TWI713043B - Cell current measurement method for three-dimensional memory - Google Patents

Cell current measurement method for three-dimensional memory Download PDF

Info

Publication number
TWI713043B
TWI713043B TW108147287A TW108147287A TWI713043B TW I713043 B TWI713043 B TW I713043B TW 108147287 A TW108147287 A TW 108147287A TW 108147287 A TW108147287 A TW 108147287A TW I713043 B TWI713043 B TW I713043B
Authority
TW
Taiwan
Prior art keywords
pad
applying
voltage
peripheral circuit
storage
Prior art date
Application number
TW108147287A
Other languages
Chinese (zh)
Other versions
TW202115737A (en
Inventor
金允哲
吳振勇
文龍 梅
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Application granted granted Critical
Publication of TWI713043B publication Critical patent/TWI713043B/en
Publication of TW202115737A publication Critical patent/TW202115737A/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2896Testing of IC packages; Test features related to IC packages
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/1201Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0401Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals in embedded memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/1204Bit line control
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5004Voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current

Abstract

A method for measuring memory cell current of a 3D memory, the method includes applying a first test voltage to a source line pad of a peripheral circuit of a 3D memory device, wherein the source line pad is electrically connected to a common source line of a 3D memory array of the 3D memory device, and the peripheral circuit formed on a first substrate and the 3D memory array formed on a second substrate are electrically connected by direct bonding. The method further includes applying a second test voltage to bit line pads of the 3D memory array, wherein the bit line pads and the 3D memory array are formed on opposite sides of the second substrate. In some embodiments, the method includes applying a second test voltage to a power pad, wherein the power pad is electrically connected to a page buffer of a peripheral circuit.

Description

用於立體記憶體的單元電流測量方法Unit current measurement method for three-dimensional memory

本發明總體上涉及半導體技術領域,更具體而言涉及用於形成立體(3D)記憶體的方法。The present invention generally relates to the field of semiconductor technology, and more specifically relates to a method for forming a three-dimensional (3D) memory.

隨著記憶體件縮小到更小的裸晶(die)尺寸以降低製造成本,並且提高儲存密度,平面儲存單元的縮小,因加工技術限制和可靠性問題而面臨挑戰。立體(3D)儲存架構能夠解決平面儲存單元中的密度和性能限制。As memory components are reduced to smaller die sizes to reduce manufacturing costs and increase storage density, the reduction of planar storage units faces challenges due to processing technology limitations and reliability issues. Three-dimensional (3D) storage architecture can solve the density and performance limitations of planar storage units.

在3D記憶體中,儲存單元可以被程式設計或抹除,以進行資料儲存。有時多個狀態可以被儲存到同一個儲存單元中。因此,在程式設計或抹除之後,有必要對儲存單元的元件參數進行驗證。一般而言,可以從流經儲存單元的電流中提取儲存單元的狀態和元件參數。因此,需要一種能夠容易地實施,並且提供精確的資料的儲存單元電流測量方法。In 3D memory, the storage unit can be programmed or erased for data storage. Sometimes multiple states can be stored in the same storage unit. Therefore, after programming or erasing, it is necessary to verify the component parameters of the storage unit. Generally speaking, the state and component parameters of the storage unit can be extracted from the current flowing through the storage unit. Therefore, there is a need for a storage cell current measurement method that can be easily implemented and provide accurate data.

本發明中描述了一種立體(3D)記憶體件和用於電流測量的方法的實施例。The present invention describes an embodiment of a three-dimensional (3D) memory device and a method for current measurement.

本發明的一個實施例中,提供了一種用於測量立體(3D)記憶體件中的儲存單元的電流的方法。所述方法包括將第一測試電壓施加到3D記憶體件的週邊電路的源極線焊盤,其中,所述源極線焊盤電性連接至3D記憶體件的3D儲存陣列的公共源極線,並且形成於第一基底上的所述週邊電路和形成於第二基底上的所述3D儲存陣列透過直接鍵合來電性連接。所述方法還包括將第二測試電壓施加至3D儲存陣列的位元線焊盤,其中,所述位元線焊盤和3D儲存陣列形成在所述第二基底的相對側上,並且所述位元線焊盤使用貫穿陣列接觸與所述儲存單元的位元線電性連接。所述方法還包括將操作步驟電壓施加至所述儲存單元的字元線,其中,所述字元線電性連接至所述儲存單元的控制閘極。所述方法還包括將通過電壓(pass voltage)施加至未被選擇的儲存單元的字元線,並且測量流經所述位元線焊盤或源極線焊盤的電流。In an embodiment of the present invention, a method for measuring the current of a storage unit in a three-dimensional (3D) memory device is provided. The method includes applying a first test voltage to a source line pad of a peripheral circuit of a 3D memory device, wherein the source line pad is electrically connected to a common source of a 3D storage array of the 3D memory device The peripheral circuit formed on the first substrate and the 3D storage array formed on the second substrate are electrically connected through direct bonding. The method further includes applying a second test voltage to the bit line pads of the 3D storage array, wherein the bit line pads and the 3D storage array are formed on opposite sides of the second substrate, and the The bit line pads are electrically connected with the bit lines of the storage cells through the array contacts. The method further includes applying the operation step voltage to the word line of the storage unit, wherein the word line is electrically connected to the control gate of the storage unit. The method further includes applying a pass voltage to a word line of a memory cell that is not selected, and measuring a current flowing through the bit line pad or the source line pad.

在一些實施例中,施加第二測試電壓包括施加處於0伏特(V)至10伏特(V)之間的電壓。In some embodiments, applying the second test voltage includes applying a voltage between 0 volts (V) and 10 volts (V).

在一些實施例中,施加第一測試電壓包括施加0伏特(V)的電壓。In some embodiments, applying the first test voltage includes applying a voltage of 0 volts (V).

在一些實施例中,施加操作步驟電壓包括施加處於0.5伏特(V)至5伏特(V)之間的電壓。In some embodiments, applying the operation step voltage includes applying a voltage between 0.5 volt (V) and 5 volt (V).

在一些實施例中,施加通過電壓包括施加處於0伏特(V)至10伏特(V)之間但不限於此的電壓。In some embodiments, applying the pass voltage includes applying a voltage between 0 volts (V) and 10 volts (V), but is not limited thereto.

在一些實施例中,所述方法還包括透過所述週邊電路的第一電晶體使公共源極線與內部接地節點斷開電性連接,以及透過所述週邊電路的第二電晶體使公共源極線與所述源極線焊盤電性連接。In some embodiments, the method further includes electrically disconnecting the common source line from the internal ground node through the first transistor of the peripheral circuit, and electrically disconnecting the common source line through the second transistor of the peripheral circuit. The pole line is electrically connected to the source line pad.

在一些實施例中,所述方法還包括在對應於所述儲存單元的記憶體串的下部選擇閘極和頂部選擇閘極上施加開關電壓。在一些實施例中,施加所述開關電壓包括施加處於0.5伏特(V)至5伏特(V)之間但不限於此的電壓。In some embodiments, the method further includes applying a switching voltage on the lower selection gate and the top selection gate of the memory string corresponding to the memory cell. In some embodiments, applying the switching voltage includes applying a voltage between 0.5 volt (V) and 5 volt (V), but is not limited thereto.

在一些實施例中,所述方法還包括使公共源極線和所述儲存單元的記憶體串的源極端子透過摻雜源極線區和陣列公共源極電性連接。In some embodiments, the method further includes electrically connecting the common source line and the source terminal of the memory string of the memory cell through the doped source line region and the array common source.

在一些實施例中,穿過所述第二基底的貫穿陣列接觸被配置為在所述位元線焊盤和所述位元線之間形成電接觸。In some embodiments, the through-array contact through the second substrate is configured to form an electrical contact between the bit line pad and the bit line.

在一些實施例中,所述方法還包括透過鍵合介面處的一個或多個互連導通孔(VIA)使所述源極線焊盤與所述3D儲存陣列的公共源極線電性連接。In some embodiments, the method further includes electrically connecting the source line pad and the common source line of the 3D storage array through one or more interconnect vias (VIA) at the bonding interface .

本發明的另一方面提供了一種測量立體(3D)記憶體件中的儲存單元的電流的方法。所述方法包括將第一測試電壓施加到3D記憶體件的週邊電路的源極線焊盤,其中,所述源極線焊盤電性連接至3D記憶體件的3D儲存陣列的公共源極線,並且形成於第一基底上的所述週邊電路和形成於第二基底上的所述3D儲存陣列透過直接鍵合來電性連接。所述方法還包括將第二測試電壓施加至電源焊盤,其中,所述電源焊盤電性連接至週邊電路的頁緩衝器,所述頁緩衝器被配置成為所述儲存單元提供暫時儲存。所述方法還包括將操作步驟電壓施加至所述儲存單元的字元線,其中,所述字元線電性連接至所述儲存單元的控制閘極。所述方法還包括將通過電壓施加至未被選擇的儲存單元的字元線,並且檢測流經所述電源焊盤或源極線焊盤的電流。Another aspect of the present invention provides a method for measuring the current of a storage unit in a three-dimensional (3D) memory device. The method includes applying a first test voltage to a source line pad of a peripheral circuit of a 3D memory device, wherein the source line pad is electrically connected to a common source of a 3D storage array of the 3D memory device The peripheral circuit formed on the first substrate and the 3D storage array formed on the second substrate are electrically connected through direct bonding. The method further includes applying a second test voltage to a power supply pad, wherein the power supply pad is electrically connected to a page buffer of a peripheral circuit, and the page buffer is configured to provide temporary storage for the storage unit. The method further includes applying the operation step voltage to the word line of the storage unit, wherein the word line is electrically connected to the control gate of the storage unit. The method further includes applying a pass voltage to a word line of a memory cell that is not selected, and detecting a current flowing through the power supply pad or the source line pad.

在一些實施例中,所述方法還包括透過週邊電路的第一電晶體使公共源極線與內部接地節點斷開電性連接,以及透過週邊電路的第二電晶體使公共源極線與所述源極線焊盤電性連接。In some embodiments, the method further includes disconnecting the common source line from the internal ground node through the first transistor of the peripheral circuit, and disconnecting the common source line from the internal ground node through the second transistor of the peripheral circuit. The source line pad is electrically connected.

在一些實施例中,所述方法還包括:向所述頁緩衝器的感測拴鎖器(sensing  latch)的第一輸出端提供第一資料信號,其中,所述第一資料信號被配置為導通週邊電路的第三電晶體,進而實現電源焊盤與感測節點之間的電性連接;以及使週邊電路的第四電晶體截止,進而使所述感測拴鎖器的第二輸出端與所述感測節點斷開電性連接。在一些實施例中,所述方法還包括透過週邊電路的第五電晶體使所述感測節點與所述儲存單元的位元線電性連接。In some embodiments, the method further includes: providing a first data signal to a first output terminal of a sensing latch of the page buffer, wherein the first data signal is configured as Turning on the third transistor of the peripheral circuit to realize the electrical connection between the power supply pad and the sensing node; and turning off the fourth transistor of the peripheral circuit to turn on the second output terminal of the sensing latch The electrical connection is disconnected from the sensing node. In some embodiments, the method further includes electrically connecting the sensing node and the bit line of the storage unit through a fifth transistor of the peripheral circuit.

在一些實施例中,所述方法還包括透過週邊電路的第六電晶體使所述頁緩衝器與內部電源斷開電性連接。In some embodiments, the method further includes electrically disconnecting the page buffer from the internal power supply through a sixth transistor of the peripheral circuit.

本領域技術人員根據說明書、申請專利範圍和本發明的附圖能夠理解本發明的其他方面。Those skilled in the art can understand other aspects of the present invention based on the specification, the scope of patent application and the drawings of the present invention.

儘管討論了具體配置和佈置,但是應當理解所述討論僅出於例示的目的。本領域技術人員將認識到可以使用其他配置和佈置而不脫離本發明的實質和範圍。對於本領域技術人員顯而易見的是也可以將本發明用到各種各樣的其他應用當中。Although specific configurations and arrangements are discussed, it should be understood that the discussion is for illustrative purposes only. Those skilled in the art will recognize that other configurations and arrangements may be used without departing from the spirit and scope of the invention. It is obvious to those skilled in the art that the present invention can also be used in various other applications.

應當指出,在說明書中提到“一個實施例”、“實施例”、“示例實施例”、“一些實施例”等表示所描述的實施例可以包括特定的特徵、結構或特性,但未必各個實施例都包括該特定的特徵、結構或特性。此外,這樣的短語未必是指同一實施例。此外,在結合實施例描述特定的特徵、結構或特性時,結合明確或未明確描述的其他實施例實現這樣的特徵、結構或特性處於本領域技術人員的知識範圍之內。It should be pointed out that reference to "one embodiment", "embodiment", "exemplary embodiment", "some embodiments", etc. in the specification means that the described embodiment may include specific features, structures or characteristics, but not necessarily each The embodiments all include the specific feature, structure, or characteristic. Furthermore, such phrases do not necessarily refer to the same embodiment. In addition, when specific features, structures, or characteristics are described in combination with embodiments, it is within the knowledge of those skilled in the art to implement such features, structures, or characteristics in combination with other embodiments explicitly or not explicitly described.

一般而言,應當至少部分地根據使用語境來理解術語。例如,至少部分地根據語境,文中採用的術語“一個或多個”可以用於從單數的意義上描述任何特徵、結構或特性,或者可以用於從複數的意義上描述特徵、結構或特性的組合。類似地,至少部分地取決於語境,還可以將術語“一”、“一個”或“該”理解為傳達單數用法或者傳達複數用法。此外,還是至少部分地取決於語境,可以將術語“基於”理解為未必意在傳達排他的一組因素,相反可以允許存在其他的未必明確表述的因素。Generally speaking, terms should be understood at least in part based on the context in which they are used. For example, based at least in part on the context, the term "one or more" used in the text can be used to describe any feature, structure, or characteristic in the singular sense, or can be used to describe the feature, structure, or characteristic in the plural sense The combination. Similarly, depending at least in part on the context, the terms "a", "an" or "the" can also be understood as conveying singular usage or conveying plural usage. In addition, depending at least in part on the context, the term "based on" can be understood as a set of factors that is not necessarily intended to convey an exclusive set of factors, but on the contrary may allow other factors that are not necessarily expressly stated.

應當容易地理解,應當按照最廣義的方式解釋本發明中的“在……上”、“在……上方”和“在……之上”,使得“在……上”不僅意味著直接位於某物上,還包括在某物上且其間具有中間特徵或層的含義,“在……上方”或者“在……之上”不僅意味著在某物上方或之上的含義,還包括在某物上方或之上且其間沒有中間特徵或層的含義(即,直接位於某物上)。It should be easily understood that "on", "above" and "above" in the present invention should be interpreted in the broadest way, so that "on" does not only mean directly on Something also includes the meaning of being on something with intermediate features or layers in between. "Above..." or "above..." not only means above or above something, but also includes The meaning of being above or on something with no intermediate features or layers in between (ie, directly on something).

此外,文中為了便於說明可以採用空間相對術語,例如,“下面”、“以下”、“下方”、“以上”、“上方”等,以描述一個元件或特徵與其他元件或特徵的如圖所示的關係。空間相對術語意在包含除了附圖所示的取向之外的處於使用或操作步驟中的元件的不同取向。所述設備可以具有其他取向(旋轉90度或者位於其他取向上),並照樣相應地解釋文中採用的空間相對描述詞。In addition, for the convenience of description, spatial relative terms may be used in the text, for example, "below", "below", "below", "above", "above", etc., to describe one element or feature and other elements or features as shown in the figure Relationship. Spatial relative terms are intended to encompass different orientations of elements in use or operation steps other than those shown in the drawings. The device can have other orientations (rotated by 90 degrees or located in other orientations), and the relative spatial descriptors used in the text should be explained accordingly.

如本文所使用的,術語“基底”是指在上面添加後續材料層的材料。基底包括“頂”表面和“底”表面。基底的頂表面通常是形成半導體元件的地方,因此半導體元件形成於基底的頂側,除非另行指明。底表面與頂表面相對,因此基底的底側與基底的頂側相對。能夠對基底本身圖案化。添加到基底的頂部上的材料可以被圖案化或者可以保持未被圖案化。此外,基底可以包括很寬範圍的一系列半導體材料,例如,矽、鍺、砷化鎵、磷化銦等。或者,基底可以由例如玻璃、塑膠或者藍寶石晶圓的非導電材料形成。As used herein, the term "substrate" refers to a material on which a subsequent layer of material is added. The substrate includes a "top" surface and a "bottom" surface. The top surface of the substrate is usually where the semiconductor element is formed, so the semiconductor element is formed on the top side of the substrate unless otherwise specified. The bottom surface is opposite to the top surface, so the bottom side of the substrate is opposite to the top side of the substrate. The substrate itself can be patterned. The material added on the top of the substrate can be patterned or can remain unpatterned. In addition, the substrate can include a wide range of semiconductor materials, such as silicon, germanium, gallium arsenide, indium phosphide, and the like. Alternatively, the substrate may be formed of a non-conductive material such as glass, plastic, or sapphire wafer.

如本文所使用的,術語“層”是指包括具有厚度的區域的材料部分。層具有頂側和底側,其中層的底側相對接近基底並且頂側相對遠離基底。層可以在整個下層或上層結構上方延伸,或者其範圍可以小於下層或上層結構的範圍。此外,層可以是厚度小於連續結構的厚度的均勻或不均勻連續結構的區域。例如,層可以位於連續結構的頂表面和底表面之間的任何一對水平平面之間或在頂表面和底表面處。層可以水平、垂直和/或沿著錐形表面延伸。基底可以是層,基底可以在其中包括一層或多層,和/或基底可以在其上、上方和/或其下具有一層或多層。層可以包括多個層。例如,互連層可以包括一個或多個導電層和接觸層(其中形成有接觸部、互連線和/或垂直互連導通孔(VIA))以及一個或多個介電層。As used herein, the term "layer" refers to a portion of a material that includes a region having a thickness. The layer has a top side and a bottom side, where the bottom side of the layer is relatively close to the substrate and the top side is relatively away from the substrate. The layer may extend over the entire lower or upper structure, or its range may be smaller than that of the lower or upper structure. In addition, the layer may be a region of a uniform or non-uniform continuous structure whose thickness is less than that of the continuous structure. For example, the layer may be located between or at any pair of horizontal planes between the top surface and the bottom surface of the continuous structure. The layers can extend horizontally, vertically, and/or along a tapered surface. The substrate may be a layer, the substrate may include one or more layers therein, and/or the substrate may have one or more layers on, above, and/or below it. The layer may include multiple layers. For example, the interconnection layer may include one or more conductive layers and contact layers in which contacts, interconnect lines, and/or vertical interconnect vias (VIA) are formed, and one or more dielectric layers.

在本發明中,為了便於描述,採用“層級”指代沿垂直方向基本上具有相同高度的元件。例如,字元線和下層閘極介電層可以被稱為“層級”,字元線和下層絕緣層一起可以被稱為“層級”,基本上具有相同高度的字元線可以被稱為“字元線層級”,依此類推。In the present invention, for the convenience of description, “level” is used to refer to elements having substantially the same height in the vertical direction. For example, the word lines and the lower gate dielectric layer may be called "levels", the word lines and the lower insulating layer together may be called "levels", and the word lines having substantially the same height may be called "levels". Character line level", and so on.

如本文所使用的,術語“標稱/標稱上”是指在產品或製程的設計階段期間設定的部件或​​製程步驟的特性或參數的期望值或目標值、以及高於和/或低於期望值的值的範圍。值的範圍可以是由於製造製程或公差的輕微變化而引起的。如本文所使用的,術語“大約”表示可以基於與主題半導體元件相關聯的特定技術節點而變化的給定量的值。基於特定的技術節點,術語“大約”可以表示給定量的值,該給定量的值例如在該值的10-30%內變化(例如,值的±10%、±20%或±30%)。As used herein, the term "nominal/nominal" refers to the expected value or target value, and higher and/or lower values, of characteristics or parameters of components or process steps set during the design phase of a product or process The range of values ​​that are less than expected. The range of values ​​can be caused by slight changes in manufacturing processes or tolerances. As used herein, the term "about" refers to a given amount of value that can vary based on the specific technology node associated with the subject semiconductor element. Based on a specific technical node, the term "approximately" can mean a given amount of value, which varies, for example, within 10-30% of the value (for example, ±10%, ±20%, or ±30% of the value) .

在本發明中,術語“水平的/水平地/橫向的/橫向地”是指在標稱上平行於基底的橫向表面,術語“垂直的”或者“垂直地”是指在標稱上垂直於基底的所述橫向表面。In the present invention, the term “horizontal/horizontal/lateral/lateral” refers to the lateral surface of the substrate nominally parallel to the lateral surface, and the term “vertical” or “vertical” refers to the nominally perpendicular The lateral surface of the substrate.

如本文所使用的,術語“3D記憶體”是指在橫向取向的基底上具有垂直取向的儲存單元電晶體串(在本文中稱為“記憶體串”,例如NAND記憶體串)的立體(3D)半導體元件,使得記憶體串相對於基底在垂直方向上延伸。As used herein, the term "3D memory" refers to the three-dimensional (hereinafter referred to as "memory string", such as NAND memory string) of memory cell transistor strings with vertical orientation on a laterally oriented substrate. 3D) The semiconductor device makes the memory string extend in the vertical direction relative to the substrate.

根據本發明的各種實施例,提供了用於3D記憶體件的電流測量的電路和方法。在3D記憶體件中,可以使用現有的電路,或者使用借助於現有製作製程製成的結構測量來儲存單元電流。可以在不依賴僅用於測量目的的電路的情況下降低製造成本。According to various embodiments of the present invention, a circuit and method for current measurement of a 3D memory device are provided. In the 3D memory device, existing circuits can be used, or structural measurements made with the help of existing manufacturing processes can be used to store cell currents. It is possible to reduce manufacturing costs without relying on circuits used only for measurement purposes.

圖1示出了根據本發明的一些實施例的示例性立體(3D)記憶體件100的俯視圖。3D記憶體件100可以是儲存晶片(封裝)、儲存裸晶或者儲存裸晶中的任何部分,並且可以包括一個或多個儲存平面101,所述各個儲存平面101中的每一個可以包括多個儲存塊103。在每一儲存平面101處可以發生相同的操作步驟。可以具有數百萬位元組(MB)大小的儲存塊103是執行抹除操作步驟的最小尺寸。如圖1所示,示例性3D記憶體件100包括四個儲存平面101,並且每一儲存平面101包括六個儲存塊103。每一儲存塊103可以包括多個儲存單元,其中,可以透過例如位元線和字元線的互連對每一儲存單元進行定址(定位)。位元線和字元線可以是垂直排列的(例如,分別按照列和行),進而形成金屬線的陣列。在圖1中,字元線和位元線的方向被標示為“BL”和“WL”。在本發明中,儲存塊103又被稱為“儲存陣列”或“陣列”。儲存陣列是記憶體件中執行儲存功能的核心區。FIG. 1 shows a top view of an exemplary three-dimensional (3D) memory device 100 according to some embodiments of the present invention. The 3D memory device 100 may be a storage chip (package), a storage die, or any part of a storage die, and may include one or more storage planes 101, and each of the storage planes 101 may include multiple Storage block 103. The same operation steps can occur at each storage plane 101. The storage block 103, which can have a size of several megabytes (MB), is the smallest size for performing the erase operation step. As shown in FIG. 1, the exemplary 3D memory device 100 includes four storage planes 101, and each storage plane 101 includes six storage blocks 103. Each storage block 103 may include a plurality of storage cells, where each storage cell may be addressed (positioned) through, for example, the interconnection of bit lines and word lines. The bit lines and the word lines can be arranged vertically (for example, in columns and rows, respectively) to form an array of metal lines. In FIG. 1, the directions of the word lines and bit lines are marked as "BL" and "WL". In the present invention, the storage block 103 is also called "storage array" or "array". The storage array is the core area of the memory device that performs storage functions.

3D記憶體件100還包括週邊區105,即圍繞儲存平面101的區域。週邊區105含有很多數位、類比和/或混合信號電路以支援儲存陣列的功能,例如,頁緩衝器、行解碼器和列解碼器以及感測放大器。週邊電路使用有源和/或被動半導體元件,例如,電晶體、二極體、電容器、電阻器等,這對於本領域技術人員而言將是顯而易見的。The 3D memory device 100 further includes a peripheral area 105, that is, an area surrounding the storage plane 101. The peripheral area 105 contains many digital, analog, and/or mixed-signal circuits to support the functions of the storage array, such as page buffers, row decoders and column decoders, and sense amplifiers. The peripheral circuit uses active and/or passive semiconductor components, such as transistors, diodes, capacitors, resistors, etc., which will be obvious to those skilled in the art.

要指出的是,圖1所示的3D記憶體件100中的儲存平面101的佈置或排列分布位置、和每一儲存平面101中的儲存塊103的佈置或排列分布位置僅被用作示例,其不限制本發明的範圍。It should be pointed out that the arrangement or arrangement distribution position of the storage plane 101 in the 3D memory device 100 shown in FIG. 1 and the arrangement or arrangement distribution position of the storage block 103 in each storage plane 101 are only used as examples. It does not limit the scope of the present invention.

參考圖2,其示出了根據本發明的一些實施例的圖1中的區域108的放大俯視圖。3D記憶體件100的區域108可以包括階梯區210以及溝道結構區211。溝道結構區211可以包括記憶體串212的陣列,每一記憶體串包括多個堆疊的儲存單元。階梯區210可以包括階梯結構、和形成於所述階梯結構上的接觸結構214的陣列。在一些實施例中,跨越溝道結構區211和階梯區210沿WL方向延伸的多個縫隙結構216,能夠將儲存塊劃分成多個儲存指218。至少一些縫隙結構216可以充當用於溝道結構區211中的記憶體串212的陣列的公共源極接觸(例如,陣列公共源極)。頂部選擇閘極切口220可以被設置到(例如)每一儲存指218的中央,進而將儲存指218的頂部選擇閘極(頂部選擇閘極(TSG))劃分成兩個部分,並且進而可以將儲存指劃分成兩個儲存片224,其中,儲存片224中的共用同一字元線的儲存單元形成可程式設計(讀/寫)儲存頁。儘管可以在儲存塊級上執行對3D NAND記憶體的抹除操作步驟,但是也可以在儲存頁級上執行讀操作步驟和寫操作步驟。儲存頁可以具有數千位元組(KB)的大小。在一些實施例中,區域108還包括虛設記憶體串222,以便用於製造期間的製程變化控制和/或用於額外的機械支持。Refer to FIG. 2, which shows an enlarged top view of area 108 in FIG. 1 according to some embodiments of the present invention. The region 108 of the 3D memory device 100 may include a step region 210 and a channel structure region 211. The channel structure region 211 may include an array of memory strings 212, each memory string including a plurality of stacked memory cells. The step area 210 may include a step structure and an array of contact structures 214 formed on the step structure. In some embodiments, a plurality of slit structures 216 extending in the WL direction across the channel structure region 211 and the step region 210 can divide the storage block into a plurality of storage fingers 218. At least some of the gap structures 216 may serve as common source contacts for the array of memory strings 212 in the channel structure region 211 (eg, array common source). The top selection gate cutout 220 can be set to (for example) the center of each storage finger 218, thereby dividing the top selection gate (top selection gate (TSG)) of the storage finger 218 into two parts, and further The storage means is divided into two storage slices 224. The storage units in the storage slices 224 that share the same character line form a programmable (read/write) storage page. Although the erasing operation steps of the 3D NAND memory can be performed at the storage block level, the read operation steps and the write operation steps can also be performed at the storage page level. A storage page can have a size of thousands of bytes (KB). In some embodiments, the area 108 further includes a dummy memory string 222 for use in process change control during manufacturing and/or for additional mechanical support.

圖3示出了根據本發明的一些實施例的示例性立體(3D)儲存陣列結構300的部分的透視圖。儲存陣列結構300包括基底330、基底330之上的絕緣膜331、絕緣膜331之上的一個層級的下部選擇閘極(LSG)332以及多個層級的控制閘極333(又被稱為“字元線(WL)”),所述多個層級的控制閘極堆疊在下部選擇閘極(LSG) 332的頂部上,進而形成交替的導電層和介電層所構成的膜堆疊體335。在圖3中為了清楚起見,沒有示出與各個層級的控制閘極相鄰的介電層。FIG. 3 shows a perspective view of a portion of an exemplary three-dimensional (3D) storage array structure 300 according to some embodiments of the invention. The storage array structure 300 includes a substrate 330, an insulating film 331 on the substrate 330, a level of lower select gate (LSG) 332 on the insulating film 331, and multiple levels of control gates 333 (also known as "words Element line (WL)"), the multiple levels of control gates are stacked on top of the lower selection gate (LSG) 332, thereby forming a film stack 335 composed of alternating conductive layers and dielectric layers. In FIG. 3, for the sake of clarity, the dielectric layer adjacent to the control gate of each level is not shown.

每一層級的控制閘極透過貫穿膜堆疊體335的縫隙結構216-1和縫隙結構216-2分開。儲存陣列結構300還包括處於控制閘極333的堆疊體之上的一個層級的頂部選擇閘極(TSG)334。頂部選擇閘極(TSG) 334、控制閘極333和下部選擇閘極(LSG) 332構成的堆疊體又被稱為“閘電極”。儲存陣列結構300還包括記憶體串212,以及處於部分基底330之中,且相鄰於下部選擇閘極(LSG) 332之間的摻雜源極線區344。每一記憶體串212包括延伸穿過絕緣膜331,以及交替的導電層和介電層的膜堆疊體335的溝道孔336。記憶體串212還包括溝道孔336的側壁上的儲存膜337、儲存膜337之上的溝道層338以及被溝道層338包圍的芯填充膜339。儲存單元340可以形成於控制閘極333和記憶體串212的相交處。儲存陣列結構300還包括處於頂部選擇閘極(TSG) 334之上的與記憶體串212連接的多條位元線(BL)341。儲存陣列結構300還包括透過多個接觸結構214與閘電極連接的多條金屬互連線343。膜堆疊體335的邊緣被配置為具有階梯形狀,進而允許實現對每一層級的閘電極的電性連接。The control gates of each level are separated by the slit structure 216-1 and the slit structure 216-2 penetrating the film stack 335. The storage array structure 300 also includes a top select gate (TSG) 334 of one level above the stack of control gates 333. The stack composed of the top selection gate (TSG) 334, the control gate 333, and the lower selection gate (LSG) 332 is also called a "gate electrode". The storage array structure 300 further includes a memory string 212 and a doped source line region 344 located in a part of the substrate 330 and adjacent to the lower select gate (LSG) 332. Each memory string 212 includes a channel hole 336 extending through an insulating film 331 and a film stack 335 of alternating conductive and dielectric layers. The memory string 212 further includes a storage film 337 on the sidewall of the channel hole 336, a channel layer 338 on the storage film 337, and a core filling film 339 surrounded by the channel layer 338. The storage unit 340 may be formed at the intersection of the control gate 333 and the memory string 212. The storage array structure 300 further includes a plurality of bit lines (BL) 341 connected to the memory string 212 above the top select gate (TSG) 334. The storage array structure 300 further includes a plurality of metal interconnections 343 connected to the gate electrode through a plurality of contact structures 214. The edges of the film stack 335 are configured to have a stepped shape, thereby allowing electrical connections to gate electrodes of each level.

在圖3中,出於例示的目的,將三個層級的控制閘極333-1、控制閘極333-2和控制閘極333-3與一個層級的頂部選擇閘極(TSG) 334和一個層級的下部選擇閘極(LSG) 332一起示出。在這一示例中,每一記憶體串212可以包括分別對應於控制閘極333-1、控制閘極333-2和控制閘極333-3的三個儲存單元340-1、儲存單元340-2和儲存單元340-3。在一些實施例中,控制閘極的數量和儲存單元的數量可以超過三個,以提高儲存容量。儲存陣列結構300還可以包括其他結構,例如,頂部選擇閘極(TSG)切口、公共源極接觸(即,陣列公共源極)和虛設記憶體串。為了簡單起見,在圖3中未示出這些結構。In Figure 3, for illustrative purposes, three levels of control gate 333-1, control gate 333-2, and control gate 333-3 are combined with one level of top selection gate (TSG) 334 and one The lower selection gate (LSG) 332 of the hierarchy is shown together. In this example, each memory string 212 may include three storage units 340-1 and 340- corresponding to the control gate 333-1, the control gate 333-2, and the control gate 333-3, respectively. 2 and storage unit 340-3. In some embodiments, the number of control gates and the number of storage units may exceed three to increase storage capacity. The storage array structure 300 may also include other structures, such as top select gate (TSG) cutouts, common source contacts (ie, array common source), and dummy memory strings. For simplicity, these structures are not shown in FIG. 3.

為了實現更高的儲存密度,3D記憶體的垂直WL堆疊體的數量,或者每一記憶體串的儲存單元的數量已經被極大地提高,例如,從24個堆疊WL層(即,24L)提高到了128個層或更多。為了進一步降低3D記憶體的尺寸,可以將儲存陣列堆疊到週邊電路的頂部上,或反之堆疊在底部之下。例如,將週邊電路製作到第一晶圓上,並且可以將儲存陣列製作到第二晶圓上。之後,可以透過將第一晶圓和第二晶圓鍵合到一起,而透過各種互連將儲存陣列和週邊電路連接起來。這樣,不僅可以提高3D儲存密度,還可以使週邊電路和儲存陣列之間的通信實現更高頻寬和更低功耗,因為透過基底(晶圓)鍵合能夠縮短互連長度。在發明名稱為“Embedded Pad Structures of Three-Dimensional Memory Devices and Fabrication Methods Thereof”(專利號16/163,274,2018年10月17日提交)的共同待審專利申請中可以找到用於形成3D記憶體件(其中,週邊電路透過晶圓鍵合與儲存陣列連接)的詳細結構和方法,透過引用將該文獻全文併入本文。In order to achieve higher storage density, the number of vertical WL stacks of 3D memory, or the number of storage cells per memory string has been greatly increased, for example, from 24 stacked WL layers (ie, 24L) To 128 floors or more. In order to further reduce the size of the 3D memory, the storage array can be stacked on top of the peripheral circuit, or vice versa. For example, the peripheral circuit can be fabricated on the first wafer, and the storage array can be fabricated on the second wafer. After that, by bonding the first wafer and the second wafer together, the storage array and the peripheral circuits can be connected through various interconnections. In this way, not only can the 3D storage density be increased, but also the communication between the peripheral circuit and the storage array can achieve higher frequency bandwidth and lower power consumption, because the interconnection length can be shortened through substrate (wafer) bonding. It can be found in the co-pending patent application entitled "Embedded Pad Structures of Three-Dimensional Memory Devices and Fabrication Methods Thereof" (Patent No. 16/163,274, filed on October 17, 2018) for forming 3D memory devices The detailed structure and method of (where the peripheral circuit is connected to the storage array through wafer bonding) is incorporated into this article by citation.

圖4示出了根據本發明的一些實施例的3D記憶體件的示例性週邊電路400的截面。週邊電路400可以包括第一基底430。在一些實施例中,第一基底430包括處於頂側和底側(又被分別稱為第一側430-1和第二側430-2,或者正面和背面)上的表面。FIG. 4 shows a cross-section of an exemplary peripheral circuit 400 of a 3D memory device according to some embodiments of the present invention. The peripheral circuit 400 may include a first substrate 430. In some embodiments, the first substrate 430 includes surfaces on the top side and the bottom side (also referred to as the first side 430-1 and the second side 430-2, or the front and back, respectively).

週邊電路400可以包括位於第一基底430的第一側430-1上的一個或多個週邊元件450(例如,週邊元件450-1和週邊元件450-2)。週邊元件450可以包括任何適當的半導體元件,例如,金屬氧化物半導體場效應電晶體(MOSFET)、雙極結型電晶體(BJT)、二極體、電阻器、電容器、電感器等。在半導體元件當中,p型和/或n型MOSFET(即CMOS)被廣泛地實施於邏輯電路設計,並且在本發明中被用作週邊元件450的示例。在這一示例中,週邊電路400又被稱為CMOS晶圓400。The peripheral circuit 400 may include one or more peripheral elements 450 (for example, the peripheral element 450-1 and the peripheral element 450-2) on the first side 430-1 of the first substrate 430. The peripheral element 450 may include any suitable semiconductor element, for example, a metal oxide semiconductor field effect transistor (MOSFET), a bipolar junction transistor (BJT), a diode, a resistor, a capacitor, an inductor, etc. Among semiconductor elements, p-type and/or n-type MOSFETs (ie, CMOS) are widely implemented in logic circuit design, and are used as examples of peripheral elements 450 in the present invention. In this example, the peripheral circuit 400 is also referred to as a CMOS wafer 400.

週邊元件450可以是p溝道MOSFET(例如,週邊元件450-1)或者n溝道MOSFET(例如,週邊元件450-2),並且可以包括但不限於被淺溝槽隔離(STI)452包圍的主動元件區、形成於主動元件區內的具有n型摻雜或p型摻雜的阱454(例如,n阱454-1、p阱454-2、深n阱454-3等)、包括閘極介電層,閘極導體層和/或閘極硬遮罩的閘極堆疊體451。週邊元件450還可以包括位於閘極堆疊體451的每一側上的源極/汲極453(例如,源極/汲極453-1、源極/汲極453-2等)。在一些實施例中,週邊元件450可以是具有輕度摻雜的汲極453-3的高電壓MOSFET(例如,週邊元件450-3)。週邊元件450的結構和製作方法是本領域的技術人員已知的,並且被全文併入本文。The peripheral element 450 may be a p-channel MOSFET (for example, peripheral element 450-1) or an n-channel MOSFET (for example, peripheral element 450-2), and may include, but is not limited to, surrounded by shallow trench isolation (STI) 452 Active device region, well 454 with n-type or p-type doping formed in the active device region (for example, n-well 454-1, p-well 454-2, deep n-well 454-3, etc.), including gates A gate stack 451 with a dielectric layer, a gate conductor layer and/or a gate hard mask. The peripheral element 450 may also include a source/drain 453 (for example, a source/drain 453-1, a source/drain 453-2, etc.) on each side of the gate stack 451. In some embodiments, the peripheral element 450 may be a high-voltage MOSFET with a lightly doped drain 453-3 (for example, the peripheral element 450-3). The structure and manufacturing method of the peripheral element 450 are known to those skilled in the art, and are incorporated herein in its entirety.

在一些實施例中,週邊電路400可以包括位於第一側430-1上的週邊互連層455(或者第一互連層)和絕緣層460(處於週邊元件450以上),進而在不同週邊元件450和外部元件(例如,電源、另一晶片、輸入/輸出元件等)之間提供電性連接。週邊互連層455可以包括一個或多個互連結構,例如,一個或多個垂直接觸結構456以及一個或多個橫向導線458(例如,橫向導線458-1、橫向導線458-2等)。接觸結構456和橫向導線458可以寬泛地包括任何適當類型的互連,例如中道工序(MOL)互連和後道工序(BEOL)互連。在一些實施例中,週邊電路400還包括一個或多個基底接觸462,其中,基底接觸462提供與第一基底430的電性連接。In some embodiments, the peripheral circuit 400 may include a peripheral interconnection layer 455 (or a first interconnection layer) and an insulating layer 460 (above the peripheral element 450) located on the first side 430-1, and then the peripheral elements Electrical connection is provided between 450 and external components (for example, a power supply, another chip, input/output components, etc.). The peripheral interconnection layer 455 may include one or more interconnection structures, for example, one or more vertical contact structures 456 and one or more lateral wires 458 (eg, lateral wires 458-1, lateral wires 458-2, etc.). The contact structure 456 and the lateral wires 458 may broadly include any suitable type of interconnection, such as mid-line (MOL) interconnection and back-line (BEOL) interconnection. In some embodiments, the peripheral circuit 400 further includes one or more substrate contacts 462, wherein the substrate contacts 462 provide electrical connection with the first substrate 430.

在一些實施例中,可以採用多個週邊元件450形成任何用於週邊電路400的操作步驟的數位、類比和/或混合信號電路。週邊電路400可以執行(例如)對儲存陣列的行/列解碼、定時和控制以及資料讀取、寫入和抹除等。In some embodiments, multiple peripheral elements 450 may be used to form any digital, analog, and/or mixed-signal circuit used in the operation steps of the peripheral circuit 400. The peripheral circuit 400 can perform, for example, row/column decoding, timing and control of the storage array, as well as data reading, writing and erasing.

圖5示出了根據本發明的一些實施例的3D儲存陣列500的截面。3D儲存陣列500可以是3D NAND儲存陣列,並且可以包括第二基底530(具有第一表面530-1和第二表面530-2)以及形成於第二基底530的第一表面530-1上的儲存單元340和陣列互連層555(或第二互連層)。陣列互連層555可以與週邊互連層455類似。例如,陣列互連層555的互連結構(例如,垂直接觸結構556和橫向導線558)和絕緣層560分別與週邊互連層455的互連結構(例如,接觸結構456和導線458)和絕緣層460類似。FIG. 5 shows a cross-section of a 3D storage array 500 according to some embodiments of the invention. The 3D storage array 500 may be a 3D NAND storage array, and may include a second substrate 530 (having a first surface 530-1 and a second surface 530-2) and a substrate formed on the first surface 530-1 of the second substrate 530 The memory cell 340 and the array interconnection layer 555 (or the second interconnection layer). The array interconnection layer 555 may be similar to the peripheral interconnection layer 455. For example, the interconnection structure (for example, the vertical contact structure 556 and the lateral wire 558) and the insulating layer 560 of the array interconnection layer 555 and the interconnection structure (for example, the contact structure 456 and the wire 458) and the insulating layer 560 of the peripheral interconnection layer 455, respectively Layer 460 is similar.

在一些實施例中,3D儲存陣列500可以是3D NAND快閃記憶體的儲存陣列,其中,儲存單元340可以是作為記憶體串212垂直堆疊的。記憶體串212穿過包括多個導體層564和介電層566的交替的導體/介電堆疊體568延伸。In some embodiments, the 3D storage array 500 may be a storage array of 3D NAND flash memory, where the storage unit 340 may be vertically stacked as a memory string 212. The memory string 212 extends through an alternating conductor/dielectric stack 568 including a plurality of conductor layers 564 and dielectric layers 566.

在一些實施例中,所述陣列元件還包括位於階梯區域中的多個字元線接觸結構214(又稱為字元線接觸)。每一字元線接觸結構214可以與交替的導體/介電堆疊體568中的對應導體層564形成電接觸,進而對儲存單元340進行單獨控制。In some embodiments, the array element further includes a plurality of word line contact structures 214 (also called word line contacts) located in the stepped area. Each character line contact structure 214 can form electrical contact with the corresponding conductor layer 564 in the alternating conductor/dielectric stack 568, thereby controlling the storage unit 340 individually.

如圖5中所示,3D儲存陣列500還包括形成於記憶體串212的頂部上的位元線接觸570,以提供對記憶體串212的溝道層的單獨存取。與字元線接觸結構214和位元線接觸570連接的導線分別形成3D儲存陣列500的字元線(WL)和位元線(BL)(例如,圖3中所示的WL 333和BL 341)。典型地,字元線(WL)和位元線(BL)相互垂直排列(例如,分別按列和行),進而形成了記憶體的“陣列”。As shown in FIG. 5, the 3D storage array 500 further includes a bit line contact 570 formed on the top of the memory string 212 to provide individual access to the channel layer of the memory string 212. The wires connected to the word line contact structure 214 and the bit line contact 570 respectively form the word line (WL) and the bit line (BL) of the 3D storage array 500 (for example, WL 333 and BL 341 shown in FIG. 3). ). Typically, word lines (WL) and bit lines (BL) are arranged perpendicular to each other (for example, in columns and rows, respectively) to form an "array" of memory.

在一些實施例中,3D儲存陣列500包括第二基底530的基底接觸562。基底接觸562可以提供與3D儲存陣列500的第二基底530的電性連接。In some embodiments, the 3D storage array 500 includes the substrate contact 562 of the second substrate 530. The substrate contact 562 can provide an electrical connection with the second substrate 530 of the 3D storage array 500.

圖6示出了根據本發明的一些實施例的3D記憶體件600的截面。3D記憶體件600包括製作於第一基底430上的週邊電路400,以及製作於第二基底530上的3D儲存陣列500。在這一示例中,3D儲存陣列500被倒裝,並且借助於直接鍵合或者混合鍵合與週邊電路400連結起來。在鍵合介面674處,週邊電路400和3D儲存陣列500透過多個互連導通孔(VIA) 472/互連導通孔(VIA)572電性連接。這樣,週邊互連層455的任何橫向導線458或垂直接觸結構456可以與陣列互連層555的任何橫向導線558或垂直接觸結構556電性連接。換言之,可以使週邊電路400和3D儲存陣列500電性連接。FIG. 6 shows a cross-section of a 3D memory device 600 according to some embodiments of the present invention. The 3D memory device 600 includes a peripheral circuit 400 fabricated on a first substrate 430 and a 3D storage array 500 fabricated on a second substrate 530. In this example, the 3D storage array 500 is flipped and connected to the peripheral circuit 400 by means of direct bonding or hybrid bonding. At the bonding interface 674, the peripheral circuit 400 and the 3D storage array 500 are electrically connected through a plurality of interconnect vias (VIA) 472/interconnect vias (VIA) 572. In this way, any lateral wire 458 or vertical contact structure 456 of the peripheral interconnection layer 455 can be electrically connected to any lateral wire 558 or vertical contact structure 556 of the array interconnection layer 555. In other words, the peripheral circuit 400 and the 3D storage array 500 can be electrically connected.

透過鍵合,3D記憶體件600可以按照與在同一基底上形成週邊電路和儲存陣列的3D記憶體類似的方式發揮作用。透過對3D儲存陣列500和週邊電路400進行頂部疊置,能夠提高3D記憶體件600的密度。同時,由於能夠透過堆疊設計降低週邊電路400和3D儲存陣列500之間的互連距離,因而能夠提高3D記憶體件600的頻寬。Through bonding, the 3D memory device 600 can function in a manner similar to a 3D memory in which peripheral circuits and storage arrays are formed on the same substrate. By stacking the 3D storage array 500 and the peripheral circuit 400 on top, the density of the 3D memory device 600 can be increased. At the same time, since the interconnection distance between the peripheral circuit 400 and the 3D storage array 500 can be reduced through the stacked design, the bandwidth of the 3D memory device 600 can be increased.

圖7示出了根據本發明的一些實施例的3D記憶體件700的截面圖。3D記憶體件700包括貫穿陣列接觸(TAC)770和形成於圖6中的3D記憶體件600的第二基底530的第二側530-2上的輸入/輸出(I/O)焊盤772。在一些實施例中,在形成貫穿陣列接觸(TAC) 770和輸入/輸出焊盤772之前,第二基底530可以被向下減薄。要指出的是,貫穿陣列接觸(TAC) 770和輸入/輸出焊盤772的結構和數量不限於圖7所示的示例。FIG. 7 shows a cross-sectional view of a 3D memory device 700 according to some embodiments of the present invention. The 3D memory device 700 includes a through array contact (TAC) 770 and an input/output (I/O) pad 772 formed on the second side 530-2 of the second substrate 530 of the 3D memory device 600 in FIG. 6 . In some embodiments, the second substrate 530 may be thinned downward before forming the through array contact (TAC) 770 and the input/output pad 772. It is to be noted that the structure and number of through-array contacts (TAC) 770 and input/output pads 772 are not limited to the example shown in FIG. 7.

在一些實施例中,貫穿陣列接觸(TAC) 770可以與陣列互連層555的任何垂直接觸結構556或者任何橫向導線558電性連接,並由此從第二基底530的第二側530-2形成與3D儲存陣列500的任何字元線或位元線的電性連接。在一些實施例中,貫穿陣列接觸(TAC) 770還可以透過互連導通孔(VIA) 472或互連導通孔(VIA) 572中的一者或多者,以與週邊互連層455的任何接觸結構456或任何導線458電性連接。這樣,可以從第二基底530的第二側530-2形成輸入/輸出焊盤772、貫穿陣列接觸(TAC) 770與週邊電路400的任何週邊元件450之間的電性連接。在一些實施例中,貫穿陣列接觸(TAC) 770和輸入/輸出焊盤772還可以與基底接觸462或基底接觸562電性連接。In some embodiments, the through-array contact (TAC) 770 may be electrically connected to any vertical contact structure 556 or any lateral wire 558 of the array interconnection layer 555, and thus from the second side 530-2 of the second substrate 530 An electrical connection with any word line or bit line of the 3D storage array 500 is formed. In some embodiments, the through-array contact (TAC) 770 can also pass through one or more of the interconnect via (VIA) 472 or the interconnect via (VIA) 572 to communicate with any of the peripheral interconnect layers 455 The contact structure 456 or any wire 458 is electrically connected. In this way, an electrical connection between the input/output pad 772, the through array contact (TAC) 770 and any peripheral element 450 of the peripheral circuit 400 can be formed from the second side 530-2 of the second substrate 530. In some embodiments, the through-array contact (TAC) 770 and the input/output pad 772 may also be electrically connected to the substrate contact 462 or the substrate contact 562.

對於3D記憶體件而言,儲存單元電流的精確測量對於改善的記憶體設計和操作步驟是很重要的,例如,估計儲存單元感測時間、雜訊水準和儲存單元元件性能。以前透過使用電流鏡電路間接測量儲存單元電流。然而,在電路設計中,透過間接方法精確地測量儲存單元電流可能存在困難。在記憶體產品晶片內插入具有大面積的電流鏡電路,還可能導致記憶體儲存容量的面積增大、以及記憶體製造成本的提高。還可以透過具有被設計為繞過頁緩衝器電路的連接的外部輸入/輸出焊盤,直接測量儲存單元電流。因此,需要一種在不需使用僅針對這一測量目的設計的額外電路,並由此避免面積或性能損失的情況下精確地測量立體(3D)記憶體的儲存單元電流的方法。For 3D memory devices, accurate measurement of storage cell current is important for improved memory design and operation procedures, such as estimating storage cell sensing time, noise level, and storage cell component performance. In the past, the storage cell current was measured indirectly by using a current mirror circuit. However, in circuit design, it may be difficult to accurately measure the current of the storage cell through an indirect method. Inserting a current mirror circuit with a large area into the chip of a memory product may also increase the area of the memory storage capacity and increase the manufacturing cost of the memory. It is also possible to directly measure the storage cell current through external input/output pads with connections designed to bypass the page buffer circuit. Therefore, there is a need for a method to accurately measure the current of the storage cell of a three-dimensional (3D) memory without using an additional circuit designed only for this measurement purpose, and thereby avoiding area or performance loss.

圖8示出了根據本發明的一些實施例被配置為提供單元電流測量的3D記憶體件800的示意性電路圖。3D記憶體件800包括在鍵合層676和鍵合介面674處與CMOS晶圓(例如,週邊電路400)鍵合的儲存陣列晶圓(例如,3D儲存陣列500)。如前文所述,3D儲存陣列500包括多個記憶體串212,每一記憶體串212具有多個堆疊的儲存單元340。記憶體串212還包括處於每一端的至少一個場效應電晶體(例如,MOSFET)。例如,最接近第二基底530的場效應電晶體可以透過下部選擇閘極(下部選擇閘極(LSG))332進行控制,並且被相應地稱為下部選擇電晶體332-T。處於離第二基底530較遠的另一端的場效應電晶體可以透過頂部選擇閘極(頂部選擇閘極(TSG))334進行控制,並且被稱為頂部選擇電晶體334-T。所堆疊的儲存單元340可以透過控制閘極333進行控制,其中,控制閘極333連接至3D記憶體件800的字元線(圖8未示出)。頂部選擇電晶體334-T的汲極可以連接至位元線341,位元線341可以由一條或多條橫向導線558和/或導電結構556(如圖7所示)構成。下部選擇電晶體332-T的源極可以連接至第二基底530中的阱(例如,摻雜源極線區344),多個陣列公共源極(ACS)880可以從所述阱形成與ACS網格882的電性連接。ACS網格882可以被整個儲存塊內的記憶體串212共用,因而又被稱為公共源極線。ACS 880可以由具有額外導電芯的縫隙結構216(圖2和圖3中所示)構成,或者可以由圖7所示的基底接觸562構成。要指出的是,字元線、位元線、ACS和ACS網格的形成和配置不限於上文描述的配置,並且還可以包括其他互連結構。FIG. 8 shows a schematic circuit diagram of a 3D memory device 800 configured to provide cell current measurement according to some embodiments of the present invention. The 3D memory device 800 includes a storage array wafer (for example, the 3D storage array 500) bonded to a CMOS wafer (for example, the peripheral circuit 400) at the bonding layer 676 and the bonding interface 674. As described above, the 3D storage array 500 includes a plurality of memory strings 212, and each memory string 212 has a plurality of stacked storage units 340. The memory string 212 also includes at least one field effect transistor (eg, MOSFET) at each end. For example, the field-effect transistor closest to the second substrate 530 may be controlled through the lower selection gate (lower selection gate (LSG)) 332, and is referred to as the lower selection transistor 332-T accordingly. The field-effect transistor at the other end far from the second substrate 530 can be controlled by a top selection gate (top selection gate (TSG)) 334, and is referred to as a top selection transistor 334-T. The stacked storage cells 340 can be controlled by the control gate 333, wherein the control gate 333 is connected to the word line of the 3D memory device 800 (not shown in FIG. 8). The drain of the top selection transistor 334-T may be connected to the bit line 341, and the bit line 341 may be composed of one or more lateral wires 558 and/or conductive structures 556 (as shown in FIG. 7). The source of the lower selection transistor 332-T may be connected to a well in the second substrate 530 (for example, the doped source line region 344), and a plurality of array common sources (ACS) 880 may be formed from the well and the ACS Electrical connection of grid 882. The ACS grid 882 can be shared by the memory string 212 in the entire storage block, so it is also called a common source line. The ACS 880 may be composed of a slit structure 216 (shown in FIGS. 2 and 3) with an additional conductive core, or may be composed of the substrate contact 562 shown in FIG. It should be noted that the formation and configuration of word lines, bit lines, ACS, and ACS grids are not limited to the configurations described above, and may also include other interconnect structures.

在一些實施例中,3D記憶體件800還包括多個貫穿陣列接觸(例如,貫穿陣列接觸(TAC) 770),進而使位元線341與位元線(BL)焊盤872-1連接。位元線焊盤872-1可以與圖7中的輸入/輸出焊盤772相似。在一些實施例中,每條位元線341可以電性連接至一個BL焊盤872-1。在一些實施例中,貫穿陣列接觸(TAC) 770可以透過接觸線558和垂直接觸結構556中的一者或多者與位元線341連接。在一些實施例中,貫穿陣列接觸(TAC) 770還可以在鍵合介面674處與互連導通孔(VIA) 572中的一者或多者連接。在一些實施例中,3D儲存陣列500的互連導通孔(VIA) 572還可以連接至週邊電路400的互連導通孔(VIA) 472。在一些實施例中,位元線341、字元線(控制閘極333)、頂部選擇閘極(TSG) 334、下部選擇閘極(LSG) 332、ACS網格882以及3D儲存陣列500上的其他結構可以透過週邊電路400和3D儲存陣列500的互連導通孔(VIA) 472/互連導通孔(VIA) 572、垂直接觸結構556/垂直接觸結構456中的一者或多者和/或橫向導線558/橫向導線458中的一者或多者與週邊電路400的任何電路連接。In some embodiments, the 3D memory device 800 further includes a plurality of through-array contacts (for example, through-array contacts (TAC) 770), thereby connecting the bit line 341 and the bit line (BL) pad 872-1. The bit line pad 872-1 may be similar to the input/output pad 772 in FIG. 7. In some embodiments, each bit line 341 may be electrically connected to one BL pad 872-1. In some embodiments, the through-array contact (TAC) 770 may be connected to the bit line 341 through one or more of the contact line 558 and the vertical contact structure 556. In some embodiments, the through-array contact (TAC) 770 may also be connected to one or more of the interconnect via (VIA) 572 at the bonding interface 674. In some embodiments, the interconnect via (VIA) 572 of the 3D storage array 500 may also be connected to the interconnect via (VIA) 472 of the peripheral circuit 400. In some embodiments, the bit line 341, the word line (control gate 333), top select gate (TSG) 334, lower select gate (LSG) 332, ACS grid 882, and 3D storage array 500 Other structures can pass through one or more of the interconnection via (VIA) 472/interconnection via (VIA) 572, the vertical contact structure 556/vertical contact structure 456 of the peripheral circuit 400 and the 3D storage array 500, and/or One or more of the lateral wires 558 / the lateral wires 458 are connected to any circuit of the peripheral circuit 400.

在NAND快閃記憶體中,可以在儲存頁中執行讀操作步驟和寫操作步驟,其中,儲存頁包括共用同一字元線的儲存單元。圖8示出了示例性儲存頁886。在讀操作步驟和寫操作步驟期間,同一儲存頁886中的儲存單元340可以被同時存取,並且單中繼資料可以被傳送至頁緩衝器,以供暫時儲存。在一些實施例中,一個頁緩衝器可以連接至一條位元線。在一些實施例中,可以在兩條相鄰位元線之間共用一個頁緩衝器。可以採用列解碼器(未示出)對頁緩衝器中的單中繼資料進行解碼。In a NAND flash memory, a read operation step and a write operation step can be performed in a storage page, where the storage page includes storage cells that share the same word line. FIG. 8 shows an exemplary storage page 886. During the read operation step and the write operation step, the storage unit 340 in the same storage page 886 can be accessed at the same time, and the single metadata can be transferred to the page buffer for temporary storage. In some embodiments, one page buffer can be connected to one bit line. In some embodiments, a page buffer can be shared between two adjacent bit lines. A column decoder (not shown) can be used to decode the single metadata in the page buffer.

根據本發明的一些實施例,圖8示出了3D記憶體件800的頁緩衝器888的簡化示意性電路圖。在這一示例中,頁緩衝器888形成於CMOS晶圓400上,並且可以透過互連導通孔(VIA) 472/互連導通孔(VIA)572跨越鍵合介面674連接至位元線341。在一些實施例中,頁緩衝器888包括感測拴鎖器878和連接在感測節點884處的感測電晶體(未示出)。頁緩衝器888還包括電源焊盤872-2(又稱為Vdd焊盤),進而提供用於頁緩衝器888的電源的電性連接。頁緩衝器還包括多個電晶體,例如,n溝道MOSFET 850-N3至850-N6以及p溝道MOSFET 850-P1至850-P3。According to some embodiments of the present invention, FIG. 8 shows a simplified schematic circuit diagram of the page buffer 888 of the 3D memory device 800. In this example, the page buffer 888 is formed on the CMOS wafer 400 and can be connected to the bit line 341 across the bonding interface 674 through an interconnect via (VIA) 472/interconnect via (VIA) 572. In some embodiments, the page buffer 888 includes a sense latch 878 and a sense transistor (not shown) connected at the sense node 884. The page buffer 888 also includes a power supply pad 872-2 (also referred to as a Vdd pad) to provide an electrical connection for the power supply of the page buffer 888. The page buffer also includes a plurality of transistors, for example, n-channel MOSFETs 850-N3 to 850-N6 and p-channel MOSFETs 850-P1 to 850-P3.

在一些實施例中,感測拴鎖器878包括兩個n溝道MOSFET 878-N1和n溝道MOSFET 878-N2以及兩個p溝道MOSFET 878-P1和p溝道MOSFET878-P2,進而形成兩個反相器對,並且具有處於節點

Figure 02_image003
Figure 02_image001
處的第一輸出端和第二輸出端。每一反相器對包括p溝道MOSFET和n溝道MOSFET(例如,878-P1和878-N1)。兩個p溝道MOSFET 878-P1和p溝道MOSFET 878-P2的源極端子連接至節點890-1處的內部電源,兩個n-MOSFET 878-N1和n-MOSFET 878-N2的源極端子連接至內部接地節點892-1。兩個反相器的第一輸出端和第二輸出端被標記為節點
Figure 02_image005
Figure 02_image006
,進而含有相反(或者互補)的資料信號。例如,當節點
Figure 02_image006
處於高電位時,節點
Figure 02_image003
可以處於低電位,或反之。為了形成感測拴鎖器,一對反相器的輸出端可以連接至另一對的電晶體的閘極。例如,節點
Figure 02_image006
處的第二輸出端與n溝道MOSFET 878-N1和p溝道MOSFET 878-P1的閘極連接,而節點
Figure 02_image003
處的第一輸出端則與n溝道MOSFET 878-N2和p溝道MOSFET 878-P2的閘極連接。 In some embodiments, the sense latch 878 includes two n-channel MOSFET 878-N1 and n-channel MOSFET 878-N2 and two p-channel MOSFET 878-P1 and p-channel MOSFET 878-P2, thereby forming Two inverter pairs, and have at the node
Figure 02_image003
with
Figure 02_image001
At the first output terminal and the second output terminal. Each inverter pair includes a p-channel MOSFET and an n-channel MOSFET (for example, 878-P1 and 878-N1). The source terminals of the two p-channel MOSFETs 878-P1 and p-channel MOSFET 878-P2 are connected to the internal power supply at node 890-1, and the source terminals of the two n-MOSFETs 878-N1 and n-MOSFET 878-N2 The sub is connected to the internal ground node 892-1. The first and second output terminals of the two inverters are marked as nodes
Figure 02_image005
with
Figure 02_image006
, And then contain the opposite (or complementary) data signal. For example, when the node
Figure 02_image006
At high potential, the node
Figure 02_image003
It can be at a low potential, or vice versa. In order to form a sense latch, the output terminals of a pair of inverters can be connected to the gate of another pair of transistors. For example, node
Figure 02_image006
The second output terminal is connected to the gates of n-channel MOSFET 878-N1 and p-channel MOSFET 878-P1, and the node
Figure 02_image003
The first output terminal is connected to the gates of the n-channel MOSFET 878-N2 and the p-channel MOSFET 878-P2.

在一些實施例中,p溝道MOSFET 850-P1的源極連接至Vdd焊盤872-2,汲極連接至與p溝道MOSFET 850-P2和p溝道MOSFET 850-P3(又分別被稱為週邊電路的相應第六電晶體和第三電晶體)共用的節點883。電晶體850-P2的另一端子(源極)連接至節點890-2處的內部電源。在一些實施例中,節點890-1和節點890-2處的內部電源可以具有相同電壓(例如,被稱為Vdd)。電晶體850-P3的汲極端子在節點885處與電晶體850-N4和電晶體850-N5的源極/汲極端子連接,節點885處於與感測節點884相等的電位上,因而又被稱為感測節點。電晶體850-P3的閘極連接至節點

Figure 02_image003
,即感測拴鎖器878的輸出端之一。感測拴鎖器878的位於節點
Figure 02_image006
處的另一輸出端連接至電晶體850-N6的閘極,而電晶體850-N6的汲極端子則與電晶體850-N5(又被稱為週邊電路的第四電晶體)的源極共用。電晶體850-N6的源極連接至內部接地節點892-3。又被稱為週邊電路的第五電晶體的兩個n溝道MOSFET 850-N3和n溝道MOSFE 850-N4的源極/汲極端子串聯連接,進而控制頁緩衝器和對應位元線341之間的通信。 In some embodiments, the source of the p-channel MOSFET 850-P1 is connected to the Vdd pad 872-2, and the drain is connected to the p-channel MOSFET 850-P2 and the p-channel MOSFET 850-P3 (also called respectively It is the node 883 shared by the corresponding sixth transistor and the third transistor of the peripheral circuit. The other terminal (source) of transistor 850-P2 is connected to the internal power supply at node 890-2. In some embodiments, the internal power supply at node 890-1 and node 890-2 may have the same voltage (for example, referred to as Vdd). The drain terminal of the transistor 850-P3 is connected to the source/drain terminals of the transistor 850-N4 and the transistor 850-N5 at the node 885. The node 885 is at the same potential as the sensing node 884, so it is It is called a sensor node. The gate of transistor 850-P3 is connected to the node
Figure 02_image003
, Which is one of the output terminals of the sensing latch 878. Sense the location of the latch 878 at the node
Figure 02_image006
The other output terminal is connected to the gate of transistor 850-N6, and the drain terminal of transistor 850-N6 is connected to the source of transistor 850-N5 (also known as the fourth transistor of the peripheral circuit) Shared. The source of the transistor 850-N6 is connected to the internal ground node 892-3. The source/drain terminals of the two n-channel MOSFET 850-N3 and n-channel MOSFE 850-N4, which are also called the fifth transistor of the peripheral circuit, are connected in series to control the page buffer and the corresponding bit line 341 Communication between.

在一些實施例中,3D記憶體件800還包括源極線(SL)焊盤872-3和週邊電路400中的兩個電晶體(例如,n溝道MOSFET 850-N1和n溝道MOSFET  850-N2),其中,n溝道MOSFET 850-N1(又被稱為週邊電路的第一電晶體)和n溝道MOSFET 850-N2(又被稱為週邊電路的第二電晶體)的源極端子分別連接至內部接地節點892-2和SL焊盤872-3。在一些實施例中,內部接地節點892-1、內部接地節點892-2和內部接地節點892-3被電性連接為保持相同電位。n溝道MOSFET 850-N1和n溝道MOSFET 850-N2的汲極端子在節點887處連接,其中,節點887可以透過互連導通孔(VIA) 472/互連導通孔(VIA)572連接至3D儲存陣列500的ACS網格882。在一些實施例中,SL焊盤872-3可以用於連接至源極線驅動器電路(圖8中未示出)。在這一示例中,可以透過電晶體850-N1和電晶體850-N2的導通或截止將ACS網格882連接至內部接地節點892-2或者連接至源極線驅動器電路。In some embodiments, the 3D memory device 800 further includes a source line (SL) pad 872-3 and two transistors in the peripheral circuit 400 (for example, n-channel MOSFET 850-N1 and n-channel MOSFET 850 -N2), where the source terminals of n-channel MOSFET 850-N1 (also known as the first transistor of the peripheral circuit) and n-channel MOSFET 850-N2 (also known as the second transistor of the peripheral circuit) The sub is connected to the internal ground node 892-2 and the SL pad 872-3, respectively. In some embodiments, the internal ground node 892-1, the internal ground node 892-2, and the internal ground node 892-3 are electrically connected to maintain the same potential. The drain terminals of n-channel MOSFET 850-N1 and n-channel MOSFET 850-N2 are connected at node 887, where node 887 can be connected to via interconnect via (VIA) 472/interconnect via (VIA) 572 The ACS grid 882 of the 3D storage array 500. In some embodiments, the SL pad 872-3 may be used to connect to a source line driver circuit (not shown in FIG. 8). In this example, the ACS grid 882 can be connected to the internal ground node 892-2 or to the source line driver circuit by turning on or off the transistor 850-N1 and the transistor 850-N2.

在一些實施例中,透過使用貫穿陣列接觸(TAC)770、互連導通孔(VIA) 572/互連導通孔(VIA)472和/或垂直接觸結構556/直接觸結構456和/或橫向導線558/橫向導線458,Vdd焊盤872-2和SL焊盤872-3可以被形成到第二基底530的第二表面530-2上。在一些實施例中,Vdd焊盤872-2和SL焊盤872-3可以借助於穿過第一基底430的貫穿陣列接觸形成於第一基底430的第二表面430上(如圖7中所示),這與用於形成BL焊盤872-1和貫穿陣列接觸(TAC) 770的方法類似。In some embodiments, through the use of through-array contact (TAC) 770, interconnect via (VIA) 572/interconnect via (VIA) 472 and/or vertical contact structure 556/direct contact structure 456 and/or lateral wires 558/lateral wire 458, Vdd pad 872-2 and SL pad 872-3 may be formed on the second surface 530-2 of the second substrate 530. In some embodiments, the Vdd pad 872-2 and the SL pad 872-3 may be formed on the second surface 430 of the first substrate 430 by means of through-array contacts passing through the first substrate 430 (as shown in FIG. 7). This is similar to the method used to form the BL pad 872-1 and through-array contact (TAC) 770.

在一些實施例中,可以透過測量流經儲存單元的電流對程式設計或抹除後的儲存單元進行驗證。根據本發明,3D記憶體件800的儲存單元電流可以使用三種方法來測量。In some embodiments, the programmed or erased storage unit can be verified by measuring the current flowing through the storage unit. According to the present invention, the storage cell current of the 3D memory device 800 can be measured using three methods.

在第一種方法中,根據本發明的一些實施例,可以透過對SL焊盤872-3施加第一測試電壓(例如,外部接地節點)並且在BL焊盤872-1上掃描第二測試電壓(例如,從0伏特(V)到10伏特(V))而直接測量儲存單元電流。可以透過很多種方式,例如,透過添加額外開關電晶體執行對SL焊盤872-3的從源極線驅動器電路(未示出)到外部接地節點的切換,這是本領域技術人員已知的。In the first method, according to some embodiments of the present invention, it is possible to apply a first test voltage (for example, an external ground node) to the SL pad 872-3 and scan the second test voltage on the BL pad 872-1 (For example, from 0 volts (V) to 10 volts (V)) and directly measure the storage cell current. There are many ways to switch the SL pad 872-3 from the source line driver circuit (not shown) to the external ground node by adding additional switching transistors, which is known to those skilled in the art. .

在一些實施例中,可以在電晶體850-N2的閘極上施加偏壓(例如,處於1V到5伏特(V)之間),進而使其導通,使得儲存單元電流能夠在BL焊盤872-1和SL焊盤872-3之間流動。所述方法還包括在電晶體850-N1的閘極上施加另一偏壓(例如,0伏特(V)),進而使其截止,由此能夠使儲存單元電流與內部接地節點892-2斷開連接。透過使電晶體850-N1截止,能夠在儲存單元電流的測量期間避免來自週邊電路400的雜訊。In some embodiments, a bias voltage (for example, between 1V and 5 volts (V)) can be applied to the gate of the transistor 850-N2 to turn it on so that the storage cell current can flow through the BL pad 872- Flow between 1 and SL pad 872-3. The method further includes applying another bias voltage (for example, 0 volt (V)) to the gate of the transistor 850-N1 to turn it off, thereby enabling the storage cell current to be disconnected from the internal ground node 892-2 connection. By turning off the transistor 850-N1, noise from the peripheral circuit 400 can be avoided during the measurement of the storage cell current.

在第一種方法中,在字元線333當中,可以對目標儲存單元340中選定的字元線施加操作步驟電壓(例如,0.5伏特(V)到5伏特(V)),並且對未被選擇的字元線施加通過電壓(Vpass),所述通過電壓高到足以導通同一記憶體串212上的其他儲存單元,例如高於所述儲存單元的任何閾值電壓,例如,處於0伏特(V)到10伏特(V)之間。還可以對頂部選擇閘極(TSG) 334和下部選擇閘極(LSG) 332施加開關電壓(例如,處於0.5伏特(V)到5伏特(V)之間),所述開關電壓高到足以導通下部選擇電晶體334-T和頂部選擇電晶體332-T。在這一示例中,電流從BL焊盤872-1透過貫穿陣列接觸(TAC) 770、對應的位元線 341、對應的記憶體串212、ACS 880、ACS網格882、節點887、電晶體850-N2流至SL焊盤872-3(或者反向流動,具體取決於Vdd焊盤和SL焊盤上的施加電壓)。所述電流還可以流經一個或多個垂直接觸結構456/垂直接觸結構556和/或橫向導線458/橫向導線558。在一些實施例中,這裡所描述的電流通路的寄生電阻比目標儲存單元340的固有電阻小得多,因而可以被忽略。在一些實施例中,可以透過曲線擬合提取所述電流通路的寄生電阻。這樣,能夠獲得目標儲存單元的元件參數,並且能夠驗證程式設計狀態。In the first method, among the word lines 333, the operation step voltage (for example, 0.5 volts (V) to 5 volts (V)) can be applied to the selected word line in the target storage unit 340, and the The selected word line applies a pass voltage (Vpass) that is high enough to turn on other storage cells on the same memory string 212, for example, higher than any threshold voltage of the storage cell, for example, at 0 volts (V ) To 10 Volts (V). It is also possible to apply a switching voltage (for example, between 0.5 Volt (V) to 5 Volt (V)) to the top selection gate (TSG) 334 and the lower selection gate (LSG) 332, the switching voltage being high enough to conduct The lower selection transistor 334-T and the top selection transistor 332-T. In this example, current flows from the BL pad 872-1 through the through array contact (TAC) 770, the corresponding bit line 341, the corresponding memory string 212, ACS 880, ACS grid 882, node 887, transistor 850-N2 flows to SL pad 872-3 (or reverse flow, depending on the applied voltage on the Vdd pad and SL pad). The current may also flow through one or more vertical contact structures 456/vertical contact structures 556 and/or lateral wires 458/transverse wires 558. In some embodiments, the parasitic resistance of the current path described here is much smaller than the inherent resistance of the target storage cell 340, and thus can be ignored. In some embodiments, the parasitic resistance of the current path can be extracted through curve fitting. In this way, the component parameters of the target storage unit can be obtained, and the programming status can be verified.

在一些實施例中,可以透過添加複用器和解碼器電路測量多個儲存單元的電流,這是本領域技術人員已知的。In some embodiments, the current of multiple storage units can be measured by adding multiplexer and decoder circuits, which is known to those skilled in the art.

在第二種方法和第三種方法中,根據本發明的一些實施例,可以透過Vdd焊盤872-2和SL焊盤872-3間接測量儲存單元電流。在這種方法當中,可以透過計算目標儲存單元導通之前和之後的測量電流差,來獲得儲存單元電流。In the second method and the third method, according to some embodiments of the present invention, the storage cell current can be measured indirectly through the Vdd pad 872-2 and the SL pad 872-3. In this method, the storage cell current can be obtained by calculating the difference between the measured current before and after the target storage cell is turned on.

在一些實施例中,可以對Vdd焊盤872-2施加第二測試電壓(例如,從0伏特(V)到10伏特(V))。在這一示例中,可以使SL焊盤872-3與源極線驅動器斷開連接,並且使SL焊盤872-3連接至外部接地節點。在一些實施例中,SL焊盤872-3可以連接至不同於Vdd焊盤872-2的另一具有第一測試電壓(例如,從0伏特(V)到10伏特(V))的外部電源。在一些實施例中,可以測量Vdd焊盤872-2處的電流。在一些實施例中,可以測量SL焊盤872-3處的電流。In some embodiments, a second test voltage (for example, from 0 volts (V) to 10 volts (V)) may be applied to the Vdd pad 872-2. In this example, the SL pad 872-3 can be disconnected from the source line driver, and the SL pad 872-3 can be connected to an external ground node. In some embodiments, the SL pad 872-3 may be connected to another external power source with a first test voltage (for example, from 0 volts (V) to 10 volts (V)) different from the Vdd pad 872-2 . In some embodiments, the current at the Vdd pad 872-2 can be measured. In some embodiments, the current at the SL pad 872-3 can be measured.

與第一種方法一樣,可以使電晶體850-N1截止,進而使ACS網格與內部接地節點892-2斷開連接,並且可以使電晶體850-N2導通,進而在ACS網格和SL焊盤872-3之間形成電通路。As with the first method, the transistor 850-N1 can be cut off, and then the ACS grid can be disconnected from the internal ground node 892-2, and the transistor 850-N2 can be turned on, and then the ACS grid and SL can be welded. An electrical path is formed between the disks 872-3.

在一些實施例中,可以使電晶體850-P1導通,進而將Vdd焊盤872-2連接至節點883。可以使電晶體850-P2截止,進而使頁緩衝器888的其他元件和電路與節點890-2處的內部電源斷開連接。在一些實施例中,資料線(未示出)可以連接至感測拴鎖器878在節點

Figure 02_image003
和節點
Figure 02_image006
處的各個輸出端。在這一示例中,可以對節點
Figure 02_image006
供應從低到高電壓的資料信號,同時可以對其互補節點
Figure 02_image003
供應從高到低電壓的資料信號。例如,可以使節點
Figure 02_image003
從3V切換至0伏特(V),並且可以使節點
Figure 02_image006
從0伏特(V)切換至3V。這樣,p溝道MOSFET 850-P3可以在閘極處接收到0伏特(V)之後被導通。在一些實施例中,兩個電晶體850-N4和850-N3可以被導通,進而允許建立從節點885跨越鍵合介面674(透過互連導通孔(VIA) 472/572)抵達位元線341的導電通路。在一些實施例中,電晶體850-N5可以被截止,進而使得沒有電流可以流經感測拴鎖器878。 In some embodiments, the transistor 850-P1 can be turned on to connect the Vdd pad 872-2 to the node 883. The transistor 850-P2 can be turned off, thereby disconnecting the other components and circuits of the page buffer 888 from the internal power supply at the node 890-2. In some embodiments, a data line (not shown) can be connected to the sensing latch 878 at the node
Figure 02_image003
And node
Figure 02_image006
At the various output terminals. In this example, the node
Figure 02_image006
Supply data signals from low to high voltages, and can be complementary nodes
Figure 02_image003
Supply data signals from high to low voltage. For example, you can make the node
Figure 02_image003
Switch from 3V to 0 volts (V), and can make the node
Figure 02_image006
Switch from 0 volts (V) to 3V. In this way, the p-channel MOSFET 850-P3 can be turned on after receiving 0 volts (V) at the gate. In some embodiments, the two transistors 850-N4 and 850-N3 can be turned on, thereby allowing the establishment of the slave node 885 across the bonding interface 674 (via the interconnect via (VIA) 472/572) to the bit line 341 The conductive path. In some embodiments, the transistor 850-N5 can be turned off, so that no current can flow through the sensing latch 878.

因此,能夠建立從Vdd焊盤872-2透過電晶體850-P1、節點883、電晶體850-P3、節點885、電晶體850-N4/電晶體850-N3、互連導通孔(VIA) 472/互連導通孔(VIA) 572、對應位元線341、對應記憶體串212、ACS 880、ACS網格882、互連導通孔(VIA) 572/互連導通孔(VIA) 472、節點887到SL焊盤872-3的電流通路。電流還可以沿相反方向流動,具體取決於Vdd焊盤872-2和SL焊盤872-3上的施加電壓。Therefore, it is possible to establish through the Vdd pad 872-2 through the transistor 850-P1, node 883, transistor 850-P3, node 885, transistor 850-N4/transistor 850-N3, interconnect via (VIA) 472 /Interconnection via (VIA) 572, corresponding bit line 341, corresponding memory string 212, ACS 880, ACS grid 882, interconnection via (VIA) 572/interconnection via (VIA) 472, node 887 Current path to SL pad 872-3. Current can also flow in the opposite direction, depending on the voltage applied on the Vdd pad 872-2 and the SL pad 872-3.

在第二種方法和第三種方法中,可以按照與第一種方法中類似的方式,對目標儲存單元和對應字元線加以選擇。然而,唯獨在第二種和第三種方法中,測量電流流經額外的電晶體和電流通路。因此,為了精確地確定透過目標儲存單元的電流,可以對從Vdd焊盤872-2流到SL焊盤872-3的電流測量兩次,即,在目標儲存單元被導通的情況下、和目標儲存單元未被導通的情況下。這兩次測量之間的差異能夠去除非理想電晶體的可能寄生(或洩漏)電路通路。In the second method and the third method, the target storage unit and the corresponding character line can be selected in a similar manner to the first method. However, only in the second and third methods, the measurement current flows through additional transistors and current paths. Therefore, in order to accurately determine the current passing through the target storage cell, the current flowing from the Vdd pad 872-2 to the SL pad 872-3 can be measured twice, that is, when the target storage cell is turned on, and the target When the storage unit is not turned on. The difference between these two measurements can remove possible parasitic (or leakage) circuit paths of non-ideal transistors.

總之,本發明描述了用於測量立體記憶體的儲存單元電流的方法的各種實施例。本文公開的直接和間接測量方法可以是在晶圓上執行的,其利用了現有的電路和/或結構,而不需要額外的設計或製程步驟。因此,能夠透過生產線上測試驗證儲存單元的程式設計和抹除。可以在進行切片和封裝之前在晶圓級別上篩選儲存裸晶的良率。這樣,能夠減小製造成本。In summary, the present invention describes various embodiments of methods for measuring the current of a storage cell of a three-dimensional memory. The direct and indirect measurement methods disclosed herein can be performed on a wafer, which utilizes existing circuits and/or structures without requiring additional design or manufacturing steps. Therefore, the programming and erasure of the storage unit can be verified through the production line test. The yield of the die can be screened and stored at the wafer level before dicing and packaging. In this way, the manufacturing cost can be reduced.

本發明的一個實施例中,提供了一種用於測量立體(3D)記憶體件中的儲存單元的電流的方法。所述方法包括將第一測試電壓施加到3D記憶體件的週邊電路的源極線焊盤,其中,所述源極線焊盤電性連接至3D記憶體件的3D儲存陣列的公共源極線,並且形成於第一基底上的所述週邊電路和形成於第二基底上的所述3D儲存陣列透過直接鍵合來電性連接。所述方法還包括將第二測試電壓施加至3D儲存陣列的位元線焊盤,其中,所述位元線焊盤和3D儲存陣列形成在第二基底的相對側上,並且所述位元線焊盤使用貫穿陣列接觸與所述儲存單元的位元線電性連接。所述方法還包括將操作步驟電壓施加至所述儲存單元的字元線,其中,所述字元線電性連接至所述儲存單元的控制閘極。所述方法還包括將通過電壓施加至未被選擇的儲存單元的字元線,並且測量流經所述位元線焊盤或源極線焊盤的電流。In an embodiment of the present invention, a method for measuring the current of a storage unit in a three-dimensional (3D) memory device is provided. The method includes applying a first test voltage to a source line pad of a peripheral circuit of a 3D memory device, wherein the source line pad is electrically connected to a common source of a 3D storage array of the 3D memory device The peripheral circuit formed on the first substrate and the 3D storage array formed on the second substrate are electrically connected through direct bonding. The method further includes applying a second test voltage to the bit line pads of the 3D storage array, wherein the bit line pads and the 3D storage array are formed on opposite sides of the second substrate, and the bit The wire pads are electrically connected to the bit wires of the storage unit through the array contacts. The method further includes applying the operation step voltage to the word line of the storage unit, wherein the word line is electrically connected to the control gate of the storage unit. The method further includes applying a pass voltage to a word line of a memory cell that is not selected, and measuring a current flowing through the bit line pad or the source line pad.

本發明的另一方面提供了一種測量立體(3D)記憶體件中的儲存單元的電流的方法。所述方法包括將第一測試電壓施加到3D記憶體件的週邊電路的源極線焊盤,其中,所述源極線焊盤電性連接至3D記憶體件的3D儲存陣列的公共源極線,並且形成於第一基底上的所述週邊電路和形成於第二基底上的所述3D儲存陣列透過直接鍵合來電性連接。所述方法還包括將第二測試電壓施加至電源焊盤,其中,所述電源焊盤電性連接至週邊電路的頁緩衝器,所述頁緩衝器被配置成為所述儲存單元提供暫時儲存。所述方法還包括將操作步驟電壓施加至所述儲存單元的字元線,其中,所述字元線電性連接至所述儲存單元的控制閘極。所述方法還包括將通過電壓施加至未被選擇的儲存單元的字元線,並且檢測流經所述電源焊盤或源極線焊盤的電流。Another aspect of the present invention provides a method for measuring the current of a storage unit in a three-dimensional (3D) memory device. The method includes applying a first test voltage to a source line pad of a peripheral circuit of a 3D memory device, wherein the source line pad is electrically connected to a common source of a 3D storage array of the 3D memory device The peripheral circuit formed on the first substrate and the 3D storage array formed on the second substrate are electrically connected through direct bonding. The method further includes applying a second test voltage to a power supply pad, wherein the power supply pad is electrically connected to a page buffer of a peripheral circuit, and the page buffer is configured to provide temporary storage for the storage unit. The method further includes applying the operation step voltage to the word line of the storage unit, wherein the word line is electrically connected to the control gate of the storage unit. The method further includes applying a pass voltage to a word line of a memory cell that is not selected, and detecting a current flowing through the power supply pad or the source line pad.

對特定實施例的上述說明將完全展現本發明的一般性質,使得他人在不需要過度實驗和不脫離本發明一般概念的情況下,能夠透過運用本領域技術範圍內的知識容易地對此類特定實施例的各種應用進行修改和/或調整。因此,根據本文呈現的教導和指導,此類調整和修改旨在處於本文所公開實施例的等同物的含義和範圍之內。應當理解,本文中的措辭或術語是出於說明的目的,而不是為了進行限制,所以本說明書的術語或措辭將由技術人員按照所述教導和指導進行解釋。The above description of specific embodiments will fully demonstrate the general nature of the present invention, so that others can easily analyze such specific embodiments without undue experimentation and without departing from the general concept of the present invention. Various applications of the embodiments are modified and/or adjusted. Therefore, based on the teachings and guidance presented herein, such adjustments and modifications are intended to be within the meaning and scope of equivalents of the embodiments disclosed herein. It should be understood that the terms or terms in this article are for illustrative purposes, not for limitation, so the terms or terms in this specification will be interpreted by the skilled person in accordance with the teaching and guidance.

上文已經借助於功能構建塊描述了本發明的實施例,功能構建塊例示了指定功能及其關係的實施方式。在本文中出於方便描述的目的任意定義了這些功能構建塊的邊界。可以定義替代邊界,只要適當執行其指定功能和關係即可。The embodiments of the present invention have been described above with the help of functional building blocks, which exemplify the implementation of specified functions and their relationships. The boundaries of these functional building blocks are arbitrarily defined in this article for the convenience of description. Alternative boundaries can be defined as long as their designated functions and relationships are appropriately performed.

發明內容和摘要部分可以闡述發明人構思的本發明的一個或多個,但未必所有示範性實施例,因此,並非意在透過任何方式限制本發明和所附申請專利範圍。The content of the invention and the abstract part may describe one or more of the invention conceived by the inventor, but not all exemplary embodiments. Therefore, it is not intended to limit the scope of the invention and the attached patent application in any way.

本發明的廣度和範圍不應受任何上述示例性實施例的限制,且應當僅根據以下申請專利範圍書及其等同物進行限定。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The breadth and scope of the present invention should not be limited by any of the above-mentioned exemplary embodiments, and should be limited only according to the following patent scope and equivalents. The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:立體(3D)記憶體件 101:儲存平面 103:儲存塊 105:週邊區 108:區域 210:階梯區 211:溝道結構區 212:記憶體串(字元線接觸) 214:接觸結構 216:縫隙結構 216-1:縫隙結構 216-2:縫隙結構 218:儲存指 220:頂部選擇閘極切口 222:虛設記憶體串 224:儲存片 300:立體(3D)儲存陣列結構 330:基底 331:絕緣膜 332:下部選擇閘極 332-T:下部選擇電晶體 333:字元線 333-1:控制閘極(字元線) 333-2:控制閘極(字元線) 333-3:控制閘極(字元線) 334:頂部選擇閘極(TSG) 334-T:頂部選擇電晶體 335:膜堆疊體 336:溝道孔 337:儲存膜 338:溝道層 339:芯填充膜 340:儲存單元 340-1:儲存單元 340-2:儲存單元 340-3:儲存單元 341:位元線(BL) 343:金屬互連線 344:摻雜源極線區 400:週邊電路 (CMOS晶圓) 430:第一基底 430-1:第一側 430-2:第二側 450-1:週邊元件 450-2:週邊元件 450-3:週邊元件 451:閘極堆疊體 452:淺溝槽隔離(STI) 453-1:源極/汲極 453-2:源極/汲極 453-3:汲極 454-1:n阱 454-2:p阱 454-3:深n阱 455:週邊互連層(第一互連層) 456:垂直接觸結構 458:橫向導線 458-1:橫向導線 458-2:橫向導線 460:絕緣層 462:基底接觸 472:互連導通孔(VIA) 500:3D儲存陣列 530:第二基底 530-1:第一表面 530-2:第二表面 555:陣列互連層(第二互連層) 556:垂直接觸結構 558:橫向導線 560:絕緣層 562:基底接觸 564:導體層 566:介電層 568:交替的導體/介電堆疊體 570:位元線接觸 572:互連導通孔(VIA) 600:3D記憶體件 674:鍵合介面 676:鍵合層 700:3D記憶體件 770:貫穿陣列接觸(TAC) 772:輸入/輸出(I/O)焊盤 800:3D記憶體件 850-P1:p溝道MOSFET(電晶體) 850-P2:p溝道MOSFET(週邊電路的第六電晶體) 850-P3:p溝道MOSFET(週邊電路的第三電晶體) 850-N1:n溝道MOSFET(週邊電路的第一電晶體) 850-N2:n溝道MOSFET(週邊電路的第二電晶體) 850-N3:n溝道MOSFET(週邊電路的第五電晶體) 850-N4:n溝道MOSFET(週邊電路的第五電晶體) 850-N5:n溝道MOSFET(週邊電路的第四電晶體) 850-N6:n溝道MOSFET(電晶體) 872-1:BL焊盤 872-2:電源焊盤(Vdd焊盤) 872-3:源極線(SL)焊盤 878:感測拴鎖器 878-N1:n溝道MOSFET(電晶體) 878-N2:n溝道MOSFET(電晶體) 878-P1:p溝道MOSFET(電晶體) 878-P2:p溝道MOSFET(電晶體) 880:陣列公共源極(ACS) 882:ACS網格 883:節點 884:感測節點 885:節點(感測節點) 886:儲存頁 887:節點 888:頁緩衝器 890-1:節點 890-2:節點 892-1:內部接地節點 892-2:內部接地節點 892-3:內部接地節點

Figure 02_image001
:節點
Figure 02_image003
:節點100: Three-dimensional (3D) memory device 101: Storage plane 103: Storage block 105: Peripheral area 108: Area 210: Step area 211: Channel structure area 212: Memory string (character line contact) 214: Contact structure 216 : Slot structure 216-1: slot structure 216-2: slot structure 218: storage finger 220: top selection gate cutout 222: dummy memory string 224: storage chip 300: three-dimensional (3D) storage array structure 330: substrate 331: Insulating film 332: lower selection gate 332-T: lower selection transistor 333: character line 333-1: control gate (character line) 333-2: control gate (character line) 333-3: control Gate (character line) 334: Top selection gate (TSG) 334-T: Top selection transistor 335: Membrane stack 336: Channel hole 337: Storage film 338: Channel layer 339: Core filling film 340: Storage unit 340-1: Storage unit 340-2: Storage unit 340-3: Storage unit 341: Bit line (BL) 343: Metal interconnection line 344: Doped source line area 400: Peripheral circuit (CMOS wafer ) 430: first substrate 430-1: first side 430-2: second side 450-1: peripheral element 450-2: peripheral element 450-3: peripheral element 451: gate stack 452: shallow trench isolation (STI) 453-1: source/drain 453-2: source/drain 453-3: drain 454-1: n-well 454-2: p-well 454-3: deep n-well 455: peripheral mutual Connection layer (first interconnection layer) 456: vertical contact structure 458: lateral wire 458-1: lateral wire 458-2: lateral wire 460: insulating layer 462: substrate contact 472: interconnect via (VIA) 500: 3D Storage array 530: second substrate 530-1: first surface 530-2: second surface 555: array interconnection layer (second interconnection layer) 556: vertical contact structure 558: lateral wire 560: insulating layer 562: substrate Contact 564: Conductor layer 566: Dielectric layer 568: Alternating conductor/dielectric stack 570: Bit line contact 572: Interconnect via (VIA) 600: 3D memory element 674: Bonding interface 676: Bonding Layer 700: 3D memory device 770: through array contact (TAC) 772: input/output (I/O) pad 800: 3D memory device 850-P1: p-channel MOSFET (transistor) 850-P2: p Channel MOSFET (the sixth transistor in the peripheral circuit) 850-P3: p-channel MOSFET (the third transistor in the peripheral circuit) 850-N1: n-channel MOSFET (the first transistor in the peripheral circuit) 850-N2: n-channel MOSFET (second transistor in the peripheral circuit) 850-N3: n-channel MOSFET (peripheral The fifth transistor of the circuit) 850-N4: n-channel MOSFET (the fifth transistor of the peripheral circuit) 850-N5: the n-channel MOSFET (the fourth transistor of the peripheral circuit) 850-N6: the n-channel MOSFET ( Transistor) 872-1: BL pad 872-2: Power supply pad (Vdd pad) 872-3: Source line (SL) pad 878: Sense latch 878-N1: n-channel MOSFET ( Transistor) 878-N2: n-channel MOSFET (transistor) 878-P1: p-channel MOSFET (transistor) 878-P2: p-channel MOSFET (transistor) 880: Array common source (ACS) 882: ACS grid 883: node 884: sensing node 885: node (sensing node) 886: storage page 887: node 888: page buffer 890-1: node 890-2: node 892-1: internal ground node 892- 2: Internal ground node 892-3: Internal ground node
Figure 02_image001
:node
Figure 02_image003
:node

被併入本文並形成說明書的部分的附圖例示了本發明的實施例並與說明書一起進一步用以解釋本發明的原理,並使相關領域的技術人員能夠做出和使用本發明。 圖1示出了根據本發明的一些實施例的示例性立體(3D)儲存裸晶的示意性俯視圖。 圖2示出了根據本發明的一些實施例的3D儲存裸晶的一個區域的示意性俯視圖。 圖3示出了根據本發明的一些實施例的示例性3D儲存陣列結構的部分的透視圖。 圖4示出了根據本發明的一些實施例的週邊電路的截面圖。 圖5示出了根據本發明的一些實施例的儲存陣列的截面圖。 圖6示出了根據本發明的一些實施例,在鍵合週邊電路和儲存陣列之後的3D記憶體件的截面圖。 圖7示出了根據本發明的一些實施例的處於某一製程階段的3D記憶體件的截面圖。 圖8示出了根據本發明的一些實施例用於測量3D記憶體件的電流的電路。 在結合附圖考慮時,透過下文闡述的詳細描述,本發明的特徵和優點將變得更加顯而易見,在附圖中,始終以類似的附圖標記表示對應的要素。在附圖中,類似地附圖標記一般指示等同的、功能上類似的以及/或者結構上類似的要素。在對應附圖標記中透過最左側位元指示首次出現該要素的附圖。 將參考附圖描述本發明的實施例。 The drawings incorporated herein and forming part of the specification illustrate embodiments of the present invention and together with the description are further used to explain the principles of the present invention, and enable those skilled in the relevant art to make and use the present invention. FIG. 1 shows a schematic top view of an exemplary three-dimensional (3D) storage die according to some embodiments of the present invention. FIG. 2 shows a schematic top view of a region of a 3D storage die according to some embodiments of the present invention. Figure 3 shows a perspective view of a portion of an exemplary 3D storage array structure according to some embodiments of the invention. Figure 4 shows a cross-sectional view of a peripheral circuit according to some embodiments of the present invention. Figure 5 shows a cross-sectional view of a storage array according to some embodiments of the invention. FIG. 6 shows a cross-sectional view of the 3D memory device after bonding the peripheral circuit and the storage array according to some embodiments of the present invention. FIG. 7 shows a cross-sectional view of a 3D memory device in a certain process stage according to some embodiments of the present invention. FIG. 8 shows a circuit for measuring the current of a 3D memory device according to some embodiments of the present invention. When considering the accompanying drawings, the features and advantages of the present invention will become more apparent through the detailed description set forth below. In the accompanying drawings, similar reference numerals are always used to denote corresponding elements. In the drawings, similar reference signs generally indicate equivalent, functionally similar, and/or structurally similar elements. In the corresponding reference numeral, the leftmost bit indicates the figure where the element first appears. The embodiments of the present invention will be described with reference to the drawings.

212:記憶體串(字元線接觸) 212: memory string (character line contact)

332:下部選擇閘極 332: Lower selection gate

332-T:下部選擇電晶體 332-T: Select the transistor at the bottom

333:字元線 333: Character line

334:頂部選擇閘極(TSG) 334: Top Select Gate (TSG)

334-T:頂部選擇電晶體 334-T: Top select transistor

340:儲存單元 340: storage unit

341:位元線(BL) 341: bit line (BL)

344:摻雜源極線區 344: doped source line region

400:週邊電路(CMOS晶圓) 400: Peripheral circuit (CMOS wafer)

456:垂直接觸結構 456: Vertical contact structure

458:橫向導線 458: Transverse wire

472:互連導通孔(VIA) 472: Interconnect Via (VIA)

500:3D儲存陣列 500: 3D storage array

530:第二基底 530: second base

556:垂直接觸結構 556: Vertical contact structure

558:橫向導線 558: Transverse wire

572:互連導通孔(VIA) 572: Interconnect Via (VIA)

674:鍵合介面 674: Bonding Interface

676:鍵合層 676: Bonding layer

770:貫穿陣列接觸(TAC) 770: Through Array Contact (TAC)

800:3D記憶體件 800: 3D memory device

850-P1:p溝道MOSFET(電晶體) 850-P1: p-channel MOSFET (transistor)

850-P2:p溝道MOSFET(週邊電路的第六電晶體) 850-P2: p-channel MOSFET (the sixth transistor of the peripheral circuit)

850-P3:p溝道MOSFET(週邊電路的第三電晶體) 850-P3: p-channel MOSFET (the third transistor of the peripheral circuit)

850-N1:n溝道MOSFET(週邊電路的第一電晶體) 850-N1: n-channel MOSFET (the first transistor of the peripheral circuit)

850-N2:n溝道MOSFET(週邊電路的第二電晶體) 850-N2: n-channel MOSFET (second transistor for peripheral circuits)

850-N3:n溝道MOSFET(週邊電路的第五電晶體) 850-N3: n-channel MOSFET (the fifth transistor in the peripheral circuit)

850-N4:n溝道MOSFET(週邊電路的第五電晶體) 850-N4: n-channel MOSFET (the fifth transistor in the peripheral circuit)

850-N5:n溝道MOSFET(週邊電路的第四電晶體) 850-N5: n-channel MOSFET (the fourth transistor of the peripheral circuit)

850-N6:n溝道MOSFET(電晶體) 850-N6: n-channel MOSFET (transistor)

872-1:BL焊盤 872-1: BL pad

872-2:電源焊盤(Vdd焊盤) 872-2: Power supply pad (Vdd pad)

872-3:源極線(SL)焊盤 872-3: Source line (SL) pad

878:感測拴鎖器 878: Sense Latch

878-N1:n溝道MOSFET(電晶體) 878-N1: n-channel MOSFET (transistor)

878-N2:n溝道MOSFET(電晶體) 878-N2: n-channel MOSFET (transistor)

878-P1:p溝道MOSFET(電晶體) 878-P1: p-channel MOSFET (transistor)

878-P2:p溝道MOSFET(電晶體) 878-P2: p-channel MOSFET (transistor)

880:陣列公共源極(ACS) 880: Array Common Source (ACS)

882:ACS網格 882: ACS grid

883:節點 883: Node

884:感測節點 884: sensor node

885:節點(感測節點) 885: Node (sensing node)

886:儲存頁 886: save page

887:節點 887: Node

888:頁緩衝器 888: page buffer

890-1:節點 890-1: Node

890-2:節點 890-2: Node

892-1:內部接地節點 892-1: internal ground node

892-2:內部接地節點 892-2: Internal ground node

892-3:內部接地節點 892-3: internal ground node

D:節點 D : node

Figure 108147287-A0305-02-0005-10
:節點
Figure 108147287-A0305-02-0005-10
:node

Claims (20)

一種測量一立體(3D)記憶體件中的一儲存單元的電流的方法,包括: 將一第一測試電壓施加至所述3D記憶體件的一週邊電路的一源極線焊盤,其中: 所述源極線焊盤電性連接至所述3D記憶體件的一3D儲存陣列的一公共源極線;並且 形成於一第一基底上的所述週邊電路和形成於一第二基底上的所述3D儲存陣列透過直接鍵合來電性連接; 將一第二測試電壓施加至所述3D儲存陣列的一位元線焊盤,其中所述位元線焊盤和所述3D儲存陣列形成在所述第二基底的相對側上,並且所述位元線焊盤使用至少一貫穿陣列接觸與所述儲存單元的一位元線電性連接; 將一操作步驟電壓施加至所述儲存單元的一字元線,其中所述字元線電性連接至所述儲存單元的一控制閘極; 將一通過電壓施加至未被選擇的儲存單元的另一字元線;以及 測量流經所述位元線焊盤或所述源極線焊盤的電流。 A method for measuring the current of a storage unit in a three-dimensional (3D) memory device includes: A first test voltage is applied to a source line pad of a peripheral circuit of the 3D memory device, wherein: The source line pad is electrically connected to a common source line of a 3D storage array of the 3D memory device; and The peripheral circuit formed on a first substrate and the 3D storage array formed on a second substrate are electrically connected by direct bonding; A second test voltage is applied to the bit line pads of the 3D storage array, wherein the bit line pads and the 3D storage array are formed on opposite sides of the second substrate, and the The bit line pad is electrically connected to the bit line of the storage unit by using at least one through-array contact; Applying an operation step voltage to a word line of the storage unit, wherein the word line is electrically connected to a control gate of the storage unit; Applying a pass voltage to another word line of the unselected memory cell; and Measure the current flowing through the bit line pad or the source line pad. 根據申請專利範圍第1項所述的方法,其中施加所述第二測試電壓包括施加介於0伏特(V)至10伏特(V)之間的電壓。The method according to item 1 of the scope of patent application, wherein applying the second test voltage includes applying a voltage between 0 volts (V) and 10 volts (V). 根據申請專利範圍第1項所述的方法,其中施加所述第一測試電壓包括施加0伏特(V)的電壓。The method according to claim 1, wherein applying the first test voltage includes applying a voltage of 0 volts (V). 根據申請專利範圍第1項所述的方法,其中施加所述操作步驟電壓包括施加介於0.5伏特(V)至5伏特(V)之間的電壓。The method according to item 1 of the scope of patent application, wherein applying the operating step voltage includes applying a voltage between 0.5 volt (V) and 5 volt (V). 根據申請專利範圍第1項所述的方法,其中施加所述通過電壓包括施加介於0伏特(V)至10伏特(V)之間的電壓。The method according to item 1 of the scope of patent application, wherein applying the pass voltage includes applying a voltage between 0 volts (V) and 10 volts (V). 根據申請專利範圍第1項所述的方法,還包括: 透過所述週邊電路的一第一電晶體,使所述公共源極線與一內部接地節點斷開電性連接;以及 透過所述週邊電路的一第二電晶體,使所述公共源極線與所述源極線焊盤電性連接。 According to the method described in item 1 of the scope of patent application, it also includes: Disconnecting the common source line from an internal ground node through a first transistor of the peripheral circuit; and Through a second transistor of the peripheral circuit, the common source line and the source line pad are electrically connected. 根據申請專利範圍第1項所述的方法,還包括: 在對應於所述儲存單元的一記憶體串的一下部選擇閘極和一頂部選擇閘極上施加一開關電壓。 According to the method described in item 1 of the scope of patent application, it also includes: A switching voltage is applied to a lower selection gate and a top selection gate of a memory string corresponding to the storage cell. 根據申請專利範圍第7項所述的方法,其中施加所述開關電壓包括施加介於0.5伏特(V)至5伏特(V)之間的電壓。The method according to item 7 of the scope of patent application, wherein applying the switching voltage includes applying a voltage between 0.5 volt (V) and 5 volt (V). 根據申請專利範圍第1項所述的方法,還包括: 透過一摻雜源極線區和一陣列公共源極,使所述公共源極線和所述儲存單元的一記憶體串的一源極端子電性連接。 According to the method described in item 1 of the scope of patent application, it also includes: Through a doped source line region and an array common source, the common source line and a source terminal of a memory string of the storage unit are electrically connected. 根據申請專利範圍第1項所述的方法,其中穿過所述第二基底的所述貫穿陣列接觸被配置在所述位元線焊盤和所述位元線之間,使所述位元線焊盤和所述位元線彼此電接觸。The method according to claim 1, wherein the through-array contact passing through the second substrate is arranged between the bit line pad and the bit line so that the bit The line pad and the bit line are in electrical contact with each other. 根據申請專利範圍第1項所述的方法,還包括: 透過一鍵合介面處的一個或多個互連導通孔(VIA),使所述源極線焊盤與所述3D儲存陣列的所述公共源極線電性連接。 According to the method described in item 1 of the scope of patent application, it also includes: The source line pad is electrically connected to the common source line of the 3D storage array through one or more interconnect vias (VIA) at a bonding interface. 一種測量立體(3D)記憶體件中的儲存單元的電流的方法,包括: 將一第一測試電壓施加至所述3D記憶體件的一週邊電路的一源極線焊盤,其中 所述源極線焊盤電性連接至所述3D記憶體件的一3D儲存陣列的一公共源極線;並且 形成於一第一基底上的所述週邊電路和形成於一第二基底上的所述3D儲存陣列透過直接鍵合來電性連接; 將一第二測試電壓施加至一電源焊盤,其中所述電源焊盤電性連接至所述週邊電路的一頁緩衝器,所述頁緩衝器被配置成為所述儲存單元提供暫時儲存; 將一操作步驟電壓施加至所述儲存單元的一字元線,其中所述字元線電性連接至所述儲存單元的一控制閘極; 將一通過電壓施加至未被選擇的所述儲存單元的另一字元線;以及 檢測流經所述電源焊盤或所述源極線焊盤的電流。 A method for measuring the current of a storage unit in a three-dimensional (3D) memory device includes: Applying a first test voltage to a source line pad of a peripheral circuit of the 3D memory device, wherein The source line pad is electrically connected to a common source line of a 3D storage array of the 3D memory device; and The peripheral circuit formed on a first substrate and the 3D storage array formed on a second substrate are electrically connected by direct bonding; Applying a second test voltage to a power supply pad, wherein the power supply pad is electrically connected to a page buffer of the peripheral circuit, and the page buffer is configured to provide temporary storage for the storage unit; Applying an operation step voltage to a word line of the storage unit, wherein the word line is electrically connected to a control gate of the storage unit; Applying a pass voltage to another word line of the memory cell that is not selected; and Detect current flowing through the power supply pad or the source line pad. 根據申請專利範圍第12項所述的方法,其中施加所述第一測試電壓包括施加介於0伏特(V)至10伏特(V)之間的電壓。The method according to claim 12, wherein applying the first test voltage includes applying a voltage between 0 volts (V) and 10 volts (V). 根據申請專利範圍第12項所述的方法,其中施加所述第二測試電壓包括施加介於0伏特(V)至10伏特(V)之間的電壓。The method according to claim 12, wherein applying the second test voltage includes applying a voltage between 0 volts (V) and 10 volts (V). 根據申請專利範圍第12項所述的方法,其中施加所述操作步驟電壓包括施加介於0.5伏特(V)至5伏特(V)之間的電壓。The method according to item 12 of the scope of patent application, wherein applying the operating step voltage includes applying a voltage between 0.5 volt (V) and 5 volt (V). 根據申請專利範圍第12項所述的方法,其中施加所述透過測試電壓包括施加介於0伏特(V)至10伏特(V)之間的電壓。The method according to item 12 of the scope of patent application, wherein applying the penetration test voltage includes applying a voltage between 0 volts (V) and 10 volts (V). 根據申請專利範圍第12所述的方法,還包括: 透過所述週邊電路的一第一電晶體,使所述公共源極線與一內部接地節點斷開電性連接;以及 透過所述週邊電路的一第二電晶體,使所述公共源極線與所述源極線焊盤電性連接。 According to the method described in the 12th scope of the patent application, it also includes: Disconnecting the common source line from an internal ground node through a first transistor of the peripheral circuit; and Through a second transistor of the peripheral circuit, the common source line and the source line pad are electrically connected. 根據申請專利範圍第12項所述的方法,還包括: 將一資料信號提供至所述頁緩衝器的一感測拴鎖器的一第一輸出端,其中所述資料信號被配置成導通所述週邊電路的一第三電晶體,以用於所述電源焊盤和一感測節點之間的電性連接;以及 使所述週邊電路的一第四電晶體截止,以使得所述感測拴鎖器的一第二輸出端與所述感測節點斷開電性連接。 According to the method described in item 12 of the scope of patent application, it also includes: A data signal is provided to a first output terminal of a sensing latch of the page buffer, wherein the data signal is configured to turn on a third transistor of the peripheral circuit for the The electrical connection between the power pad and a sensing node; and A fourth transistor of the peripheral circuit is turned off, so that a second output terminal of the sensing latch is electrically disconnected from the sensing node. 根據申請專利範圍第18項所述的方法,還包括: 透過所述週邊電路的一第五電晶體,使所述感測節點與所述儲存單元的一位元線電性連接。 According to the method described in item 18 of the scope of patent application, it also includes: Through a fifth transistor of the peripheral circuit, the sensing node is electrically connected with the bit line of the storage unit. 根據申請專利範圍第12項所述的方法,還包括: 透過所述週邊電路的一第六電晶體,使所述頁緩衝器與一內部電源斷開電性連接。 According to the method described in item 12 of the scope of patent application, it also includes: Through a sixth transistor of the peripheral circuit, the page buffer is electrically disconnected from an internal power source.
TW108147287A 2019-10-14 2019-12-24 Cell current measurement method for three-dimensional memory TWI713043B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2019/110955 2019-10-14
PCT/CN2019/110955 WO2021072577A1 (en) 2019-10-14 2019-10-14 Cell current measurement for three-dimensional memory

Publications (2)

Publication Number Publication Date
TWI713043B true TWI713043B (en) 2020-12-11
TW202115737A TW202115737A (en) 2021-04-16

Family

ID=69753518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147287A TWI713043B (en) 2019-10-14 2019-12-24 Cell current measurement method for three-dimensional memory

Country Status (5)

Country Link
JP (1) JP7177291B2 (en)
KR (1) KR102646663B1 (en)
CN (1) CN110892274B (en)
TW (1) TWI713043B (en)
WO (1) WO2021072577A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689874A (en) * 2020-12-16 2021-04-20 长江存储科技有限责任公司 Page buffer circuit with bit line selection transistor
CN113205854B (en) * 2021-04-28 2023-09-19 西安紫光国芯半导体有限公司 Test circuit, method and three-dimensional chip thereof
CN113782538B (en) * 2021-09-07 2023-12-26 长江存储科技有限责任公司 Three-dimensional memory and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108627A1 (en) * 2004-11-24 2006-05-25 Samsung Electronics Co., Ltd. NAND flash memory devices including multi-layer memory cell transistor structures and methods of fabricating the same
US20130070506A1 (en) * 2011-09-15 2013-03-21 Elpida Memory Inc. Semiconductor device having stacked layers
US20140043907A1 (en) * 2012-08-08 2014-02-13 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for voltage trimming thereof
US9082500B1 (en) * 2014-01-10 2015-07-14 Ememory Technology Inc. Non-volatile memory
US9691473B2 (en) * 2015-09-22 2017-06-27 Sandisk Technologies Llc Adaptive operation of 3D memory
US20190237472A1 (en) * 2018-01-29 2019-08-01 SK Hynix Inc. Semiconductor memory device of three-dimensional structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001564B1 (en) * 1999-01-26 2000-01-24 広島日本電気株式会社 Semiconductor memory test circuit
KR100381955B1 (en) * 2001-01-03 2003-04-26 삼성전자주식회사 Flash memory device with cell current measuring scheme using a write driver
JP4358056B2 (en) * 2004-07-28 2009-11-04 東芝メモリシステムズ株式会社 Semiconductor memory
US7830729B2 (en) * 2007-06-15 2010-11-09 Micron Technology, Inc. Digital filters with memory
KR100880316B1 (en) 2007-07-25 2009-01-28 주식회사 하이닉스반도체 Memory device and method of reading the same
US9472284B2 (en) * 2012-11-19 2016-10-18 Silicon Storage Technology, Inc. Three-dimensional flash memory system
US9001584B2 (en) * 2013-02-28 2015-04-07 Micron Technology, Inc. Sub-block decoding in 3D memory
US9142324B2 (en) 2013-09-03 2015-09-22 Sandisk Technologies Inc. Bad block reconfiguration in nonvolatile memory
US9830998B2 (en) 2015-05-19 2017-11-28 Sandisk Technologies Llc Stress patterns to detect shorts in three dimensional non-volatile memory
US9343156B1 (en) * 2015-06-25 2016-05-17 Sandisk Technologies Inc. Balancing programming speeds of memory cells in a 3D stacked memory
KR102398666B1 (en) * 2015-08-19 2022-05-16 삼성전자주식회사 Non volatile memory devices and non volatile memory system comprising thereof
US9715924B2 (en) * 2015-10-22 2017-07-25 Sandisk Technologies Llc Three dimensional non-volatile memory with current sensing programming status
KR102384654B1 (en) * 2016-05-17 2022-04-11 실리콘 스토리지 테크놀로지 인크 Array of three-gate flash memory cells with individual memory cell read, program and erase
CN106920797B (en) * 2017-03-08 2018-10-12 长江存储科技有限责任公司 Memory construction and preparation method thereof, the test method of memory
KR102508522B1 (en) 2017-11-09 2023-03-10 삼성전자주식회사 Three-dimensional semiconductor memory device and method of detecting electrical failure thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108627A1 (en) * 2004-11-24 2006-05-25 Samsung Electronics Co., Ltd. NAND flash memory devices including multi-layer memory cell transistor structures and methods of fabricating the same
US20130070506A1 (en) * 2011-09-15 2013-03-21 Elpida Memory Inc. Semiconductor device having stacked layers
US20140043907A1 (en) * 2012-08-08 2014-02-13 Kabushiki Kaisha Toshiba Nonvolatile memory device and method for voltage trimming thereof
US9082500B1 (en) * 2014-01-10 2015-07-14 Ememory Technology Inc. Non-volatile memory
US9691473B2 (en) * 2015-09-22 2017-06-27 Sandisk Technologies Llc Adaptive operation of 3D memory
US20190237472A1 (en) * 2018-01-29 2019-08-01 SK Hynix Inc. Semiconductor memory device of three-dimensional structure

Also Published As

Publication number Publication date
TW202115737A (en) 2021-04-16
JP7177291B2 (en) 2022-11-22
WO2021072577A1 (en) 2021-04-22
CN110892274B (en) 2021-01-29
KR20220005036A (en) 2022-01-12
KR102646663B1 (en) 2024-03-13
JP2022534758A (en) 2022-08-03
CN110892274A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
TWI713043B (en) Cell current measurement method for three-dimensional memory
TWI717134B (en) Method for reading three-dimension flash memory
TWI445137B (en) One-time programmable memory, electronic system, electrical fuse memory, programmable resistive memory and method for the same
US8631383B2 (en) Integrated circuits, standard cells, and methods for generating a layout of an integrated circuit
KR102007271B1 (en) Thermally assisted flash memory with diode strapping
US20200411594A1 (en) 3d semiconductor device and structure
TW201719669A (en) Anti-fuse memory structures and methods of operating anti-fuse memory
US10325651B2 (en) 3D semiconductor device with stacked memory
TWI738549B (en) Erasing method of a 3d nand flash memory
US11800696B2 (en) Thin film transistor random access memory
US20230363133A1 (en) Memory Device and Method for Forming Thereof
US20240081036A1 (en) Thin film transistor random access memory
CN105742287A (en) Memory device
TWI785354B (en) Method and apparatus for data erasure in memory devices
US11785756B2 (en) Thin film transistor random access memory
US20230420007A1 (en) Memory device
US20230307362A1 (en) Semiconductor device
US20230403864A1 (en) Ferroelectric tunnel junction memory devices with enhanced read window
TW202329416A (en) Semiconductor device, memory device and forming method of semiconductor device