TWI713985B - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
TWI713985B
TWI713985B TW108103337A TW108103337A TWI713985B TW I713985 B TWI713985 B TW I713985B TW 108103337 A TW108103337 A TW 108103337A TW 108103337 A TW108103337 A TW 108103337A TW I713985 B TWI713985 B TW I713985B
Authority
TW
Taiwan
Prior art keywords
layer
item
recording medium
cap layer
perpendicular magnetic
Prior art date
Application number
TW108103337A
Other languages
Chinese (zh)
Other versions
TW201942900A (en
Inventor
增田愛美
清水正義
Original Assignee
日商Jx金屬股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Jx金屬股份有限公司 filed Critical 日商Jx金屬股份有限公司
Publication of TW201942900A publication Critical patent/TW201942900A/en
Application granted granted Critical
Publication of TWI713985B publication Critical patent/TWI713985B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

本發明的垂直磁記錄介質具有顆粒層2和蓋層3作為構成記錄層1的至少一部分的層,該顆粒層2包含金屬氧化物作為非磁性體、且磁性體分散在上述非磁性體中,該蓋層3形成於上述顆粒層2上、且不含金屬氧化物,上述蓋層3正下方的顆粒層的與蓋層的邊界部分的氧化物相是含有選自Zn、W、Mn、Fe和Mo中的至少一種而形成的。 The perpendicular magnetic recording medium of the present invention has a granular layer 2 and a cap layer 3 as layers constituting at least a part of the recording layer 1. The granular layer 2 contains a metal oxide as a non-magnetic body, and the magnetic body is dispersed in the non-magnetic body, The cap layer 3 is formed on the particle layer 2 and does not contain metal oxides. The oxide phase of the boundary part of the particle layer directly below the cap layer 3 and the cap layer contains selected from Zn, W, Mn, Fe And at least one of Mo.

Description

垂直磁記錄介質 Perpendicular magnetic recording medium

本發明涉及一種垂直磁記錄介質,其具有顆粒層(granular layer)和蓋層(cap layer)作為構成記錄層的至少一部分的層,該顆粒層在包含金屬氧化物的非磁性體中分散有磁性體,該蓋層形成於顆粒層上且不含金屬氧化物,特別是提出了可有助於改善高密度記錄所要求的反轉磁場分佈(SFD)的技術。 The present invention relates to a perpendicular magnetic recording medium having a granular layer and a cap layer as layers constituting at least a part of the recording layer, the granular layer having magnetic properties dispersed in a non-magnetic body containing a metal oxide The cap layer is formed on the particle layer and does not contain metal oxides. In particular, a technology that can help improve the reversal magnetic field distribution (SFD) required for high-density recording is proposed.

在硬磁碟機中,對於記錄面沿垂直方向進行磁記錄的垂直磁記錄方式已實用化,與在此以前的面內磁記錄方式相比,該方式能夠實現高密度的記錄,因此被廣泛採用。 In hard disk drives, the perpendicular magnetic recording method in which the recording surface is magnetically recorded in the vertical direction has been put into practical use. Compared with the previous in-plane magnetic recording method, this method can achieve high-density recording and is therefore widely used. use.

垂直磁記錄介質一般是在鋁或玻璃等基板上依次層疊軟磁性層、中間層、記錄層等而構成。其中,記錄層於下部存在顆粒層,該顆粒層在以Co作為主成分的Co-Pt系合金等的磁性體中分散有SiO2等金屬氧化物的非磁性體。由此,在該記錄層中作為非磁性體的上述金屬氧化物在沿垂直方向取向的Co合金等的磁性體的磁性粒子的晶間析出,磁性粒子間的磁性相互作用減小,由此產生的雜訊特性得到提高,並實現了高記錄密度。作為與此有關的技術,有專利文獻1中記載的技術等。 The perpendicular magnetic recording medium is generally constructed by sequentially laminating a soft magnetic layer, an intermediate layer, and a recording layer on a substrate such as aluminum or glass. Among them, the recording layer has a granular layer in the lower part, and the granular layer has a non-magnetic body of a metal oxide such as SiO2 dispersed in a magnetic body such as a Co-Pt-based alloy containing Co as a main component. As a result, the above-mentioned metal oxide as a non-magnetic material in the recording layer precipitates between the grains of magnetic particles of a magnetic material such as a Co alloy oriented in the vertical direction, and the magnetic interaction between the magnetic particles is reduced, resulting in The noise characteristics of the camera have been improved, and a high recording density has been achieved. As a technique related to this, there is a technique described in Patent Document 1 and the like.

此外,例如,如專利文獻2所記載,這樣的磁記錄介質的各層通 常是使用具有該層所對應的規定組成的濺鍍靶,利用磁控濺鍍裝置進行濺鍍而形成的。 In addition, for example, as described in Patent Document 2, each layer of such a magnetic recording medium It is usually formed by sputtering using a sputtering target with a prescribed composition corresponding to the layer and using a magnetron sputtering device.

先前技術文獻 Prior art literature 專利文獻 Patent literature

專利文獻1:日本專利第4021435號公報; 專利文獻2:日本專利第5960287號公報。 Patent Document 1: Japanese Patent No. 4021435; Patent Document 2: Japanese Patent No. 5960287.

如上所述的垂直磁記錄介質的記錄層,通常記錄層除了具有顆粒層以外還具有蓋層,該蓋層形成於顆粒層上,不含金屬氧化物,主要由磁性體構成。基於此,利用因金屬氧化物而使磁性粒子發生了磁性分離的顆粒層的粒子分離性實現低雜訊化,同時藉由因不存在金屬氧化物而殘留了磁性粒子間的相互作用的蓋層對顆粒層賦予適度的磁性粒子間的相互作用,確保介質的寫入容易性、SFD降低、熱穩定性等。 The recording layer of the perpendicular magnetic recording medium as described above generally has a cap layer in addition to the granular layer. The cap layer is formed on the granular layer, does not contain metal oxides, and is mainly composed of a magnetic body. Based on this, the particle separation property of the particle layer in which the magnetic particles are magnetically separated due to the metal oxide is used to achieve low noise, and at the same time, the cap layer that retains the interaction between the magnetic particles due to the absence of the metal oxide Appropriate interaction between magnetic particles is provided to the particle layer to ensure the ease of writing of the medium, reduction of SFD, thermal stability, etc.

然而,為了形成這樣的垂直磁記錄介質的記錄層,而藉由濺鍍等在顆粒層上成膜成蓋層時,由於顆粒層中的金屬氧化物與蓋層的金屬之間的潤濕性的不同,蓋層的薄膜在顆粒層的不存在金屬氧化物的部分選擇性地生長。由此,蓋層的薄膜的初期生長效仿包含金屬氧化物的顆粒層的形態而變得不均勻,因此存在著以下問題:即使形成規定厚度的蓋層,反轉磁場分佈(SFD:switching field distribution)也沒有改善。另一方面,當形成厚的蓋層時,雖然SFD有所改善,但磁頭與介質中心的距離變大,解析度下降,另外,磁性粒子間的交換結合因厚的蓋層而變大,磁團簇尺寸增大,無法提高記錄密度。 However, in order to form the recording layer of such a perpendicular magnetic recording medium, when the cap layer is formed by sputtering or the like on the particle layer, due to the wettability between the metal oxide in the particle layer and the metal of the cap layer The film of the cap layer grows selectively in the part of the particle layer where there is no metal oxide. As a result, the initial growth of the thin film of the cap layer becomes non-uniform following the morphology of the particle layer containing the metal oxide. Therefore, there is the following problem: even if the cap layer with a predetermined thickness is formed, the magnetic field distribution (SFD: switching field distribution) is reversed. ) Also did not improve. On the other hand, when a thick cap layer is formed, although the SFD is improved, the distance between the magnetic head and the center of the medium becomes larger, and the resolution decreases. In addition, the exchange bond between the magnetic particles becomes larger due to the thick cap layer. The cluster size increases and the recording density cannot be increased.

本發明以解決現有的垂直磁記錄介質所具有的上述問題為課題,其目的在於提供一種垂直磁記錄介質,在該記錄介質中蓋層均勻層疊於記錄層的顆粒層上,由此可以有效改善反轉磁場分佈(SFD)。 The present invention aims to solve the above-mentioned problems of existing perpendicular magnetic recording media, and its object is to provide a perpendicular magnetic recording medium in which a cap layer is uniformly laminated on the granular layer of the recording layer, thereby effectively improving Reverse magnetic field distribution (SFD).

發明人深入研究的結果發現了:藉由在記錄層中的位於蓋層正下方的顆粒層的與蓋層的邊界部分包含規定的金屬的氧化物,基於該金屬的氧化物與含有較多Co等的蓋層的良好的潤濕性,蓋層從其生長初期起按照與在顆粒層的磁性體部分上相同的方式也層疊於顆粒層的非磁性體部分上,其結果,於顆粒層上形成了均勻的蓋層。另外,從使磁性粒子有效分離的角度考慮,使用規定的金屬的氧化物作為顆粒層的邊界部分的金屬氧化物時,可以實現顆粒層中的磁性粒子所需的磁分離性。 As a result of intensive research, the inventor found that the boundary between the granular layer directly below the cap layer and the cap layer in the recording layer contains a prescribed metal oxide, and the metal oxide contains more Co. The cap layer has good wettability, and the cap layer is also laminated on the non-magnetic part of the granular layer in the same manner as on the magnetic part of the granular layer from the early stage of its growth. As a result, the cap layer is on the granular layer A uniform cap layer is formed. In addition, from the viewpoint of effectively separating the magnetic particles, when a predetermined metal oxide is used as the metal oxide in the boundary portion of the particle layer, the magnetic separation required for the magnetic particles in the particle layer can be achieved.

在該見解下,本發明的垂直磁記錄介質具有顆粒層和蓋層作為構成記錄層的至少一部分的層,該顆粒層包含金屬氧化物作為非磁性體、且磁性體分散在上述非磁性體中,該蓋層形成於上述顆粒層上、且不含金屬氧化物,上述蓋層正下方的顆粒層的與蓋層的邊界部分的氧化物相含有選自Zn、W、Mn、Fe和Mo中的至少一種而形成。 Based on this finding, the perpendicular magnetic recording medium of the present invention has a granular layer and a cap layer as layers constituting at least a part of the recording layer, the granular layer contains a metal oxide as a non-magnetic material, and the magnetic material is dispersed in the non-magnetic material. The cap layer is formed on the above-mentioned particle layer and does not contain metal oxides. The oxide phase of the boundary part of the particle layer directly below the cap layer and the cap layer contains selected from among Zn, W, Mn, Fe and Mo At least one of them.

在本發明的垂直磁記錄介質中,較佳上述顆粒層的上述邊界部分的氧化物相至少含有上述金屬中的Zn。 In the perpendicular magnetic recording medium of the present invention, the oxide phase of the boundary portion of the granular layer preferably contains at least Zn in the metal.

此外,在本發明的垂直磁記錄介質中,上述顆粒層的上述邊界部分的氧化物相還可以含有B和Si中的至少一種,另外,上述顆粒層的上述邊界部分的氧化物相還可以含有Ti。 In addition, in the perpendicular magnetic recording medium of the present invention, the oxide phase of the boundary portion of the granular layer may further contain at least one of B and Si, and the oxide phase of the boundary portion of the granular layer may further contain Ti.

本發明的垂直磁記錄介質較佳上述顆粒層的除上述邊界部分以外的剩餘部分具有不含Zn的層。 The perpendicular magnetic recording medium of the present invention preferably has a layer that does not contain Zn in the remaining part of the granular layer except for the boundary part.

這種情況下,更進一步較佳上述顆粒層的上述剩餘部分含有選自Si、B和Ti 中的至少一種元素的氧化物作為氧化物相,且上述剩餘部分的氧化物相的氧化物的總計含量為20vol.%~50vol.%。 In this case, it is further preferred that the remaining part of the particle layer contains selected from Si, B and Ti The oxide of at least one element in the above is used as the oxide phase, and the total content of the oxide of the remaining part of the oxide phase is 20 vol.% to 50 vol.%.

另外,本發明的垂直磁記錄介質較佳上述顆粒層的上述邊界部分的氧化物相含有Zn,該氧化物相的Zn含量為3at%以上。 In addition, in the perpendicular magnetic recording medium of the present invention, it is preferable that the oxide phase of the boundary portion of the particle layer contains Zn, and the Zn content of the oxide phase is 3 at% or more.

而且,本發明的垂直磁記錄介質較佳在記錄層的層疊方向上,上述邊界部分的厚度在顆粒層整體的厚度中所占的比例為3%~50%。 Furthermore, in the perpendicular magnetic recording medium of the present invention, it is preferable that the thickness of the above-mentioned boundary portion accounts for 3% to 50% of the thickness of the entire particle layer in the stacking direction of the recording layer.

此外,這裡,包括上述邊界部分在內的顆粒層整體的磁性粒子,作為磁性體,以Co為主體,還可以含有選自Pt、Ru和Cr中的至少一種金屬。該磁性體可以具有沿垂直方向被以Co或Ru為主體的非磁性層截斷的所謂ECL(交換偶聯層(Exchange Coupling Layer))。 In addition, here, the magnetic particles of the entire particle layer including the above-mentioned boundary portion may contain Co as a main body as a magnetic body, and may contain at least one metal selected from Pt, Ru, and Cr. The magnetic body may have a so-called ECL (Exchange Coupling Layer) cut off by a non-magnetic layer mainly composed of Co or Ru in the vertical direction.

另外,上述蓋層以Co為主體,還可以含有選自Cr、Pt和B中的至少一種元素。 In addition, the cap layer is mainly composed of Co, and may also contain at least one element selected from Cr, Pt, and B.

而且,本發明的垂直磁記錄介質較佳在記錄層的層疊方向上,上述蓋層的厚度為1nm~3nm。 Furthermore, the perpendicular magnetic recording medium of the present invention preferably has a thickness of the cap layer of 1 nm to 3 nm in the stacking direction of the recording layer.

根據本發明的垂直磁記錄介質,因蓋層正下方的顆粒層的與蓋層的邊界部分的氧化物相含有上述金屬,故從蓋層的生長初期起蓋層也在顆粒層的包含該金屬的氧化物相的非磁性部分上生長,因此蓋層均勻層疊於顆粒層上,由此可以改善反轉磁場分佈(SFD)。 According to the perpendicular magnetic recording medium of the present invention, since the oxide phase of the boundary between the granular layer directly below the cap layer and the cap layer contains the above-mentioned metal, the cap layer also contains the metal in the granular layer from the beginning of the growth of the cap layer. The oxide phase is grown on the non-magnetic part, so the cap layer is uniformly laminated on the particle layer, thereby improving the reversal magnetic field distribution (SFD).

1:記錄層 1: Recording layer

2:顆粒層 2: granular layer

2a:邊界部分 2a: boundary part

2b:剩餘部分 2b: remaining part

3:蓋層 3: cover layer

4a:氧化物相 4a: Oxide phase

4b:金屬相 4b: Metallic phase

tg:顆粒層整體的厚度 tg: the overall thickness of the particle layer

tb:邊界部分的厚度 tb: the thickness of the boundary part

tc:蓋層的厚度 tc: thickness of the cap layer

第1圖是記錄層的沿層疊方向的剖面圖,其示意性地顯示本發明的一實施方式的垂直磁記錄介質的記錄層。 Figure 1 is a cross-sectional view of the recording layer along the stacking direction, which schematically shows the recording layer of the perpendicular magnetic recording medium according to one embodiment of the present invention.

第2圖是記錄層的沿層疊方向的剖面圖,其示意性地顯示現有的垂直磁記錄介質的記錄層。 Fig. 2 is a cross-sectional view of the recording layer along the stacking direction, which schematically shows the recording layer of a conventional perpendicular magnetic recording medium.

第3圖是顯示在實施例的試驗例1的濺鍍時隨著蓋層的膜厚tc的增大Ra變化的圖表。 Fig. 3 is a graph showing the variation of Ra as the film thickness tc of the cap layer increases during sputtering in Test Example 1 of the working example.

第4圖是顯示在實施例的試驗例1的濺鍍時隨著蓋層的膜厚tc的增大-Hn變化的圖表。 Fig. 4 is a graph showing the change in -Hn as the film thickness tc of the cap layer increases during sputtering in Test Example 1 of the working example.

第5圖是顯示實施例的試驗例3中的Zn含量與蓋層的Ra不足5Å的蓋層的膜厚的關係的圖表。 FIG. 5 is a graph showing the relationship between the Zn content in Test Example 3 of the working example and the film thickness of the cap layer having Ra of the cap layer less than 5 Å.

第6圖是顯示實施例的試驗例3中的Zn含量與-Hn為正的蓋層的膜厚的關係的圖表。 Figure 6 is a graph showing the relationship between the Zn content and the film thickness of the cap layer in which -Hn is positive in Test Example 3 of the working example.

下面,對本發明的實施方式進行詳細說明。 Hereinafter, embodiments of the present invention will be described in detail.

本發明的一實施方式的垂直磁記錄介質具備記錄層,如第1圖所例示,記錄層1具有顆粒層2和蓋層3作為構成其至少一部分的層,該顆粒層2含有金屬氧化物作為非磁性體、且磁性體分散在上述非磁性體中,該蓋層3形成於顆粒層2上、且不含金屬氧化物。因此,在本實施方式的記錄層1中,顆粒層2包含由非磁性體構成的氧化物相4a和由磁性體構成的金屬相4b,而蓋層3不含金屬氧化物、且僅由規定的金屬構成。 The perpendicular magnetic recording medium of one embodiment of the present invention includes a recording layer. As illustrated in FIG. 1, the recording layer 1 has a granular layer 2 and a cap layer 3 as layers constituting at least a part thereof, and the granular layer 2 contains a metal oxide as A non-magnetic body and a magnetic body dispersed in the above-mentioned non-magnetic body, the cap layer 3 is formed on the particle layer 2 and does not contain a metal oxide. Therefore, in the recording layer 1 of this embodiment, the granular layer 2 includes an oxide phase 4a composed of a non-magnetic body and a metal phase 4b composed of a magnetic body, and the cap layer 3 does not contain a metal oxide and is only defined by Metal composition.

此外,該垂直磁記錄介質例如可以依次層疊基板、軟磁性層、中間層和該記錄層1,其中,關於記錄層1以外的部分,可以和以往相同,因此這裡省略說明。另外,本實施方式的記錄層1雖然包含顆粒層2和蓋層3,但根據情況有時還包含非磁性或具有磁矩小的磁性的Onset層、ECL層等。 In addition, the perpendicular magnetic recording medium may, for example, laminate a substrate, a soft magnetic layer, an intermediate layer, and the recording layer 1 in this order. The parts other than the recording layer 1 may be the same as in the past, so the description is omitted here. In addition, although the recording layer 1 of the present embodiment includes the granular layer 2 and the cap layer 3, depending on the situation, it may also include an Onset layer, an ECL layer, etc., which are non-magnetic or have a small magnetic moment.

(蓋層) (Cover)

蓋層3不含金屬氧化物,僅由磁性體的金屬構成,作為這樣的金屬,具體而言,可以列舉:以Co為主體,還包含選自Cr、Pt和B中的至少一種元素。 The cap layer 3 does not contain a metal oxide and is composed only of a magnetic metal. Specifically, such a metal includes Co as a main component and at least one element selected from Cr, Pt, and B.

構成蓋層3的金屬,典型的是,主要由Co和Pt構成,根據需要有時會包含選自Cr和B中的一種以上的元素。蓋層3通常是以CoCrPtB為主體的合金。 The metal constituting the cap layer 3 is typically composed mainly of Co and Pt, and may contain one or more elements selected from Cr and B as necessary. The cap layer 3 is usually an alloy mainly composed of CoCrPtB.

在本實施方式中,如下所述,在蓋層3的成膜時,從其成膜初期起即可於顆粒層2上均勻層疊蓋層3,因此不會使蓋層3的厚度tc達到所需厚度以上,可以有效提高反轉磁場分佈(SFD)。蓋層3的厚度tc以相對於顆粒層2整體的厚度tg的百分率計較佳設為3%~30%。具體而言,蓋層3的厚度tc設為0.5nm~3nm適合。 In this embodiment, as described below, during the film formation of the cap layer 3, the cap layer 3 can be uniformly laminated on the particle layer 2 from the beginning of the film formation, so the thickness tc of the cap layer 3 will not reach the desired level. Need more than the thickness, can effectively improve the reversal magnetic field distribution (SFD). The thickness tc of the cap layer 3 is preferably set to 3% to 30% as a percentage of the thickness tg of the entire particle layer 2. Specifically, it is appropriate to set the thickness tc of the cap layer 3 to 0.5 nm to 3 nm.

(顆粒層) (Grain layer)

顆粒層2其整體雖然包含非磁性體的由金屬氧化物構成的氧化物相4a和磁性體的金屬相4b,但重要的是:沿記錄層1的層疊方向觀察該顆粒層2,如第1圖所示,由包括位於蓋層3正下方的邊界部分2a和邊界部分2a以外的位於其邊界部分2a更下部的剩餘部分2b在內的至少兩層構成。該邊界部分2a和剩餘部分2b中構成其氧化物相4a的金屬氧化物不同。 Although the entire particle layer 2 contains the non-magnetic metal oxide phase 4a and the magnetic metal phase 4b, it is important to observe the particle layer 2 in the stacking direction of the recording layer 1, as shown in the first As shown in the figure, it is composed of at least two layers including a boundary portion 2a located directly below the cover layer 3 and a remaining portion 2b located below the boundary portion 2a other than the boundary portion 2a. The boundary portion 2a and the remaining portion 2b have different metal oxides constituting the oxide phase 4a thereof.

具體而言,邊界部分2a的氧化物相4a含有選自Zn、W、Mn,Fe和Mo中的至少一種,較佳含有Zn。這裡,邊界部分2a所含的氧化物主要是ZnO。 Specifically, the oxide phase 4a of the boundary portion 2a contains at least one selected from Zn, W, Mn, Fe, and Mo, and preferably contains Zn. Here, the oxide contained in the boundary portion 2a is mainly ZnO.

基於此,藉由濺鍍於顆粒層2上成膜成蓋層3時,構成不含金屬氧化物的蓋層3的金屬和顆粒層2的邊界部分2a的ZnO顯示出良好的潤濕性,從而自蓋層3的生長初期起即可於顆粒層2的包括邊界部分2a的氧化物相4a在內的整體均勻層疊蓋層3的構成金屬。由此,蓋層3的功能得到有效發揮,可以提高反轉磁場分佈(SFD)。另外,ZnO可以使顆粒層2的金屬相4b的磁性粒子有效分離,因此即使 是顆粒層2的邊界部分2a,也可以和剩餘部分2b實質上同樣地確保所需的磁分離性。 Based on this, when the cap layer 3 is formed by sputtering on the particle layer 2, the metal constituting the metal oxide-free cap layer 3 and the ZnO at the boundary portion 2a of the particle layer 2 show good wettability. Therefore, the constituent metals of the cap layer 3 can be uniformly laminated on the entire particle layer 2 including the oxide phase 4a of the boundary portion 2a from the initial growth stage of the cap layer 3. Thereby, the function of the cap layer 3 is effectively performed, and the reversal magnetic field distribution (SFD) can be improved. In addition, ZnO can effectively separate the magnetic particles of the metal phase 4b of the particle layer 2, so even It is the boundary part 2a of the particle layer 2, and it is possible to ensure the required magnetic separation property substantially the same as the remaining part 2b.

此外,在現有的垂直磁記錄介質中,如第2圖所示,顆粒層12的氧化物相14a在整個層疊方向上,由上述金屬以外的金屬的氧化物構成,因此在成膜成蓋層13時,在其生長初期蓋層13的金屬選擇性地層疊於顆粒層12的不存在該金屬氧化物的金屬相14b上。即,如第2圖示意性地所示,在接近顆粒層12的蓋層13的下部,蓋層13的金屬因優異的結晶性、所謂外延生長(epitaxial growth)而產生無法層疊的部分。由此,即使形成規定厚度的蓋層13,也無法實現反轉磁場分佈(SFD)的改善。另外,認為藉由使蓋層13足夠厚,也可以防止此情形,但這種情況下磁頭與介質中心的距離變大,解析度下降,另外,磁性粒子間的交換結合因厚的蓋層13而變大,磁團簇尺寸增大,存在著無法提高記錄密度的其他問題。 In addition, in the conventional perpendicular magnetic recording medium, as shown in Figure 2, the oxide phase 14a of the particle layer 12 is composed of oxides of metals other than the above-mentioned metals in the entire lamination direction. At 13 o'clock, at the early stage of its growth, the metal of the cap layer 13 is selectively laminated on the metal phase 14b of the particle layer 12 where the metal oxide does not exist. That is, as schematically shown in FIG. 2, in the lower part of the cap layer 13 close to the particle layer 12, the metal of the cap layer 13 has a portion that cannot be laminated due to the excellent crystallinity, so-called epitaxial growth. Therefore, even if the cap layer 13 is formed with a predetermined thickness, it is impossible to improve the reversal magnetic field distribution (SFD). In addition, it is considered that this situation can be prevented by making the cap layer 13 thick enough. However, in this case, the distance between the magnetic head and the center of the medium increases, and the resolution decreases. In addition, the exchange bond between the magnetic particles is due to the thick cap layer 13. If it becomes larger, the size of the magnetic cluster increases, and there are other problems that cannot increase the recording density.

在第1圖所示的本發明的實施方式中,邊界部分2a的氧化物相含有容易與蓋層3潤濕的Zn、W、Mn,Fe和/或Mo,因此能夠有效解決現有的上述問題。 In the embodiment of the present invention shown in Fig. 1, the oxide phase of the boundary portion 2a contains Zn, W, Mn, Fe and/or Mo which are easily wetted with the cap layer 3, and therefore can effectively solve the above-mentioned existing problems .

當顆粒層2的邊界部分2a含有Zn時,其Zn含量較佳設為3at%以上。當邊界部分2a的Zn含量不足3at%時,潤濕性的改善無望,有可能導致蓋層在氧化物相上難以進行外延生長,另外,當邊界部分2a的Zn含量超過25at%以上時,Zn會大量進入金屬相中,從而擔心磁各向異性、結晶性下降。 When the boundary portion 2a of the particle layer 2 contains Zn, its Zn content is preferably set to 3 at% or more. When the Zn content of the boundary portion 2a is less than 3at%, improvement of wettability is hopeless, and it may be difficult for the cap layer to be epitaxially grown on the oxide phase. In addition, when the Zn content of the boundary portion 2a exceeds 25at%, Zn A large amount of it will enter the metal phase, and there is a concern that magnetic anisotropy and crystallinity will decrease.

為了改善潤濕性,顆粒層2的邊界部分2a的氧化物相更進一步較佳為包含選自Zn、W、Mn、Fe和Mo中的至少一種、改善非晶性的B和Si、改善分離性的Ti的金屬氧化物。即,顆粒層2的邊界部分2a的氧化物相還可以只含有選自Zn、W、Mn、Fe和Mo中的至少一種,除此以外,還可以含有B和Si中的至少一種、以及/或者Ti。 In order to improve the wettability, the oxide phase of the boundary portion 2a of the particle layer 2 further preferably contains at least one selected from the group consisting of Zn, W, Mn, Fe, and Mo, B and Si to improve amorphous properties, and to improve separation The metallic oxide of Ti. That is, the oxide phase of the boundary portion 2a of the particle layer 2 may also contain only at least one selected from Zn, W, Mn, Fe, and Mo, and in addition, may contain at least one of B and Si, and/ Or Ti.

在記錄層的層疊方向上觀察,顆粒層2的邊界部分2a的厚度tb在 顆粒層2整體的厚度tg中所占的比例(tb/tg)以百分率表示達到3%~50%是適合的。邊界部分2a的厚度tb相對於整體的厚度tg的比例(tb/tg)不足3%時,有時無法充分獲得由邊界部分2a的ZnO產生的蓋層3的均勻成膜效果。邊界部分2a的厚度tB相對於顆粒層2整體的厚度tg的比例(tb/tg)進一步較佳為3%~30%。 Observed in the stacking direction of the recording layer, the thickness tb of the boundary portion 2a of the particle layer 2 is It is suitable that the ratio (tb/tg) of the total thickness tg of the particle layer 2 is 3%-50% expressed as a percentage. When the ratio (tb/tg) of the thickness tb of the boundary portion 2a to the overall thickness tg is less than 3%, the uniform film formation effect of the cap layer 3 by ZnO in the boundary portion 2a may not be sufficiently obtained. The ratio (tb/tg) of the thickness tB of the boundary portion 2a to the thickness tg of the entire particle layer 2 is more preferably 3% to 30%.

另一方面,對蓋層3的均勻成膜沒有大的影響的顆粒層2的剩餘部分2b的氧化物相也可以和邊界部分2a一樣含有Zn,但較佳不含Zn的氧化物相。另外,顆粒層2的剩餘部分2b成為不僅不含ZnO還不含Zn的層是適合的。這是由於:即在顆粒層2的剩餘部分2b含有Zn時,擔心磁各向異性Ku會下降。 On the other hand, the oxide phase of the remaining part 2b of the particle layer 2 that does not greatly affect the uniform film formation of the cap layer 3 may contain Zn like the boundary part 2a, but an oxide phase that does not contain Zn is preferred. In addition, it is suitable for the remaining part 2b of the particle layer 2 to be a layer containing not only ZnO but also Zn. This is because when the remaining part 2b of the particle layer 2 contains Zn, there is a fear that the magnetic anisotropy Ku will decrease.

在顆粒層2的剩餘部分2b中,作為氧化物相,可以含有選自Si、B和Ti中的至少一種元素的氧化物,而不是如上所述的ZnO等規定的金屬氧化物。該氧化物以外的氧化物也包括在內的該剩餘部分2b的氧化物的總計含量較佳為20vol.%~50vol.%。此外,當剩餘部分2b的氧化物的總計含量不足20vol.%時,金屬相的分離不充分,磁團簇尺寸有可能變大,而當超過50vol.%時,金屬相的比例少,無法獲得充分的Ku和磁各向異性,熱穩定性或再生訊號強度有可能不足。此外,膜中的氧化物的體積率可藉由TEM觀察而求得。 In the remaining part 2b of the particle layer 2, as an oxide phase, an oxide of at least one element selected from Si, B, and Ti may be contained instead of a prescribed metal oxide such as ZnO as described above. The total content of oxides of the remaining part 2b including oxides other than the oxides is preferably 20 vol.% to 50 vol.%. In addition, when the total content of oxides in the remaining part 2b is less than 20vol.%, the separation of the metal phase is insufficient, and the size of the magnetic cluster may become larger, and when it exceeds 50vol.%, the proportion of the metal phase is small and cannot be obtained. Sufficient Ku and magnetic anisotropy, thermal stability or regeneration signal strength may be insufficient. In addition, the volume ratio of the oxide in the film can be obtained by TEM observation.

此外,作為顆粒層2的磁性體的金屬相4b以Co為主體,還含有選自Pt、Ru和Cr中的至少一種金屬。 In addition, the metal phase 4b as the magnetic body of the particle layer 2 is mainly composed of Co, and further contains at least one metal selected from Pt, Ru, and Cr.

實施例 Example

接下來,試製本發明的垂直磁記錄介質,評價了其性能,故以下進行說明。但是,這裡的說明只是為了例示,並非意圖限定於此。 Next, the perpendicular magnetic recording medium of the present invention was trial-produced, and its performance was evaluated, so it will be described below. However, the description here is for illustration only, and is not intended to be limited to this.

(試驗例1) (Test Example 1)

作為實施例1-1,利用磁控濺鍍裝置(CANON ANELVA製造的C-3010濺鍍系統),在玻璃基板上依次形成Cr-Ti(6nm)、Ni-W(5nm)、Ru(20nm)的 膜,在所得物品上形成Co-Pt-SiO2(10nm)膜作為下部顆粒層(顆粒層的剩餘部分),於其上使用包含Co-Pt-ZnO的濺鍍靶,在Ar為5.0Pa的環境下以300W進行濺鍍,形成膜厚為3nm的各磁性膜作為上部顆粒層(顆粒層的與蓋層的邊界部分),再於其上形成作為蓋層的Co-Cr-Pt-B(0~8nm)膜,形成了各層。在實施例1-1中,上部顆粒層的氧化物包含ZnO。 As Example 1-1, a magnetron sputtering device (C-3010 sputtering system manufactured by CANON ANELVA) was used to sequentially form Cr-Ti (6nm), Ni-W (5nm), and Ru (20nm) on a glass substrate. Co-Pt-SiO 2 (10nm) film as the lower particle layer (the remaining part of the particle layer) is formed on the obtained article, and a sputtering target containing Co-Pt-ZnO is used on it, and the Ar is 5.0Pa Sputtering at 300W in an environment with a thickness of 3nm was formed as the upper particle layer (the boundary between the particle layer and the cap layer), and then Co-Cr-Pt-B as the cap layer was formed on it (0~8nm) film, each layer is formed. In Example 1-1, the oxide of the upper particle layer contains ZnO.

另外,作為實施例1-2~實施例1-5,除上部顆粒層的氧化物包含WO3、MnO、Fe2O3、MoO3以外,形成與實施例1相同的膜。 In addition, as Example 1-2 to Example 1-5, the same film as in Example 1 was formed except that the oxide of the upper particle layer contained WO 3 , MnO, Fe 2 O 3 , and MoO 3 .

而且,作為比較例1,除上部顆粒層的氧化物相包含SiO2以外,按照與實施例1相同的方式形成各層。 Furthermore, as Comparative Example 1, each layer was formed in the same manner as in Example 1, except that the oxide phase of the upper particle layer contained SiO 2 .

對於上述的實施例1-1~1-5和比較例1,測定相對於蓋層膜厚的粗糙度(Ra)和反轉開始磁場(-Hn)。它們的比較以圖表顯示在第3圖和4中。在第3圖和第4圖中,SiO2是指比較例1、ZnO是指實施例1-1、WO3是指實施例1-2、MnO是指實施例1-3、Fe2O3是指實施例1-4、MoO3是指實施例1-5。 For the above-mentioned Examples 1-1 to 1-5 and Comparative Example 1, the roughness (Ra) and the inversion start magnetic field (-Hn) relative to the film thickness of the cap layer were measured. Their comparison is shown graphically in Figures 3 and 4. In Figures 3 and 4, SiO 2 refers to Comparative Example 1, ZnO refers to Example 1-1, WO 3 refers to Example 1-2, MnO refers to Example 1-3, Fe 2 O 3 Refers to Examples 1-4, and MoO 3 refers to Examples 1-5.

此外,在實施例1-1~1-5和比較例1中,下部顆粒層均為67Co-23Pt-10SiO2(mol%),而蓋層均為60Co-10Cr-15Pt-5B(mol%)。 In addition, in Examples 1-1 to 1-5 and Comparative Example 1, the lower particle layer is all 67Co-23Pt-10SiO 2 (mol%), and the cap layer is all 60Co-10Cr-15Pt-5B (mol%) .

另外,在實施例1-1中,上部顆粒層為62Co-21Pt-17ZnO(mol%)(ZnO=30vol.%),在比較例1中,上部顆粒層為67Co-22Pt-10SiO2(mol%)(SiO2=30vol.%)。上部顆粒層分別如下:在實施例1-2中為70Co-23Pt-7WO3(mol%)(WO3=30vol.%)、在實施例1-3中為61Co-20Pt-19MnO(mol%)(MnO=30vol.%)、在實施例1-4中為68Co-23Pt-10Fe2O3(mol%)(Fe2O3=30vol.%)、在實施例1-5中為62Co-21Pt-18MoO3(mol%)(MoO3=30vol.%)。 In addition, in Example 1-1, the upper particle layer is 62Co-21Pt-17ZnO (mol%) (ZnO=30vol.%), and in Comparative Example 1, the upper particle layer is 67Co-22Pt-10SiO 2 (mol%) ) (SiO 2 =30vol.%). The upper particle layers are as follows: 70Co-23Pt-7WO 3 (mol%) (WO 3 =30vol.%) in Example 1-2, 61Co-20Pt-19MnO (mol%) in Example 1-3 (MnO=30vol.%), 68Co-23Pt-10Fe 2 O 3 (mol%) in Example 1-4 (Fe 2 O 3 =30 vol.%), 62Co-21Pt in Example 1-5 -18MoO 3 (mol%) (MoO 3 =30vol.%).

此外,粗糙度(Ra)使用SII製造的原子間力顯微鏡(AFM)進行測定,反轉開始磁場(-Hn)使用玉川製作所製造的樣品振動型磁力計(VSM)來測定 。 In addition, the roughness (Ra) was measured using an atomic force microscope (AFM) manufactured by SII, and the inversion start magnetic field (-Hn) was measured using a sample vibration magnetometer (VSM) manufactured by Tamagawa Manufacturing Co., Ltd. .

如第3圖所示可知:與上部顆粒層的氧化物為SiO2的比較例1相比,上部顆粒層的氧化物為ZnO的實施例1-1~1-5即使蓋層的膜厚(tc)薄,也可見Ra的充分降低,由此上層的以Co為主的蓋層與Zn氧化物的潤濕性良好。另外,由第4圖可知:在實施例1-1~1-5中,與上部顆粒層的氧化物為SiO2的比較例1相比,在蓋層更薄的範圍d(-Hn)/dtc為正,由此獲得了蓋層的SFD效果。 As shown in Figure 3, it can be seen that compared with Comparative Example 1 where the oxide of the upper granular layer is SiO2, the oxide of the upper granular layer is ZnO in Examples 1-1 to 1-5 even though the thickness of the cap layer (tc ) Is thin, and it can also be seen that Ra is sufficiently reduced, so that the upper Co-based cap layer and Zn oxide have good wettability. In addition, it can be seen from Figure 4 that in Examples 1-1 to 1-5, compared with Comparative Example 1 in which the oxide of the upper particle layer is SiO 2 , the cap layer is thinner in the range d(-Hn)/ dtc is positive, thus obtaining the SFD effect of the cap layer.

(試驗例2) (Test Example 2)

作為參考例,分別使用作為不含Zn的濺鍍靶的67Co-22Pt-10SiO2(mol%)(SiO2=30vol.%)、作為含Zn的濺鍍靶的62Co-21Pt-17ZnO(mol%)(ZnO=30vol.%),按照與試驗例1相同的方式製作連Ru也成膜之後形成了13nm的單一顆粒層的樣品,測定磁各向異性Ku。 As a reference example, 67Co-22Pt-10SiO 2 (mol%) (SiO 2 =30vol.%) as a sputtering target containing no Zn and 62Co-21Pt-17ZnO (mol%) as a sputtering target containing Zn were used. ) (ZnO=30vol.%), in the same manner as in Test Example 1, a sample in which a single particle layer of 13 nm was formed after the formation of Ru and the magnetic anisotropy Ku was measured.

此外,磁各向異性(Ku)使用玉川製作所製造的磁扭矩計(TRQ)來測定。 In addition, the magnetic anisotropy (Ku) was measured using a magnetic torque meter (TRQ) manufactured by Tamagawa Seisakusho.

當顆粒層的氧化物為SiO2時,Ku值為6.16×106erg/cc,相對於此,當為ZnO時,Ku值為5.04×106erg/cc。由此可知:使用含Zn的濺鍍靶時Ku變低。因此,下部顆粒層往往會使用Ku變高的組成的濺鍍靶,因此可以認為希望在下部顆粒層中存在不含Zn的層。 When the oxide of the particle layer is SiO 2 , the Ku value is 6.16×10 6 erg/cc, while when it is ZnO, the Ku value is 5.04×10 6 erg/cc. From this, it can be seen that Ku becomes lower when a sputtering target containing Zn is used. Therefore, the lower particle layer often uses a sputtering target with a high Ku composition. Therefore, it can be considered that it is desirable to have a Zn-free layer in the lower particle layer.

(試驗例3) (Test Example 3)

作為實施例3-1~3-22,使用Co-Pt-ZnO、Co-Pt-SiO2-ZnO、Co-Pt-B2O3-ZnO、Co-Pt-TiO2-ZnO的濺鍍靶製造了Zn含量發生變化的多個試製品。各濺鍍靶的組成作為參考見表1。 As Examples 3-1 to 3-22, sputtering targets of Co-Pt-ZnO, Co-Pt-SiO 2 -ZnO, Co-Pt-B 2 O 3 -ZnO, and Co-Pt-TiO 2 -ZnO were used Several prototypes with varying Zn content were manufactured. The composition of each sputtering target is shown in Table 1 for reference.

表1

Figure 108103337-A0305-02-0013-2
Table 1
Figure 108103337-A0305-02-0013-2

使用上述各試製品,利用與試驗例1相同的方法形成磁性膜,測定相對於蓋層膜厚的粗糙度(Ra)和反轉開始磁場(-Hn)。此外,上述試製品用於磁性膜的上部顆粒層的成膜。Zn含量與蓋層的Ra不足5Å的蓋層膜厚的關係見第5圖,Zn含量與-Hn為正的蓋層膜厚的關係見第6圖。 Using each of the above-mentioned trial products, a magnetic film was formed by the same method as in Test Example 1, and the roughness (Ra) relative to the film thickness of the cap layer and the inversion start magnetic field (-Hn) were measured. In addition, the above-mentioned trial product was used for film formation of the upper particle layer of the magnetic film. The relationship between the Zn content and the film thickness of the cap layer whose Ra is less than 5 Å is shown in Figure 5, and the relationship between the Zn content and the film thickness of the cap layer with positive -Hn is shown in Figure 6.

由第5圖可知:特別是上部顆粒層的Zn為3at%以上的實施例3-5~3-8、實施例3-12~3-15和實施例3-19~3-22,即使蓋層薄,也可見Ra的充分下降,由此上層的以Co為主的蓋層與Zn氧化物的潤濕性變得更好。另外,由第6圖可知:特別是上部顆粒層的Zn為3at%以上的實施例3-5~3-8、實施例3-12~3-15和實施例3-19~3-22,由於d(-Hn)/dtc為正的蓋層的膜厚變得相當薄,藉由添加Zn,利用薄的蓋層使SFD更進一步得到改善。 It can be seen from Fig. 5 that in particular, Examples 3-5~3-8, Examples 3-12~3-15, and Examples 3-19~3-22 in which the Zn of the upper granular layer is 3at% or more, even if covered When the layer is thin, it can also be seen that the Ra is sufficiently reduced, and the wettability of the upper Co-based cap layer and Zn oxide becomes better. In addition, it can be seen from Fig. 6 that, in particular, Examples 3-5 to 3-8, Examples 3-12 to 3-15, and Examples 3-19 to 3-22 in which the Zn of the upper particle layer is 3 at% or more, Since the film thickness of the cap layer with positive d(-Hn)/dtc becomes quite thin, by adding Zn, the SFD is further improved by using the thin cap layer.

1:記錄層 1: Recording layer

2:顆粒層 2: granular layer

2a:邊界部分 2a: boundary part

2b:剩餘部分 2b: remaining part

3:蓋層 3: cover layer

4a:氧化物相 4a: Oxide phase

4b:金屬相 4b: Metallic phase

tg:顆粒層整體的厚度 tg: the overall thickness of the particle layer

tb:邊界部分的厚度 tb: the thickness of the boundary part

tc:蓋層的厚度 tc: thickness of the cap layer

Claims (11)

一種垂直磁記錄介質,其中,具有一顆粒層和一蓋層作為構成記錄層的至少一部分的層,該顆粒層包含金屬氧化物作為一非磁性體、且一磁性體分散在該非磁性體中,該蓋層形成於該顆粒層上、且不含金屬氧化物而含有磁性體的金屬,該蓋層正下方的顆粒層的與蓋層的一邊界部分的氧化物相是含有選自Zn、W、Mn、Fe和Mo中的至少一種而形成的。 A perpendicular magnetic recording medium having a granular layer and a cap layer as layers constituting at least a part of the recording layer, the granular layer contains a metal oxide as a non-magnetic body, and a magnetic body is dispersed in the non-magnetic body, The cap layer is formed on the particle layer and does not contain a metal oxide but contains a magnetic metal. The oxide phase of the boundary part of the particle layer directly below the cap layer and the cap layer contains Zn, W , Mn, Fe and Mo at least one. 如申請專利範圍第1項所述的垂直磁記錄介質,其中,該顆粒層的該邊界部分的氧化物相是含有Zn而形成的。 The perpendicular magnetic recording medium described in the first item of the patent application, wherein the oxide phase of the boundary portion of the granular layer is formed by containing Zn. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,該顆粒層的該邊界部分的氧化物相還含有B和Si中的至少一種而形成的。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of the patent application, wherein the oxide phase of the boundary portion of the granular layer further contains at least one of B and Si. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,該顆粒層的該邊界部分的氧化物相還含有Ti而形成的。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of patent application, wherein the oxide phase of the boundary portion of the granular layer is formed by further containing Ti. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,該顆粒層的除該邊界部分以外的一剩餘部分具有不含Zn的層。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of patent application, wherein a remaining part of the granular layer except the boundary part has a layer that does not contain Zn. 如申請專利範圍第5項所述的垂直磁記錄介質,其中,該顆粒層的該剩餘部分含有選自Si、B和Ti中的至少一種元素的氧化物作為氧化物相,該剩餘部分中的氧化物相的氧化物的總計含量為20vol.%~50vol.%。 The perpendicular magnetic recording medium according to item 5 of the scope of patent application, wherein the remaining part of the granular layer contains an oxide of at least one element selected from Si, B and Ti as an oxide phase, and the remaining part The total content of oxides in the oxide phase is 20 vol.% to 50 vol.%. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,該顆粒層的該邊界部分的氧化物相含有Zn,該氧化物相的Zn含量為3at%以上。 The perpendicular magnetic recording medium according to item 1 or item 2 of the scope of patent application, wherein the oxide phase of the boundary portion of the granular layer contains Zn, and the Zn content of the oxide phase is 3 at% or more. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,在記錄層的層疊方向上,該邊界部分的厚度在顆粒層整體的厚度中所占的 比例為3%~50%。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of patent application, wherein, in the stacking direction of the recording layer, the thickness of the boundary portion accounts for the thickness of the entire particle layer The ratio is 3%~50%. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,包括該邊界部分在內的顆粒層整體是含有作為金屬相的選自Co、Pt、Ru和Cr中的至少一種金屬而形成的。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of the patent application, wherein the entire grain layer including the boundary portion contains at least one selected from Co, Pt, Ru, and Cr as a metal phase Formed of metal. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,該蓋層是含有選自Co、Cr、Pt和B中的至少一種元素而形成的。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of the patent application, wherein the cap layer is formed by containing at least one element selected from Co, Cr, Pt, and B. 如申請專利範圍第1項或第2項所述的垂直磁記錄介質,其中,在記錄層的層疊方向上,該蓋層的厚度為1nm~3nm。 The perpendicular magnetic recording medium described in item 1 or item 2 of the scope of patent application, wherein the thickness of the cap layer is 1 nm to 3 nm in the stacking direction of the recording layer.
TW108103337A 2018-03-28 2019-01-29 Perpendicular magnetic recording medium TWI713985B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063229 2018-03-28
JP2018063229 2018-03-28

Publications (2)

Publication Number Publication Date
TW201942900A TW201942900A (en) 2019-11-01
TWI713985B true TWI713985B (en) 2020-12-21

Family

ID=68061014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103337A TWI713985B (en) 2018-03-28 2019-01-29 Perpendicular magnetic recording medium

Country Status (5)

Country Link
JP (1) JP7116782B2 (en)
CN (1) CN111971745B (en)
SG (1) SG11202009585QA (en)
TW (1) TWI713985B (en)
WO (1) WO2019187226A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200617901A (en) * 2004-10-27 2006-06-01 Hitachi Global Storage Tech Nl Perpendicular magnetic recording medium
JP4021435B2 (en) * 2004-10-25 2007-12-12 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
TW200822087A (en) * 2006-11-14 2008-05-16 Nat Univ Tsing Hua Perpendicular magnetic recording media
CN100440323C (en) * 2005-03-30 2008-12-03 富士通株式会社 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
TW201017653A (en) * 2008-10-30 2010-05-01 Nat Univ Tsing Hua Exchange coupled composite type of perpendicular magnetic recording media
CN102103867A (en) * 2009-12-16 2011-06-22 日立环球储存科技荷兰有限公司 Continuous-media perpendicular magnetic recording disk and method for making the disk
TW201226611A (en) * 2010-12-21 2012-07-01 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for production thereof
CN102693731A (en) * 2011-03-18 2012-09-26 精工电子有限公司 Magnetic recording medium
TW201411611A (en) * 2012-04-18 2014-03-16 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
TW201512421A (en) * 2013-08-15 2015-04-01 Sanyo Special Steel Co Ltd Fe-Co-based alloy sputtering target material, soft magnetic thin film layer, and vertical magnetic recording medium produced using said soft magnetic thin film layer
CN104685566A (en) * 2012-10-10 2015-06-03 富士电机株式会社 Magnetic recording medium
CN104718574A (en) * 2012-12-06 2015-06-17 富士电机株式会社 Perpendicular magnetic recording medium
JP5960287B2 (en) * 2012-12-18 2016-08-02 Jx金属株式会社 Sintered sputtering target

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492775A (en) * 1993-05-28 1996-02-20 International Business Machines Corporation Barium ferrite thin film for longitudinal recording
TW594695B (en) * 1999-12-21 2004-06-21 Matsushita Electric Ind Co Ltd Optical information recording medium, method of recording and reproducing, and optical recording and reproducing system
US6999255B2 (en) * 2001-11-09 2006-02-14 Fuji Photo Film Co., Ltd. Magnetic recording and reproducing system and magnetic recording medium used therein
JP4316506B2 (en) * 2002-12-13 2009-08-19 パナソニック株式会社 Optical information recording medium and method for manufacturing the same
US20040253539A1 (en) * 2003-06-13 2004-12-16 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for manufacturing the same
JP2007026536A (en) * 2005-07-15 2007-02-01 Showa Denko Kk Magnetic recording medium, its manufacturing method and magnetic recording and reproducing apparatus
ATE518226T1 (en) * 2005-09-22 2011-08-15 Toray Industries HOLDER FOR A MAGNETIC RECORDING MEDIUM AND MAGNETIC RECORDING MEDIUM
JP5184843B2 (en) * 2007-08-21 2013-04-17 エイチジーエスティーネザーランドビーブイ Perpendicular magnetic recording medium and magnetic storage device
JP4292226B1 (en) * 2007-12-20 2009-07-08 株式会社東芝 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
US7862912B2 (en) * 2008-03-04 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and system with low-curie-temperature multilayer for heat-assisted writing and/or reading
JP2009238299A (en) * 2008-03-26 2009-10-15 Hoya Corp Vertical magnetic recording medium and method for making vertical magnetic recording medium
US7867637B2 (en) * 2008-11-17 2011-01-11 Seagate Technology Llc Low coupling oxide media (LCOM)
JP5448750B2 (en) * 2009-11-26 2014-03-19 エイチジーエスティーネザーランドビーブイ Magnetic recording medium
JP5145437B2 (en) * 2011-03-02 2013-02-20 株式会社日立製作所 Magnetic recording medium
JP6485353B2 (en) * 2013-08-23 2019-03-20 ソニー株式会社 Ferrimagnetic particle powder manufacturing method and magnetic recording medium manufacturing method
US10020016B2 (en) * 2013-12-10 2018-07-10 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
JP6594633B2 (en) * 2015-02-23 2019-10-23 富士電機株式会社 Magnetic recording medium

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021435B2 (en) * 2004-10-25 2007-12-12 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
TW200617901A (en) * 2004-10-27 2006-06-01 Hitachi Global Storage Tech Nl Perpendicular magnetic recording medium
CN100440323C (en) * 2005-03-30 2008-12-03 富士通株式会社 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
TW200822087A (en) * 2006-11-14 2008-05-16 Nat Univ Tsing Hua Perpendicular magnetic recording media
TW201017653A (en) * 2008-10-30 2010-05-01 Nat Univ Tsing Hua Exchange coupled composite type of perpendicular magnetic recording media
CN102103867A (en) * 2009-12-16 2011-06-22 日立环球储存科技荷兰有限公司 Continuous-media perpendicular magnetic recording disk and method for making the disk
TW201226611A (en) * 2010-12-21 2012-07-01 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film, and process for production thereof
CN102693731A (en) * 2011-03-18 2012-09-26 精工电子有限公司 Magnetic recording medium
TW201411611A (en) * 2012-04-18 2014-03-16 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
CN104685566A (en) * 2012-10-10 2015-06-03 富士电机株式会社 Magnetic recording medium
CN104718574A (en) * 2012-12-06 2015-06-17 富士电机株式会社 Perpendicular magnetic recording medium
JP5960287B2 (en) * 2012-12-18 2016-08-02 Jx金属株式会社 Sintered sputtering target
TW201512421A (en) * 2013-08-15 2015-04-01 Sanyo Special Steel Co Ltd Fe-Co-based alloy sputtering target material, soft magnetic thin film layer, and vertical magnetic recording medium produced using said soft magnetic thin film layer

Also Published As

Publication number Publication date
SG11202009585QA (en) 2020-10-29
WO2019187226A1 (en) 2019-10-03
JPWO2019187226A1 (en) 2021-05-27
TW201942900A (en) 2019-11-01
JP7116782B2 (en) 2022-08-10
CN111971745B (en) 2022-05-10
CN111971745A (en) 2020-11-20

Similar Documents

Publication Publication Date Title
US9064518B2 (en) Perpendicular magnetic recording medium
US20090195924A1 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2003178412A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP5999290B2 (en) Magnetic recording medium
JP6447739B2 (en) Perpendicular magnetic recording medium
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
JP6260742B2 (en) Magnetic recording medium
US20110129692A1 (en) Magnetic alloy materials with hcp stabilized microstructure, magnetic recording media comprising same, and fabrication method therefor
JP2007164941A (en) Perpendicular magnetic recording medium
WO2017122593A1 (en) Magnetic recording medium and method for producing same
TWI713985B (en) Perpendicular magnetic recording medium
JP6406462B2 (en) Magnetic recording medium
JP6327357B2 (en) Magnetic recording medium
JP6358640B2 (en) Magnetic recording medium
JP6617923B2 (en) Method for manufacturing perpendicular magnetic recording medium
TWI812869B (en) Sputtering target for magnetic recording media
TWI724428B (en) Sputtering target, particle film and perpendicular magnetic recording media
JP4993296B2 (en) Perpendicular magnetic recording medium
JP6260517B2 (en) Magnetic recording medium and method for manufacturing the same
TWI671418B (en) Sputtering target, manufacturing method of laminated film, laminated film and magnetic recording medium
JP2005190506A (en) Perpendicular magnetic recording medium and its manufacturing method
JP5737676B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus