RU2550753C2 - Полупроводниковый светоизлучающий диод с конверсией длины волны - Google Patents

Полупроводниковый светоизлучающий диод с конверсией длины волны Download PDF

Info

Publication number
RU2550753C2
RU2550753C2 RU2012126168/28A RU2012126168A RU2550753C2 RU 2550753 C2 RU2550753 C2 RU 2550753C2 RU 2012126168/28 A RU2012126168/28 A RU 2012126168/28A RU 2012126168 A RU2012126168 A RU 2012126168A RU 2550753 C2 RU2550753 C2 RU 2550753C2
Authority
RU
Russia
Prior art keywords
thermal contact
contact material
light
luminescent
thermal
Prior art date
Application number
RU2012126168/28A
Other languages
English (en)
Other versions
RU2012126168A (ru
Inventor
Дмитрий САЙМОНИАН
Григорий БАСИН
Original Assignee
Конинклейке Филипс Электроникс Н.В.
ФИЛИПС ЛЮМИЛЕДС ЛАЙТИНГ КОМПАНИ ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В., ФИЛИПС ЛЮМИЛЕДС ЛАЙТИНГ КОМПАНИ ЭлЭлСи filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2012126168A publication Critical patent/RU2012126168A/ru
Application granted granted Critical
Publication of RU2550753C2 publication Critical patent/RU2550753C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)

Abstract

Полупроводниковое светоизлучающее устройство содержит полупроводниковую структуру, содержащую светоизлучающий слой; люминесцентный материал, размещенный на пути света, излучаемого светоизлучающим слоем; и термоконтактный материал, размещенный в прозрачном материале; причем термоконтактный материал не производит конверсии длины волны света, излучаемого светоизлучающим слоем; термоконтактный материал имеет большую теплопроводность, чем теплопроводность прозрачного материала; термоконтактный материал размещен для рассеяния теплоты от люминесцентного материала; термоконтактный материал имеет медианный размер частиц больше чем 10 мкм; и коэффициент преломления термоконтактного материала отличается от коэффициента преломления прозрачного материала менее чем на 10% . Изобретение обеспечивает исключение возможности нежелательного смещения цветового тона и снижения светового выхода. 2 н. и 18 з.п.ф-лы, 6 ил.

Description

2420-185652RU/052
ПОЛУПРОВОДНИКОВЫЙ СВЕТОИЗЛУЧАЮЩИЙ ДИОД С КОНВЕРСИЕЙ ДЛИНЫ ВОЛНЫ
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к полупроводниковым светоизлучающим устройствам с конверсией длины волны.
УРОВЕНЬ ТЕХНИКИ
[0002] Полупроводниковые светоизлучающие устройства, включающие в себя светоизлучающие диоды (LED), резонаторные светоизлучающие диоды (RCLED), лазерные диоды с вертикальным объемным резонатором (VCSEL) и лазеры с торцевым излучением, входят в круг наиболее эффективных источников света, доступных в настоящее время. Наиболее интересные сейчас системы материалов для производства светоизлучающих устройств с высокой яркостью, способные работать в видимой области спектра, включают в себя полупроводники из Групп III-V, в особенности двойные, тройные и четверные сплавы галлия, алюминия, индия и азота, также называемые III-нитридными материалами. Обычно III-нитридные светоизлучающие устройства изготавливают эпитаксиальным выращиванием пакета полупроводниковых слоев с различными составами и различными концентрациями легирующих добавок на сапфире, карбиде кремния, III-нитриде или прочих пригодных подложках путем химического осаждения металлоорганических соединений из газовой фазы (MOCVD), молекулярно-лучевой эпитаксией (МВЕ) или другими эпитаксиальными технологиями. Пакет часто включает в себя один или более слоев n-типа, легированных, например, кремнием (Si), сформированных поверх подложки, один или более светоизлучающих слоев в активной области, сформированных поверх слоя или слоев n-типа, и один или более слоев р-типа, легированных, например, магнием (Mg), сформированных поверх активной области. Электрические контакты формируют на областях n- или р-типа.
[0003] Длину волны света, излучаемого активной областью, можно сместить размещением на пути света, излученного активной областью, материала-конвертера длины волны, такого как люминофор или краситель. Материал-конвертер длины волны поглощает свет, излученный активной областью, и излучает свет с иной пиковой длиной волны, которая обычно больше, чем пиковая длина волны света, излученного активной областью. Фиг. 1 иллюстрирует полупроводниковое светоизлучающее устройство с конверсией длины волны, более подробно описанное в патентном документе US 6870311. В устройстве согласно фиг. 1 полупроводниковое светоизлучающее устройство 32 размещено в светоотражающей чаше 34. На одной или более поверхностях устройства 32 размещают слой 44 прозрачного материала. В материале 36 диспергированы наночастицы 38 и частицы 40 люминофора. Примеры пригодных наночастиц включают в себя наночастицы оксидов, нитридов, нитридосиликатов металлов и их смесей. Пригодные оксиды металлов могут включать в себя, но не ограничиваются таковыми, оксид кальция, оксид церия, оксид гафния, оксид титана, оксид цинка, оксид циркония и их комбинации. Наночастицы таких оксидов металлов, имеющие размеры, которые варьируются, например, от около 2 нм до около 10 нм, производятся, например, фирмой Degussa-Huls AG, Франкфурт-на-Майне, Германия. Пригодные наночастицы для таких вариантов применения также могут включать в себя II-VI-полупроводники, такие как сульфид цинка, селенид цинка, сульфид кадмия, селенид кадмия, теллурид кадмия и их тройные или четверные смеси, и наночастицы III-V-полупроводников, такие как III-нитриды, III-фосфиды и их смеси. Наночастицы выбирают имеющими больший коэффициент преломления, чем исходный материал.
[0004] Прозрачный материал 36 может быть органическим или неорганическим, и может включать в себя, например, материалы, включающие в себя, но не ограничивающиеся таковыми, общеупотребительные эпоксидные смолы, акриловые полимеры, поликарбонаты, силиконовые полимеры, оптические стекла, халькогенидные стекла, спиросоединения и их смеси.
[0005] В технологии требуются эффективные конструкции полупроводниковых светоизлучающих устройств с конверсией длины волны.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
[0006] Цель изобретения состоит в представлении устройства, включающего в себя люминесцентный материал и термоконтактный материал, размещенный для рассеяния теплоты от люминесцентного материала.
[0007] В вариантах осуществления изобретения устройство включает в себя полупроводниковую структуру, содержащую светоизлучающий слой, размещенный между областью n-типа и областью р-типа. На пути света, излучаемого светоизлучающим слоем, размещается люминесцентный материал. В прозрачном материале размещается термоконтактный материал. Термоконтактный материал имеет большую теплопроводность, чем теплопроводность прозрачного материала. Термоконтактный материал размещается для рассеяния теплоты от люминесцентного материала.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0008] Фиг. 1 иллюстрирует полупроводниковое светоизлучающее устройство известного уровня техники, покрытое прозрачным материалом, включающим в себя частицы люминофора и наночастицы.
[0009] Фиг. 2 иллюстрирует прозрачный материал, включающий в себя люминофор и термоконтактный материал, размещенный поверх светоизлучающего устройства.
[0010] Фиг. 3 иллюстрирует два отдельных слоя, каждый из которых включает в себя прозрачный материал, люминофор и термоконтактный материал, размещенные поверх светоизлучающего устройства.
[0011] Фиг. 4 иллюстрирует многослойное устройство, включающее в себя керамический люминофор, слой прозрачного материала, включающего в себя люминофор и термоконтактный материал, и клеевой слой, включающий в себя термоконтактный материал, размещенные на светоизлучающем устройстве.
[0012] Фиг. 5 иллюстрирует люминофорный слой и линзу, заполненную термоконтактным материалом, размещенные поверх светоизлучающего устройства.
[0013] Фиг. 6 иллюстрирует градиент температуры между светоизлучающим слоем и люминофорным слоем как функцию прямого тока для устройств с термоконтактными материалами и без них.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
[0014] При конверсии длины волны люминофором, иллюстрированным в фиг. 1, может выделяться теплота вследствие, например, потери энергии на эмиссию фотонов с большей длиной волны, конечной эффективности преобразования люминофоров и повторного поглощения фотонов, которые не были выведены из устройства. Рассеяние теплоты из устройства согласно фиг. 1 может быть затруднено плохим тепловым контактом люминофора с модулем устройства вследствие низкой теплопроводности прозрачного материала. Например, силиконовый прозрачный материал часто имеет теплопроводность от около 0,1 до 0,2 Вт/(м°С). Избыточная теплота от конверсии длины волны может приводить к рабочим температурам, достаточно высоким, чтобы вызвать разложение органических веществ в прозрачном материале, что может обусловливать пожелтение прозрачного материала или даже выход устройства из строя. В дополнение, квантовые выходы некоторых люминофоров снижаются при высоких температурах, что может вызывать нежелательное смещение цветового тона излучаемого устройством света или снижение светового выхода.
[0015] В вариантах осуществления изобретения термоконтактный материал размещается поверх полупроводникового светоизлучающего устройства для отведения теплоты внутри и вокруг материала-конвертера длины волны. Теплота от материала-конвертера длины волны рассеивается посредством термоконтактного материала в светоизлучающее устройство и в теплоотвод или основу, с которыми соединено светоизлучающее устройство.
[0016] Термоконтактный материал может быть размещен в прозрачном исходном материале. Одним примером пригодного исходного материала является силикон с коэффициентом преломления для видимого света между 1,4 и 1,55. Дополнительные примеры прозрачных исходных материалов включают в себя органические или неорганические материалы, такие как силиконовые полимеры, эпоксидные смолы, акриловые полимеры, поликарбонаты, оптические стекла, халькогенидные стекла и их смеси. Могут быть также использованы прозрачные исходные материалы с высоким коэффициентом преломления, такие как стекла и материалы с высоким коэффициентом преломления, такие как силиконы, эпоксидные смолы и золь-гели, коэффициент преломления которых был изменен добавлением наночастиц, как описано в патентном документе US 6870311.
[0017] Термоконтактный материал может иметь коэффициент преломления, который близок или соответствует коэффициенту преломления исходного материала. Коэффициент преломления термоконтактного материала отличается от коэффициента преломления исходного материала менее чем на 10% в некоторых вариантах осуществлении и менее чем на 1% в некоторых вариантах осуществления.
[0018] Теплопроводность термоконтактного материала больше, чем теплопроводность исходного материала. Например, термоконтактный материал может иметь теплопроводность свыше 0,5 Вт/(м°С) в некоторых вариантах осуществления, более 1 Вт/(м°С) в некоторых вариантах осуществления, и более 5 Вт/(м°С) в некоторых вариантах осуществления.
[0019] Примеры пригодных термоконтактных материалов включают в себя смешанные оксиды алюминия/кремния, диоксид кремния, некристаллический диоксид кремния, SiC, AlN, алмаз, частицы неактивированного люминофора, такие как прозрачные частицы YAG (алюмо-иттриевого граната) без легирования церием (Се), и их смеси. Частицы неактивированного люминофора, такого как YAG, не производят конверсию длины волны света, излучаемого светоизлучающим устройством.
[0020] Термоконтактный материал может представлять собой, например, порошок с большим медианным размером частиц, чем медианный размер частиц люминофора, с которым его объединяют в некоторых вариантах осуществления, более 1 мкм в некоторых вариантах осуществления, 5 мкм в некоторых вариантах осуществления, между 1 мкм и 50 мкм в некоторых вариантах осуществления, между 1 мкм и 10 мкм в некоторых вариантах осуществления и между 10 мкм и 50 мкм в некоторых вариантах осуществления. Порошкообразные люминофоры часто имеют размер частиц между 1 мкм и 10 мкм. Термоконтактный материал может быть порошком из сферических или близких к сферическим частиц. В некоторых вариантах осуществления термоконтактный материал размещается так, что значительная доля частиц термоконтактного материала находится в контакте с их ближайшими соседними частицами и формирует сеть. Теплота распространяется по сети, пока не будет рассеяна в светоизлучающее устройство.
[0021] Ниже иллюстрированы варианты осуществления изобретения. Хотя варианты осуществления иллюстрируют III-нитридные тонкопленочные устройства с перевернутыми кристаллами, варианты осуществления изобретения могут быть использованы с другими устройствами, такими как традиционные устройства, с перевернутыми кристаллами, где ростовая подложка остается частью конечного устройства, вертикальные устройства, где контакты сформированы на противолежащих сторонах полупроводниковой структуры, устройства, где свет выводится через контакты, сформированные на одной или противоположных сторонах полупроводниковой структуры, и устройства, сделанные из других систем материалов, например, таких как устройства AlInGaP или AlGaAs.
[0022] Иллюстрированные тонкопленочные устройства с перевернутыми кристаллами формируются первым выращиванием полупроводниковой структуры на ростовой подложке. Полупроводниковая структура включает в себя область n-типа, светоизлучающую, или активную область и область р-типа. Сначала выращивают область n-типа. Область n-типа может включать в себя многочисленные слои с различными составами и концентрациями легирующих добавок, включающие в себя, например, подготовительные слои, такие как буферные слои или нуклеационные слои, которые могут быть слоями n-типа или ненамеренно легированными, разделительные слои, предназначенные для облегчения последующего отделения подложки или уменьшения толщины полупроводниковой структуры после удаления подложки, и слои устройства n- или даже р-типа, предназначенные для создания конкретных оптических или электрических свойств, желательных для эффективного излучения света светоизлучающей областью.
[0023] Поверх области n-типа выращивают светоизлучающую или активную область. Примеры пригодных светоизлучающих областей включают в себя одиночный толстый или тонкий светоизлучающий слой или светоизлучающую область с множественными квантовыми ямами, включающую светоизлучающие слои с множественными тонкими или толстыми квантовыми ямами, разделенные барьерными слоями. Например, светоизлучающая область с множественными квантовыми ямами может включать многочисленные светоизлучающие слои, каждый из которых имеет толщину 25 Å (2,5 нм) или менее, разделенные барьерами, каждый с толщиной 100 Å (10 нм) или менее. В некоторых вариантах осуществления толщина каждого из светоизлучающих слоев в устройстве является большей чем 50 Å (5 нм).
[0024] Поверх светоизлучающей области выращивают область р-типа. Подобно области n-типа, область р-типа может включать в себя многочисленные слои с различными составами, толщиной и концентрациями легирующих добавок, в том числе слои, которые являются ненамеренно легированными, или слои n-типа.
[0025] На области р-типа формируют отражающий металлический р-контакт, который может быть, например, серебряным и может включать в себя другие слои, такие как защитные слои. Части р-контакта, области р-типа и светоизлучающей области полупроводниковой структуры вытравливают для обнажения области n-типа. На открытых участках области n-типа формируют n-контакты.
[0026] Светоизлучающий диод 50 (LED) соединяют с опорой n- и р-межсоединениями, которые могут быть из любого подходящего материала, такого как припой, Au, Au/Sn или другие металлы, и могут включать в себя многочисленные слои материалов. В некоторых вариантах осуществления межсоединения включают в себя, по меньшей мере, один слой золота, и связь между LED и основой 54 формируют ультразвуковой сваркой.
[0027] После связывания кристалла LED с опорой вся подложка или ее часть, на которой были выращены полупроводниковые слои, может быть удалена. Полупроводниковая структура, остающаяся после удаления подложки-основы, может быть сделана более тонкой, например, фотоэлектрохимическим травлением. Поверхность полупроводника может быть сделана шероховатой или на нее может быть нанесен рисунок, например, со структурой фотонного кристалла. Затем LED 50 может быть присоединен к основе 54, которая может быть подложкой или отдельной структурой, на которой монтируют опору. Необязательное устройство 52, которое может представлять собой, например, схему защиты от электростатических разрядов (ESD) или другую схему, часто создаваемую в виде традиционной кремниевой интегральной схемы, может быть присоединено к основе 54 или встроено в основу 54.
[0028] В описанных ниже вариантах осуществления термоконтактный материал и один или более материалов-конвертеров длины волны, типично люминофоров, объединяют с III-нитридным LED. Могут быть использованы многие или немногие материалы-конвертеры длины волны и могут быть применены нелюминофорные материалы-конвертеры длины волны, такие как красители или квантовые точки. Материалы-конвертеры длины волны могут преобразовывать весь свет из LED с образованием монохроматического окрашенного света или белого света, или материалы-конвертеры длины волны могут быть сконфигурированы так, что некоторый свет, излучаемый LED, выходит из структуры непреобразованным. В некоторых вариантах осуществления непреобразованный свет и свет с конвертированной длиной волны объединяются с образованием белого света. Например, LED с синим излучением может быть объединен с излучающим желтый свет люминофором, или LED с синим излучением может быть объединен с люминофором, излучающим красный свет, и люминофором, излучающим желтый или зеленый свет. Для достижения желательного цветового тона могут быть добавлены другие люминофоры, излучающие свет других цветов.
[0029] Люминофоры хорошо известны, и может быть применен любой пригодный люминофор. Примеры подходящих люминофоров с красным спектром излучения включают eCAS, BSSNE, SSONE, а также (Ca1-xSrx)S:Eu2+, в котором 0<x≤1, включающий, например, CaS:Eu2+ и SrS:Eu2+; и (Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz2+, в котором 0≤a<5, 0<x≤1, 0≤y≤1, и 0<z≤1, включающий в себя, например, Sr2Si5N8:Eu2+. eCAS, который представляет собой Ca1-xAlSiN3:Eux, может быть синтезирован из 5,436 г Ca3N2 (с чистотой >98%), 4,099 г AlN (99%), 4,732 г Si3N4 (с чистотой >98%) и 0,176 г Eu2O3 (с чистотой 99,99%). Порошки смешивают в планетарной шаровой мельнице и подвергают обжигу в течение 4 часов при температуре 1500°C в атмосфере H2/N2 (5/95%). BSSNE, который представляет собой Ba2-x-zMxSi5-yAlyN8-yOy:Euz (M=Sr, Ca; 0≤x≤1, 0≤y≤4, 0,0005≤z≤0,05), может быть синтезирован карботермическим восстановлением, которое включает в себя смешение 60 г BaCO3, 11,221 г SrCO3 и 1,672 г Eu2O3 (все с чистотой 99,99%) в планетарной шаровой мельнице с использованием 2-пропанола в качестве диспергирующего агента. После высушивания смесь прокаливают в атмосфере форминг-газа (смеси водорода и азота) при температуре 1000°С в течение 4 ч, и 10 г полученного таким образом Ba0,8Sr0,2О:Eu (2%) смешивают с 5,846 г Si3N4 (с чистотой >98%), 0,056 г AlN (с чистотой 99%) и 1,060 г графита (микрокристаллического сорта). Порошки тщательно перемешивают в течение 20 мин в планетарной шаровой мельнице и подвергают обжигу в течение 4 ч при температуре 1450°С в атмосфере форминг-газа для получения порошка Ba2-x-zMxSi5-yAlyN8-yOy:Euz (M=Sr, Ca; 0≤x≤1, 0≤y≤4, 0,0005≤z ≤0,05). SSONE может быть приготовлен смешением 80,36 г SrCO3 (с чистотой 99,99%), 20,0 г SiN4/3 (с чистотой >98%) и 2,28 г Eu2O3 (с чистотой 99,99%) и обжигом при температуре 1200°С в течение 4 ч в атмосфере N2/H2 (93/7).
[0030] Примеры пригодных люминофоров с желто-зеленым излучением включают в себя люминофоры на основе алюминиевого граната с общей формулой (Lu1-x-y-a-bYxGdy)3(Al1-zGaz)5О12:CeaPrb, в котором 0<x<1, 0<y<1, 0<z≤0,1, 0<a≤0,2, и 0<b≤0,1, так что Lu3Al5O12:Ce3+ и Y3Al5O12:Ce3+; SrSi2N2O2:Eu2+; (Sr1-u-v-xMguCavBax)(Ga2-y-zAlyInzS4):Eu2+, в том числе, например, SrGa2S4:Eu2+; и Sr1-xBaxSiO4:Eu2+. Пригодный керамический материал Y3Al5O12:Ce3+ может быть получен следующим образом: 40 г Y2O3 (99,998%), 32 г Al2O3 (99,999%), и 3,44 г CeO2 размалывают с 1,5 кг шариков из высокочистого оксида алюминия (с диаметром 2 мм) в изопропаноле на роликовом стенде в течение 12 ч. Затем высушенный порошкообразный прекурсор кальцинируют при температуре 1300°С в течение двух часов в атмосфере СО. Затем полученный YAG-порошок измельчают с помощью планетарной шаровой мельницы (с агатовыми шариками) под этанолом. Затем суспензию керамического материала используют для шликерного литья с получением керамической заготовки после высушивания. Затем заготовки подвергают обжигу между графитовыми пластинами при температуре 1700°С в течение двух часов.
[0031] В варианте осуществления, иллюстрированном в фиг. 2, термоконтактный материал 56 смешивают с порошкообразными люминофорами 58а и 58b и размещают в прозрачном исходном материале 60. Смесь может быть распределена над LED 50 в форме жидкости или суспензии и затем отверждена. Например, смесь может быть отлита поверх LED 50, как описано в патентном документе US 7344902, озаглавленном «Линзы, полученные экструдерным покрытием бесшовной оболочкой поверх кристалла LED» и включенном здесь ссылкой. Или же пленка, содержащая люминофоры и термоконтактный материал, может быть сформирована отдельно от LED, затем позиционирована поверх LED 50. Другие примеры формирования смеси люминофора и прозрачного исходного материала на LED включают наслоение или наклеивание такой смеси, сформированной отдельно в виде пленки, трафаретную печать такой смесью, или ножевое осаждение такой смеси. В альтернативном варианте осуществления в смеси может присутствовать только один тип порошкообразного люминофора 58а.
[0032] В варианте осуществления, иллюстрированном на фиг. 3, два люминофора являются раздельными и размещены поверх LED в виде отдельных слоев. Каждый люминофор смешивают с термоконтактным материалом 56 и прозрачным связующим материалом 60. В некоторых вариантах осуществления термоконтактный материал 56 может быть включен только в один из многочисленных люминофорных слоев или в отдельный слой исходного материала без люминофора. Отдельные слои могут быть сформированы различными способами, которые включают, но не ограничиваются таковыми: наслоение, приклеивание, трафаретную печать, осаждение на острой кромке.
[0033] В устройствах согласно фиг. 2 и 3 совокупный объем люминофоров и термоконтактного материала может составлять, по меньшей мере, 30% от общего объема люминофора, термоконтактного материала и исходного материала в некоторых вариантах осуществления и, по меньшей мере, 60% от общего объема люминофора, термоконтактного материала и исходного материала в некоторых вариантах осуществления. Соотношение по весу «люминофор с желтым или зеленым излучением: люминофор с красным излучением: прозрачный материал: термоконтактный материал» может составлять 3,67:1,33:7:3 в одном примере, 3,67:1,33:8:2 в одном примере, и 3,67:1,33:5:5 в одном примере.
[0034] Устройство, иллюстрированное на фиг. 4, включает термоконтактный материал и люминесцентный керамический материал или керамический люминофор 66. Керамические люминофоры более подробно описаны в патентном документе US 7361938, который включен здесь ссылкой. Керамический люминофор 66 может быть предварительно сформован в пластину независимо от обработки LED 50, затем приклеен к LED 50 адгезивным слоем 62, включающим прозрачный адгезив 63. Термоконтактный материал 56 может быть смешан с прозрачным адгезивом 63 в адгезивном слое 62.
[0035] Необязательный второй люминофорный слой 64 размещают между керамическим люминофором 66 и кристаллом 50. Необязательный второй люминофорный слой 64 может представлять собой, например, порошкообразный люминофор 56, смешанный с прозрачной основой 60, как описано выше, затем нанесенный и отвержденный на нижней поверхности керамического люминофора 66. Термоконтактный материал 56 может быть смешан с люминофором 58 в исходном материале 60, хотя это не требуется. В устройстве, иллюстрированном на фиг. 4, термоконтактный материал 56 может быть размещен только в одном или в обоих адгезивных слоях 62 и втором люминофорном слое 64. В некоторых вариантах осуществления, если исходный материал 60 в люминофорном слое 64 пригоден для присоединения керамического люминофора 66 к кристаллу 50, от отдельного адгезивного слоя 62 можно отказаться.
[0036] В устройстве согласно фиг. 5 поверх LED 50 сформирован оптический элемент, такой как линза. Линза 68 может быть сформирована, например, из силикона или любого другого пригодного прозрачного материала 60. Объем термоконтактного материала может составлять, по меньшей мере, 30% от общего объема термоконтактного материала и прозрачного исходного материала в некоторых вариантах осуществления, и, по меньшей мере, 60% от общего объема термоконтактного материала и прозрачного исходного материала в некоторых вариантах осуществления. Поверх линзы 68 может быть сформирован люминесцентный слой 70. Люминесцентный слой 70 может включать один или более люминофоров 58а и 58b, размещенных в прозрачном исходном материале 60. Один или оба компонента из линзы 68 и люминесцентного слоя 70 могут включать термоконтактный материал 56.
[0037] Фиг. 6 иллюстрирует температурный градиент между светоизлучающим слоем и люминофорным слоем как функцию прямого тока для устройств с термоконтактными материалами и без них. В устройствах, иллюстрированных на фиг. 6, смесь LuAG и легированных европием люминофоров (Ca0,2Sr0,8)AlSiN3 внедрили в силиконовый исходный материал и разместили поверх тонкопленочного устройства с перевернутым кристаллом. Залитые кружки иллюстрируют устройство с термоконтактным материалом, помещенным в исходный материал, согласно вариантам осуществления изобретения. Светлые кружки иллюстрируют устройство без термоконтактного материала. Как иллюстрировано на фиг. 6, при всех значениях прямого тока температурный градиент является меньшим для устройства, включающего термоконтактный материал, показывая, что термоконтактный материал рассеивает теплоту от люминофора, в то же время не вызывая снижения светового выхода устройства при всех значениях прямого тока.
[0038] В некоторых вариантах осуществления частицы прозрачного материала смешиваются с порошкообразным люминофором в прозрачном исходном материале. Частицы прозрачного материала имеют коэффициент преломления, соответствующий или близкий коэффициенту преломления исходного материала, и размещены для предотвращения осаждения люминофора в исходном материале. Совокупный объем частиц прозрачного материала может составлять, по меньшей мере, 0,1% от общего объема люминофора, частиц прозрачного материала и исходного материала в некоторых вариантах осуществления; по меньшей мере, 1% от общего объема люминофора, частиц прозрачного материала и исходного материала в некоторых вариантах осуществления; и, по меньшей мере, 20% от общего объема люминофора, частиц прозрачного материала и исходного материала в некоторых вариантах осуществления. Частицы прозрачного материала могут представлять собой, например, порошок с медианным размером частиц между 0,1 мкм и 5 мкм в некоторых вариантах осуществления, между 1 мкм и 10 мкм в некоторых вариантах осуществления и между 10 мкм и 50 мкм в некоторых вариантах осуществления. Частицы прозрачного материала обычно являются сферическими и близкими к сферическим по форме.
[0039] На основе подробного описания изобретения специалистам в данной области техники должно быть понятно, что на основе настоящего раскрытия могут выполняться модификации изобретения без отклонения от описанной здесь сущности изобретения. Поэтому не предполагается, что объем изобретения ограничивается конкретными иллюстрированными и описанными вариантами осуществления. В формуле изобретения любые ссылочные позиции, указанные в скобках, не должны толковаться как ограничивающие формулу изобретения. Слово «содержащий» не исключает присутствия элементов или стадий, иных, нежели перечисленные в формуле изобретения. Единственное число элемента не исключает присутствия многочисленных таких элементов. В пункте формулы на устройство, перечисляющем несколько средств, некоторые из этих средств могут быть реализованы одним и тем же элементом оборудования. Просто тот факт, что определенные меры изложены во взаимно различных пунктах формулы, не означает, что комбинация этих мер не может быть использована наилучшим образом.

Claims (20)

1. Полупроводниковое светоизлучающее устройство, содержащее:
полупроводниковую структуру, содержащую светоизлучающий слой;
люминесцентный материал, размещенный на пути света, излучаемого светоизлучающим слоем; и
термоконтактный материал, размещенный в прозрачном материале;
причем:
термоконтактный материал не производит конверсии длины волны света, излучаемого светоизлучающим слоем;
термоконтактный материал имеет большую теплопроводность, чем теплопроводность прозрачного материала;
термоконтактный материал размещен для рассеяния теплоты от люминесцентного материала;
термоконтактный материал имеет медианный размер частиц больше чем 10 мкм; и
коэффициент преломления термоконтактного материала отличается от коэффициента преломления прозрачного материала менее чем на 10%.
2. Устройство по п. 1, в котором:
люминесцентный материал представляет собой первый люминесцентный материал, сконфигурированный для излучения света с первой пиковой длиной волны;
устройство дополнительно содержит второй люминесцентный материал, сконфигурированный для излучения света со второй пиковой длиной волны; и
первый и второй люминесцентные материалы смешаны и размещены в прозрачном материале.
3. Устройство по п. 1, в котором:
люминесцентный материал представляет собой первый люминесцентный материал, сконфигурированный для излучения света с первой пиковой длиной волны;
устройство дополнительно содержит второй люминесцентный материал, сконфигурированный для излучения света со второй пиковой длиной волны; и
первый и второй люминесцентные материалы размещены в прозрачном материале и позиционированы поверх полупроводниковой структуры в отдельных слоях.
4. Устройство по п. 1, в котором люминесцентный материал представляет собой керамический люминофор.
5. Устройство по п. 1, дополнительно содержащее порошкообразный люминофор, размещенный в прозрачном материале.
6. Устройство по п. 1, в котором прозрачный материал сформирован в линзу, и прозрачный материал размещен между полупроводниковой структурой и люминесцентным материалом.
7. Устройство по п. 1, в котором светоизлучающий слой представляет собой ΙΙΙ-нитридный материал.
8. Устройство по п. 1, в котором термоконтактный материал имеет теплопроводность, по меньшей мере, 5 Вт/м˚С.
9. Устройство по п. 1, в котором термоконтактный материал содержит одно из смешанных оксидов алюминия/кремния, диоксида кремния, некристаллического диоксида кремния, SiC, AlN, алмаза, частиц неактивированного люминофора, YAG без Се-легирования и их смесей.
10. Устройство по п. 1, в котором термоконтактный материал содержит порошок с медианным размером частиц между 10 мкм и 50 мкм.
11. Устройство по п. 1, в котором термоконтактный материал содержит порошок, в котором, по меньшей мере, часть частиц термоконтактного материала находится в непосредственном контакте с ближайшими соседними частицами и формирует путь теплопроводности к полупроводниковой структуре.
12. Устройство по п. 1, в котором плотность термоконтактного материала достаточна для того, чтобы гарантировать, что подавляющее большинство частиц термоконтактного материала контактируют друг с другом.
13. Устройство по п. 1, в котором отношение масс термоконтактного материала по сравнению с прозрачным материалом, по меньшей мере, 1:4.
14. Устройство по п. 1, в котором отношение масс термоконтактного материала по сравнению с люминесцентным материалом, по меньшей мере, 1:2,5.
15. Способ изготовления полупроводникового светоизлучающего устройства, содержащий этапы, на которых:
создают полупроводниковую структуру, содержащую светоизлучающий слой;
позиционируют люминесцентный материал на пути света, излучаемого светоизлучающим слоем; и
позиционируют термоконтактный материал, размещенный в прозрачном материале, для рассеяния теплоты от люминесцентного материала;
в котором:
термоконтактный материал не производит конверсии длины волны света, излучаемого светоизлучающим слоем;
термоконтактный материал имеет большую теплопроводность, чем теплопроводность прозрачного материала;
термоконтактный материал имеет медианный размер частиц больше чем 10 мкм; и
коэффициент преломления термоконтактного материала отличается от коэффициента преломления прозрачного материала менее чем на 10%.
16. Способ по п. 15, в котором люминесцентный материал представляет собой керамический люминофор.
17. Способ по п. 15, в котором термоконтактный материал содержит одно из смешанных оксидов алюминия/кремния, диоксида кремния, некристаллического диоксида кремния, SiC, AlN, алмаза, частиц неактивированного люминофора, YAG без Се-легирования и их смесей.
18. Способ по п. 15, в котором плотность термоконтактного материала достаточна для того, чтобы гарантировать, что подавляющее большинство частиц термоконтактного материала контактируют друг с другом.
19. Способ по п. 15, в котором отношение масс термоконтактного материала по сравнению с прозрачным материалом, по меньшей мере, 1:4.
20. Способ по п. 15, в котором отношение масс термоконтактного материала по сравнению с люминесцентным материалом, по меньшей мере, 1:2.5.
RU2012126168/28A 2009-11-23 2010-10-22 Полупроводниковый светоизлучающий диод с конверсией длины волны RU2550753C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/624,156 US8203161B2 (en) 2009-11-23 2009-11-23 Wavelength converted semiconductor light emitting device
US12/624,156 2009-11-23
PCT/IB2010/054800 WO2011061650A1 (en) 2009-11-23 2010-10-22 Wavelength converted semiconductor light emitting diode

Publications (2)

Publication Number Publication Date
RU2012126168A RU2012126168A (ru) 2013-12-27
RU2550753C2 true RU2550753C2 (ru) 2015-05-10

Family

ID=43531098

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012126168/28A RU2550753C2 (ru) 2009-11-23 2010-10-22 Полупроводниковый светоизлучающий диод с конверсией длины волны

Country Status (9)

Country Link
US (1) US8203161B2 (ru)
EP (1) EP2504870B1 (ru)
JP (1) JP6174859B2 (ru)
KR (1) KR20120086731A (ru)
CN (1) CN102714261B (ru)
BR (1) BR112012011910A2 (ru)
RU (1) RU2550753C2 (ru)
TW (1) TWI538260B (ru)
WO (1) WO2011061650A1 (ru)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753657B2 (ja) * 2008-01-29 2015-07-22 日立マクセル株式会社 絶縁層形成用スラリー、電気化学素子用セパレータの製造方法、及び電気化学素子
DE102008021666A1 (de) * 2008-04-30 2009-11-05 Ledon Lighting Jennersdorf Gmbh Lichtemittierende Vorrichtung und Verfahren zur Herstellung einer lichtemittierenden Vorrichtung
US9157167B1 (en) 2008-06-05 2015-10-13 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20090301388A1 (en) * 2008-06-05 2009-12-10 Soraa Inc. Capsule for high pressure processing and method of use for supercritical fluids
US8097081B2 (en) 2008-06-05 2012-01-17 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8871024B2 (en) * 2008-06-05 2014-10-28 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20090320745A1 (en) * 2008-06-25 2009-12-31 Soraa, Inc. Heater device and method for high pressure processing of crystalline materials
US8124996B2 (en) 2008-08-04 2012-02-28 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US8021481B2 (en) 2008-08-07 2011-09-20 Soraa, Inc. Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8979999B2 (en) * 2008-08-07 2015-03-17 Soraa, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8323405B2 (en) * 2008-08-07 2012-12-04 Soraa, Inc. Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer
US8430958B2 (en) * 2008-08-07 2013-04-30 Soraa, Inc. Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride
US7976630B2 (en) 2008-09-11 2011-07-12 Soraa, Inc. Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
US8354679B1 (en) 2008-10-02 2013-01-15 Soraa, Inc. Microcavity light emitting diode method of manufacture
US8455894B1 (en) 2008-10-17 2013-06-04 Soraa, Inc. Photonic-crystal light emitting diode and method of manufacture
US8878230B2 (en) 2010-03-11 2014-11-04 Soraa, Inc. Semi-insulating group III metal nitride and method of manufacture
US9543392B1 (en) 2008-12-12 2017-01-10 Soraa, Inc. Transparent group III metal nitride and method of manufacture
US8987156B2 (en) 2008-12-12 2015-03-24 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US8461071B2 (en) * 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
USRE47114E1 (en) 2008-12-12 2018-11-06 Slt Technologies, Inc. Polycrystalline group III metal nitride with getter and method of making
US20100147210A1 (en) * 2008-12-12 2010-06-17 Soraa, Inc. high pressure apparatus and method for nitride crystal growth
US20110100291A1 (en) * 2009-01-29 2011-05-05 Soraa, Inc. Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8299473B1 (en) * 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8207554B2 (en) 2009-09-11 2012-06-26 Soraa, Inc. System and method for LED packaging
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8435347B2 (en) 2009-09-29 2013-05-07 Soraa, Inc. High pressure apparatus with stackable rings
US9175418B2 (en) 2009-10-09 2015-11-03 Soraa, Inc. Method for synthesis of high quality large area bulk gallium based crystals
US8575642B1 (en) 2009-10-30 2013-11-05 Soraa, Inc. Optical devices having reflection mode wavelength material
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8729559B2 (en) 2010-10-13 2014-05-20 Soraa, Inc. Method of making bulk InGaN substrates and devices thereon
US8896235B1 (en) 2010-11-17 2014-11-25 Soraa, Inc. High temperature LED system using an AC power source
US8541951B1 (en) 2010-11-17 2013-09-24 Soraa, Inc. High temperature LED system using an AC power source
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9048396B2 (en) 2012-06-11 2015-06-02 Cree, Inc. LED package with encapsulant having planar surfaces
JP2012186414A (ja) * 2011-03-08 2012-09-27 Toshiba Corp 発光装置
US10147853B2 (en) * 2011-03-18 2018-12-04 Cree, Inc. Encapsulant with index matched thixotropic agent
DE102011078402A1 (de) * 2011-06-30 2013-01-03 Osram Ag Konversionselement und Leuchtdiode mit einem solchen Konversionselement
US8492185B1 (en) 2011-07-14 2013-07-23 Soraa, Inc. Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9694158B2 (en) 2011-10-21 2017-07-04 Ahmad Mohamad Slim Torque for incrementally advancing a catheter during right heart catheterization
US10029955B1 (en) 2011-10-24 2018-07-24 Slt Technologies, Inc. Capsule for high pressure, high temperature processing of materials and methods of use
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US9097397B2 (en) 2011-12-19 2015-08-04 Koninklijke Philips N.V. Light source using remote phosphor and pink LED
US8482104B2 (en) 2012-01-09 2013-07-09 Soraa, Inc. Method for growth of indium-containing nitride films
US10424702B2 (en) 2012-06-11 2019-09-24 Cree, Inc. Compact LED package with reflectivity layer
WO2014013406A1 (en) 2012-07-20 2014-01-23 Koninklijke Philips N.V. Led with ceramic green phosphor and protected red phosphor layer
JP2014056896A (ja) * 2012-09-11 2014-03-27 Ns Materials Kk 半導体を利用した発光デバイス及びその製造方法
RU2536767C2 (ru) * 2012-12-06 2014-12-27 Анатолий Васильевич Вишняков Способ получения модифицированных трехцветных светодиодных источников белого света
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP2016519850A (ja) * 2013-04-08 2016-07-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ledモジュールの製造方法
US20150028365A1 (en) * 2013-07-24 2015-01-29 Juanita N. Kurtin Highly refractive, transparent thermal conductors for better heat dissipation and light extraction in white leds
US9461024B2 (en) 2013-08-01 2016-10-04 Cree, Inc. Light emitter devices and methods for light emitting diode (LED) chips
USD758976S1 (en) 2013-08-08 2016-06-14 Cree, Inc. LED package
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
CN103794704A (zh) * 2013-09-18 2014-05-14 吴震 波长转换装置和发光装置
WO2015104604A1 (en) * 2014-01-08 2015-07-16 Koninklijke Philips N.V. Wavelength converted semiconductor light emitting device
US20170137328A1 (en) * 2014-06-18 2017-05-18 Osram Sylvania Inc. Method of making a ceramic wavelength converter assembly
TW201616689A (zh) * 2014-06-25 2016-05-01 皇家飛利浦有限公司 經封裝之波長轉換發光裝置
USD790486S1 (en) 2014-09-30 2017-06-27 Cree, Inc. LED package with truncated encapsulant
USD777122S1 (en) 2015-02-27 2017-01-24 Cree, Inc. LED package
JP2016225581A (ja) * 2015-06-04 2016-12-28 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
USD783547S1 (en) 2015-06-04 2017-04-11 Cree, Inc. LED package
US10193030B2 (en) * 2016-08-08 2019-01-29 General Electric Company Composite materials having red emitting phosphors
JP6868842B2 (ja) * 2016-10-25 2021-05-12 パナソニックIpマネジメント株式会社 波長変換デバイス、光源装置、照明装置、及び、投写型映像表示装置
CN109891274B (zh) * 2016-10-28 2021-09-24 日本特殊陶业株式会社 光波长转换部件及发光装置
US10174438B2 (en) 2017-03-30 2019-01-08 Slt Technologies, Inc. Apparatus for high pressure reaction
US10475967B2 (en) * 2017-04-27 2019-11-12 Osram Opto Semiconductors Gmbh Wavelength converters with improved thermal conductivity and lighting devices including the same
JP7268315B2 (ja) * 2017-12-12 2023-05-08 日本電気硝子株式会社 波長変換部材及びその製造方法、並びに発光装置
JP7469847B2 (ja) * 2018-03-13 2024-04-17 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
DE102018126355B4 (de) * 2018-10-23 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierendes bauelement und verwendung eines lichtemittierenden bauelements zur minimierung von stokesverlusten durch photonmultiplikationsprozesse für ir-anwendungen
CN109445191B (zh) * 2019-01-02 2022-05-13 京东方科技集团股份有限公司 发光件及其制作方法、背光源和显示装置
EP3991209A1 (en) 2019-06-25 2022-05-04 Lumileds LLC Phosphor layer for micro-led applications
CN112578551A (zh) 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
CN112578552A (zh) 2019-09-30 2021-03-30 台达电子工业股份有限公司 波长转换装置
US11362243B2 (en) 2019-10-09 2022-06-14 Lumileds Llc Optical coupling layer to improve output flux in LEDs
JP7467390B2 (ja) 2021-06-15 2024-04-15 シチズン時計株式会社 指針のふらつき低減構造
WO2023102366A1 (en) * 2021-12-01 2023-06-08 Lumileds Llc Phosphor layer with improved high-temperature reliability for phosphor converted leds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2301687C1 (ru) * 2005-12-01 2007-06-27 Государственное учреждение научный центр здоровья детей РАМН (ГУ НЦЗД РАМН) Способ клинико-психологической диагностики последствий негрубых перинатальных поражений нервной системы у детей 6-10 лет
WO2008110976A2 (en) * 2007-03-12 2008-09-18 Philips Intellectual Property & Standards Gmbh Illumination system comprising a compound with low thermal expansion coefficient
WO2009095662A1 (en) * 2008-01-28 2009-08-06 Photonstar Led Limited Light emitting module with optically-transparent thermally-conductive element

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335548B1 (en) * 1999-03-15 2002-01-01 Gentex Corporation Semiconductor radiation emitter package
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US6744951B2 (en) * 2001-05-07 2004-06-01 Cornigg Incorporated Waveguides and method of making them
US6870311B2 (en) * 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
JP2005294185A (ja) * 2004-04-05 2005-10-20 Nichia Chem Ind Ltd 発光装置
JP2005252219A (ja) * 2004-02-06 2005-09-15 Toyoda Gosei Co Ltd 発光装置及び封止部材
US7355284B2 (en) * 2004-03-29 2008-04-08 Cree, Inc. Semiconductor light emitting devices including flexible film having therein an optical element
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
US20070228947A1 (en) * 2004-10-13 2007-10-04 Matsushita Electric Industrial Co., Ltd. Luminescent Light Source, Method for Manufacturing the Same, and Light-Emitting Apparatus
US7344902B2 (en) * 2004-11-15 2008-03-18 Philips Lumileds Lighting Company, Llc Overmolded lens over LED die
US7341878B2 (en) * 2005-03-14 2008-03-11 Philips Lumileds Lighting Company, Llc Wavelength-converted semiconductor light emitting device
KR20080049011A (ko) 2005-08-05 2008-06-03 마쯔시다덴기산교 가부시키가이샤 반도체 발광장치
CN101208811A (zh) * 2005-08-05 2008-06-25 松下电器产业株式会社 半导体发光装置
US7842960B2 (en) * 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US7521862B2 (en) * 2006-11-20 2009-04-21 Philips Lumileds Lighting Co., Llc Light emitting device including luminescent ceramic and light-scattering material
US7868341B2 (en) * 2007-06-27 2011-01-11 The Regents Of The University Of California Optical designs for high-efficacy white-light emitting diodes
US8337029B2 (en) * 2008-01-17 2012-12-25 Intematix Corporation Light emitting device with phosphor wavelength conversion
JP2009197185A (ja) * 2008-02-25 2009-09-03 Hitachi Chem Co Ltd 透明熱伝導接着フィルム及びその用途
EP2272104A1 (en) * 2008-04-23 2011-01-12 Koninklijke Philips Electronics N.V. A luminous device
DE102008030253B4 (de) * 2008-06-25 2020-02-20 Osram Opto Semiconductors Gmbh Konversionselement und Leuchtmittel
US7974508B2 (en) * 2009-02-03 2011-07-05 Nitto Denko Corporation Multi-layer structure and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2301687C1 (ru) * 2005-12-01 2007-06-27 Государственное учреждение научный центр здоровья детей РАМН (ГУ НЦЗД РАМН) Способ клинико-психологической диагностики последствий негрубых перинатальных поражений нервной системы у детей 6-10 лет
WO2008110976A2 (en) * 2007-03-12 2008-09-18 Philips Intellectual Property & Standards Gmbh Illumination system comprising a compound with low thermal expansion coefficient
WO2009095662A1 (en) * 2008-01-28 2009-08-06 Photonstar Led Limited Light emitting module with optically-transparent thermally-conductive element

Also Published As

Publication number Publication date
US8203161B2 (en) 2012-06-19
TW201123552A (en) 2011-07-01
KR20120086731A (ko) 2012-08-03
CN102714261A (zh) 2012-10-03
CN102714261B (zh) 2016-07-06
TWI538260B (zh) 2016-06-11
BR112012011910A2 (pt) 2017-10-10
RU2012126168A (ru) 2013-12-27
EP2504870B1 (en) 2019-08-14
WO2011061650A1 (en) 2011-05-26
US20110121331A1 (en) 2011-05-26
JP6174859B2 (ja) 2017-08-02
JP2013511836A (ja) 2013-04-04
EP2504870A1 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
RU2550753C2 (ru) Полупроводниковый светоизлучающий диод с конверсией длины волны
JP5389029B2 (ja) 反射型波長変換層を含む光源
US7521862B2 (en) Light emitting device including luminescent ceramic and light-scattering material
TWI622186B (zh) 發光裝置及發光結構
TWI418051B (zh) 用於發光裝置之發光陶瓷元件
JP5951180B2 (ja) 飽和変換材料を有するエミッタパッケージ
US10971658B2 (en) Infrared emitting device
TWI827552B (zh) 用於發光裝置的波長轉換材料
US20170352788A1 (en) Light emitting device with wavelength converting side coat
JP2010514189A (ja) 光放出デバイス用のマルチ−粒子発光セラミックス
TW201115790A (en) Wavelength-converted semiconductor light emitting device including a filter and a scattering structure
US20220045245A1 (en) Phosphor converter structures for thin film packages and method of manufacture
US11152545B2 (en) Inert filler to increase wavelength converting material volume and improve color over angle
TW202016190A (zh) 增加波長轉換材料體積及提升色彩過度角之惰性填料

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20190111

PD4A Correction of name of patent owner