓷磷光元件之波長轉換材料110可預形成為一波長轉換元件且使用一黏著劑或此項技術中已知之任何其他方法或材料附接至發光半導體結構115。
在實施例中,發光半導體結構115發射藍光。在此等實施例中,波長轉換材料110可包含例如一發黃光波長轉換材料或發綠光及發紅光波長轉換材料,此將在由各自磷光體發射之光與由發光半導體結構115發射之藍光組合時產生白光。在其他實施例中,發光半導體結構115發射UV光。在此等實施例中,波長轉換材料110可包含例如藍色及黃色波長轉換材料或藍色、綠色及紅色波長轉換材料。可添加發射其他色彩之光的波長轉換材料以定製自裝置100發射之光之光譜。
在實施例中,波長轉換材料110可包括Y3 Al5 O12 :Ce3+ 。波長轉換材料110可為通式為(Ca1-x-y-z Srx Bay Mgz )1-n (Al1-a+b Ba)Si1-b N3-b Ob :REn (其中0≤x≤1,0≤y≤1,0≤z≤1,0≤a≤1,0≤b≤1且0.002≤n≤0.2,且RE可選自銪(II)及鈰(III))之發射琥珀色至紅色之稀土金屬活化氧基次氮基鋁矽酸鹽。陶瓷磷光板中之磷光體亦可為通式為EA2-z Si5-a Ba N8-a Oa :Lnz (其中0≤z≤1且0<a<5)之氧化次氮基矽酸鹽,其包含選自由Mg、Ca、Sr、Ba及Zn組成之群組之至少一個元素EA,及選自由Al、Ga及In組成之群組之至少一個元素B,且藉由選自由鈰、銪、鋱、鐠及其等之混合物組成之群組的鑭系元素(Ln)活化。
在其他實施例中,波長轉換材料110可包含具有以下通式之鋁石榴石磷光體:(Lu1-x-y-a-b Yx Gdy )3 (Al1-z Gaz )5 O12 :Cea Prb (其中0<x<1,0<y<1,0≤z≤0.1,0<a≤0.2且0≤b≤0.1),諸如Lu3 Al5 O12 :Ce3+ 及Y3 Al5 O12 :Ce3+ ,其發射在黃色至綠色範圍內之光;及(Sr1-x-y Bax Cay )2-z Si5-a Ala N8-a Oa :Euz 2+ (其中0≤a<5,0≤x≤1,0≤y≤1且0≤z≤1),諸如Sr2 Si5 N8 :Eu2+ ,其發射在紅色範圍內之光。其他發綠光、發黃光及發紅光磷光體亦可為適合的,包含(Sr1-a-b Cab Bac )Six Ny Oz :Eua 2+ ;(a=0.002至0.2,b=0.0至0.25,c=0.0至0.25,x=1.5至2.5,y=1.5至2.5,z=1.5至2.5),包含SrSi2 N2 O2 :Eu2+ ;(Sr1-u-v-x Mgu Cav Bax )(Ga2-y-z Aly Inz S4 ):Eu2+ ,包含例如SrGa2 S4 :Eu2+ ;Sr1-x Bax SiO4 :Eu2+ ;及(Ca1-x Srx )S:Eu2+ (其中0≤x≤1),包含CaS:Eu2+ 及SrS:Eu2+ 。其他適合磷光體包含CaAlSiN3 :Eu2+ 、(Sr,Ca)AlSiN3 :Eu2+ 及(Sr, Ca, Mg, Ba, Zn)(Al, B, In, Ga)(Si, Ge)N3 :Eu2+
在其他實施例中,波長轉換材料110亦可具有一通式(Sr1-a-b Cab Bac Mgd Zne )Six Ny Oz :Eua 2+ ,其中0.002≤a≤0.2,0.0≤b≤0.25,0.0≤c≤0.25,0.0≤d≤0.25,0.0≤e≤0.25,1.5≤x≤2.5,1.5≤y≤2.5且1.5≤z≤2.5。波長轉換材料亦可具有一通式MmAaBbOoNn:Zz,其中一元素M係一或多個二價元素,一元素A係一或多個三價元素,一元素B係一或多個四價元素,O係氧(其係選用的且可不在磷光板中),N係氮,一元素Z係一活化劑,n=2/3m+a+4/3b−2/3o,其中m、a、b可皆為1且o可為0且n可為3。M係選自Mg (鎂)、Ca (鈣)、Sr (鍶)、Ba (鋇)及Zn (鋅)之一或多個元素,元素A係選自B (硼)、Al (鋁)、In (銦)及Ga (鎵)之一或多個元素,元素B係Si (矽)及/或Ge (鍺),且元素Z係選自稀土或過渡金屬之一或多個元素。元素Z係選自Eu (銪)、Mg (錳)、Sm (釤)及Ce (鈰)之至少一或多個元素。元素A可為Al (鋁),元素B可為Si (矽),且元素Z可為Eu (銪)。
波長轉換材料110亦可為具有化學式(Sr1-a-b Cab Bac )Six Ny Ox :Eua (其中a=0.002至0.2,b=0.0至0.25,c=0.0至0.25,x=1.5至2.5,y=1.5至2.5)之Eu2+ 活化Sr-SiON。
波長轉換材料110亦可為藉由用鐠(Pr)之三價離子摻雜Ce: YAG磷光體而產生的經化學改變之Ce: YAG (釔鋁石榴石)磷光體。波長轉換材料110可包含一主要螢光材料及一補充螢光材料。主要螢光材料可為Ce: YAG磷光體,且補充螢光材料可為銪(Eu)活化之硫化鍶(SrS)磷光體(「Eu:SrS」)。主要螢光材料亦可為Ce: YAG磷光體或任何其他適合發黃光磷光體,且補充螢光材料亦可為用銪活化之硫化鈣(CaS)及硫化鍶(SrS)之混合三元結晶材料((Cax Sr1_x )S:Eu2+ )。主要螢光材料亦可為Ce:YAG磷光體或任何其他適合發黃光磷光體,且補充螢光材料亦可為摻雜有銪之次氮基矽酸鹽。次氮基矽酸鹽補充螢光材料可具有化學式(Sr1-x-y-z Bax Cay )2 Si5 N8 :Euz 2+ ,其中0≤x,y≤0.5且0≤z≤0.1。
在實施例中,波長轉換材料110可包含鍶-鋰-鋁:銪(II)離子(SrLiAl3 N4 :Eu2+ )類(亦稱為SLA),包含MLiAl3 N4 :Eu2+ (M = Sr, Ba, Ca, Mg)。在一特定實施例中,發光粒子可選自以下發光材料系之群組:MLiAl3 N4 :Eu (M=Sr, Ba, Ca, Mg)、M2 SiO4 :Eu (M=Ba, Sr, Ca)、MSe1-x Sx :Eu (M=Sr, Ca, Mg)、MSr2 S4 :Eu (M=Sr, Ca)、M2 SiF6 :Mn (M=Na, K, Rb)、M2 TiF6 :Mn (M=Na, K, Rb)、MSiAlN3 :Eu (M=Ca, Sr)、M8 Mg(SiO4 )4 Cl2 :Eu (M=Ca, Sr)、M3 MgSi2 O8 :Eu (M=Sr, Ba, Ca)、MSi2 O2 N2 :Eu (M=Ba, Sr, Ca)、M2 Si5-x Alx Ox N8-x :Eu (M=Sr, Ca, Ba)。然而,其他系統亦可為所關注的且可由一塗層保護。亦可應用兩種或更多種不同發光材料之粒子之組合,諸如(舉例而言)結合一紅色發光材料之一綠色或一黃色發光材料。
在實施例中,波長轉換材料110可為上述磷光體之任一者之一摻合物。
圖2A係一例示性發光裝置(LED) 200A之一圖。在圖2A中繪示之實例中,LED 200A包含圖1B之發光半導體結構115,其安裝至包含接觸件120及125之一子基板205。發光半導體結構115可藉由發光半導體結構115上之接觸件145及150與子基板205之一鄰近表面上之子基板電極(圖2A中未展示)之間的一電耦合安裝至子基板205。子基板電極可藉由通孔(未展示)電連接至子基板205之相對表面上的接觸件120及125。在實施例中,LED 200A可安裝至一印刷電路板(PCB) 215。在此等實施例中,子基板205可經由接觸件120及125安裝至PCB 215。電路板上之金屬跡線可將接觸件120及125電耦合至一電源供應器,使得可在期望接通LED時將一操作或驅動電壓及電流施加至LED。
子基板205可由諸如陶瓷、Si或鋁之任何適合材料形成。若子基板材料係導電的,則一絕緣材料可安置於基板材料上方,且金屬電極圖案可形成於絕緣材料上方。子基板205可充當一機械支撐件、提供LED晶片上之n及p電極與一電源供應器之間的一電介面,且提供散熱。在實施例中,可替代地或額外地將一散熱器提供於PCB 215上,諸如圖2A中繪示之一金屬核心PCB至MCPCB散熱器220。雖然散熱器220在圖2A中繪示為附接至PCB 215之底部,但一般技術者將認知,在不脫離本文中描述之實施例之範疇之情況下,其他配置係可行的。
在例示性LED 200A中,波長轉換材料110在全部表面上完全包圍發光半導體結構115,惟將發光半導體結構115電連接至子基板205之表面除外。選用塗層105可安置成與波長轉換材料110直接接觸。塗層可並非一單獨層、可為個別磷光體粒子上之一塗層或可形成於陶瓷磷光體上,且此塗層可包含孔。此等孔可被填充一黏結劑或基質材料且可為波長轉換器110之部分。美國專利申請案第15/802,273號中描述磷光材料之塗層,該案於2017年11月2日申請且其之全文以引用的方式併入本文中。溶膠-凝膠、原子層沈積(ALD)、蒸鍍、濺鍍、浸漬及乾燥或旋塗方法之磷光塗層包含SiO2 、Al2 O3 、HfO2 、Ta2 O5 、Zr O2 、Ti O2 、Y2 O3 及Nb2 O5 。塗層可足夠厚以包含可在沈積期間或之後形成的孔。
圖2B係另一例示性LED 200B之一圖。在例示性LED 200B中,波長轉換材料110沈積於發光半導體結構115上。選用塗層105可安置成與波長轉換材料110直接接觸。一結構210 (諸如一框架)安置成鄰近由發光半導體結構115、波長轉換材料110及選用塗層105形成之一堆疊的側表面且可包圍該堆疊。整個結構210 (但至少鄰近堆疊之結構210之內表面)可由一光反射材料(諸如一干涉層或一強散射層)形成或以該光反射材料塗佈以進一步最小化對任何散射光之吸收。
波長轉換材料110及選用塗層105 (其可為第一材料之一部分塗層、一陶瓷塗層或一各別層塗層105)之一或兩者可為上文描述之多孔結構且因此可包含含有第二材料(具有比第一材料遠更高之一熱膨脹係數,如上文詳細描述)的孔或空隙。此一第二材料之一實例可為聚矽氧。在LED冷卻以產生光學散射時,凹穴可形成於多孔結構之孔內。
對於被填充諸如聚矽氧材料之一第二材料之孔,使用一固體材料開孔孔隙度,諸如具有開孔孔隙度之二氧化矽粒子。多孔粒子或材料可被注入第二材料,且隨後可固化第二材料。由於高熱膨脹係數,交聯第二材料可在固化溫度下完全填充多孔結構。一常用固化溫度係150°C。在降溫時,第二材料可再次縮小。歸因於聚矽氧與磷光體、塗層或散射粒子孔分層,此可能導致在多孔粒子中形成凹穴而可能引起低溫下之散射。
當施加一操作或驅動電流以接通LED時,凹穴可在裝置加熱至或超過一特定溫度時消失使得發生很少光散射。圖3A、圖3B、圖4A、圖4B、圖5A、圖5B、圖5C、圖5D及圖6提供可包含於LED (諸如LED 200A及200B)中之多孔結構之特定實例,且繪示經填充多孔結構如何依據溫度/電流而改變。圖3A、圖3B、圖4A、圖4B、圖5A、圖5B、圖5C、圖5D及圖6中繪示之實例係具有嵌入多孔二氧化矽粒子之聚矽氧樣本之影像,其可在實施例中用作多孔結構。然而,代替展示為一所繪示實例之多孔二氧化矽粒子,可一實際裝置中使用多孔磷光體粒子、具有一多孔塗層之磷光體粒子、多孔陶瓷磷光體、或具有一多孔塗層之陶瓷磷光體。
圖3A及圖3B係具有嵌入多孔二氧化矽粒子之聚矽氧樣本之一液滴302A及302B的影像300A及300B,其等在不具有一顯微鏡之情況下展示樣本之快速及緩慢冷卻之效應。圖3A及圖3B中之液滴302A/302B之直徑係大約8 mm。圖3A展示在一烤箱中加熱及冷卻時之液滴302A。非常緩慢地執行烤箱中之冷卻(例如,從150°C,液滴從固化溫度緩慢地降溫)。圖3B展示在一加熱板上加熱至200°C、移除樣本且將其快速冷卻(諸如藉由容許其在室溫下在一鋁板上冷卻)之後的液滴302B。如自圖3A及圖3B可見,快速冷卻之液滴302B具有比緩慢冷卻之液滴302A更白的一外觀。液滴302B之較白外觀可能歸因於在快速冷卻期間形成於孔中之凹穴。因為在未使用一顯微鏡之情況下取得此等影像,所以圖3B中無法看見凹穴,但凹穴形成之光學效應(增加的白度)係可見的。與尚未加熱及冷卻或已非常緩慢地加熱及冷卻之更透明聚矽氧相比,白色外觀之材料散射更多光。
圖4A及圖4B係具有嵌入多孔二氧化矽粒子402A及402B之聚矽氧樣本404A及404B在較高放大率下之影像400A及400B,其中光透射穿過粒子而使直徑標稱為10 μm之二氧化矽粒子402A及402B能夠被看見。圖4A展示經受烤箱中之緩慢冷卻時之樣本。如可見,二氧化矽粒子402A呈現為同質的。圖4B展示在快速冷卻之後之樣本。如可見,凹穴形成於二氧化矽粒子402B中,且二氧化矽粒子402B未呈現為同質的。在裝置已經受快速冷卻之後,凹穴與周圍二氧化矽/聚矽氧材料之間之折射率之差異產生散射效應。
圖5A、圖5B、圖5C及圖5D係在約1000x放大率下使用透射光光學取得之具有嵌入多孔二氧化矽粒子502A、502B、502C及502D之聚矽氧樣本的影像500A、500B、500C及500D。圖5A及圖5C展示兩個各別實驗開始時之樣本。在圖5A及圖5C兩者中,在樣本已被加熱及快速冷卻之後在室溫下擷取影像。圖5B展示在升溫及按50°C/分鐘降溫(例如,快速冷卻)之後之樣本。圖5D展示在升溫及按5°C/分鐘降溫(例如,緩慢冷卻)之後之樣本。
在顯微鏡下之觀察係看見結構快速冷卻(圖5A、圖5B及圖5D)。此意謂一長度尺度上之粒子內存在折射率差異使得其等可用可見光進行偵測。此一結構在緩慢冷卻之後不存在且尚未添加材料(圖5B),且此可藉由新的光散射實體(其等係多孔粒子內部之氣隙)加以說明。部分地,固體材料之孔未被填充聚矽氧而是具有空氣、氣體或真空。
具有被均勻填充聚矽氧之一開孔孔隙度之二氧化矽粒子未展示此一結構,即使在室溫下固體材料與聚矽氧之間存在折射率差異。此係因為材料之間之折射率差異較小(1.55對比1.46)且孔徑小於用於偵測之光之波長。在快速降溫之後偵測之結構表明在快速冷卻之後產生一不同形態:至少在此處用於偵測之可見光之波長之長度尺度上存在折射率差異。
圖6展示使用光學透射顯微鏡取得之具有直徑為約10 μm之嵌入多孔二氧化矽粒子之聚矽氧樣本的四個影像A、B、C及D。在圖6中,影像A、B、C及D展示樣本在加熱及快速冷卻之一全循環內之變化。在影像A中,展示在75°C下之具有形成於粒子602A中之凹穴的樣本。如影像B中可見,當樣本已被加熱至125°C時,粒子602B內之凹穴被填充,散射中心消失且粒子呈現為同質的。加熱在200°C下持續且接著冷卻至125°C。在於125°C下取得之影像C中,粒子602C仍呈現為同質的。在影像D中,當裝置在快取冷卻期間冷卻至75°C時,粒子核心602D內之凹穴尚未重現。進一步冷卻至室溫25°C,材料將具有與圖5A中相同之外觀,此係因為在低溫下,凹穴形成及散射再次明顯。
自圖3A、圖3B、圖4A、圖4B、圖5A、圖5B、圖5C、圖5D及圖6可見,對於具有被注入聚矽氧材料之孔之多孔二氧化矽材料,在LED被加熱及快速冷卻時凹穴可形成於二氧化矽之孔內。就一實際LED裝置而言,LED裝置將隨著電流增大及減小而自然地加熱及快速冷卻,使得在至LED之驅動電流減小時將形成凹穴。在實施例中,可例如藉由選取一適當散熱器(例如,圖2A及圖2B中之散熱器220或其他散熱器,諸如經由子基板205之散熱)或控制至LED之電流增大或減小之速率而控制(若需要) LED之加熱及冷卻。
自圖3A、圖3B、圖4A、圖4B、圖5A、圖5B、圖5C、圖5D及圖6亦可見,若需要,可藉由加熱且接著緩慢地冷卻LED而自孔消除凹穴。更明確言之,在各個加熱及冷卻循環期間,當LED被加熱至75°C與125°C之間時氣穴消失。氣穴不會重現,直至溫度接著以一快速冷卻速率冷卻至低於75°C。可使氣穴在LED按每分鐘5°C之一緩慢冷卻速率冷卻時不會重現。因此,若需要,孔內之凹穴形成之過程係可逆的。散射出現之遲滯現象(在升溫期間>75°C且在降溫期間<75°C)取決於所選取之粒徑及所使用之聚矽氧之類型。
圖7係製造具有一多孔結構之一LED以用驅動電流增強CCT偏移的一例示性方法之一流程圖700。在圖7中繪示之實例中,可選取一波長轉換材料(702)、一塗層材料(若適用) (704)、及用於填充或注入至空隙/孔中之一第二材料(706)。一般而言,可選取各種材料以在LED完全加熱時提供該等材料間之折射率之緊密匹配。用於填充或注入至空隙/孔中之第二材料應選取一熱膨脹係數,使得第二材料之熱膨脹係數與波長轉換材料或塗層之一熱膨脹係數的一比率在一些實施例中至少為2,在一些實施例中至少為10,在一些實施例中至少為100,且在一些實施例中至少為1,000。聚矽氧通常提供此等性質且可適用於孔中。下文更詳細描述可在選取此等材料時考量之特定參數。
亦可選取一散熱器(708) (若需要或要求)。上文詳細描述在選取一散熱器時應考量之因素。額外地或替代地,可選擇LED之一電流斜升速率(709) (若需要或要求)。可使用波長轉換材料及選用塗層之(若干)經選取材料形成LED (710)。可在波長轉換材料及/或塗層內形成空隙/孔(712)。接著,可將選定材料注入至空隙/孔中(714)。下文提供關於孔/空隙形成及注入之細節。
在實施例中,可在選用塗層105或波長轉換材料110中形成孔。波長轉換材料110可為一單獨形成之陶瓷波長轉換元件或一透明或半透明黏結劑或基質中之一磷光體粒子層。在各實施例中,雖然所使用之材料可不同,但孔中之凹穴依據驅動電流產生及消失之切換效應可類似於上文關於圖3A、圖3B、圖4A、圖4B、圖5A、圖5B、圖5C、圖5D及圖6描述之切換效應。
如先前提及,多孔結構可為波長轉換材料110,其可為一陶瓷磷光元件或一透明或半透明基質或黏結劑中之一磷光體粒子層。一陶瓷磷光薄板或磷光體粒子層之厚度例如可在自10 μm之一最小值至一最大值500 μm之範圍內,且在實施例中可在100 μm至200 μm或100 μm至300 μm之範圍內。一陶瓷薄板可例如在自大約50 μm至大約500 μm之範圍內,且一磷光層可較薄,例如以大約10 μm開始。薄板或層厚度可取決於轉換器中之所要色彩轉換及活化劑濃度。額外地或替代地,多孔結構可為塗層。
孔隙度可在陶瓷磷光薄板、磷光體粒子或塗層之整個厚度各處均勻地產生或可為非均勻的。在孔隙度非均勻之情況下,例如,陶瓷磷光薄板、磷光體粒子或塗層之孔隙度可在陶瓷磷光薄板、磷光體粒子或塗層之整個厚度或厚度之一部分內分級。替代地,一表面處理可應用於陶瓷磷光薄板、磷光體粒子或塗層以產生延伸一預定深度至厚度中之一更多孔的表面。例如,孔可覆蓋陶瓷磷光薄板、磷光體粒子或塗層之全部表面,可深入延伸至陶瓷磷光薄板、磷光體粒子或塗層中,可連接至其他孔,及/或可延伸遍及陶瓷磷光薄板、磷光體粒子或塗層以將一個表面連接至另一表面。
對於被填充第二材料之孔,在表面下方之某一深度處終止、交聯至其他孔或自一個表面開槽(throat)至另一表面的表面處之孔可被填充第二材料且用於依據溫度變化之散射(亦被稱為「有用孔」)。未連接或連結至延伸至一表面之孔之表面下方的隔離孔可能無法被填充第二材料且因此可能未用於依據溫度之散射變化,但其等可在全部溫度下增加散射。有用孔可大大地增加陶瓷薄板、磷光體粒子或塗層之表面積,從而大大地增加依據溫度變化之散射程度。
為在其中多孔結構係陶瓷磷光元件之實施例中產生孔隙度,可諸如藉由在形狀形成、燒結及選用熱壓、熱均壓、氣壓燒結、或火花電漿燒結期間調整未燒製或生坯預反應磷光體粒子之同質性及堆積密度而在形成陶瓷期間產生孔。
影響生坯之孔隙度之參數可包含粒徑分佈、表面積、粒子形態、粒子聚結之程度及強度、形狀形成之方法及密度(包含冷均壓或單軸壓制、薄帶成型或注漿成型及擠出或注射模製)。調整此等處理因數以及燒結或燒製程序、孔含量、孔徑、微觀結構及光學性質可為定製的。
替代地或額外地,可藉由機械或化學蝕刻或粗糙化而修改最終(燒製)陶瓷磷光體。蝕刻可為乾式的或濕式的且可為光化學及/或電化學增強型。可調整機械及化學強度以及時間以在一頂表面上產生至陶瓷中之一所要深度的額外孔隙度。
為在其中多孔結構係磷光體粒子或一塗層之實施例中產生孔隙度,可藉由控制反應參數而在形成期間在特定塗層內產生孔隙度或空隙。替代地,可在例如使用諸如上文關於機械或化學蝕刻或粗糙化描述之任何適合方法形成之後產生孔或空隙。
在全部實施例中,陶瓷磷光薄板、磷光體粒子或塗層之孔隙度可經定製以針對一特定應用提供依據溫度變化之一最佳散射程度。例如,1 mm x 1 mm x 0.1 mm薄板可具有藉由側表面(例如,四個側表面)連接之相對表面(例如,一頂表面及一底表面),側表面各自表示薄板之總表面積之約41.7%且一起表示總薄板面積之約83.4%。側表面可表示約16.6%之剩餘面積。最接近LED之薄板表面可具有被注入不同於包圍側表面或相對表面之聚矽氧的聚矽氧(諸如一更低分子量或更低折射率之聚矽氧,例如,具有更少苯基及更多甲基)之孔。
增大薄板、粒子或塗層之孔隙度可增大與聚矽氧接觸之表面積,例如增大許多數量級。薄板、層或塗層內之孔徑之範圍可在實施例中自0.5 nm至50 nm,在實施例中自1 nm至10 nm,在實施例中自10 nm至10 μm,在實施例中自10 nm至0.5 μm,或在實施例中自50 nm至0.5 μm。可基於一些材料潤濕原子或單層大小孔之能力選取較小直徑,且可基於薄板之厚度、磷光體粒子大小或塗層厚度選取較大尺寸。孔隙度可以其通常方式定義為空隙空間之體積與材料之總體積或主體體積之一比率,使得例如不具有空隙之一非多孔材料將具有0之一孔隙度,而含有多半空隙之一非常多孔的材料將具有接近1之一孔隙度。
在實施例中,薄板、粒子或塗層之孔隙度之範圍可在實施例中自0至0.8,在實施例中自0至0.05,在實施例中自0至0.1,在實施例中自0至0.5,在實施例中自0.01至0.1,且在實施例中自0.01至0.05。有效孔徑可判定凹穴之大小。凹穴可有效地散射小至固體中之光波長之大約¼的光。例如,可散射一較高折射率基質(諸如1.8折射率之一陶瓷磷光體、約50 nm之一凹穴大小)中之400 nm之一短波長光。然而,一較高折射率基質中之較短波長光(諸如2.2折射率材料中之380 nm)將給出可散射光之約40 nm之一較小凹穴大小。凹穴對於例如具有一較高折射率之一半導體轉換器中之短波長光可為大約30 nm或更大,或在其他實施例中可為大約50 nm或更大、100 nm或更大、及200 nm或更大。
在用於轉換器、選用塗層及第二材料之工程材料中,必須考量許多因素以產生與溫度特性相對之所要散射。此等因素可包含轉換器之折射率、孔徑、分佈及孔隙度,以及第二材料(例如,聚矽氧或其他適合材料)之黏度、潤濕劑及折射率。此外,轉換器之孔隙度及微觀結構可影響外部量子效率、色點及跨角度色彩(color over angle)且亦可被考量。
如上文提及,一旦系統冷卻且聚矽氧收縮,孔便可被填充或注入一第二材料以產生易受磷光體或其他材料聚矽氧分層之影響的位點。收縮可形成具有大約1.0之一折射率之凹穴且在較低溫度下引起散射之總體增加。一旦經加熱,聚矽氧便膨脹且填充空隙,而減少系統之總體散射。在實施例中,第二材料可為聚矽氧。可調整聚矽氧之性質(諸如折射率、黏度及可潤濕性)以產生散射依據溫度之所要散射變化而產生隨溫度/電流之所要色彩變化,諸如溫暖調光。
在其中一塗層(諸如選用塗層105)包含於LED中之實施例中,可將塗層沈積於一磷光體粒子層或陶瓷磷光體(例如,波長轉換材料110)上,且除產生於磷光體粒子層或陶瓷磷光體中之空隙或孔以外或代替該等空隙或孔,亦可在塗層中產生空隙或孔。塗層可具有與其塗覆於其上之磷光材料之折射率匹配的一折射率,或可具有低於或高於磷光體粒子層或陶瓷磷光體之折射率的一折射率。可用於波長轉換材料110之磷光材料之折射率可廣泛變化。例如,發紅光K2 (Ti,Si)F6 :Mn或M2 (Ti,Si)F6 :Mn (M = Na, K, Rb)可具有約1.4之一折射率,發射黃綠色光之石榴石可具有約1.8之一折射率,且發射橙紅色光之次氮基矽酸鹽可具有超過2.0之一折射率。用於塗層之材料可為例如:二氧化矽,其具有約1.4之一折射率;AlOx,包含Al2 O3 及MgO,其具有約1.8之一折射率;及SiON、SiAlON、Si3 N4 、HfO2 、Ta2 O5 、ZnO2 、Y2 O3 ,其等具有超過2.0之一折射率。
塗層可藉由此項技術中已知之任何方法沈積,諸如一溶膠-凝膠程序、原子層沈積(ALD)、化學氣相沈積(CVD)、電漿增強CVD (PECVD)、濺鍍、熱蒸鍍、或具有或不具有離子束輔助之電子束蒸鍍。塗層之厚度可從亞微米變化至數十微米或甚至數百微米。塗層材料可包含例如氧化物、氮化物、碳化物、硼化物、氟化物、砷化物、磷化物及銻化物。在實施例中,塗層可為各種材料之單一或多層塗層。可如上文針對陶瓷磷光體描述般將聚矽氧或其他材料填充或注入至塗層之空隙或孔中。
圖8及圖9係繪示在一LED包含一多孔結構(諸如上文描述之各種多孔結構)時對由該LED發射之光之CCT之影響的圖表800及900。在圖8中,針對不具有一多孔結構之一標準板上晶片(COB) LED給出在三個不同板溫度下驅動電流之影響。如所展示,CCT隨溫度及電流稍微增加,但影響幅度較小。從下文表1,其中「P.S.」指示LED是否具有一多孔結構,可見極端條件(25°C、30 mA與85°C、300 mA)之間之差異極小。 表1
Figure 02_image001
在圖9中,針對具有一多孔結構之一COB LED給出在三個不同板溫度下驅動電流之影響。如所展示,隨溫度及電流之色溫變化遠更大,且存在u’偏移之一明顯減少及一較暖色譜。存在色彩空間之不同表示,且一個表示係1976 CIE色度圖,其中使用u’及v’來表示色彩空間中之一點,其中u’從較大值(u’ ≈ 0.6)之紅色變成較小值(u’ ≈ 0.02)之藍綠色且v’ ≈ 0.5。
已詳細描述實施例,熟習此項技術者將明白,在本描述之情況下,可對本文中描述之實施例進行修改而不脫離發明概念之精神。因此,本發明之範疇並不意欲限於所繪示及描述之特定實施例。
100:發光元件(LEE)/裝置 105:塗層 110:波長轉換材料/波長轉換器 115:發光半導體結構 120:接觸件 125:接觸件 127:間隙 130:n型導電性半導體層或區/n型區/n區/n型層 135:發光作用區 140:p型導電性半導體層或區/p型區/p區 145:p接觸件 150:n接觸件 155:間隙 200A:發光裝置(LED) 200B:發光裝置(LED) 205:子基板 210:結構 215:印刷電路板(PCB) 220:散熱器 300A:影像 300B:影像 302A:液滴 302B:液滴 400A:影像 400B:影像 402A:二氧化矽粒子 402B:二氧化矽粒子 404A:聚矽氧樣本 404B:聚矽氧樣本 500A:影像 500B:影像 500C:影像 500D:影像 502A:二氧化矽粒子 502B:二氧化矽粒子 502C:二氧化矽粒子 502D:二氧化矽粒子 602A:粒子 602B:粒子 602C:粒子 602D:粒子核心 700:流程圖 702:選取波長轉換材料 704:選取塗層材料 706:選取用於填充或注入至空隙/孔中之第二材料 708:選取散熱器 709:選擇LED之電流斜升速率 710:使用波長轉換材料及選用塗層之(若干)經選取材料形成LED 712:在波長轉換材料及/或塗層內形成空隙/孔 714:將選定材料注入至空隙/孔中 800:圖表 900:圖表 A:影像 B:影像 C:影像 D:影像
圖1A係包含一發光半導體結構及一多孔結構的一例示性發光元件(LEE)之一圖;
圖1B係可包含於圖1A之LEE中的一例示性發光半導體結構之一圖;
圖2A係可包含圖1A之LEE的一例示性發光裝置(LED)之一圖;
圖2B係可包含圖1A之LEE的另一例示性LED之一圖;
圖3A及圖3B係具有嵌入多孔二氧化矽粒子之聚矽氧樣本之一液滴的影像,其等在未高倍放大之情況下展示樣本之快速及緩慢冷卻之效應;
圖4A及圖4B係具有嵌入多孔二氧化矽粒子之聚矽氧樣本之影像,其等在放大之情況下展示樣本之快速及緩慢冷卻之效應;
圖5A、圖5B、圖5C及圖5D係具有嵌入多孔二氧化矽粒子之聚矽氧樣本之影像,其等展示在可用光學顯微鏡偵測內部結構之一長度尺度上在樣本之再加熱以及緩慢及快速冷卻期間二氧化矽粒子之內部結構的變化;
圖6係具有嵌入多孔二氧化矽粒子之相同聚矽氧樣本之四個影像,其等展示整個再加熱及快速冷卻循環在樣本上之效應,其中在再加熱開始時多孔結構中明顯存在歸因於凹穴之散射;及
圖7係製造具有一多孔結構之一LED以用驅動電流增強色點偏移的一例示性方法之一流程圖;及
圖8及圖9係繪示溫度對由具有及不具有一多孔結構之一LED發射之光之CCT的影響之圖表。
105:塗層
110:波長轉換材料
115:發光半導體結構/波長轉換器
120:接觸件
125:接觸件
130:n型導電性半導體層或區/n型區/n區/n型層
135:發光作用區
145:p接觸件
150:n接觸件
155:間隙
200A:發光裝置(LED)
205:子基板
215:印刷電路板(PCB)
220:散熱器

Claims (16)

  1. 一種發光裝置,其包括:一發光半導體二極體結構;一磷光材料,其包括複數個孔且經組態以吸收由該半導體二極體結構發射之光且作為回應而發射一較長波長之光;及一填充材料,其安置於該磷光材料中之該等孔之至少一者中,如此若該磷光材料處於至少125℃之一溫度,則該等孔之一或多者各自由填充材料完全填充,且若該磷光材料處於30℃之一溫度,則其僅由填充材料部分填充;其中該填充材料之一熱膨脹係數與該磷光材料之一熱膨脹係數之一比率的一絕對值至少為2。
  2. 如請求項1之發光裝置,其中該填充材料之該熱膨脹係數與該磷光材料之該熱膨脹係數之該比率的該絕對值至少為10。
  3. 如請求項1之發光裝置,其中該等孔之一或多者各自由該填充材料部分填充,其中該一或多個部分填充之孔之剩餘體積包括氣體或真空。
  4. 如請求項1之發光裝置,其中該等孔之一或多者由該填充材料完全填充。
  5. 如請求項1之發光裝置,其中包括複數個孔之該磷光材料進一步包括 在一透明或半透明黏結劑或基質(matrix)或一陶瓷磷光元件中之磷光體粒子中之一者。
  6. 如請求項1之發光裝置,其中該填充材料選自由聚矽氧、環氧樹脂、尿烷及其等之兩者或更多者之混合物組成之群組。
  7. 如請求項1之發光裝置,其中該等孔具有範圍在10nm至10μm、10nm至0.5μm或50nm至0.5μm之間之直徑。
  8. 如請求項1之發光裝置,其中該磷光材料具有範圍在0至0.8、0至0.5、0至0.1、0至0.05、0.01至0.1或0.01至0.05之間之一孔隙度。
  9. 如請求項1之發光裝置,其包括:一塗層材料,其作為一塗層安置於該磷光材料上,該塗層包括第二複數個孔;及一第二填充材料,其安置於該塗層中之該等孔中;其中該第二填充材料之一熱膨脹係數與該塗層材料之一熱膨脹係數之一比率的一絕對值至少為2。
  10. 如請求項9之發光裝置,其中該塗層材料及該磷光材料具有匹配之折射率。
  11. 如請求項10之發光裝置,其中: 該磷光材料包括具有大約1.4之一折射率之發紅光K2(Ti,Si)F6:Mn、具有大約1.8之一折射率之發射黃綠色光之石榴石及具有超過2.0之一折射率之發射橙紅色光之次氮基矽酸鹽之一者;及該塗層材料包括具有大約1.4之一折射率之二氧化矽、具有大約1.8之一折射率之AlOX及具有超過2.0之一折射率之SiON或Si3N4之一者。
  12. 如請求項1之發光裝置,其中該磷光材料鄰近於該發光半導體結構。
  13. 如請求項1之發光裝置,其中:該填充材料係一第一聚矽氧材料;該磷光材料包括具有一第一表面、與該第一表面相對之一第二表面及複數個側表面的一陶瓷磷光板;該陶瓷磷光板包括該等孔;該陶瓷磷光板之該第一表面安置成鄰近該發光半導體結構;該填充材料安置於該陶瓷磷光板之該第一表面中之孔中;及不同於該第一聚矽氧材料之一第二聚矽氧材料安置於該陶瓷磷光板之該第二表面及側表面中之孔中。
  14. 如請求項13之發光裝置,其中該第一聚矽氧材料具有比該第二聚矽氧材料低之一分子量。
  15. 如請求項1至12中任一項之發光裝置,其中:該磷光材料包括複數個磷光體粒子;及 該等磷光體粒子包括該複數個孔。
  16. 如請求項1至12中任一項之發光裝置,其中:該磷光材料包括一陶瓷磷光體;及該陶瓷磷光體包括該複數個孔。
TW108127075A 2018-07-30 2019-07-30 具有多孔磷光結構的發光裝置 TWI714191B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/048,440 US10797207B2 (en) 2018-07-30 2018-07-30 Light emitting device with porous structure to enhance color point shift as a function of drive current
US16/048,440 2018-07-30
EP18194607 2018-09-14
EP18194607.0 2018-09-14

Publications (2)

Publication Number Publication Date
TW202020108A TW202020108A (zh) 2020-06-01
TWI714191B true TWI714191B (zh) 2020-12-21

Family

ID=67544482

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127075A TWI714191B (zh) 2018-07-30 2019-07-30 具有多孔磷光結構的發光裝置

Country Status (2)

Country Link
TW (1) TWI714191B (zh)
WO (1) WO2020028350A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201444948A (zh) * 2013-03-20 2014-12-01 皇家飛利浦有限公司 多孔性粒子中的囊封量子點
US20150069299A1 (en) * 2013-09-11 2015-03-12 Nitto Denko Corporation Phosphor Ceramics and Methods of Making the Same
US20180053882A1 (en) * 2016-08-17 2018-02-22 Epistar Corporation Light-emitting device and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523278B (zh) * 2011-08-05 2016-02-21 晶元光電股份有限公司 波長轉換結構及其製造方法以及包含此波長轉換結構之發光裝置
CN103367611B (zh) * 2012-03-28 2017-08-08 日亚化学工业株式会社 波长变换用无机成型体及其制造方法以及发光装置
DE102014101804A1 (de) * 2013-12-18 2015-06-18 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201444948A (zh) * 2013-03-20 2014-12-01 皇家飛利浦有限公司 多孔性粒子中的囊封量子點
US20150069299A1 (en) * 2013-09-11 2015-03-12 Nitto Denko Corporation Phosphor Ceramics and Methods of Making the Same
US20180053882A1 (en) * 2016-08-17 2018-02-22 Epistar Corporation Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
TW202020108A (zh) 2020-06-01
WO2020028350A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP2106621B1 (en) Light emitting device including luminescent ceramic and light-scattering material
US10023796B2 (en) Illumination system comprising composite monolithic ceramic luminescence converter
RU2550753C2 (ru) Полупроводниковый светоизлучающий диод с конверсией длины волны
EP1979438B1 (en) Phosphor converted light emitting device
KR102606173B1 (ko) 세라믹 파장 컨버터 어셈블리 및 이를 제조하는 방법
US10886441B1 (en) Light emitting device with porous structure to enhance color point shift as a function of drive current
EP2193549B1 (en) Light source including reflective wavelength-converting layer
CN104282827B (zh) 波长转换结构、包括波长转换结构的设备及相关制造方法
US20080191608A1 (en) Illumination System Comprising a Ceramic Luminescence Converter
JP2010514189A (ja) 光放出デバイス用のマルチ−粒子発光セラミックス
JP2007214579A (ja) 蛍光体変換発光デバイス
CN114269882B (zh) 发光材料,用于制造发光材料的方法和发射辐射的器件
TWI719149B (zh) 用於發光裝置之波長轉換材料
TWI714191B (zh) 具有多孔磷光結構的發光裝置
TW202016190A (zh) 增加波長轉換材料體積及提升色彩過度角之惰性填料