TWI713397B - 預設上行鏈路波束確定之方法及其使用者設備 - Google Patents
預設上行鏈路波束確定之方法及其使用者設備 Download PDFInfo
- Publication number
- TWI713397B TWI713397B TW108106090A TW108106090A TWI713397B TW I713397 B TWI713397 B TW I713397B TW 108106090 A TW108106090 A TW 108106090A TW 108106090 A TW108106090 A TW 108106090A TW I713397 B TWI713397 B TW I713397B
- Authority
- TW
- Taiwan
- Prior art keywords
- preset
- random access
- user equipment
- uplink
- radio resource
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 230000005540 biological transmission Effects 0.000 claims abstract description 36
- 230000001960 triggered effect Effects 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims description 60
- 238000004891 communication Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 13
- 230000000977 initiatory effect Effects 0.000 claims description 7
- 230000011664 signaling Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000019527 sweetened beverage Nutrition 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/088—Hybrid systems, i.e. switching and combining using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/19—Connection re-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
提出了一種在波束成形系統中之無線電資源控制(RRC)連接重建之後之預設上行鏈路波束確定之方法。對於上行鏈路(UL)傳輸,BS向UE提供專用物理上行鏈路控制通道(PUCCH)資源配置。該配置包含空間關係資訊,該空間關係資訊指示由UE使用之用於相應之PUCCH傳輸之空間過濾器。在RRC連接重建之後並且在接收到專用PUCCH配置之前,可以基於在RRC連接重建進程期間使用之UE TX波束,來確定預設UE TX波束,例如,用於在由RRC連接重建進程觸發之四步驟隨機存取通道(RACH)進程中發送MSG3之UE TX波束。
Description
本發明實施例總體有關於無線通訊,以及,更具體地,關於過渡階段之上行鏈路傳輸之預設波束選擇,例如在無線電資源控制(radio resource control,RRC)重建進程之後。
行動運營商不斷地經歷之頻寬短缺促使探索30G到300GHz之間之未充分利用之毫米波(Millimeter Wave,mmWave)頻譜用於下一代寬頻蜂巢通訊網路。mmWave頻段之可用頻譜係傳統蜂巢系統之數百倍。mmWave無線網路使用窄波束定向通訊,可支援數十億位元資料速率。毫米波頻譜之未充分利用頻寬具有非常小之波長,這使得大量小型化天線能夠放置在小區域中。這種小型化天線系統可以透過產生定向傳輸之電可控陣列產生高波束成形增益。依據mmWave半導體電路之最新進展,mmWave無線系統已成為真正實施之有前景之解決方案。然而,嚴重依賴定向傳輸以及易受傳播環境影響,對於具有波束成形之mmWave網路提出了特定之挑戰。
設計無線電鏈路監測(Radio link monitor,RLM)以確保從更高層之角度(例如,無線電資源控制(radio resource control,RRC)層)可以實現合適之鏈路品質。RLM存在於諸如長期演進(long term evolution,LTE)系統
之單波束系統中。在RLM下,關於鏈路品質之週期性實體層L1指示被監測,例如,同步(In-Sync,IS)以及不同步(Out-of-Sync,OOS)指示。在TIS計時器到期之前連續OOS超過数量NOOS並且累積IS没有達到数量NIS時,無線電鏈路故障(Radio link failure,RLF)可以宣佈。在UE處宣佈RLF之後,UE觸發RRC連接重建進程,然後嘗試經由四步驟隨機存取通道(random access channel,RACH)進程重建RRC連接。除了RLF之外,還可以在切換失敗之後觸發RRC連接重建,其中UE從源小區切換到目標小區。
在RRC連接重建之後並且第一上行鏈路控制波束指示從網路完成發送之前,當UE需要傳遞上行鏈路控制資訊(uplink control information,UCI)時,UE不知道哪個TX波束可以用於發送物理上行鏈路控制通道(physical uplink control channel,PUCCH)。尋求定義在這樣之過渡階段期間之預設UE TX波束之解決方案。
提出了一種在波束成形系統中之RRC連接重建之後之預設上行鏈路波束確定之方法。對於上行鏈路(uplink,UL)傳輸,基地台(base station,BS)向UE提供專用PUCCH資源配置。該配置包含空間關係資訊,該空間關係資訊指示由UE使用之用於相應之PUCCH傳輸之空間過濾器。在RRC連接重建之後並且在接收到專用PUCCH配置之前,可以基於在RRC連接重建進程期間使用之UE TX波束,來確定預設UE TX波束,例如,用於在由RRC連接重建進程觸發之四步驟RACH進程中發送訊息3(MSG3)之UE TX波束。
在一個實施例中,UE在波束成形通訊網路中發起RRC連接重建進程。UE執行由RRC連接重建進程觸發之RACH進程。UE基於RACH進程確定用於上行鏈路傳輸之預設空間過濾器。UE在接收專用PUCCH配置之前
使用預設空間過濾器執行後續PUCCH傳輸,該專用PUCCH配置包含用於專用PUCCH資源之空間關係資訊。
在另一個實施例中,一種使用者設備包含RRC連接處理電路,用以在波束成形通訊網路中發起無線電資源控制連接重建進程。該UE還包含隨機存取通道處理電路,用以執行由該無線電資源控制連接重建進程觸發之隨機存取通道進程。該UE進一步包含波束成形電路,用以基於該隨機存取通道進程確定用於該使用者設備上行鏈路傳輸之預設空間過濾器。該UE進一步包含發送器,用以在接收專用物理上行鏈路控制通道配置之前使用該預設空間濾波器執行後續物理上行鏈路控制通道傳輸。
本發明提出了預設上行鏈路波束確定之方法及其使用者設備,利用基於RACH進程之預設空間過濾器,實現過渡階段上行鏈路傳輸之有益效果。
在下文詳細描述中闡述了其他實施例和有益效果。發明內容并不旨在定義本發明。本發明由申請專利範圍定義。
100:波束成形無線通訊系統
102、202、301:使用者設備
101、201:基地台
110:小區
120:MAC之CE
130:服務波束對鏈路
140:區塊
150:空間關係資訊清單
211:天線陣列
214、234:記憶體
213、233:處理器
212、232:RF收發器模組
231:天線
215、235:程式指令和資料
220、240:鏈路品質管理模組
221、242:波束成形電路
222:波束監測器
223:配置和排程電路
224:無線電鏈路監測處理電路
241:配置電路
243:隨機存取通道處理電路
244:RRC連接處理電路
245:無線電鏈路故障檢測電路
302、303:gNB
310、311、312、313、320、321、322、323、324、325、326、401、402、403、404:步驟
340:時間視窗
提供附圖以描述本發明之實施例,其中,相同數字指示相同組件。
第1圖依據一個新穎方面示出了波束成形無線通訊系統以及在專用PDCCH資源配置之前用於PUCCH傳輸之預設上行鏈路波束。
第2圖係執行本發明特定實施例之基地台和使用者設備之簡化區塊圖。
第3圖示出了由RLF觸發之RRC連接重建進程以及預設UL波束確定之實施例。
第4圖依據一個新穎方面示出了波束成形系統中之RRC連接重建之後之預設UL波束確定之方法之流程圖。
現詳細給出關於本發明之一些實施例之參考,其示例在附圖中描述。
第1圖依據一個新穎方面示出了波束成形無線通訊系統100以及在專用PDCCH資源配置之前用於PUCCH傳輸之預設上行鏈路波束。波束成形無線通訊系統100包含基地台(base station,BS)101和使用者設備(user equipment,UE)102。mmWave蜂巢網路使用具有波束成形傳輸之定向通訊,並且可以支援高達數十億位元之資料速率。透過數位和/或類比波束成形實現定向通訊,其中複數個天線元件與複數個波束成形權重集合一起應用以形成複數個波束。在第1圖之示例中,BS 101定向配置有複數個小區,並且每個小區由發送/接收(TX/RX)波束集合覆蓋。例如,小區110被五個BS波束#B1、#B2、#B3、#B4以及#B5之集合覆蓋。BS波束#B1-#B5之集合覆蓋小區110之整個服務區域。類似地,UE 102還可以應用波束成形以形成複數個UE波束,例如#U1,#U2。對於波束成形之存取,鏈路之兩端需要知道要使用哪些波束成形器,例如,用於BS 101(使用#B3)和UE 102(使用#U2)之間之通訊之服務波束對鏈路(beam pair link,BPL)130。
可以週期性地配置或者無限地且重複地產生BS波束集合,以便UE知道。每個BS波束廣播類似於LTE系統中之系統資訊區塊(System Information Block,SIB)或主資訊區塊(Master Information Block,MIB),或NR系統中之同步訊號區塊(synchronization signal block,SSB)之最小量之小區特定之以及波束特定之資訊。每個BS波束還可以攜帶UE特定之控制或資料訊務。每個BS波束發送已知參考訊號集合,用於初始時-頻同步、發送訊號之波束之識別、以及發送訊號之波束之無線電通道品質之測量之目的。在一個示例中,分層控制波束和專用資料波束架構提供穩健之控制信令方案,以促進
mmWave蜂巢網路系統中之波束成形運作。
包含初始波束對準以及後續波束追蹤之波束管理以及波束訓練機制確保BS波束和UE波束對準以進行資料通訊。對於UL傳輸,基地台向UE提供專用PUCCH資源配置以配置一個或複數個專用PUCCH資源。除了用於每個專用PUCCH資源之PUCCH格式、第一符號、持續時間、物理資源區塊(Physical resource block,PRB)偏移以及循環移位之外,專用PUCCH資源配置還包含用於專用PUCCH資源之空間關係資訊。空間關係資訊指示UE使用之用於相應之PUCCH傳輸之空間過濾器(例如,TX波束)。
如第1圖所示,可以透過RRC信令或者RRC加上介質存取控制(media access control,MAC)之控制單元(control element,CE)來指示空間關係資訊,例如,用於專用PUCCH資源之空間過濾器和用於參考訊號資源之空間過濾器之間之空間關係。在一個示例中,包含一個或複數個PUCCH-空間關係資訊(PUCCH-SpatialRelationInfo)之資訊單元(information element,IE)之空間關係資訊清單(SpatialRelationInfoList)經由RRC信令在專用PUCCH資源配置中配置。每個PUCCH-SpatialRelationInfo之IE可以包含SSB資源指示符(synchronization signal block resource indicator,SSBRI)、通道狀態資訊參考訊號(channel state information reference signal,CSI-RS)資源指示符(CSI-RS resource indicator,CRI)或探測參考訊號(sounding reference signal,SRS)資源指示符(SRS resource indicator,SRI),以指示由UE使用之關聯相應之PUCCH傳輸之空間過濾器(例如,UE TX波束)。當SpatialRelationInfoList中之PUCCH-SpatialRelationInfo IE之數量大於1時,則MAC之CE用於指向用於指示專用PUCCH資源之空間關係資訊之PUCCH-SpatialRelationInfo IE中之一個。在第1圖之示例中,SpatialRelationInfoList 150包含至多四個PUCCH-SpatialRelationInfo IE,包含SSBRI#1、CRI#3、CRI#5以及SRI#4。
然後,使用包含用於PUCCH空間關係激活/去激活之四位元位映射和PUCCH資源標識符(ID)之MAC之CE 120,來指示UE 102可以假設用於CRI#3之空間過濾器和用於在由PUCCH資源ID指示之專用PUCCH資源上之UE PUCCH傳輸之空間過濾器之間之空間關係,其中位映射之第二位元的值為1。
設計RLM以確保從更高層之角度(例如,RRC層)可以實現合適之鏈路品質。RLM存在於諸如LTE系統之單波束系統中。在RLM下,關於鏈路品質之週期性實體層L1指示被監測,例如,IS和OOS指示。在TIS計時器到期之前連續OOS超過数量NOOS並且累積IS没有達到数量NIS時,可以宣佈RLF。在UE處宣佈RLF之後,UE發起RRC連接重建進程,並且嘗試經由四步驟RACH進程重建RRC連接。除了RLF之外,在新無線電系統中,存在許多原因發起RRC連接重建進程。例如,可以在具有同步故障、NR行動性故障以及RRC連接重新配置故障之重新配置之後發起RRC連接重建進程。
從發起RRC連接重建進程到BS提供專用PUCCH資源配置,不存在用於UE傳遞上行鏈路控制資訊(uplink control information,UCI)之專用PUCCH資源。在這樣之過渡階段期間,BS在RRC連接重建進程期間使用SIB向UE提供共用之PUCCH資源配置,以配置共用之PUCCH資源集合,其中每個PUCCH資源被配置具有相應之PUCCH格式、第一符號、持續時間、PRB偏移以及循環移位。然而,當UE需要傳遞UCI時,UE仍然不知道可以使用哪個空間過濾器或TX波束來發送共用之PUCCH。依據一個新穎方面,可以基於在RRC連接重建進程期間使用之UE TX波束來確定預設UE TX波束,例如,用於在由RRC連接重建觸發之四步驟RACH進程中發送MSG3之UE TX波束。如區塊140所示,檢測到RLF或其他故障(步驟1)、發起RRC連接重建進程(步驟2)、然後在UE接收專用PUCCH配置(步驟4)之前確定用於PUCCH傳輸之預設TX波束(步驟3)。
第2圖係執行本發明之特定實施例之基地台和使用者設備之簡化區塊圖。BS 201具有發送和接收無線電信號之複數個天線元件之天線陣列211、耦接於天線陣列211之一個或複數個RF收發器模組212,該RF收發器模組212從天線陣列211接收RF訊號,將RF訊號轉換為基帶訊號,並將基帶訊號發送到處理器213。RF收發器模組212還轉換從處理器213接收之基帶訊號,將它們轉換為RF訊號,並發送到天線陣列211。處理器213處理接收之基帶訊號並調用不同之功能模組以執行BS 201中之特徵。記憶體214存儲程式指令和資料215以控制BS201之運作。BS 201還包含依據本發明之實施例執行不同任務之複數個功能模組和電路。
類似地,UE 202具有天線231,其發送和接收無線電信號。耦接於天線231之RF收發器模組232(包含發送器接收器)從天線231接收RF訊號,將RF訊號轉換為基帶訊號並且將基帶訊號發送到處理器233。RF收發器模組232還轉換從處理器233接收之基帶訊號,將基帶訊號轉換為RF訊號,並發送到天線231。處理器233處理接收之基帶訊號並且調用不同之功能模組以執行UE 202中之特徵。記憶體234存儲程式指令和資料235以控制UE 202之運作。UE 202還包含依據本發明之實施例執行不同之任務之複數個功能模組和電路。
功能模組和電路可以由硬體、韌體、軟體及其任何組合來實施和配置。例如,BS 201包含鏈路品質管理模組220,其進一步包含波束成形電路221、波束監測器222、配置和排程電路223、以及RLM處理電路224。波束成形電路221可以屬於RF鏈之一部分,其將各種波束成形權重應用於天線陣列211之複數個天線元件,從而形成各種波束。波束監測器222在各種波束上監測所接收之無線電信號,並執行無線電信號之測量。配置和排程電路223為UE排程上行鏈路傳輸,並為UE配置用於上行鏈路傳輸之無線電資源。它還為上行鏈
路傳輸提供空間關係資訊。RLM處理電路224執行實體層無線電鏈路監測功能。
類似地,UE 202包含鏈路品質管理模組240,其進一步包含配置電路241、波束成形電路242、RACH處理電路243、RRC連接處理電路244以及RLF檢測電路245。配置電路241透過RRC信令和/或MAC之CE從服務BS接收配置資訊。配置資訊可以包含用於UL控制波束指示之PUCCH資源和空間關係資訊。波束成形電路242可以屬於RF鏈之一部分,其將各種波束成形權重應用於天線231之複數個天線元件,從而基於來自網路之UL控制波束指示形成各種波束。波束成形電路242還在過渡階段期間確定預設UE TX波束(預設空間過濾器),例如,從發起RRC連接重建進程到提供專用PUCCH資源配置。RACH處理電路243執行四步驟RACH進程。RRC連接處理電路244處理RRC連接之建立和重建。RLF檢測電路245執行無線電鏈路監測功能以檢測RLF。
第3圖示出了由RLF發起之RRC連接重建進程以及用於PUCCH傳輸之預設UL波束(或空間過濾器)確定之一個實施例。在步驟310中,UE 301由下一代基地台gNB 302服務,並建立用於資料通訊之RRC連接。在步驟311中,UE 301可以從gNB 302接收專用PUCCH資源配置(例如,包含SpatialRelationInfoList)以用於上行鏈路傳輸。稍後,在步驟312中,UE 301宣佈RLF。然後,UE 301在步驟313中發起RRC連接重建進程。注意,RLF僅作為示例示出,在NR系統中存在許多原因發起RRC連接重建進程。
RRC連接重建進程包含小區搜索和小區選擇,以及四步驟RACH進程。在小區搜索和小區選擇期間,至少一個從gNB 303發送之有效SSB之檢測指示成功獲取了新小區(步驟320)。在從gNB 303發送之所獲取之SSB中,UE 301可以接收對應於所獲取之SSB之SIB,SIB包含共用之PUCCH資源配置。然後,UE 301嘗試透過在所獲取之SSB上觸發四步驟RACH進程(例如,
訊息1(MSG1)、訊息2(MSG2)、MSG3和訊息4(MSG4))(步驟313)以重建RRC連接。四步驟RACH進程可以類似於用於初始存取之四步驟RACH進程,儘管MSG3和MSG4中之相關之RRC訊息可以不同。
在步驟321中,UE 301在物理隨機存取通道(Physical Random Access Channel,PRACH)上發送隨機存取前導碼(MSG1)。UE 301可以依據對獲取之SSB之先前測量來選擇空間過濾器,以發送隨機存取前導碼。在步驟322中,UE 301從gNB 303發送之MSG2中接收包含上行排程許可之隨機存取回應(random-access response,RAR)。RAR之成功接收指示至少一個UL波束對鏈路以及至少一個DL波束對鏈路在UE 301和gNB 303兩者處被識別。在步驟323中,UE 301在由RAR之上行排程許可所排程之PUSCH上發送上行鏈路資料(MSG3)。MSG3包含RRC連接重建請求。基於在步驟322中識別之UL波束對鏈路(空間過濾器)發送MSG3。請注意,用於MSG1和MSG3之UE波束可以相同或可以不同。在步驟324中,UE 301從gNB 303接收競爭解決(MSG4)。在步驟325中,UE 301從gNB 303接收RRC連接重建訊息。可選地,MSG4可以包含RRC連接重建訊息(步驟324和步驟325組合成一個步驟)。在RRC連接重建訊息中,可以提供專用PUCCH資源配置和相應之SpatialRelationInfoList。在步驟326中,如果成功接收到RRC連接重建訊息,則UE 301向gNB 303發送RRC連接重建完成訊息,並且RRC連接重建進程完成。
請注意,從發起RRC連接重建進程到提供專用PUCCH資源配置給UE,當UE被要求在例如共用之PUCCH資源上進行PUCCH傳輸時,UE不知道應該使用哪個UL波束。在一個新穎方面,在RRC連接重建進程之時間視窗340期間,UE 301可以使用預設UE空間過濾器(例如,預設UE TX波束)來發送PUCCH。在一個優選實施例中,預設UE TX波束與用於在RACH進程之步驟323中發送MSG3之波束相同。如時間視窗340所示,時間視窗在UE
發起RRC連接重建進程時開始並且在專用PUCCH資源配置和相應之空間關係資訊由gNB 303提供給UE 301時結束。例如,UE 301需要向gNB 303發送混合自動重複請求(hybrid automatic repeat request,HARQ)確認/否認(ACK/NACK)回饋,以回應於接收到之MSG4之競爭解決,並且在時間視窗340期間UE 301可以使用預設UE TX波束用於這種UL傳輸。
第4圖係依據一個新穎方面之波束成形系統中之RRC連接重建進程期間之預設UL波束確定方法之流程圖。在步驟401中,UE在波束成形通訊網路中發起RRC連接重建進程。在步驟402中,UE執行由RRC連接重建進程觸發之RACH進程。在步驟403中,UE基於RACH進程確定用於上行鏈路傳輸之預設空間過濾器。在步驟404中,UE在接收到專用PUCCH配置之前使用預設空間過濾器執行後續PUCCH傳輸,該專用PUCCH配置包含用於專用PUCCH資源之空間關係資訊。
出於說明目的,雖然已結合特定實施例對本發明進行描述,但本發明並不局限於此。因此,在不脫離申請專利範圍所述之本發明範圍之情況下,可對描述實施例之各個特徵實施各種修改、改編和組合。
301:使用者設備
302、303:gNB
310、311、312、313、320、321、322、323、324、325、326:步驟
340:時間視窗
Claims (11)
- 一種預設上行鏈路波束確定方法,其包含:在一波束成形通訊網路中由一使用者設備發起一無線電資源控制連接重建進程;執行由該無線電資源控制連接重建進程觸發之一隨機存取通道進程;基於該隨機存取通道進程確定用於該使用者設備上行鏈路傳輸之一預設空間過濾器;以及在從一基地台接收一專用物理上行鏈路控制通道配置之前,使用該預設空間過濾器執行一後續物理上行鏈路控制通道傳輸。
- 如申請專利範圍第1項所述之預設上行鏈路波束確定方法,其中,該隨機存取通道進程包含該使用者設備使用基於對獲取之同步訊號區塊之先前測量導出之一空間過濾器來發送一隨機存取前導碼。
- 如申請專利範圍第1項所述之預設上行鏈路波束確定方法,其中,該隨機存取通道進程包含該使用者設備接收包含一上行排程許可之一隨機存取回應。
- 如申請專利範圍第1項所述之預設上行鏈路波束確定方法,其中,該隨機存取通道進程包含該使用者設備使用一空間過濾器向該基地台發送一無線電資源控制連接重建請求。
- 如申請專利範圍第4項所述之預設上行鏈路波束確定方法,其中,該空間過濾器被確定為用於該後續物理上行鏈路控制通道傳輸之該預設空間過濾器。
- 如申請專利範圍第1項所述之預設上行鏈路波束確定方法,其中,從該使用者設備發起該無線電資源控制連接重建進程到接收該專用物理上行鏈 路控制通道配置之一時間窗期間,使用該預設過濾器。
- 如申請專利範圍第6項所述之預設上行鏈路波束確定方法,其中,該後續物理上行鏈路控制通道傳輸包含該使用者設備發送確認/否認,以回應於在該隨機存取通道進程期間來自該基地台之一競爭解決。
- 如申請專利範圍第1項所述之預設上行鏈路波束確定方法,其中,由於一無線電鏈路故障檢測到而發起該無線電資源控制連接重建進程。
- 如申請專利範圍第1項所述之預設上行鏈路波束確定方法,其中,該專用物理上行鏈路控制通道配置包含用於專用物理上行鏈路控制通道資源之空間關係資訊。
- 如申請專利範圍第9項所述之預設上行鏈路波束確定方法,其中,經由無線電資源控制信令和/或介質存取控制之控制單元信令提供該空間關係資訊。
- 一種使用者設備,用於預設上行鏈路波束確定,包含:一無線電資源控制連接處理電路,用以在一波束成形通訊網路中發起一無線電資源控制連接重建進程;一隨機存取通道處理電路,用以執行由該無線電資源控制連接重建進程觸發之一隨機存取通道進程;一波束成形電路,用以基於該隨機存取通道進程確定用於該使用者設備上行鏈路傳輸之一預設空間過濾器;以及一發送器,用以在從一基地台接收一專用物理上行鏈路控制通道配置之前使用該預設空間濾波器執行一後續物理上行鏈路控制通道傳輸。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862634792P | 2018-02-23 | 2018-02-23 | |
US62/634,792 | 2018-02-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201937977A TW201937977A (zh) | 2019-09-16 |
TWI713397B true TWI713397B (zh) | 2020-12-11 |
Family
ID=67684925
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108106090A TWI713397B (zh) | 2018-02-23 | 2019-02-22 | 預設上行鏈路波束確定之方法及其使用者設備 |
TW108106089A TWI705717B (zh) | 2018-02-23 | 2019-02-22 | 預設上行鏈路波束確定方法及使用者設備 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108106089A TWI705717B (zh) | 2018-02-23 | 2019-02-22 | 預設上行鏈路波束確定方法及使用者設備 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10743321B2 (zh) |
CN (3) | CN110393025A (zh) |
TW (2) | TWI713397B (zh) |
WO (2) | WO2019161784A1 (zh) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10904940B2 (en) * | 2018-03-30 | 2021-01-26 | Comcast Cable Communications, Llc | Configuration for beam failure recovery |
EP3602827A1 (en) * | 2017-03-24 | 2020-02-05 | Intel IP Corporation | Beam recovery frame structure and recovery request for communication systems |
US11950287B2 (en) | 2017-08-10 | 2024-04-02 | Comcast Cable Communications, Llc | Resource configuration of beam failure recovery request transmission |
US11337265B2 (en) | 2017-08-10 | 2022-05-17 | Comcast Cable Communications, Llc | Beam failure recovery request transmission |
US10855359B2 (en) | 2017-08-10 | 2020-12-01 | Comcast Cable Communications, Llc | Priority of beam failure recovery request and uplink channels |
US10887939B2 (en) | 2017-08-10 | 2021-01-05 | Comcast Cable Communications, Llc | Transmission power control for beam failure recovery requests |
CN109392150B (zh) * | 2017-08-11 | 2019-11-15 | 维沃移动通信有限公司 | 一种随机接入资源的处理方法和装置 |
US11277301B2 (en) * | 2017-09-07 | 2022-03-15 | Comcast Cable Communications, Llc | Unified downlink control information for beam management |
US10880761B2 (en) | 2017-09-11 | 2020-12-29 | Qualcomm Incorporated | System and method for selecting resources to transmit a beam failure recovery request |
US11611468B2 (en) | 2017-09-28 | 2023-03-21 | Comcast Cable Communications, Llc | Beam management with DRX configuration |
US10660063B2 (en) | 2017-11-16 | 2020-05-19 | Comcast Cable Communications, Llc | Beam paging assistance |
US10863570B2 (en) | 2018-01-09 | 2020-12-08 | Comcast Cable Communications, Llc | Beam selection in beam failure recovery request retransmission |
EP3525516B1 (en) | 2018-02-09 | 2022-08-31 | Comcast Cable Communications, LLC | Beam failure recovery procedure in carrier aggregation |
EP3528398A1 (en) * | 2018-02-15 | 2019-08-21 | Comcast Cable Communications LLC | Beam failure report |
CN110393025A (zh) * | 2018-02-23 | 2019-10-29 | 联发科技股份有限公司 | 连结重建后用于上行链路传输的默认波束 |
US11051353B2 (en) * | 2018-03-19 | 2021-06-29 | Apple Inc. | PUCCH and PUSCH default beam considering beam failure recovery |
US11039350B2 (en) | 2018-04-02 | 2021-06-15 | Comcast Cable Communications, Llc | Beam failure recovery |
CN110351878B (zh) * | 2018-04-04 | 2023-07-14 | 华为技术有限公司 | 一种随机接入处理方法和相关设备 |
EP3930237A1 (en) | 2018-05-10 | 2021-12-29 | Comcast Cable Communications, LLC | Prioritization in beam failure recovery procedures |
WO2019216654A1 (ko) * | 2018-05-10 | 2019-11-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 pucch 자원을 구성하는 방법 및 장치 |
KR102712368B1 (ko) * | 2018-05-24 | 2024-10-04 | 삼성전자 주식회사 | 상향링크 제어 신호를 송수신하는 방법 및 이를 구현한 장치 |
CN109076365A (zh) * | 2018-07-20 | 2018-12-21 | 北京小米移动软件有限公司 | 波束故障恢复请求发送方法、响应方法、装置及存储介质 |
WO2020029083A1 (en) * | 2018-08-07 | 2020-02-13 | Zte Corporation | Link recovery in wireless communications |
US11012137B2 (en) | 2018-08-09 | 2021-05-18 | Comcast Cable Communications, Llc | Resource management for beam failure recovery procedures |
US10887884B2 (en) * | 2018-09-21 | 2021-01-05 | Samsung Electronics Co., Ltd. | Method and apparatus for signaling in support of uplink multi-beam operation |
US11324064B2 (en) | 2018-09-24 | 2022-05-03 | Comcast Cable Communications, Llc | Beam failure recovery procedures |
CA3056608A1 (en) | 2018-09-25 | 2020-03-25 | Comcast Cable Communications, Llc | Beam configuration for secondary cells |
US11115110B2 (en) * | 2018-12-14 | 2021-09-07 | Qualcomm Incorporated | Default beam selection based on a subset of coresets |
US12016021B2 (en) * | 2019-04-05 | 2024-06-18 | Qualcomm Incorporated | Reporting uplink control information in a random access procedure |
US20220200752A1 (en) * | 2019-04-09 | 2022-06-23 | Ntt Docomo, Inc. | User terminal and radio communication method |
US11805528B2 (en) * | 2019-05-13 | 2023-10-31 | Qualcomm Incorporated | Communication preemption applicability techniques |
CN112584443A (zh) * | 2019-09-27 | 2021-03-30 | 苹果公司 | 辅助小区链路恢复请求传输 |
US11503609B2 (en) * | 2019-09-27 | 2022-11-15 | Qualcomm Incorporated | PUCCH repetition before RRC connection setup |
EP3799518A1 (en) * | 2019-09-27 | 2021-03-31 | Apple Inc. | Secondary cell link recovery request transmission |
CA3095196A1 (en) * | 2019-10-02 | 2021-04-02 | Comcast Cable Communications, Llc | Transmission and reception point configuration for beam failure recovery |
US10973044B1 (en) * | 2019-10-03 | 2021-04-06 | Qualcomm Incorporated | Default spatial relation for SRS/PUCCH |
US10813157B1 (en) * | 2019-10-04 | 2020-10-20 | Qualcomm Incorporated | Beam failure recovery and related timing determination techniques |
US20220345903A1 (en) * | 2019-10-11 | 2022-10-27 | Lenovo (Beijing) Limited | Determining Default Spatial Relation for UL Signals |
WO2021087845A1 (en) | 2019-11-07 | 2021-05-14 | Apple Inc. | Default PUCCH and SRS Beam Determination |
WO2021087994A1 (zh) * | 2019-11-08 | 2021-05-14 | 华为技术有限公司 | 一种上行传输的方法、设备及存储介质 |
CN112825593B (zh) * | 2019-11-21 | 2023-04-25 | 大唐移动通信设备有限公司 | 信号传输方法及装置 |
US11943777B2 (en) * | 2019-12-20 | 2024-03-26 | Qualcomm Incorporated | Determining a default uplink (UL) transmission configuration indicator (TCI) state |
CN111182571B (zh) * | 2020-01-13 | 2021-02-02 | 电子科技大学 | 基站激活控制和波束赋形的长期联合优化方法 |
WO2021142659A1 (en) * | 2020-01-15 | 2021-07-22 | Qualcomm Incorporated | Pucch transmission with multiple spatial relations based on pdcch and pucch resource parameters |
WO2021142831A1 (en) * | 2020-01-19 | 2021-07-22 | Qualcomm Incorporated | Methods and apparatus for updating pucch spatial relation information |
US20210242925A1 (en) * | 2020-01-31 | 2021-08-05 | Qualcomm Incorporated | Uplink beam failure report for a default uplink beam |
US11115990B2 (en) | 2020-01-31 | 2021-09-07 | Qualcomm Incorporated | UE autonomous beam selection |
US11477683B2 (en) * | 2020-01-31 | 2022-10-18 | Qualcomm Incorporated | Event triggered uplink beam report |
CN115066953A (zh) * | 2020-02-12 | 2022-09-16 | 苹果公司 | 用于pucch、pusch和srs的ul空间关系切换 |
US11672006B2 (en) * | 2020-02-21 | 2023-06-06 | Qualcomm Incorporated | Message 3 repetition with receive beam sweep and associated beam refinement for message 4 |
WO2021174558A1 (zh) * | 2020-03-06 | 2021-09-10 | Oppo广东移动通信有限公司 | 资源指示方法、终端设备和网络设备 |
US20230170958A1 (en) * | 2020-03-09 | 2023-06-01 | Qualcomm Incorporated | Beam hopping within a single physical uplink control channel resource |
CN113498172A (zh) * | 2020-03-20 | 2021-10-12 | 中国移动通信有限公司研究院 | Pucch传输方法、装置、设备及存储介质 |
WO2021207562A1 (en) * | 2020-04-08 | 2021-10-14 | Idac Holdings, Inc. | Methods, apparatuses and systems directed to beam management in connection with multiple cells and/or multiple transmission/reception points |
WO2021208022A1 (zh) * | 2020-04-16 | 2021-10-21 | Oppo广东移动通信有限公司 | 一种波束管理方法、电子设备及存储介质 |
CN115918126A (zh) | 2020-04-17 | 2023-04-04 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
EP4149195A4 (en) * | 2020-05-09 | 2024-01-31 | Beijing Xiaomi Mobile Software Co., Ltd. | DATA TRANSMISSION METHOD, DATA TRANSMISSION DEVICE AND STORAGE MEDIUM |
US12004237B2 (en) * | 2020-09-21 | 2024-06-04 | Samsung Electronics Co., Ltd. | Method and apparatus for spatial setting determination during a random access procedure |
CN117716787A (zh) * | 2021-07-23 | 2024-03-15 | 三星电子株式会社 | 用于增强nr接入网中的rrc re-establishment过程的方法和系统 |
US20230247444A1 (en) * | 2022-01-31 | 2023-08-03 | Samsung Electronics Co., Ltd. | Power control for physical random access channel transmissions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017151876A1 (en) * | 2016-03-03 | 2017-09-08 | Idac Holdings, Inc. | Methods and apparatus for beam control in beamformed systems |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100278037A1 (en) * | 2009-04-29 | 2010-11-04 | Yu-Chih Jen | Method of Handling Identity Confusion and Related Communication Device |
CN102325382B (zh) * | 2011-06-30 | 2016-01-20 | 电信科学技术研究院 | 随机接入方法和设备 |
CN102231917B (zh) * | 2011-07-05 | 2015-05-20 | 电信科学技术研究院 | 一种随机接入的方法及装置 |
US10149221B2 (en) * | 2013-08-08 | 2018-12-04 | Lg Electronics Inc. | Method and apparatus for performing operation related to radio link failure in a heterogeneous network |
US20150049600A1 (en) | 2013-08-15 | 2015-02-19 | Qualcomm Incorporated | Prioritizing frequencies in embms multi-frequency deployment during rlf/oos |
US9756678B2 (en) | 2013-12-13 | 2017-09-05 | Sharp Kabushiki Kaisha | Systems and methods for multi-connectivity operation |
US10111066B2 (en) * | 2015-01-28 | 2018-10-23 | Hfi Innovation Inc. | Methods to support measurements for user equipment |
US10554280B2 (en) * | 2015-05-01 | 2020-02-04 | Futurewei Technologies, Inc. | Device, network, and method for CSI feedback of hybrid beamforming |
WO2017024516A1 (en) | 2015-08-11 | 2017-02-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Recovery from beam failure |
US11088747B2 (en) | 2016-04-13 | 2021-08-10 | Qualcomm Incorporated | System and method for beam management |
KR102471056B1 (ko) * | 2016-05-11 | 2022-11-25 | 아이디에이씨 홀딩스, 인크. | 빔포밍된 업링크 전송을 위한 시스템 및 방법 |
US10630410B2 (en) | 2016-05-13 | 2020-04-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Network architecture, methods, and devices for a wireless communications network |
TWI665923B (zh) | 2016-07-01 | 2019-07-11 | 華碩電腦股份有限公司 | 用於無線通訊系統中當服務波束為無效時管理通訊的方法和設備 |
KR20180017909A (ko) * | 2016-08-11 | 2018-02-21 | 삼성전자주식회사 | 차세대 이동통신 시스템에서 하향링크 빔의 특성에 따라 랜덤 엑세스 과정을 선택하는 방법 및 장치 |
JP6980807B2 (ja) * | 2016-12-20 | 2021-12-15 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | データを伝送するための方法、端末装置とネットワーク装置 |
CN110121910B (zh) * | 2017-01-05 | 2022-03-29 | 华为技术有限公司 | 一种发送上行控制信息的方法、网络设备及终端 |
CN118509018A (zh) * | 2017-01-06 | 2024-08-16 | 索尼公司 | 波束失效恢复 |
US10805959B2 (en) * | 2017-07-18 | 2020-10-13 | Qualcomm Incorporated | Beam indication during random access channel (RACH) procedure |
US10499398B2 (en) * | 2017-09-29 | 2019-12-03 | At&T Intellectual Property I, L.P. | Facilitating mobile device-assisted mobility enhancement to improve user plane interruption time |
US11050478B2 (en) * | 2017-12-19 | 2021-06-29 | Samsung Electronics Co., Ltd. | Method and apparatus for beam reporting in next generation wireless systems |
US11452101B2 (en) * | 2018-02-16 | 2022-09-20 | Qualcomm Incorporated | Uplink beam assignment |
US10798589B2 (en) * | 2018-02-22 | 2020-10-06 | FG Innovation Company Limited | Methods and devices for measurement reporting in beam operations |
CN110393025A (zh) * | 2018-02-23 | 2019-10-29 | 联发科技股份有限公司 | 连结重建后用于上行链路传输的默认波束 |
US11184126B2 (en) * | 2018-04-06 | 2021-11-23 | Qualcomm Incorporated | Techniques for beam assignments for beamforming wireless communications |
-
2019
- 2019-02-22 CN CN201980001071.4A patent/CN110393025A/zh active Pending
- 2019-02-22 TW TW108106090A patent/TWI713397B/zh active
- 2019-02-22 US US16/282,851 patent/US10743321B2/en active Active
- 2019-02-22 CN CN202311270325.7A patent/CN117394892A/zh active Pending
- 2019-02-22 US US16/282,821 patent/US10841926B2/en active Active
- 2019-02-22 WO PCT/CN2019/075905 patent/WO2019161784A1/en active Application Filing
- 2019-02-22 CN CN201980001165.1A patent/CN110393033A/zh active Pending
- 2019-02-22 TW TW108106089A patent/TWI705717B/zh active
- 2019-02-22 WO PCT/CN2019/075912 patent/WO2019161786A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017151876A1 (en) * | 2016-03-03 | 2017-09-08 | Idac Holdings, Inc. | Methods and apparatus for beam control in beamformed systems |
Non-Patent Citations (4)
Title |
---|
Ericsson, "Feature lead summary 1 of beam measurement and reporting", R1-1801006, 3GPP TSG RAN WG1 Meeting AH 1801, Vancouver, Canada, 22nd – 26th January, 2018 |
Ericsson, "Relation between radio link failure and beam failure", R1-1705917, 3GPP TSG-RAN WG1 Meeting 88bis, Spokane, U.S.,3rd – 7th April 2017 |
Ericsson, "Relation between radio link failure and beam failure", R1-1705917, 3GPP TSG-RAN WG1 Meeting 88bis, Spokane, U.S.,3rd – 7th April 2017 Ericsson, "Remaining details on beam management", R1-1800699, 3GPP TSG RAN WG1 Meeting AH 1801, Vancouver, Canada, January 22nd – 26th, 2018 Ericsson, "Feature lead summary 1 of beam measurement and reporting", R1-1801006, 3GPP TSG RAN WG1 Meeting AH 1801, Vancouver, Canada, 22nd – 26th January, 2018 * |
Ericsson, "Remaining details on beam management", R1-1800699, 3GPP TSG RAN WG1 Meeting AH 1801, Vancouver, Canada, January 22nd – 26th, 2018 |
Also Published As
Publication number | Publication date |
---|---|
WO2019161786A1 (en) | 2019-08-29 |
CN110393033A (zh) | 2019-10-29 |
WO2019161784A1 (en) | 2019-08-29 |
CN110393025A (zh) | 2019-10-29 |
TW201937977A (zh) | 2019-09-16 |
CN117394892A (zh) | 2024-01-12 |
US20190268961A1 (en) | 2019-08-29 |
US20190268893A1 (en) | 2019-08-29 |
TW201937957A (zh) | 2019-09-16 |
US10841926B2 (en) | 2020-11-17 |
US10743321B2 (en) | 2020-08-11 |
TWI705717B (zh) | 2020-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI713397B (zh) | 預設上行鏈路波束確定之方法及其使用者設備 | |
TWI700902B (zh) | 用於波束故障恢復請求傳輸之方法及其使用者設備 | |
TWI702861B (zh) | 波束故障恢復請求傳輸之方法及其使用者設備 | |
US11653346B2 (en) | Beam selection and resource allocation for beam-formed random access procedure | |
TWI678895B (zh) | 用於多波束操作的波束故障恢復方法及使用者設備 | |
JP6985343B2 (ja) | 無線ネットワークにおけるビーム検出及び追跡 | |
US11937320B2 (en) | Method for managing radio link in multi-carrier environment, and device for same | |
US10516465B2 (en) | Harmonized operation between radio link monitor and beam failure recovery | |
TWI674022B (zh) | 增強型隨機存取方法及設備 | |
US10638331B2 (en) | Channel accessing method and device in wireless communication system | |
JP2018033129A (ja) | 無線通信システムにおけるランダムアクセスのための方法及び装置 | |
JP2020528711A (ja) | ランダムアクセス手続きを実行する方法及びその装置 | |
KR20190075929A (ko) | 빔 대응성의 다양한 레벨들을 위한 빔 관리 | |
EP3520473B1 (en) | Methods and arrangements for measurement based mobility | |
JP2015500602A5 (zh) | ||
US11051214B2 (en) | Methods and arrangements for measurement based mobility | |
US12063558B2 (en) | Early data transmission for dual connectivity or carrier aggregation |