TWI711250B - 電源交換電路 - Google Patents
電源交換電路 Download PDFInfo
- Publication number
- TWI711250B TWI711250B TW108134146A TW108134146A TWI711250B TW I711250 B TWI711250 B TW I711250B TW 108134146 A TW108134146 A TW 108134146A TW 108134146 A TW108134146 A TW 108134146A TW I711250 B TWI711250 B TW I711250B
- Authority
- TW
- Taiwan
- Prior art keywords
- transistor
- power
- circuit
- bypass
- standby
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/263—Arrangements for using multiple switchable power supplies, e.g. battery and AC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3296—Power saving characterised by the action undertaken by lowering the supply or operating voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Dc-Dc Converters (AREA)
- Control Of Voltage And Current In General (AREA)
- Electronic Switches (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
用於為電子裝置供電的一種電源交換電路,包括軟起動電路、連接至備用電源的第一輸入、連接至主電源的第二輸入、以及輸出。輸出提供電壓給電子組件,且被配置以二者擇一地電性連接至第一輸入或第二輸入。當電源交換電路處於備用模式時,輸出連接至第一輸入以及備用電源。當電源交換電路處於主模式時,輸出被連接第二輸入以及主電源。當電源交換電路最初被啟動至備用模式時,軟起動電路被致能。當電源交換電路接著自主模式切換至備用模式時,軟起動電路被去能。
Description
本揭露係有關於一種電源交換電路,特別係有關於一種提供可致能及去能之軟起動功能的電源交換電路。
諸如伺服器、桌上型電腦及筆記型電腦的電子裝置,通常可根據操作模式選擇性地以不同電源供電。舉例來說,備用模式(standby mode)可使用備用電源,備用電源僅提供電子裝置維持在備用模式所需的最少量的電力。然而,主模式(main mode)所需電量可能會大於備用模式。因此,可能需要單獨的主電源來提供在主模式下操作所需的電力。電源交換電路(power source switching circuit)可被用於在備用電源與主電源之間切換。
為了防止啟動期間電流的大量湧入,主電源交換電路亦利用了軟起動(soft-start)功能,其中提供給電子裝置的電力自零緩慢地增加到整個備用電源的量。備用電力的逐漸增加避免了電子裝置組件的損壞。然而,當切換回備用電源時,軟起動功能的存在通常會導致提供給電子裝置的電力暫時降低。
因此,需要一種能夠在備用電力與主電力之間有效切換的電源交換電路;當最初切換至備用電力時,提供軟起動功能;並在當自主電力切換回備用電力時,避免暫時性之電力或電壓的降低。
本揭露多種範例直指用於為電子裝置供電的電源交換電路。於本揭露的第一實施例中,電源交換電路包括軟起動電路、第一輸入、第二輸入、以及輸出。第一輸入連接至備用電源。第二輸入連接至主電源。輸出被配置以二者擇一地進行電性連接,(i)當電源交換電路處於備用模式時,輸出被配置以電性連接至第一輸入以及備用電源,或是(ii)當電源交換電路處於主模式時,輸出被配置以電性連接第二輸入以及主電源。當電源交換電路最初被啟動至備用模式時,軟起動電路被致能。當電源交換電路接著自主模式切換至備用模式時,軟起動電路被去能。
在第一實施例的一些範例中,上述電源交換電路更包括連接至軟起動電路的一旁路電路。當電源交換電路最初被啟動至備用模式時,旁路電路為非動作,以從而致能軟起動電路。而當電源交換電路自主模式切換至備用模式時,旁路電路為動作,以從而去能軟起動電路。
在第一實施例的一些範例中,作為對輸出最初被連接至備用電源的響應,旁路電路被啟動,使得在輸出最初被連接到電源之前,旁路電路為非動作。
在第一實施例的一些範例中,當電源交換電路最初被啟動至上述備用模式時,軟起動電路使得電源交換電路的輸出逐漸地連接至備用電源,使得輸出所提供的電壓逐漸地上升至一備用電壓。輸出所提供的電壓在一備用啟動時間延遲後,達到備用電壓。
在第一實施例的一些範例中,當電源交換電路自上述主模式切換到備用模式時,輸出所提供的電壓在基本不存在的時間延遲後,自主電壓切換至備用電壓。
在第一實施例的一些範例中,上述電源交換電路 更包括主功率電晶體、備用功率電晶體、以及控制訊號。主功率電晶體選擇性地將輸出電性連接至主電源。備用功率電晶體選擇性地將輸出電性連接至備用電源。控制訊號可選擇性地操作以具有(i)備用狀態,其中輸出連接至備用電源,且自主電源斷開,以及具有(ii)主狀態,其中輸出連接至主電源,並自備用電源斷開。
在第一實施例的一些範例中,上述軟起動電路包括控制電晶體及延遲電晶體。控制電晶體的閘極連接至控制訊號,控制電晶體的汲極連接至備用電源,且控制電晶體的源極連接至接地。延遲電晶體的閘極連接至控制電晶體的汲極以及備用電源,延遲電晶體的汲極連接至備用功率電晶體的閘極,且延遲電晶體的源極連接至一RC電路。
在第一實施例的一些範例中,作為對控制訊號處於備用狀態的響應,控制電晶體關閉,以將延遲電晶體的閘極連接到備用電源,並開啟延遲電晶體。
在第一實施例的一些範例中,延遲電晶體的開啟,經由延遲電晶體的汲極與源極,將備用功率電晶體的閘極連接至RC電路, RC電路使得備用功率電晶體逐漸地開啟,並逐漸地將備用電源連接至輸出。
在第一實施例的一些範例中,RC電路包括並聯連接的一電阻及一電容,且其中RC電路的時間常數基本上與備用啟動時間延遲相等。
在第一實施例的一些範例中,控制電晶體開啟,以將延遲電晶體的閘極連接至接地,並關閉延遲電晶體,以作為對上控制訊號處於主狀態的響應。延遲電晶體的關閉,以基本上不存在的時間延遲關閉備用功率電晶體。
在第一實施例的一些範例中,上述電源交換電路更包括第一旁路電晶體及第二旁路電晶體。第一旁路電晶體的閘極連接至控制訊號,使得第一旁路電晶體關閉,以作為對控制訊號自主狀態切換至備用狀態的響應。第二旁路電晶體的閘極連接至第一旁路電晶體的汲極以及旁路電源,旁路電源選擇性地提供一邏輯高壓。
在第一實施例的一些範例中,第一旁路電晶體的源極連接至接地,且第一旁路電晶體的汲極連接至第二旁路電晶體的閘極。此外,第二旁路電晶體的源極連接至接地,且第二旁路電晶體的汲極連接備用功率電晶體的閘極。
在第一實施例的一些範例中,第二旁路電晶體的閘極被拉至一邏輯高數值,且第二旁路電晶體被開啟,以作為對控制訊號自主狀態切換至備用狀態並關閉第一旁路電晶體的響應。
在第一實施例的一些範例中,備用功率電晶體的閘極被拉至一邏輯低位準,且備用功率電晶體以基本上不存在的時間延遲開啟,以作為對控制訊號自主狀態切換至備用狀態的響應。
在第一實施例的一些範例中,第二旁路電晶體的閘極被拉至一邏輯低位準,且第二旁路電晶體被關閉,以作為對控制訊號處於主狀態且開啟第一旁路電晶體的響應。
在第一實施例的一些範例中,備用功率電晶體被拉至一邏輯高位準,且備用功率電晶體被關閉,以作為控制訊號處於主狀態的響應。
在第一實施例的一些範例中,當電源交換電路最初被啟動至備用模式時,旁路電源不會將邏輯高壓提供至第一旁路電晶體的汲極以及第二旁路電晶體的閘極,以進而致能軟起動電路。
在第一實施例的一些範例中,當電源交換電路自主模式切換至備用模式時,旁路電源將邏輯高壓提供至第一旁路電晶體的汲極以及第二旁路電晶體的閘極,以進而去能軟起動電路。
在第一實施例的一些範例中,上述電源交換電路更包括具有輸入及輸出的一功率轉換器。功率轉換器的輸入連接至電源交換電路的輸出。功率轉換器的輸出形成旁路電源。當電源交換電路在最初被啟動至備用模式後,自主模式切換至備用模式時,功率轉換器的輸出提供邏輯高壓。
上述概述並非旨於描繪本揭露之各個實施例或每個態樣。相反地,前述概述僅提供本文所闡述之一些新穎態樣及特徵的範例。當結合附圖及所附申請專利範圍時,從以下對用於實施本揭露之代表性實施例及模式的詳述中,本揭露之上述特徵與優點以及其他特徵與優點將是顯而易見的。
本揭露可以多種不同實施形式呈現。其表現於圖式並詳述於此。這些實施例為本揭露原理之範例或說明,並非旨於限制本揭露所揭露範圍。舉例來說,揭露於摘要、先前技術、發明內容(但未明確闡述於申請專利範圍)之範圍、要素及限制,上述範圍、要素及限制不應單獨地或集體地以暗示、推論或其他方式體現在申請專利範圍。為本揭露內容之詳述目的,除非特定否認,單數詞包含複數詞,反之亦然。並且字詞“包含”其意為“非限制性地包含”。此外,進似性的(approximation)用語例如“大約”、“幾乎”、“相當地”、“大概”等,可用於本揭露實施例,其意義上如“在、接近或接近在”或“在3至5%內”或“在可接受之製造公差內”或任意符合邏輯之組合。
本揭露係有關於用於為電子組件或系統供電的電源交換電路(power source switching circuit)。電源交換電路具有輸入(input),連接到備用電源(standby power source)以及主電源(main power source),電源交換電路亦具有輸出(output),連接到電子組件或系統。當電子組件或系統最初被啟動(activate)時,電源交換電路將電子組件或系統連接至備用電源。電源交換電路亦提供軟起動(soft-start)功能,當電子組件或系統最初被啟動時,軟起動功能緩慢地增加電源交換電路的輸出處所提供的電力(power)。電源交換電路可切換它的輸出,使輸出在連接至備用電源與連接至主電源之間切換。藉此,電源交換電路可經由它的輸出,在提供備用電力至電子組件或系統,與提供主(或操作)電力至電子組件或系統之間切換。當電源交換電路自主電力切換回備用電力時,軟起動功能被去能(disable),以避免輸出所提供的電壓有任何暫時性的降低。
第1圖顯示了用於為電子裝置供電的電源交換電路10。電子裝置可為伺服器、桌上型電腦、筆記型電腦、或任何其他合適之電子裝置。電源交換電路10包括電力軌(power rail)12、連接至備用電源14的第一輸入13、以及連接至主電源16的第二輸入15。經由第一輸入13或第二輸入15連接到電源交換電路10的電力或電壓被傳輸到電源交換電路10的輸出,於第1圖所示實施例中,電源交換電路10的輸出為電力軌12。
當電力軌12被連接至備用電源14時,電力軌12會提供備用電壓(standby voltage)。電源交換電路10也因此處於備用模式(standby mode)。電源交換電路10有許多不同組件連接到備用電源14。當電力軌12被連接至主電源16時,電力軌12會提供主電壓(main voltage)。電源交換電路10也因此處於主模式(main mode)。電源交換電路10包括一或多個控制訓號,這些控制訊號在備用狀態(standby state)與主狀態(main state)之間交替。控制訊號使電源交換電路在備用模式與主模式之間交替,且因此使得電力軌12在連接至備用電源14與連接至主電源16之間交替。
於第1圖所示的實施例中,電源交換電路10包括第一控制訊號18A及第二控制訊號18B。第一控制訊號18A及第二控制訊號18B皆可在備用狀態與主狀態之交替。當第一控制訊號18A及第二控制訊號18B皆處於它們的備用狀態時,電源交換電路10處於備用狀態,且電力軌12被連接至備用電源14。當第一控制訊號18A及第二控制訊號18B皆處於它們的主狀態時,電源交換電路10處於主狀態,且電力軌12被連接至主電源16。
電源交換電路10包括多個電晶體(transistor),這些電晶體被作為交換器,以交替地將電力軌12電性連接(electrically connect)至備用電源14或主電源16。當備用功率電晶體(standby power transistor)20被開啟(turn on)時,備用功率電晶體20將電力軌12電性連接至備用電源14。二極體42可連接於備用功率電晶體20與電力軌12之間,以確保電流只能自備用電源14流向電力軌12。當主功率電晶體(main power transistor)22A及主功率電晶體22B被開啟時,主功率電晶體22A及主功率電晶體22B將電力軌12電性連接至主電源16。
用於將主電源16連接到電源軌12的主功率電晶體的數量取決於主電源16所提供的最大電流。在一些實施例中(包括所繪實施例),需要複數主功率電晶體以分擔自主電源16流向電力軌12的電流。若經由連接至主電源16之電晶體並流向主電源16的電流的量,大於任何一個主功率電晶體所能承受的量,則主功率電晶體將會崩潰(break down),且提供給電子組件或系統的電力將被切斷。
電源交換電路10被電性連接至電源供應單元(power supply unit, PSU, 未圖示)。電源供應單元具有連接至主AC電源的輸入,以及用作備用電源14與主電源16的兩個輸出。電源供應單元的備用電源14連接至電源交換電路10的第一輸入13,而主電源16則連接到電源交換電路10的第二輸入15。電力軌12接著輸出用於為電子組件供電的備用電源或主電源。一般而言,可自主電源16獲得的電流消耗(current draw),高於可自備用電源14獲得的電流消耗。
當電源交換電路10及/或電源供應單元首先被啟動以提供備用電力時,電源交換電路10利用軟起動功能以防止大量的電流湧入(inrush)至電子裝置。電子裝置中的一些組件在它們完全通電前需要短暫的時間延遲(time delay),以使它們可以適當地穩定。舉例來說,電容器需要充電、電感器需要使其磁通(flux)穩定、而主動元件(例如積體電路)需要自非動作狀態(inactive state)轉換到動作狀態(active state)。
為了提供軟起動功能,電源交換電路10包括軟起動電路。電源交換電路10最初被啟動並通電到備用電源時,軟起動電路被致能(enable)。因此,電力軌12處的電壓逐漸地自零增加到備用電壓。在備用啟動時間延遲(standby activation time delay)後,電力軌12處的電壓達到備用電壓。作為結果,在電壓及電流到達它們的峰值之前,組件處於穩定。
當電源交換電路10在輸入電力切換期間,自主電源16切換回備用電源14時,軟啟動電路被去能(disable)。因此,電力軌12所提供的電壓在基本上沒有的時間延遲後,自主電壓切換至備用電壓。
軟起動電路包括控制電晶體24、延遲電晶體26、連接電晶體27、以及RC電路28。於第1圖所繪實施例中,延遲電晶體26及連接電晶體27為單一雙通道(dual-channel)積體電路的一部分,且因此被顯示為相同積體電路封裝的一部分。然而,在其他實施例中,延遲電晶體26及連接電晶體27位於個別之不同的積體電路封裝中。
於第1圖所繪實施例中,RC電路28包括電阻器30及電容器32。其他的RC電路28亦可用於其他實施例中。當電源交換電路10首先被啟動時,第一控制訊號18A及第二控制訊號18B被設定為它們的備用狀態(例如:被設定為邏輯低電壓(logically low voltage)),進而指示電力軌12應連接至備用電源14,以將備用電壓提供至電子組件或系統。
控制電晶體24的閘極連接至第一控制訊號18A。因此,第一控制訊號18A控制控制電晶體24的啟動。控制電晶體24的源極連接到電源交換電路10的接地11。控制電晶體24的汲極經由電阻器34連接至備用電源14,以及連接至延遲電晶體26的閘極。延遲電晶體26的源極連接到RC電路28的電阻器30及電容器32。延遲電晶體26的汲極連接至備用功率電晶體20的閘極,備用功率電晶體20的閘極亦連接到備用電源14。
當電源交換電路10首先被啟動時,第一控制訊號18A被設定為低(low)(例如:備用狀態),控制電晶體24因此被關閉。因為控制電晶體24被關閉,因此延遲電晶體26的閘極經由電阻34連接至備用電源14,如此一來延遲電晶體26被開啟。因為備用功率電晶體20的閘極21連接至備用電源14,因此備用功率電晶體20的閘極21最初被拉(pull)到邏輯高數值(logically high value)。因為備用功率電晶體20為p型電晶體,因此備用功率電晶體20最初被關閉。因此,儘管電源交換電路10被啟動,電力軌12仍不會在一開始就提供任何電壓。
由於RC電路28,一旦電源交換電路10被啟動,電容器32就會緩慢地充電。隨著電容器32的緩慢充電,備用功率電晶體20之閘極21處的電壓逐漸降低,這又逐漸地開啟備用功率電晶體20。備用電源14因此逐漸地連接至電力軌12,這允許電力軌12所提供的電壓自零逐漸地增加到備用電壓位準(level)。在一些實施例中,RC電路28的時間常數(time constant)基本上與備用啟動時間延遲相同。
第2圖顯示了當電源供應單元最初連接至電源交換電路10(顯示於第1圖),以及電源交換電路10最初被啟動以為電力軌12供電時,電力軌12、備用電源14、以及備用功率電晶體20之閘極21(顯示於第1圖)的電壓對時間示意圖。一旦連接至電源交換電路10,備用電源14(顯示於第1圖)的電壓即為定值。然而,因為RC電路28(顯示於第1圖),備用功率電晶體20之閘極21的電壓最初為高(high),這關閉了備用功率電晶體20。當備用功率電晶體20被關閉時,電力軌12並未連接至備用電源14,且電力軌12的電壓因此為低或為零。隨著RC電路28之電容器32(顯示於第1圖)的充電,備用功率電晶體20之閘極21處的電壓逐漸地降低。備用功率電晶體20因此逐漸地被開啟,使得電力軌12處的電壓逐漸地增加到備用電壓。主電源16的電壓維持在低,因為當電源供應單元(PSU)最初被啟動時,來自電源供應單元的主電源16尚未被開啟。
回頭參照第1圖,當電源交換電路10需要被切換到主電源時,第一控制訊號18A及第二控制訊號18B皆被切換到它們的主狀態,例如被設定為邏輯高數值。控制電晶體24的閘極連接至第一控制訊號18A,且因此將第一控制訊號18A設定為邏輯高數值的動作,亦將控制電晶體24的閘極設定為邏輯高數值,這開啟了控制電晶體24。延遲電晶體26的閘極經由控制電晶體24的源極及汲極被拉至接地11,這關閉了延遲電晶體26。因為延遲電晶體26被關閉,備用功率電晶體20之閘極21經由電阻器23被拉至邏輯高位準。作為對它的閘極21被拉至高的響應,備用功率電晶體20關閉,電力軌12到備用電源14的連結因而被斷開(disconnect)。
第二控制訊號18B連接至連接電晶體27的閘極。連接電晶體27的源極連接至接地11。連接電晶體27的汲極連接至電阻器46B的第一末端。電阻器46A的第一末端連接至備用電源14。電阻器46A及電阻器46B的第二末端彼此連接,並連接至主功率電晶體22A的閘極以及主功率電晶體22B的閘極。電阻器46A及電阻器46B一起作為分壓器(voltage divider)。
當第二控制訊號18B處於備用狀態時,連接電晶體27被關閉,因為連接電晶體27的閘極被設置為邏輯低數值。接下來,電阻器46B的第一末端並未經由連接電晶體27而連接至接地11。因此,主功率電晶體22A及主功率電晶體22B的閘極,被拉到由備用電源14經由電阻器46A所提供的邏輯高數值。
當第二控制訊號18B自備用狀態切換到主狀態,且被設定為邏輯高數值時,連接電晶體27被開啟。主功率電晶體22A及主功率電晶體22B的閘極經由電阻器46B以及連接電晶體27的源極和汲極被拉至接地。主功率電晶體22A及主功率電晶體22B因而被開啟,以作為對第二控制訊號18B自備用狀態切換到主狀態的響應,這將電力軌12連接至主電源16。因此,電力軌12可開始將主電壓提供給電子電路或裝置。電源交換電路10亦可包括電容器44A及電阻器44B,電容器44A及電阻器44B可被用於調整主功率電晶體22A及主功率電晶體22B之開啟及關閉所耗費的時間。如上所述,第1圖所繪實施例利用了主功率電晶體22A及主功率電晶體22B共兩個主功率電晶體,因而得以承受高強度(high level)的所得電流。其他實施例可僅利用單一主功率電晶體,或是利用三或更多個主功率電晶體。
為了自主電源16切換回備用電源14,第一控制訊號18A及第二控制訊號18B被切換回它們的備用狀態,例如第一控制訊號18A及第二控制訊號18B被設定為邏輯低數值。連接電晶體27及主功率電晶體22A、主功率電晶體22B因此被關閉,這將電力軌12與主電源16之間的連接斷開。控制電晶體24亦被關閉,這將延遲電晶體26的閘極重新連接至備用電源14。接下來,備用功率電晶體20之閘極21經由延遲電晶體26的閘極與汲極,重新連接至RC電路28。
電源交換電路10亦包括旁路電路(bypass circuit),旁路電路包括第一旁路電晶體36A、第二旁路電晶體36B、以及上拉電阻器(pull-up resistor)38。第一旁路電晶體36A的閘極連接至第一控制訊號18A。第一旁路電晶體36A的源極連接至接地11。第一旁路電晶體36A的汲極連接至上拉電阻器38的一末端,並連接到第二旁路電晶體36B的閘極。上拉電阻器38的另一末端連接至旁路電源40。旁路電源40提供邏輯高壓(logically high voltage),且被用於將第二旁路電晶體36B的閘極上拉至邏輯高壓。在一些實施例中,旁路電源40為5伏特電源。因此,第二旁路電晶體36B的閘極被連接至邏輯高負載(logically high load)。第二旁路電晶體36B的源極連接至接地11。第二旁路電晶體36B的汲極連接至備用功率電晶體20的閘極21。
當第一控制訊號18A處於它的主狀態時,第一控制訊號18A具有邏輯高數值,這會開啟第一旁路電晶體36A。因為電流可接著流經第一旁路電晶體36A的汲極與源極,因此,第二旁路電晶體36B的閘極經由第一旁路電晶體36A被拉至接地11。因此,第二旁路電晶體36B被關閉,且當電源交換電路10提供主電力時,第二旁路電晶體36B不會影響備用功率電晶體20之閘極21處的電壓。
當第一控制訊號18A切換回它的備用狀態時,第一控制訊號18A具有邏輯低數值,這會關閉第一旁路電晶體36A。因此,第二旁路電晶體36B的閘極經由上拉電阻器38以及旁路電源40,被上拉至邏輯高數值,這會開啟第二旁路電晶體36B。接著,備用功率電晶體20的閘極21立即經由第二旁路電晶體的汲極與源極,被拉至接地11。將備用功率電晶體20之閘極21下拉至接地11,會立即開啟備用功率電晶體20,這會將備用電源14連接至電力軌12。因此,電力軌12可在向電子組件或系統提供主電壓與提供備用電壓之間順暢地轉換(transition)。
在沒有旁路電路的情況下,當電源交換電路10自主模式切換回備用模式時,備用功率電晶體20之閘極21處的電壓位準將由RC電路28控制。當第一控制訊號18A處於它的主狀態時,備用功率電晶體20之閘極21處的電壓被拉至邏輯高數值,進而關閉備用功率電晶體20。在沒有旁路電路的情況下,當第一控制訊號18A自它的主狀態切換回它的備用狀態時,備用功率電晶體20之閘極21將立即保持在邏輯高數值,然後隨著電容器32的充電而緩慢地降低。因此,備用功率電晶體20將再度緩慢地導通,並緩慢地將備用電源14重新連接至電力軌12。
第3圖之電壓對時間示意圖顯示在沒有旁路電路的情況下,電源交換電路10(顯示於第1圖)所發生的狀況。電壓對時間示意圖顯示了當電源交換電路10自主電源16切換回備用電源14時,電力軌12、備用電源14、主電源16、以及備用功率電晶體20之閘極21的電壓位準。於圖中的區域A,電源交換電路10仍處於主模式。區域B顯示了在電源交換電路10開始自主模式切換回備用模式後,電源交換電路10的行為。
可以見得,備用功率電晶體20之閘極21(顯示於第1圖)處的電壓在一開始維持在高,使得備用電源14未與電力軌12連接。然而,因為電力軌12亦自主電源16斷開,因此由電力軌12所提供的電壓開始暫時性地降低。隨著RC電路28的電容器32(顯示於第1圖)開始充電,備用功率電晶體20之閘極21處的電壓緩慢地降低。於區域C,備用功率電晶體20之閘極21處的電壓已完全降低。因此,備用功率電晶體20被完全開啟,且備用電源14被連接至電力軌12。如此一來,電力軌12的電壓已增加並回到備用電壓。
電源交換電路10中旁路電路的存在,防止了電力軌12所提供之電壓的暫時性降低。第4圖顯示具有旁路電路之電源交換電路10(顯示於第1圖)的電壓對時間示意圖。電力軌12、備用電源14、以及主電源16維持相對穩定。當電源交換電路10自主模式切換到備用模式時,備用功率電晶體20之閘極21(顯示於第1圖)處的電壓立即下降到邏輯低數值。因此,當第一控制訊號18A(顯示於第1圖)自邏輯高數值切換到邏輯低數值時,電力軌12能夠立即地連接至備用電源14。因此,電力軌12處的電壓不會受到暫時性降低的影響,其中若旁路電路不存在,則會發生暫時性降低,如第3圖所示。
回頭參照第1圖,可以使用旁路電源40停用(deactivate)旁路電路。如果旁路電路不能被停用,則當電源交換電路10最初被啟動到備用模式時,旁路電路將略過(bypass)軟起動電路,這將阻止軟起動電路逐漸地將備用電源連接到輸出。當停用時,在電源交換電路時10最初被啟動時,旁路電路不會略過軟起動電路。在一些實施例中,當電源交換電路10第一次自備用模式切換到主模式時,旁路電路被啟動。因此,於此實施例中,當電源交換電路10最初被啟動至備用模式時,旁路電路是非活動的。因此,當電源交換電路10最初被啟動至備用模式時,軟起動電路被致能,且在後續所有自主模式到備用模式的切換中,軟起動電路被去能。
如前文所解釋的,當處於備用狀態時,第一控制訊號18A具有邏輯低數值,而當處於主狀態時,第一控制訊號18A具有邏輯高數值。當第一控制訊號18A自它的主狀態切換回它的備用狀態時,第二旁路電晶體36B的閘極被連接至旁路電源40,這允許備用功率電晶體20之閘極21立即地經由第二旁路電晶體36B拉至接地11,而非經由RC電路28逐漸地被拉至接地11。
然而,當電源交換電路10最初被啟動以提供備用電力時,第一控制訊號18A亦具有邏輯低數值。如果在電源交換電路10被啟動時,第二旁路電晶體36B的閘極被連接到旁路電源40,則在啟動後,備用功率電晶體20之閘極21將經由第二旁路電晶體36B立即地被拉至接地,而非經由RC電路28逐漸地被拉至接地。因此,電源交換電路10的軟起動功能將不復存在。為了在啟動後仍然能夠提供軟起動功能,旁路電路可使用旁路電源40以在動作狀態與非動作狀態之間轉換,旁路電源40本身可在啟動狀態與非動作狀態之間轉換,以選擇性地將邏輯高壓提供給電源交換電路10。
當電源交換電路10最初被啟動至備用模式時,旁路電源40被設定為非活動狀態,且不會將邏輯高壓提供給電源交換電路10。因此,即使第一旁路電晶體36A被關閉,第二旁路電晶體36B的閘極也不會被拉至高,第二旁路電晶體36B因此被關閉。因此,即使第一控制訊號18A為低,備用功率電晶體20之閘極21仍會經由RC電路28逐漸地被拉至接地。藉由將旁路電源40設定在它的非活動狀態,使旁路電源40不會向電源交換電路10提供邏輯高壓,以將旁路電路設定為它的非活動狀態。
當第一控制訊號18A自其主狀態切換回其備用狀態以將電源交換電路10自主模式切換至備用模式時,旁路電源40被設定為它的啟動狀態,以啟動旁路電路。在它的啟動狀態下,旁路電源40提供邏輯高壓給電源交換電路10。因此,當第一旁路電晶體36A被切換回邏輯低數值的第一控制訊號18A所關閉時,第二旁路電晶體36B的閘極被連接至旁路電源40的邏輯高壓,這將第二旁路電晶體36B的閘極拉至邏輯高數值,並開啟第二旁路電晶體36B。因此,當第一控制訊號18A自其主狀態切換至其備用狀態時,備用功率電晶體20的閘極21經由第二旁路電晶體36B立即地被拉至接地11,而非經由RC電路28逐漸地被拉至接地11。
旁路電源40可使用不同方式以在其啟動狀態與其非活動狀態之間轉換。在一個實施例中,個別的電源是功率轉換器的輸出,用於降低由電力軌12所提供的電壓。可使用各種不同的功率轉換器,例如降壓轉換器(buck converter)或其他型式之直流對直流轉換器。於此實施例中,功率轉換器的輸入被連接到電力軌12,而功率轉換器的輸出則被連接到上拉電阻器38。在啟動電源交換電路10之前,備用電源14及主電源16皆不會連接至電力軌12。因此,電力軌12不會提供任何電壓,且功率轉換器的輸出(當連接至上拉電阻器38時)不會提供開啟第二旁路電晶體36B所需的邏輯高壓。
當電源交換電路10被啟動時,第二旁路電晶體將被關閉,因為功率轉換器的輸出並未提供邏輯高壓給第二旁路電晶體的閘極。因此,備用功率電晶體20的閘極21將經由RC電路28緩慢地被拉至接地。一旦備用功率電晶體20已被完全開啟,且將備用電源14連接至電力軌12,功率轉換器的輸出將上升到邏輯高數值。因此,當第一控制訊號18A隨後自主其主狀態切換至其備用狀態時,第二旁路電晶體36B的閘極將藉由功率轉換器的輸出被拉至邏輯高數值。第二旁路電晶體36B將因此被開啟,這將會經由第二旁路電晶體36B立即地把備用功率電晶體20的閘極21拉至接地,而非經由RC電路28逐漸地進行。
因此,於此實施例中,僅有在電力軌12處的電壓上升到足以確保功率轉換器之輸出處的電壓已上升到邏輯高數值的位準時,旁路電路才會被啟動。如此一來,當電源交換電路10最初被啟動至備用模式時,旁路電路將處於非活動,且僅在電源交換電路10首度自備用模式切換到主模式後才會被啟動。然後,旁路電路對後續所有自主模式到備用模式的切換皆處於活動(active)。
亦可使用用於在狀態之間轉換旁路電源40的其他實施例。舉例來說,旁路電源40可為一個別電源,藉由一交換器(switch)連接至上拉電阻器38。上述交換器可為手動開關(manual switch),可藉由使用者物理性地在不同位置間移動。上述交換器亦可為遠程開關(remote switch),可由使用者遠程控制以在不同位置間移動。上述交換器亦可藉由電力軌上上升到臨界電壓的電壓位準進行觸發(trigger)。當交換器被移動或觸發時,旁路電源40連接至上拉電阻器38,進而提供邏輯高壓給電源交換電路10。一般而言,可利用任何合適之使旁路電源40在狀態之間轉換的方法,只要當電源交換電路10最初被啟動以在電力軌12處提供備用電力時,旁路電源40不會提供邏輯高壓即可。
本文所用之術語僅用於描述特定實施例,而非旨於限制本發明。如此處所用的,單數型式「一」「一個」及「該」亦旨於包括複數型式,除非上下文另有明確說明。此外,在詳細說明及/或請求項中使用術語「包括」、「包含」、「具有」、「有」、「擁有」或其變體的範圍,這些術語旨在以近似於術語「包括」之方式包含。
除非另有定義,否則本文所用之所有術語(包括技術及科學術語)具有與於本發明所屬技術領域中具有通常知識者通常理解之含義相同之含義。此外,諸如於那些常用字典中定義之術語應被解釋為具有與其在相關領域之上下文中之含義一致的含義,且除非於本文中明確地如此定義,否則將不被理解為理想化或過於正式之含義。
雖然本發明之多種實施例已描述於上,但仍應理解,它們僅以範例之方式呈現而非限制。在不超過本揭露之精神及範圍的情況下,根據本文可對本揭露實施例達成許多改變。因此,本發明之廣度及範圍不應被上述任何範例所限制。更確切地說,本發明之範圍應根據下列請求項及與其等價之物來定義。
儘管已就一或多個實施說明及描述本發明,但於本技術領域具有通常知識者在閱讀及理解本說明書及附圖時,將想到或理解等價之改動及修改。此外,儘管本發明之特定特徵可能僅在一或數個實施中被揭露,但如此特徵可與其他實施之一或多個其他特徵結合,如同任何給定或特定應用可能期望及有益的。
10:電源交換電路
11:接地
12:電力軌
13:第一輸入
14:備用電源
15:第二輸入
16:主電源
18A:第一控制訊號
18B:第二控制訊號
20:備用功率電晶體
21:閘極
22A:主功率電晶體
22B:主功率電晶體
23:電阻器
24:控制電晶體
26:延遲電晶體
27:連接電晶體
28:RC電路
30:電阻器
32:電容器
34:電阻器
36A:第一旁路電晶體
36B:第二旁路電晶體
38:上拉電阻器
40:旁路電源
42:二極體
44A:電容器
44B:電阻器
46A:電阻器
46B:電阻器
A、B、C:區域
藉由參考附圖之範例性實施例的下列描述,將能更佳地理解本揭露。
第1圖所示係用於在備用電源與主電源之間切換的切換電路。
第2圖所示係電壓對時間的圖式,顯示第1圖之電源交換電路的軟起動功能。
第3圖係電壓對時間的圖式,顯示在沒有旁路電路的情況下,電源交換電路的行為。
第4圖係電壓對時間的圖式,顯示在存在旁路電路的情況下,電源交換電路的行為。
本揭露易受各種修改及替代形式的影響。一些代表性的實施例以藉由附圖中的範例呈現,且將在本文中進行詳細描述。然而,應當理解的是,本揭露並不限於所公開的特定形式。相反地,落入所附申請專利範圍所定義之本揭露的精神及範圍內的所有修改、均等物以及替代物,皆為本揭露所涵蓋。
10:電源交換電路
11:接地
12:電力軌
13:第一輸入
14:備用電源
15:第二輸入
16:主電源
18A:第一控制訊號
18B:第二控制訊號
20:備用功率電晶體
21:閘極
22A:主功率電晶體
22B:主功率電晶體
23:電阻器
24:控制電晶體
26:延遲電晶體
27:連接電晶體
28:RC電路
30:電阻器
32:電容器
34:電阻器
36A:第一旁路電晶體
36B:第二旁路電晶體
38:上拉電阻器
40:旁路電源
42:二極體
44A:電容器
44B:電阻器
46A:電阻器
46B:電阻器
Claims (8)
- 一種電源交換電路,用於為一電子組件供電,上述電源交換電路包括:一第一輸入,連接至一備用電源;一第二輸入,連接至一主電源;一輸出,為上述電子組件提供一電壓,上述輸出被配置以二者擇一地進行電性連接,當上述電源交換電路處於一備用模式時,上述輸出被配置以電性連接至上述第一輸入以及上述備用電源,或是當上述電源交換電路處於一主模式時,上述輸出被配置以電性連接上述第二輸入以及上述主電源;一主功率電晶體,選擇性地將上述輸出電性連接至上述主電源;一備用功率電晶體,選擇性地將上述輸出電性連接至上述備用電源;一控制訊號,可選擇性地操作以具有(i)一備用狀態,其中上述輸出連接至上述備用電源,且自上述主電源斷開,以及具有(ii)一主狀態,其中上述輸出連接至上述主電源,並自上述備用電源斷開,其中在上述備用狀態與上述主狀態之間對上述控制訊號的切換,會在上述備用模式與上述主模式之間切換上述電源交換電路;以及一軟起動電路,包括:一控制電晶體,上述控制電晶體的閘極連接至上述控制訊號,上述控制電晶體的汲極連接至上述備用電源,且上述控制電晶體的源極連接至接地;以及 一延遲電晶體,上述延遲電晶體的閘極連接至上述控制電晶體的汲極以及上述備用電源,上述延遲電晶體的汲極連接至上述備用功率電晶體的閘極,且上述延遲電晶體的源極連接至一RC電路;其中當上述電源交換電路最初被啟動至上述備用模式時,上述軟起動電路被致能;當上述電源交換電路接著自上述主模式切換至上述備用模式時,上述軟起動電路被去能;以及當上述電源交換電路最初被啟動至上述備用模式時,上述軟起動電路使得上述輸出逐漸地連接至上述備用電源,使得上述輸出所提供的上述電壓逐漸地上升至一備用電壓,上述輸出所提供的上述電壓在一備用啟動時間延遲後,達到上述備用電壓。
- 如申請專利範圍第1項所述之電源交換電路,更包括連接至上述軟起動電路的一旁路電路,當上述電源交換電路最初被啟動至上述備用模式時,上述旁路電路為非動作,從而致能上述軟起動電路,而當上述電源交換電路自上述主模式切換至上述備用模式時,上述旁路電路為動作,從而去能上述軟起動電路;其中作為對上述電源交換電路自上述備用模式切換至上述主模式的響應,上述旁路電路被啟動,使得當上述電源交換電路最初被啟動至上述備用模式時,上述旁路電路為非動作。
- 如申請專利範圍第1項所述之電源交換電路,其中:上述控制電晶體關閉,以將上述延遲電晶體的閘極連接到上述備 用電源,並開啟上述延遲電晶體,以作為對上述控制訊號處於上述備用狀態的響應;上述控制電晶體開啟,以將上述延遲電晶體的閘極連接至接地,並關閉上述延遲電晶體,以作為對上述控制訊號處於上述主狀態的響應,且其中上述延遲電晶體的關閉,以基本上不存在的時間延遲關閉上述備用功率電晶體;其中上述延遲電晶體的開啟,經由上述延遲電晶體的汲極與源極,將上述備用功率電晶體的閘極連接至上述RC電路,上述RC電路使得上述備用功率電晶體逐漸地開啟,並逐漸地將上述備用電源連接至上述輸出;以及其中上述RC電路包括並聯連接的一電阻及一電容,且其中上述RC電路的一時間常數基本上與上述備用啟動時間延遲相等。
- 如申請專利範圍第1項所述之電源交換電路,更包括一第一旁路電晶體及一第二旁路電晶體,上述第一旁路電晶體的閘極連接至上述控制訊號,使得上述第一旁路電晶體關閉,以作為對上述控制訊號自上述主狀態切換至上述備用狀態的響應,上述第二旁路電晶體的閘極連接至上述第一旁路電晶體的汲極以及一旁路電源,上述旁路電源選擇性地提供一邏輯高壓;其中上述第一旁路電晶體的源極連接至接地,以及上述第一旁路電晶體的汲極連接至上述第二旁路電晶體的閘極,且其中上述第二旁路電晶體的源極連接至接地,以及上述第二旁路電晶體的汲極連接上述備用功率電晶體的閘極。
- 如申請專利範圍第4項所述之電源交換電路,其中:上述第二旁路電晶體的閘極被拉至一邏輯高數值,且上述第二旁路電晶體被開啟,以作為對上述控制訊號自上述主狀態切換至上述備用狀態並關閉上述第一旁路電晶體的響應;以及上述備用功率電晶體的閘極被拉至一邏輯低位準,且上述備用功率電晶體以基本上不存在的時間延遲開啟,以作為對上述控制訊號自上述主狀態切換至上述備用狀態的響應。
- 如申請專利範圍第4項所述之電源交換電路,其中:上述第二旁路電晶體的閘極被拉至一邏輯低位準,且上述第二旁路電晶體被關閉,以作為對上述控制訊號處於上述主狀態且開啟上述第一旁路電晶體的響應;以及上述備用功率電晶體被拉至一邏輯高位準,且上述備用功率電晶體被關閉,以作為上述控制訊號處於上述主狀態的響應。
- 如申請專利範圍第4項所述之電源交換電路,其中:當上述電源交換電路最初被啟動至上述備用模式時,上述旁路電源不會將上述邏輯高壓提供至上述第一旁路電晶體的汲極以及上述第二旁路電晶體的閘極,以進而致能上述軟起動電路;以及當上述電源交換電路自上述主模式切換至上述備用模式時,上述旁路電源將上述邏輯高壓提供至上述第一旁路電晶體的汲極以及上述第二旁路電晶體的閘極,以進而去能上述軟起動電路。
- 如申請專利範圍第4項所述之電源交換電路,更包括具有輸入及輸出的一功率轉換器,上述功率轉換器的輸入連接至上 述電源交換電路的上述輸出,上述功率轉換器的輸出形成上述旁路電源,使得當上述電源交換電路在最初被啟動至上述備用模式後,自上述主模式切換至上述備用模式時,上述功率轉換器的輸出提供上述邏輯高壓。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/440,499 US10778086B1 (en) | 2019-06-13 | 2019-06-13 | Power-switching circuit with soft-start circuit |
US16/440,499 | 2019-06-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI711250B true TWI711250B (zh) | 2020-11-21 |
TW202046606A TW202046606A (zh) | 2020-12-16 |
Family
ID=68296012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108134146A TWI711250B (zh) | 2019-06-13 | 2019-09-23 | 電源交換電路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10778086B1 (zh) |
EP (1) | EP3751392B1 (zh) |
JP (1) | JP6915032B2 (zh) |
CN (1) | CN112087046B (zh) |
TW (1) | TWI711250B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200742238A (en) * | 2006-04-17 | 2007-11-01 | Delta Electronics Inc | Low cost, low power loss UPS device |
US7466573B2 (en) * | 2006-05-16 | 2008-12-16 | Honeywell International, Inc. | Method and apparatus for integrated active-diode-ORing and soft power switching |
US20120117393A1 (en) * | 2008-09-04 | 2012-05-10 | Bill Carter | Power management system |
CN204103762U (zh) * | 2014-07-29 | 2015-01-14 | 北汽福田汽车股份有限公司 | 车载直流变换器 |
US20180062517A1 (en) * | 2016-08-25 | 2018-03-01 | Pegatron Corporation | Redundant power supply control circuit |
CN107896055A (zh) * | 2016-10-04 | 2018-04-10 | 台达电子工业股份有限公司 | 电源供应装置及其控制方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4429868B2 (ja) * | 2004-10-14 | 2010-03-10 | シャープ株式会社 | スイッチング電源回路及びそれを用いた電子機器 |
CN103633825A (zh) * | 2012-08-23 | 2014-03-12 | 深圳市腾讯计算机系统有限公司 | 双输入电源及相应的网络设备 |
TWI606330B (zh) * | 2014-05-14 | 2017-11-21 | 廣達電腦股份有限公司 | 伺服系統及其電源切換方法 |
CN105763033B (zh) | 2014-12-18 | 2019-03-15 | 台达电子工业股份有限公司 | 电源系统及其控制方法 |
US10027223B1 (en) | 2017-06-12 | 2018-07-17 | Linear Technology Holding Llc | Soft-charging of switched capacitors in power converter circuits |
-
2019
- 2019-06-13 US US16/440,499 patent/US10778086B1/en active Active
- 2019-09-23 TW TW108134146A patent/TWI711250B/zh active
- 2019-10-10 CN CN201910958699.5A patent/CN112087046B/zh active Active
- 2019-10-17 EP EP19203919.6A patent/EP3751392B1/en active Active
- 2019-12-05 JP JP2019220127A patent/JP6915032B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200742238A (en) * | 2006-04-17 | 2007-11-01 | Delta Electronics Inc | Low cost, low power loss UPS device |
US7466573B2 (en) * | 2006-05-16 | 2008-12-16 | Honeywell International, Inc. | Method and apparatus for integrated active-diode-ORing and soft power switching |
US20120117393A1 (en) * | 2008-09-04 | 2012-05-10 | Bill Carter | Power management system |
CN204103762U (zh) * | 2014-07-29 | 2015-01-14 | 北汽福田汽车股份有限公司 | 车载直流变换器 |
US20180062517A1 (en) * | 2016-08-25 | 2018-03-01 | Pegatron Corporation | Redundant power supply control circuit |
CN107896055A (zh) * | 2016-10-04 | 2018-04-10 | 台达电子工业股份有限公司 | 电源供应装置及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3751392A1 (en) | 2020-12-16 |
JP6915032B2 (ja) | 2021-08-04 |
EP3751392B1 (en) | 2023-04-05 |
US10778086B1 (en) | 2020-09-15 |
CN112087046A (zh) | 2020-12-15 |
JP2020201928A (ja) | 2020-12-17 |
TW202046606A (zh) | 2020-12-16 |
CN112087046B (zh) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10651733B2 (en) | Bridge driver for a switching voltage regulator which is operable to soft-switch and hard-switch | |
TWI483546B (zh) | 電源管理系統及驅動金屬氧化物半導體開關之方法 | |
US9236375B2 (en) | Load switch with true reverse current blocking | |
US20230120432A1 (en) | Blocking and Startup Transistor Control in Voltage Converters | |
JP2010010920A (ja) | 半導体集積回路 | |
US20110279155A1 (en) | Slew rate PWM controlled charge pump for limited in-rush current switch driving | |
US20140362478A1 (en) | Power system and short-circuit protection circuit thereof | |
US6891425B1 (en) | Low voltage or'ing circuits and methods with zero recovery time | |
US20170133934A1 (en) | Methods and Apparatus for Power Supply | |
CN109194126B (zh) | 一种电源切换电路 | |
US10187055B2 (en) | Output discharge techniques for load switches | |
US10439602B2 (en) | Electronic power switch | |
TWI711250B (zh) | 電源交換電路 | |
US11196243B2 (en) | Pin-short detection circuits | |
US9705323B2 (en) | Power supply system and power control circuit thereof | |
JP7260234B2 (ja) | Pチャンネルmosfetを制御するためのドライバー回路及びそれを含む制御装置 | |
WO2006102929A1 (en) | Dc-dc converter soft start circuit using duty cycle limiting | |
TW201712997A (zh) | 電源啟動重置電路、電源啟動重置方法及其電子裝置 | |
EP3648326B1 (en) | Method and apparatus to switch power supply for low current standby operation | |
TWI420272B (zh) | 驅動位於初始啟動狀態的電源供應裝置之系統及方法 | |
TW201826675A (zh) | Dc-dc轉換器(一) | |
KR20110024750A (ko) | 디스플레이장치 |