TWI711804B - Vehicle navigation device for self-driving cars - Google Patents

Vehicle navigation device for self-driving cars Download PDF

Info

Publication number
TWI711804B
TWI711804B TW108116793A TW108116793A TWI711804B TW I711804 B TWI711804 B TW I711804B TW 108116793 A TW108116793 A TW 108116793A TW 108116793 A TW108116793 A TW 108116793A TW I711804 B TWI711804 B TW I711804B
Authority
TW
Taiwan
Prior art keywords
navigation
navigation device
module
self
vehicle
Prior art date
Application number
TW108116793A
Other languages
Chinese (zh)
Other versions
TW202043704A (en
Inventor
許典雅
張友鵬
夏文駿
黃郁鈞
Original Assignee
宜陞有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜陞有限公司 filed Critical 宜陞有限公司
Priority to TW108116793A priority Critical patent/TWI711804B/en
Priority to CN202010277612.0A priority patent/CN111947642B/en
Priority to KR1020200057948A priority patent/KR102322538B1/en
Priority to JP2020085561A priority patent/JP2020187126A/en
Application granted granted Critical
Publication of TW202043704A publication Critical patent/TW202043704A/en
Publication of TWI711804B publication Critical patent/TWI711804B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Disclosed is a vehicle navigation device for self-driving cars, comprising a first navigation device, a second navigation device and a motion control device, the first navigation device including a 3D-LiDAR module, the second navigation device including a GNSS module, and according to respective confidence levels of the first navigation device and the second navigation device, the motion control device using one navigation result selected from a first navigation result of the first navigation device and a second navigation result of the second navigation device to control the self-driving cars to autonomously drive in a self-driving area.

Description

自駕車輛之車輛導航設備Vehicle navigation equipment for self-driving vehicles

本發明相關於一種自動駕駛車輛,特別是相關於一種自駕車輛之車輛導航設備。The present invention relates to a self-driving vehicle, in particular to a vehicle navigation device for a self-driving vehicle.

自動駕駛車輛,又稱為無人駕駛車輛、電腦駕駛車輛,是一種能夠根據環境感測結果及少量或無須人類操作而自動行駛的車輛。近年來,隨著對於車輛的決策判斷、命令傳達、機構動作等的研究不斷投入,自動駕駛車輛的技術也取得飛躍性的發展。An autonomous vehicle, also known as an unmanned vehicle or a computer-driven vehicle, is a vehicle that can drive automatically based on the results of environmental sensing and little or no human operation. In recent years, with the continuous investment in research on vehicle decision-making and judgment, command transmission, mechanism actions, etc., the technology of autonomous vehicles has also achieved rapid development.

自動駕駛車輛的行駛仰賴於導航裝置,無論是行駛路徑的規劃或即時路況的應變,導航裝置都需要在精準定位下才能作出正確的判斷,得到準確的導航結果。The driving of self-driving vehicles relies on navigation devices. Whether it is the planning of driving paths or the strain of real-time road conditions, the navigation devices need to make correct judgments and obtain accurate navigation results under precise positioning.

目前,自動駕駛車輛的其中一個主流應用是在有限區域內執行高等級(等級4以上)的自動駕駛。在此類應用中,自動駕駛車輛通常是沿著有限區域內的一般車用道路行駛,如此的車用道路其路面狀態及道路環境單純,故一般市售的導航裝置大多有能力因應,提供堪用的導航結果。Currently, one of the mainstream applications of autonomous vehicles is to perform high-level (level 4 and above) autonomous driving in a limited area. In such applications, self-driving vehicles usually drive along general car roads in a limited area. Such car roads have simple road conditions and road environments, so most of the navigation devices on the market are capable of responding and providing Use the navigation results.

然而,當自動駕駛車輛應用作為行駛在高爾夫球場的球道及車道兩方面的高爾夫球車時,因路面狀態及道路環境等條件不再單純,而是會隨著車道的柏油路及球道的草皮有很大的變化,致使習知的導航裝置只有在自動駕駛車輛行駛於車道時的單方面才能提供堪用的導航結果,而在自動駕駛車輛行駛於球道時則容易發生誤判及迷航。However, when self-driving vehicles are used as golf carts driving on both the fairway and lane of a golf course, the conditions such as the road surface and road environment are no longer simple, but will follow the asphalt of the lane and the turf of the fairway. Significant changes have caused the conventional navigation device to provide usable navigation results only unilaterally when the autonomous vehicle is driving in the lane, and misjudgment and lost navigation may easily occur when the autonomous vehicle is driving in the lane.

鑒於以上所述,習知的導航裝置無法適應路面狀態及道路環境等條件的劇烈變化,而有導致自動駕駛車輛技術難以應用在高爾夫球場中的問題。In view of the above, the conventional navigation device cannot adapt to the drastic changes in road conditions and road environment conditions, and there is a problem that it is difficult to apply autonomous driving vehicle technology to golf courses.

緣此,本發明的目的即在提供一種自駕車輛之車輛導航設備,能夠對於應用在高爾夫球場中行駛的自駕車輛穩定地提供準確的導航結果。For this reason, the purpose of the present invention is to provide a vehicle navigation device for self-driving vehicles, which can stably provide accurate navigation results for self-driving vehicles used in golf courses.

本發明為解決習知技術之問題所採用之技術手段係提供一種自駕車輛之車輛導航設備,係以一高爾夫球場的球道作為一自駕區域,而在該自駕區域中導航一自駕車輛,該自駕車輛之車輛導航設備包含:一第一導航裝置,包括一三維光學雷達模組、一第一定位模組及一第一路徑規劃模組,該第一定位模組連接於該三維光學雷達模組,該第一路徑規劃模組連接於該第一定位模組,而根據該三維光學雷達模組之感測及該第一定位模組與該第一路徑規劃模組之運算而得到對於該自駕區域的一第一導航結果;一第二導航裝置,包括一全球衛星導航系統模組、一第二定位模組及一第二路徑規劃模組,該第二定位模組連接於該全球衛星導航系統模組,該第二路徑規劃模組連接於該第二定位模組,而根據該全球衛星導航系統模組之感測及該第二定位模組與該第二路徑規劃模組之運算而得到對於該自駕區域的一第二導航結果;以及一運動控制裝置,包括一導航選擇切換模組及一運動控制模組,該導航選擇切換模組連接於該運動控制模組,該導航選擇切換模組經設置而根據該第一導航裝置及該第二導航裝置的個別的導航信賴水準值,而將該運動控制模組自該第一導航裝置切換成連接於該第二導航裝置或是將該運動控制模組自該第二導航裝置切換成連接於該第一導航裝置,而使該運動控制模組根據該第一導航裝置之第一導航結果及該第二導航裝置之第二導航結果中單一個導航結果而控制該自駕車輛在該自駕區域中自動駕駛,其中該第一導航裝置之導航信賴水準值係根據該三維光學雷達模組及該第一定位模組的運算機率模型而取得,該第二導航裝置之導航信賴水準值係根據該全球衛星導航系統模組及該第二定位模組之運算資訊以及根據該自駕車輛的車輛動態暨道路動態擷取資訊而取得。The technical means adopted by the present invention to solve the problems of the conventional technology is to provide a vehicle navigation device for a self-driving vehicle. The fairway of a golf course is used as a self-driving area, and a self-driving vehicle is navigated in the self-driving area. The vehicle navigation equipment includes: a first navigation device including a three-dimensional optical radar module, a first positioning module and a first path planning module, the first positioning module is connected to the three-dimensional optical radar module, The first path planning module is connected to the first positioning module, and according to the sensing of the three-dimensional optical radar module and the calculation of the first positioning module and the first path planning module, the area for the self-driving area A first navigation result; a second navigation device, including a global satellite navigation system module, a second positioning module and a second path planning module, the second positioning module is connected to the global satellite navigation system Module, the second path planning module is connected to the second positioning module, and obtained according to the sensing of the global satellite navigation system module and the calculation of the second positioning module and the second path planning module For a second navigation result of the self-driving area; and a motion control device, including a navigation selection switching module and a motion control module, the navigation selection switching module is connected to the motion control module, the navigation selection switching mode The group is set to switch the motion control module from the first navigation device to connect to the second navigation device or to switch the motion control module from the first navigation device to the second navigation device according to the respective navigation trust level values of the first navigation device and the second navigation device. The motion control module is switched from the second navigation device to be connected to the first navigation device, so that the motion control module is based on the first navigation result of the first navigation device and the second navigation result of the second navigation device A single navigation result is used to control the self-driving vehicle to automatically drive in the self-driving area, wherein the navigation trust level value of the first navigation device is obtained according to the calculation probability model of the three-dimensional optical radar module and the first positioning module, The navigation trust level value of the second navigation device is obtained based on the calculation information of the global satellite navigation system module and the second positioning module, and based on the vehicle dynamics and road dynamics of the self-driving vehicle.

在本發明的一實施例中係提供一種自駕車輛之車輛導航設備,其中該第一定位模組係為一即時定位暨地圖構建模組。In an embodiment of the present invention, a vehicle navigation device for a self-driving vehicle is provided, wherein the first positioning module is a real-time positioning and map construction module.

在本發明的一實施例中係提供一種自駕車輛之車輛導航設備,其中該第一定位模組所使用的地圖資料包括高精度電子地圖資料。In one embodiment of the present invention, a vehicle navigation device for a self-driving vehicle is provided, wherein the map data used by the first positioning module includes high-precision electronic map data.

在本發明的一實施例中係提供一種自駕車輛之車輛導航設備,其中該高精度電子地圖資料包括雷射點雲地圖資料、地理資訊系統地圖資料及經緯座標資料。In an embodiment of the present invention, a vehicle navigation device for a self-driving vehicle is provided, wherein the high-precision electronic map data includes laser point cloud map data, geographic information system map data, and latitude and longitude coordinate data.

在本發明的一實施例中係提供一種自駕車輛之車輛導航設備,其中該第二定位模組包括一慣性測量單元、一卡爾曼濾波器單元、一地圖匹配單元及一位置增強單元,該卡爾曼濾波器單元連接於該全球衛星導航系統模組及該慣性測量單元,該地圖匹配單元連接於該卡爾曼濾波器單元,該位置增強單元連接於該地圖匹配單元。In an embodiment of the present invention, a vehicle navigation device for a self-driving vehicle is provided, wherein the second positioning module includes an inertial measurement unit, a Kalman filter unit, a map matching unit, and a position enhancement unit. The Mann filter unit is connected to the global satellite navigation system module and the inertial measurement unit, the map matching unit is connected to the Kalman filter unit, and the position enhancement unit is connected to the map matching unit.

在本發明的一實施例中係提供一種自駕車輛之車輛導航設備,其中該第二定位模組所使用的地圖資料包括地理資訊系統地圖資料及經緯座標資料。In one embodiment of the present invention, a vehicle navigation device for a self-driving vehicle is provided, wherein the map data used by the second positioning module includes geographic information system map data and latitude and longitude coordinate data.

經由本發明所採用之技術手段,自駕車輛之車輛導航設備能夠因應路面狀態及道路環境等條件的變化,隨時切換成使用具有較佳導航信賴水準值的導航結果。藉此,無論自駕車輛是行駛在一般道路、高爾夫球場的球道或是在二者之間往來,自駕車輛之車輛導航設備都能夠穩定地提供準確的導航結果,以避免自駕車輛發生誤判或迷航,從而確保乘客的安全,給予良好的搭乘體驗。除此之外,由於本發明的自駕車輛之車輛導航設備切換使用二組導航裝置,故作為其導航裝置,能夠針對不同的路面狀態及道路環境個別選用低泛用性但獨特性高且較為廉價的導航裝置,而無須為了能同時適用多種道路條件選用高泛用性但價格極度昂貴的單一台導航裝置。因此,本發明的自駕車輛之車輛導航設備在生產成本上比起習知技術更具優勢。Through the technical means adopted by the present invention, the vehicle navigation equipment of self-driving vehicles can switch to use navigation results with better navigation trust level values at any time in response to changes in road conditions and road environment conditions. In this way, regardless of whether the self-driving vehicle is driving on a normal road, a golf course, or moving between the two, the vehicle navigation equipment of the self-driving vehicle can stably provide accurate navigation results to avoid misjudgment or loss of the self-driving vehicle. So as to ensure the safety of passengers and give a good riding experience. In addition, since the vehicle navigation device of the self-driving vehicle of the present invention switches to use two sets of navigation devices, as its navigation device, it can be individually selected for different road conditions and road environments with low versatility but high uniqueness and relatively cheap It is not necessary to select a single navigation device with high versatility but extremely expensive price in order to be able to simultaneously adapt to multiple road conditions. Therefore, the vehicle navigation device of the self-driving vehicle of the present invention is more advantageous than the conventional technology in terms of production cost.

以下根據第1圖及第2圖,而說明本發明的實施方式。該說明並非為限制本發明的實施方式,而為本發明之實施例的一種。Hereinafter, an embodiment of the present invention will be described based on Fig. 1 and Fig. 2. This description is not intended to limit the implementation of the present invention, but is a kind of embodiment of the present invention.

如第1圖及第2圖所示,依據本發明的一實施例的一種自駕車輛之車輛導航設備100係以一高爾夫球場的球道作為一自駕區域A,而在該自駕區域A中導航一自駕車輛C。該自駕車輛之車輛導航設備100包含:一第一導航裝置1、一第二導航裝置2及一運動控制裝置3。As shown in Figures 1 and 2, a car navigation device 100 for a self-driving vehicle according to an embodiment of the present invention uses a golf course fairway as a self-driving area A, and navigating a self-driving area in the self-driving area A Vehicle C. The vehicle navigation device 100 for a self-driving vehicle includes: a first navigation device 1, a second navigation device 2 and a motion control device 3.

如第1圖所示,該第一導航裝置1包括一三維光學雷達模組11、一第一定位模組12及一第一路徑規劃模組13。該第一定位模組12連接於該三維光學雷達模組11,該第一路徑規劃模組13連接於該第一定位模組12,而根據該三維光學雷達模組11之感測及該第一定位模組12與該第一路徑規劃模組13之運算而得到對於該自駕區域A的一第一導航結果N1。As shown in FIG. 1, the first navigation device 1 includes a three-dimensional optical radar module 11, a first positioning module 12 and a first path planning module 13. The first positioning module 12 is connected to the 3D optical radar module 11, the first path planning module 13 is connected to the first positioning module 12, and according to the sensing of the 3D optical radar module 11 and the second The operation of a positioning module 12 and the first path planning module 13 obtains a first navigation result N1 for the self-driving area A.

具體而言,該三維光學雷達模組11係為使用光學雷達(light detection and ranging;LiDAR)的模組。LiDAR是一種光學遙感技術,其原理係藉由以脈衝雷射光照射目標並以感測器量測反射脈衝而量測與目標間的距離。該第一定位模組12在本實施例中係為一即時定位暨地圖構建(Simultaneous Localization and Mapping;SLAM)模組,即時定位暨地圖構建的概念係在構建或更新未知環境地圖的同時追蹤所在位置,從而達到同時定位和地圖構建的目的。該第一路徑規劃模組13用於執行路徑規劃(Path Planning),模擬得出自駕車輛的運動路徑。Specifically, the three-dimensional optical radar module 11 is a module using optical radar (light detection and ranging; LiDAR). LiDAR is an optical remote sensing technology. Its principle is to measure the distance to the target by irradiating the target with pulsed laser light and measuring the reflected pulse with the sensor. The first positioning module 12 is a real-time localization and map construction (Simultaneous Localization and Mapping; SLAM) module in this embodiment. The concept of real-time localization and map construction is to track the location while constructing or updating an unknown environment map. Location, so as to achieve the purpose of simultaneous positioning and map construction. The first path planning module 13 is used for executing path planning (Path Planning), and simulating the movement path of the self-driving vehicle.

如第1圖所示,依據本發明的實施例的自駕車輛之車輛導航設備100,該第一定位模組12所使用的地圖資料包括高精度電子地圖(HD Map)資料M,其中在本實施例中,該高精度電子地圖資料M包括雷射點雲地圖(Laser Point Cloud Map)資料M1、地理資訊系統(Geographic Information System;GIS)地圖資料M2及經緯座標資料M3。具體而言,在本實施例中,該第一導航裝置1運用該三維光學雷達模組11等所提供的感測資訊,並使用包含該雷射點雲地圖資料M1、該地理資訊系統地圖資料M2及該經緯座標資料M3的該高精度電子地圖資料M,達成自主定位,而得到對於該自駕區域A的該第一導航結果N1。As shown in FIG. 1, according to the car navigation device 100 for a self-driving vehicle according to the embodiment of the present invention, the map data used by the first positioning module 12 includes high-precision electronic map (HD Map) data M. In an example, the high-precision electronic map data M includes Laser Point Cloud Map data M1, Geographic Information System (GIS) map data M2, and latitude and longitude coordinate data M3. Specifically, in this embodiment, the first navigation device 1 uses the sensing information provided by the three-dimensional optical radar module 11, etc., and uses the laser point cloud map data M1 and the geographic information system map data M2 and the high-precision electronic map data M of the latitude and longitude coordinate data M3 achieve autonomous positioning, and the first navigation result N1 for the self-driving area A is obtained.

如第1圖所示,該第二導航裝置2包括一全球衛星導航系統模組21、一第二定位模組22及一第二路徑規劃模組23,該第二定位模組22連接於該全球衛星導航系統模組21,該第二路徑規劃模組23連接於該第二定位模組22,而根據該全球衛星導航系統模組21之感測及該第二定位模組22與該第二路徑規劃模組23之運算而得到對於該自駕區域A的一第二導航結果N2。As shown in Figure 1, the second navigation device 2 includes a global satellite navigation system module 21, a second positioning module 22, and a second path planning module 23. The second positioning module 22 is connected to the The global satellite navigation system module 21, the second path planning module 23 is connected to the second positioning module 22, and according to the sensing of the global satellite navigation system module 21 and the second positioning module 22 and the second positioning module 22 The operation of the second path planning module 23 obtains a second navigation result N2 for the self-driving area A.

具體而言,該全球衛星導航系統模組21係為使用全球衛星導航系統(Global Navigation Satellite System;GNSS)的模組,例如美國的全球定位系統(Global Positioning System;GPS)便是全球衛星導航系統的其中一種。如第1圖所示,該第二定位模組22在本實施例中包括一慣性測量單元221、一卡爾曼濾波器(Kalman Filter)單元222、一地圖匹配(Map Matching)單元223及一位置增強(Position Enhancement)單元224。該卡爾曼濾波器單元222連接於該全球衛星導航系統模組21及該慣性測量單元221,該地圖匹配單元223連接於該卡爾曼濾波器單元222,該位置增強單元224連接於該地圖匹配單元223。該第二路徑規劃模組23也是執行路徑規劃的模組,用於模擬得出自駕車輛的運動路徑。Specifically, the global navigation satellite system module 21 is a module that uses the Global Navigation Satellite System (GNSS). For example, the Global Positioning System (GPS) of the United States is the Global Navigation Satellite System (GPS). One of them. As shown in Figure 1, the second positioning module 22 in this embodiment includes an inertial measurement unit 221, a Kalman filter unit 222, a map matching (Map Matching) unit 223, and a position Enhancement (Position Enhancement) unit 224. The Kalman filter unit 222 is connected to the global satellite navigation system module 21 and the inertial measurement unit 221, the map matching unit 223 is connected to the Kalman filter unit 222, and the position enhancement unit 224 is connected to the map matching unit 223. The second path planning module 23 is also a module for executing path planning, and is used to simulate the movement path of the self-driving vehicle.

如第1圖所示,依據本發明的實施例的自駕車輛之車輛導航設備100,該第二定位模組22所使用的地圖資料包括地理資訊系統地圖資料M2及經緯座標資料M3。相似地,該第二導航裝置2運用該全球衛星導航系統模組21等所提供的感測資訊,並使用該地理資訊系統地圖資料M2及該經緯座標資料M3,達成自主定位,而得到對於該自駕區域A的該第二導航結果N2。As shown in FIG. 1, according to the vehicle navigation device 100 for a self-driving vehicle according to an embodiment of the present invention, the map data used by the second positioning module 22 includes geographic information system map data M2 and latitude and longitude coordinate data M3. Similarly, the second navigation device 2 uses the sensing information provided by the global satellite navigation system module 21, etc., and uses the geographic information system map data M2 and the latitude and longitude coordinate data M3 to achieve autonomous positioning, and obtain the The second navigation result N2 of the self-driving area A.

該運動控制裝置3包括一導航選擇切換模組31及一運動控制模組32。該導航選擇切換模組31連接於該運動控制模組32,該導航選擇切換模組31經設置而根據該第一導航裝置1及該第二導航裝置2的個別的導航信賴水準值L1、L2,而將該運動控制模組32自該第一導航裝置1切換成連接於該第二導航裝置2或是將該運動控制模組32自該第二導航裝置2切換成連接於該第一導航裝置1,而使該運動控制模組32根據該第一導航裝置1之第一導航結果N1及該第二導航裝置2之第二導航結果N2中單一個導航結果而控制該自駕車輛C在該自駕區域A中自動駕駛。The motion control device 3 includes a navigation selection switching module 31 and a motion control module 32. The navigation selection switching module 31 is connected to the motion control module 32, and the navigation selection switching module 31 is set to be based on the respective navigation trust level values L1, L2 of the first navigation device 1 and the second navigation device 2 , And switch the motion control module 32 from the first navigation device 1 to connect to the second navigation device 2 or switch the motion control module 32 from the second navigation device 2 to connect to the first navigation device Device 1, so that the motion control module 32 controls the self-driving vehicle C in the first navigation result N1 of the first navigation device 1 and the second navigation result N2 of the second navigation device 2 Autopilot in self-driving zone A.

依據本發明的實施例的自駕車輛之車輛導航設備100,該導航信賴水準值L1、L2是針對該第一導航裝置1之第一導航結果N1及該第二導航裝置2之第二導航結果N2的信賴水準(Confidence Level)的估計值。信賴水準(Confidence Level)是統計學中用於評估對象結果的準確性,即,可信賴的程度,的一個指標。在本發明中,該第一導航裝置1之導航信賴水準值L1及該第二導航裝置2之導航信賴水準值L2則是分別用於評估該第一導航裝置1之第一導航結果N1及該第二導航裝置2之第二導航結果N2的準確性,其中該第一導航裝置1之導航信賴水準值L1係根據該三維光學雷達模組11及該第一定位模組12的運算機率模型而取得,該第二導航裝置2之導航信賴水準值L2係根據該全球衛星導航系統模組21及該第二定位模組22之運算資訊以及根據該自駕車輛C的車輛動態暨道路動態擷取資訊而取得。According to the vehicle navigation device 100 for a self-driving vehicle according to an embodiment of the present invention, the navigation trust level values L1 and L2 are for the first navigation result N1 of the first navigation device 1 and the second navigation result N2 of the second navigation device 2 The estimated value of the Confidence Level. Confidence Level (Confidence Level) is an indicator used in statistics to evaluate the accuracy of the results of an object, that is, the degree of trustworthiness. In the present invention, the navigation trust level value L1 of the first navigation device 1 and the navigation trust level value L2 of the second navigation device 2 are respectively used to evaluate the first navigation result N1 of the first navigation device 1 and the The accuracy of the second navigation result N2 of the second navigation device 2, wherein the navigation trust level value L1 of the first navigation device 1 is based on the calculation probability model of the three-dimensional optical radar module 11 and the first positioning module 12 Obtained, the navigation trust level value L2 of the second navigation device 2 is obtained based on the calculation information of the global satellite navigation system module 21 and the second positioning module 22 and the vehicle dynamics and road dynamics of the self-driving vehicle C And achieved.

如第2圖所示,在使用有該自駕車輛之車輛導航設備100的自駕車輛C應用在高爾夫球場(該自駕區域A)的情況下,當該自駕車輛C行駛於車道時,該自駕車輛之車輛導航設備100可選擇導航信賴水準值較高的導航結果(例如,第一導航結果N1),而據以控制該自駕車輛C在該自駕區域A中自動駕駛。並且,隨著路面狀態及道路環境的劇烈改變(例如,自車道進入球道或是自球道回到車道),該自駕車輛之車輛導航設備100隨時可切換為選擇當下導航信賴水準值較高的導航結果(例如,自該第一導航結果N1改為選擇該第二導航結果N2或是自該第二導航結果N2返回到選擇該第一導航結果N1),而據以控制該自駕車輛C在該自駕區域A中自動駕駛。當然,導航結果的切換選擇方式並不以上述選擇導航信賴水準值較高者的方式為限。在其他實施方式中,亦可針對該第一導航裝置1之導航信賴水準值L1及該第二導航裝置2之導航信賴水準值L2個別設定切換用的閾值(上限閾值及/或下限閾值),只有在目前被選擇的導航結果的導航信賴水準值低於下限閾值及/或目前未被選擇的導航結果的導航信賴水準值高於上限閾值時,該導航選擇切換模組31才會進行導航裝置之切換連接。As shown in Figure 2, when the self-driving vehicle C using the vehicle navigation device 100 of the self-driving vehicle is applied to a golf course (the self-driving area A), when the self-driving vehicle C is driving in the lane, the The vehicle navigation device 100 can select a navigation result with a higher navigation reliability level (for example, the first navigation result N1), and accordingly control the self-driving vehicle C to automatically drive in the self-driving area A. Moreover, as the road surface conditions and road environment change drastically (for example, entering the fairway from the lane or returning from the fairway to the lane), the vehicle navigation device 100 of the self-driving vehicle can switch to a navigation with a higher reliability level of the current navigation at any time Result (for example, changing from the first navigation result N1 to selecting the second navigation result N2 or returning from the second navigation result N2 to selecting the first navigation result N1), and thereby controlling the self-driving vehicle C in the Autopilot in self-driving zone A. Of course, the switching selection method of the navigation result is not limited to the above-mentioned method of selecting a navigation trust level higher. In other embodiments, switching thresholds (upper threshold and/or lower threshold) may be individually set for the navigation reliability level value L1 of the first navigation device 1 and the navigation reliability level value L2 of the second navigation device 2, Only when the navigation trust level of the currently selected navigation result is lower than the lower threshold and/or the navigation trust level of the currently unselected navigation result is higher than the upper threshold, the navigation selection switching module 31 will perform the navigation device To switch the connection.

藉由上述方式,本發明的自駕車輛之車輛導航設備100能夠因應路面狀態及道路環境等條件的變化,隨時切換成使用具有較佳導航信賴水準值的導航結果(該第一導航結果N1及該第二導航結果N2中單一個導航結果)。藉此,無論該自駕車輛C是行駛在一般道路、高爾夫球場的球道或是在二者之間往來,該自駕車輛之車輛導航設備100都能夠穩定地提供準確的導航結果,以避免該自駕車輛C發生誤判或迷航,從而確保乘客的安全,給予良好的搭乘體驗。除此之外,由於本發明的自駕車輛之車輛導航設備100切換使用二組導航裝置(該第一導航裝置1及該第二導航裝置2),故作為其導航裝置,能夠針對不同的路面狀態及道路環境個別選用低泛用性但獨特性高且較為廉價的導航裝置,而無須為了能同時適用多種道路條件選用高泛用性但價格極度昂貴的單一台導航裝置。因此,本發明的自駕車輛之車輛導航設備100在生產成本上比起習知技術更具優勢。Through the above method, the vehicle navigation device 100 for self-driving vehicles of the present invention can switch to using navigation results with better navigation reliability (the first navigation result N1 and the There is a single navigation result in the second navigation result N2). In this way, whether the self-driving vehicle C is driving on a general road, a golf course, or moving between the two, the vehicle navigation device 100 of the self-driving vehicle can stably provide accurate navigation results to avoid the self-driving vehicle C. A misjudgment or a trip occurs to ensure the safety of passengers and give a good ride experience. In addition, since the vehicle navigation device 100 of the self-driving vehicle of the present invention switches to use two sets of navigation devices (the first navigation device 1 and the second navigation device 2), as its navigation device, it can target different road conditions. It is not necessary to select a single navigation device with high versatility but extremely expensive in order to be able to adapt to various road conditions at the same time. Therefore, the vehicle navigation device 100 for a self-driving vehicle of the present invention has an advantage over the prior art in terms of production cost.

以上之敘述以及說明僅為本發明之較佳實施例之說明,對於此項技術具有通常知識者當可依據以下所界定申請專利範圍以及上述之說明而作其他之修改,惟此些修改仍應是為本發明之發明精神而在本發明之權利範圍中。The above descriptions and descriptions are only descriptions of the preferred embodiments of the present invention. Those with general knowledge of this technology should make other modifications based on the scope of patent application defined below and the above descriptions, but these modifications should still be made. It is the spirit of the invention and falls within the scope of the rights of the invention.

100 100 自駕車輛之車輛導航設備 Vehicle navigation equipment for self-driving vehicles 1 1 第一導航裝置 First navigation device 11 11 三維光學雷達模組 Three-dimensional optical radar module 12 12 第一定位模組 The first positioning module 13 13 第一路徑規劃模組 The first path planning module 2 2 第二導航裝置 Second navigation device 21 twenty one 全球衛星導航系統模組 Global Navigation Satellite System Module 22 twenty two 第二定位模組 The second positioning module 221 221 慣性測量單元 Inertial measurement unit 222 222 卡爾曼濾波器單元 Kalman filter unit 223 223 地圖匹配單元 Map matching unit 224 224 位置增強單元 Position enhancement unit 23 twenty three 第二路徑規劃模組 Second path planning module 3 3 運動控制裝置 Motion control device 31 31 導航選擇切換模組 Navigation selection switch module 32 32 運動控制模組 Motion control module A A 自駕區域 Self-driving area C C 自駕車輛 Self-driving vehicle L1 L1 導航信賴水準值 Navigation reliability level L2 L2 導航信賴水準值 Navigation reliability level M M 高精度電子地圖資料 High-precision electronic map data M1 M1 雷射點雲地圖資料 Laser point cloud map data M2 M2 地理資訊系統地圖資料 Geographic Information System Map Data M3 M3 經緯座標資料 Latitude and longitude coordinate data N1 N1 第一導航結果 First navigation result N2 N2 第二導航結果 Second navigation result

[第1圖]為顯示根據本發明的一實施例的自駕車輛之車輛導航設備的示意圖; [第2圖]為顯示使用有根據本發明的實施例的自駕車輛之車輛導航設備的自駕車輛應用在高爾夫球場時的示意圖。 [Figure 1] is a schematic diagram showing a vehicle navigation device for a self-driving vehicle according to an embodiment of the present invention; [Figure 2] is a schematic diagram showing a self-driving vehicle using the vehicle navigation device of the self-driving vehicle according to an embodiment of the present invention when applied to a golf course.

100 100 自駕車輛之車輛導航設備 Vehicle navigation equipment for self-driving vehicles 1 1 第一導航裝置 First navigation device 11 11 三維光學雷達模組 Three-dimensional optical radar module 12 12 第一定位模組 The first positioning module 13 13 第一路徑規劃模組 The first path planning module 2 2 第二導航裝置 Second navigation device 21 twenty one 全球衛星導航系統模組 Global Navigation Satellite System Module 22 twenty two 第二定位模組 The second positioning module 221 221 慣性測量單元 Inertial measurement unit 222 222 卡爾曼濾波器單元 Kalman filter unit 223 223 地圖匹配單元 Map matching unit 224 224 位置增強單元 Position enhancement unit 23 twenty three 第二路徑規劃模組 Second path planning module 3 3 運動控制裝置 Motion control device 31 31 導航選擇切換模組 Navigation selection switch module 32 32 運動控制模組 Motion control module C C 自駕車輛 Self-driving vehicle L1 L1 導航信賴水準值 Navigation reliability level L2 L2 導航信賴水準值 Navigation reliability level M M 高精度電子地圖資料 High-precision electronic map data M1 M1 雷射點雲地圖資料 Laser point cloud map data M2 M2 地理資訊系統地圖資料 Geographic Information System Map Data M3 M3 經緯座標資料 Latitude and longitude coordinate data N1 N1 第一導航結果 First navigation result N2 N2 第二導航結果 Second navigation result

Claims (8)

一種自駕車輛之車輛導航設備,係以一高爾夫球場的球道作為一自駕區域,而在該自駕區域中導航一自駕車輛,該自駕車輛之車輛導航設備包含:一第一導航裝置,包括一三維光學雷達模組、一第一定位模組及一第一路徑規劃模組,該第一定位模組連接於該三維光學雷達模組,該第一路徑規劃模組連接於該第一定位模組,而根據該三維光學雷達模組之感測及該第一定位模組與該第一路徑規劃模組之運算而得到對於該自駕區域的一第一導航結果;一第二導航裝置,包括一全球衛星導航系統模組、一第二定位模組及一第二路徑規劃模組,該第二定位模組連接於該全球衛星導航系統模組,該第二路徑規劃模組連接於該第二定位模組,而根據該全球衛星導航系統模組之感測及該第二定位模組與該第二路徑規劃模組之運算而得到對於該自駕區域的一第二導航結果;以及一運動控制裝置,包括一導航選擇切換模組及一運動控制模組,該導航選擇切換模組連接於該運動控制模組,該導航選擇切換模組經設置而根據該第一導航裝置及該第二導航裝置的個別的導航信賴水準值,而將該運動控制模組自該第一導航裝置切換成連接於該第二導航裝置或是將該運動控制模組自該第二導航裝置切換成連接於該第一導航裝置,而使該運動控制模組根據該第一導航裝置之第一導航結果及該第二導航裝置之第二導航結果中單一個導航結果而控制該自駕車輛在該自駕區域中自動駕駛, 其中該第一導航裝置之導航信賴水準值係為根據該三維光學雷達模組及該第一定位模組的運算機率模型所得出用以評估該第一導航裝置之該第一導航結果的準確性之值,該第二導航裝置之導航信賴水準值係為根據該全球衛星導航系統模組及該第二定位模組之運算資訊以及根據該自駕車輛的車輛動態暨道路動態擷取資訊所得出用以評估該第二導航裝置之該第二導航結果的準確性之值。 A vehicle navigation device for a self-driving vehicle uses the fairway of a golf course as a self-driving area and navigating a self-driving vehicle in the self-driving area. The vehicle navigation device of the self-driving vehicle includes: a first navigation device including a three-dimensional optics A radar module, a first positioning module and a first path planning module, the first positioning module is connected to the three-dimensional optical radar module, the first path planning module is connected to the first positioning module, According to the sensing of the three-dimensional optical radar module and the calculation of the first positioning module and the first path planning module, a first navigation result for the self-driving area is obtained; a second navigation device includes a global Satellite navigation system module, a second positioning module and a second path planning module, the second positioning module is connected to the global satellite navigation system module, the second path planning module is connected to the second positioning Module to obtain a second navigation result for the self-driving area according to the sensing of the global satellite navigation system module and the calculation of the second positioning module and the second path planning module; and a motion control device , Including a navigation selection switching module and a motion control module, the navigation selection switching module is connected to the motion control module, and the navigation selection switching module is set according to the first navigation device and the second navigation device Individual navigation trust level value, and switch the motion control module from the first navigation device to connect to the second navigation device or switch the motion control module from the second navigation device to connect to the second navigation device A navigation device, so that the motion control module controls the self-driving vehicle to automatically drive in the self-driving area according to a single navigation result of the first navigation result of the first navigation device and the second navigation result of the second navigation device , The navigation trust level value of the first navigation device is obtained based on the calculation probability model of the three-dimensional optical radar module and the first positioning module to evaluate the accuracy of the first navigation result of the first navigation device The value of the navigation trust level of the second navigation device is obtained based on the calculation information of the global satellite navigation system module and the second positioning module, and the vehicle dynamics and road dynamics of the self-driving vehicle. To evaluate the accuracy of the second navigation result of the second navigation device. 如請求項1所述之自駕車輛之車輛導航設備,其中該第一定位模組係為一即時定位暨地圖構建模組。 The vehicle navigation device for a self-driving vehicle according to claim 1, wherein the first positioning module is a real-time positioning and map construction module. 如請求項1所述之自駕車輛之車輛導航設備,其中該第一定位模組所使用的地圖資料包括高精度電子地圖資料。 The vehicle navigation device for a self-driving vehicle according to claim 1, wherein the map data used by the first positioning module includes high-precision electronic map data. 如請求項3所述之自駕車輛之車輛導航設備,其中該高精度電子地圖資料包括雷射點雲地圖資料、地理資訊系統地圖資料及經緯座標資料。 The vehicle navigation device for a self-driving vehicle according to claim 3, wherein the high-precision electronic map data includes laser point cloud map data, geographic information system map data, and latitude and longitude coordinate data. 如請求項1所述之自駕車輛之車輛導航設備,其中該第二定位模組包括一慣性測量單元、一卡爾曼濾波器單元、一地圖匹配單元及一位置增強單元,該卡爾曼濾波器單元連接於該全球衛星導航系統模組及該慣性測量單元,該地圖匹配單元連接於該卡爾曼濾波器單元,該位置增強單元連接於該地圖匹配單元。 The vehicle navigation device for a self-driving vehicle according to claim 1, wherein the second positioning module includes an inertial measurement unit, a Kalman filter unit, a map matching unit, and a position enhancement unit, and the Kalman filter unit Connected to the global satellite navigation system module and the inertial measurement unit, the map matching unit is connected to the Kalman filter unit, and the position enhancement unit is connected to the map matching unit. 如請求項1或5所述之自駕車輛之車輛導航設備,其中該第二定位模組所使用的地圖資料包括地理資訊系統地圖資料及經緯座標資料。 The vehicle navigation device for a self-driving vehicle according to claim 1 or 5, wherein the map data used by the second positioning module includes geographic information system map data and latitude and longitude coordinate data. 如請求項1所述之自駕車輛之車輛導航設備,其中該導航選擇切換模組經設置而將該運動控制模組切換成連接於該第一導航裝置及該第二導航裝置中具有較高的該導航信賴水準值的導航裝置,而使該運動控制模組根據該 第一導航裝置之第一導航結果及該第二導航裝置之第二導航結果中具有較高的該導航信賴水準值的該導航結果而控制該自駕車輛在該自駕區域中自動駕駛。 The vehicle navigation device for a self-driving vehicle according to claim 1, wherein the navigation selection switching module is configured to switch the motion control module to be connected to the first navigation device and the second navigation device. The navigation relies on the navigation device of the level value, and makes the motion control module according to the The first navigation result of the first navigation device and the second navigation result of the second navigation device have the navigation result having a higher navigation trust level value to control the self-driving vehicle to automatically drive in the self-driving area. 如請求項1所述之自駕車輛之車輛導航設備,其中該導航選擇切換模組經設置而在該第一導航裝置及該第二導航裝置中當前所選擇連接的導航裝置的該導航信賴水準值超過一切換用的閾值時,將該運動控制模組切換成連接於該第一導航裝置及該第二導航裝置中另一個導航裝置。The vehicle navigation device for a self-driving vehicle according to claim 1, wherein the navigation selection switching module is set to provide the navigation trust level value of the navigation device currently selected and connected in the first navigation device and the second navigation device When a threshold for switching is exceeded, the motion control module is switched to be connected to the other navigation device of the first navigation device and the second navigation device.
TW108116793A 2019-05-15 2019-05-15 Vehicle navigation device for self-driving cars TWI711804B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW108116793A TWI711804B (en) 2019-05-15 2019-05-15 Vehicle navigation device for self-driving cars
CN202010277612.0A CN111947642B (en) 2019-05-15 2020-04-10 Vehicle navigation apparatus for self-driving vehicle
KR1020200057948A KR102322538B1 (en) 2019-05-15 2020-05-14 Navigation device for self-driving vehicle
JP2020085561A JP2020187126A (en) 2019-05-15 2020-05-14 Navigation facility for driverless vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108116793A TWI711804B (en) 2019-05-15 2019-05-15 Vehicle navigation device for self-driving cars

Publications (2)

Publication Number Publication Date
TW202043704A TW202043704A (en) 2020-12-01
TWI711804B true TWI711804B (en) 2020-12-01

Family

ID=73221019

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116793A TWI711804B (en) 2019-05-15 2019-05-15 Vehicle navigation device for self-driving cars

Country Status (4)

Country Link
JP (1) JP2020187126A (en)
KR (1) KR102322538B1 (en)
CN (1) CN111947642B (en)
TW (1) TWI711804B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI725611B (en) * 2019-11-12 2021-04-21 亞慶股份有限公司 Vehicle navigation switching device for golf course self-driving cars
TWI748678B (en) * 2020-10-06 2021-12-01 艾歐圖科技股份有限公司 Enhanced autonomous vehicle localization system based on ground information
KR20230081416A (en) * 2021-11-30 2023-06-07 주식회사 에스제이 테크 Smart Golf-Cart System
TWI824773B (en) * 2022-10-14 2023-12-01 財團法人車輛研究測試中心 Self-driving route planning system and method
CN116678423B (en) * 2023-05-26 2024-04-16 小米汽车科技有限公司 Multisource fusion positioning method, multisource fusion positioning device and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516623A (en) * 2012-03-15 2015-06-11 グーグル・インク Changing the behavior of autonomous vehicles based on the predicted behavior of other vehicles
US9465388B1 (en) * 2014-03-03 2016-10-11 Google Inc. Remote assistance for an autonomous vehicle in low confidence situations
US9632502B1 (en) * 2015-11-04 2017-04-25 Zoox, Inc. Machine-learning systems and techniques to optimize teleoperation and/or planner decisions
WO2018087550A2 (en) * 2016-11-09 2018-05-17 Inventive Cogs (Campbell) Limited Vehicle route guidance
US20180136651A1 (en) * 2015-11-04 2018-05-17 Zoox, Inc. Teleoperation system and method for trajectory modification of autonomous vehicles
US20190042859A1 (en) * 2017-08-02 2019-02-07 X Development Llc Systems and Methods for Determining Path Confidence for Unmanned Vehicles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138517A (en) * 2002-10-18 2004-05-13 Toyota Motor Corp On-vehicle navigation device
KR100520166B1 (en) * 2003-03-14 2005-10-10 삼성전자주식회사 Apparatus and method for locating of vehicles in navigation system
KR101454824B1 (en) * 2013-04-03 2014-11-03 국방과학연구소 System and Method for estimating positions of an autonomous mobile vehicle
TWI522258B (en) * 2013-07-08 2016-02-21 Kang Li Based on electronic map, global navigation satellite system and vehicle motion detection technology Lane identification method
KR101625486B1 (en) * 2014-11-14 2016-05-30 재단법인대구경북과학기술원 Map-based positioning system and method thereof
CN106441319B (en) * 2016-09-23 2019-07-16 中国科学院合肥物质科学研究院 A kind of generation system and method for automatic driving vehicle lane grade navigation map
JP6962007B2 (en) * 2017-06-02 2021-11-05 村田機械株式会社 Driving control device for autonomous driving trolley, autonomous driving trolley
CN108051837A (en) * 2017-11-30 2018-05-18 武汉大学 Multiple-sensor integration indoor and outdoor mobile mapping device and automatic three-dimensional modeling method
CN109084732B (en) * 2018-06-29 2021-01-12 北京旷视科技有限公司 Positioning and navigation method, device and processing equipment
CN109405824A (en) * 2018-09-05 2019-03-01 武汉契友科技股份有限公司 A kind of multi-source perceptual positioning system suitable for intelligent network connection automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516623A (en) * 2012-03-15 2015-06-11 グーグル・インク Changing the behavior of autonomous vehicles based on the predicted behavior of other vehicles
US9465388B1 (en) * 2014-03-03 2016-10-11 Google Inc. Remote assistance for an autonomous vehicle in low confidence situations
US9632502B1 (en) * 2015-11-04 2017-04-25 Zoox, Inc. Machine-learning systems and techniques to optimize teleoperation and/or planner decisions
US20180136651A1 (en) * 2015-11-04 2018-05-17 Zoox, Inc. Teleoperation system and method for trajectory modification of autonomous vehicles
WO2018087550A2 (en) * 2016-11-09 2018-05-17 Inventive Cogs (Campbell) Limited Vehicle route guidance
US20190042859A1 (en) * 2017-08-02 2019-02-07 X Development Llc Systems and Methods for Determining Path Confidence for Unmanned Vehicles

Also Published As

Publication number Publication date
CN111947642A (en) 2020-11-17
JP2020187126A (en) 2020-11-19
KR20200133184A (en) 2020-11-26
CN111947642B (en) 2022-05-13
KR102322538B1 (en) 2021-11-05
TW202043704A (en) 2020-12-01

Similar Documents

Publication Publication Date Title
TWI711804B (en) Vehicle navigation device for self-driving cars
US11216000B2 (en) System and method for estimating lane prediction errors for lane segments
Milanés et al. Autonomous vehicle based in cooperative GPS and inertial systems
US11474532B2 (en) Systems and methods for detecting anomalies in a vehicle system
Zhao et al. Dynamic motion planning for autonomous vehicle in unknown environments
上條俊介 et al. Autonomous vehicle technologies: Localization and mapping
US20160362103A1 (en) Method for providing user-defined customization of a vehicle
JP7209367B2 (en) Navigation switching equipment for golf course self-driving cars
CN108961811A (en) Parking lot vehicle positioning method, system, mobile terminal and storage medium
US10933880B2 (en) System and method for providing lane curvature estimates
US20200018605A1 (en) Systems and methods for longitudinal position correction of a vehicle using mapped landmarks
CN114879660A (en) Robot environment sensing method based on target driving
US20200209887A1 (en) System and method for adjusting control of an autonomous vehicle using crowd-source data
JP2018073010A (en) Mobile body control device, mobile body control method, and program for mobile body control device
CN211427151U (en) Automatic guide system applied to unmanned freight vehicle in closed field
De Lima et al. Sensor-based control with digital maps association for global navigation: a real application for autonomous vehicles
JP2018159752A (en) Method and device for learning map information
CN111258312B (en) Movable model, control method, device, system, equipment and storage medium thereof
Feng Technical change and development trend of automatic driving
Nastro Position and orientation data requirements for precise autonomous vehicle navigation
Miller et al. To drive is human
US20240185620A1 (en) Systems and methods for estimating grip intensity on a steering wheel
CN106908055A (en) A kind of multi-modal air navigation aid and mobile robot
Webster A localization solution for an autonomous vehicle in an urban environment
Li et al. Research on positioning and navigation of outdoor robot based on multi-sensor information