TWI710781B - 用於低電流感測的系統和方法 - Google Patents

用於低電流感測的系統和方法 Download PDF

Info

Publication number
TWI710781B
TWI710781B TW109107498A TW109107498A TWI710781B TW I710781 B TWI710781 B TW I710781B TW 109107498 A TW109107498 A TW 109107498A TW 109107498 A TW109107498 A TW 109107498A TW I710781 B TWI710781 B TW I710781B
Authority
TW
Taiwan
Prior art keywords
transistor
signal
driving signal
load mode
terminal
Prior art date
Application number
TW109107498A
Other languages
English (en)
Other versions
TW202129295A (zh
Inventor
羅強
方烈義
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Application granted granted Critical
Publication of TWI710781B publication Critical patent/TWI710781B/zh
Publication of TW202129295A publication Critical patent/TW202129295A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16504Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
    • G01R19/16519Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed using FET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本發明涉及用於低電流感測的系統和方法。用於對一個或多個電池進行充電或放電的系統和方法。例如,一種用於對一個或多個電池進行充電或放電的電池管理系統,包括:第一電晶體,包括第一電晶體端子、第二電晶體端子和第三電晶體端子,第二電晶體端子被配置為接收第一驅動信號;第二電晶體,包括第四電晶體端子、第五電晶體端子和第六電晶體端子,第五電晶體端子被配置為接收第二驅動信號;高載模式感測器,被配置為接收第一驅動信號並至少部分地基於第一驅動信號來生成高載模式感測信號;以及驅動信號生成器,被配置為接收高載模式感測信號並至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號。

Description

用於低電流感測的系統和方法
本發明的某些實施例涉及積體電路。更具體地,本發明的一些實施例提供了用於低電流感測的系統和方法。僅通過舉例的方式,本發明的某些實施例已應用於電池的充電和/或放電。但是將認識到,本發明具有廣泛的適用範圍。
電池管理系統被廣泛用於管理一個或多個鋰離子電池。通常,電池管理系統需要感測鋰離子電池的充電電流或放電電流。當充電電流下降到預定閾值(例如,退出閾值電流)以下時,電池管理系統通常確定電池將充滿電,並且當放電電流下降到預定閾值(例如,退出閾值電流)以下時,電池管理系統通常確定負載(例如,行動電話)已滿或負載(例如,行動電話)將被拉出。
在一些示例中,對於電池充電,當電池充滿時,充電電流減小到低於預定閾值(例如,退出閾值電流)的非常小的幅度(例如,零)。電池管理系統(例如,電池管理晶片)需要感測電池充滿並然後終止充電過程,以保護電池免受過度充電的某些不利影響。在某些示例中,對於電池放電,當負載已滿或負載被拉出時,放電電流減小到低於預定閾值(例如,退出閾值電流)的很小的幅度(例如,零)。電池管理系統(例如,電池管理晶片)需要感測負載已滿或被拉出並然後終止放電過程,以防止電池管理系統本身進一步消耗電池電力。為了感測充電電流或放電電流是否下降到預定閾值(例如,退出閾值電流)以下,通常使用外部感測電阻器和/或內部感測場效應電晶體(FET,Field Effect Transistor)。
第1圖是示出常規電池充電系統的簡化圖。電池充電系統100包括電池管理系統110、電感器120、電阻器130、電池140、電源 190。電池管理系統110(例如,晶片)包括端子150、152、154、156和158(例如,引腳)。此外,電池管理系統110(例如,晶片)包括電壓感測電路112、邏輯控制器和閘極驅動器114、以及電晶體116和118。邏輯控制器和閘極驅動器214生成閘極驅動信號162和164,它們分別由電晶體116和118接收。電源190向端子154提供輸入電壓,並且電池140(例如,鋰離子電池)至少通過電感器120和電阻器130在端子156和158之間被充電。例如,電晶體116和118中的每一個包括汲極端子、閘極端子和源極端子。作為示例,電池140包括連接到電感器120的端子142,並且電池140還包括連接到端子158並偏置到地電壓的端子144。
如第1圖所示,電阻器130在電池管理系統110(例如,晶片)的外部。為減少電阻器130的功耗,通常將電阻器130的電阻值設置為非常小,在10mΩ的範圍內。作為示例,退出閾值電流通常被設置在50mA至100mA的範圍內,因此電壓感測電路112需要感測幅度小於1mV的電壓。為了準確地感測到這樣的小電壓,電壓感測電路112通常採用具有斬波機構的特殊結構,和/或使用大尺寸的電子元件。例如,電晶體116和118中的每一個是NMOS電晶體。作為示例,電晶體116的汲極端子通過端子154從電源190接收輸入電壓192。
第2圖是示出另一常規電池充電系統的簡化圖。電池充電系統200包括電池管理系統210、電感器220、電池240和電源290。電池管理系統210(例如,晶片)包括端子254、256和258(例如,引腳)。此外,電池管理系統210(例如,晶片)包括電流感測電路212、邏輯控制器和閘極驅動器214、以及電晶體116、118和260。邏輯控制器和閘極驅動器214生成閘極驅動信號262,其由電晶體260和216接收,並且邏輯控制器和閘極驅動器214還生成閘極驅動信號264,其由電晶體218接收。電源290向端子254提供輸入電壓,並且電池240(例如,鋰離子電池)至少通過電感器220在端子256和258之間被充電。例如,電晶體216和218中的每一個包括汲極端子、閘極端子和源極端子。作為示例,電池240包括連接到電感器220的端子242,並且電池240還包括連接到端子258並偏置 到地電壓的端子244。
如第2圖所示,電晶體260(例如,場效應電晶體)用作感測電晶體,在電池管理系統210(例如,晶片)外部。流過電晶體260的電流等於流過電晶體216的電流除以N,其中N是正整數。通常,將N選擇為大整數(例如,從1000至10000範圍內的整數),以在流過電晶體216的電流較大時使在滿載條件下流經電晶體260的電流較小。流過電晶體260的電流由電流感測電路212感測,但是電池充電系統200的電流感測精度受到限制。
因此,非常需要改進與感測鋰離子電池的充電電流和/或放電電流有關的技術。
本發明的某些實施例涉及積體電路。更具體地,本發明的一些實施例提供了用於低電流感測的系統和方法。僅通過舉例的方式,本發明的某些實施例已應用於電池的充電和/或放電。但是將認識到,本發明具有廣泛的適用範圍。
根據一些實施例,一種用於對一個或多個電池進行充電或放電的電池管理系統包括:第一電晶體,包括第一電晶體端子、第二電晶體端子和第三電晶體端子,第二電晶體端子被配置為接收第一驅動信號;第二電晶體,包括第四電晶體端子、第五電晶體端子和第六電晶體端子,第五電晶體端子被配置為接收第二驅動信號;高載模式感測器,被配置為接收第一驅動信號並至少部分地基於第一驅動信號來生成高載模式感測信號;以及驅動信號生成器,被配置為接收高載模式感測信號,並至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號;其中:第二電晶體的第四電晶體端子連接至第一電晶體的第三電晶體端子;並且第三電晶體端子和第四電晶體端子通過電感器耦合至一個或多個電池的第一電池端子,該一個或多個電池還包括第二電池端子;其中,高載模式感測器還被配置為:確定第一驅動信號的一個或多個連續週期的第一數量,在一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第 二邏輯位準之間切換;確定第一驅動信號的一個或多個跳過週期的第二數量,在一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;至少部分地基於一個或多個連續週期的第一數量和一個或多個跳過週期的第二數量,確定由第三電晶體端子和第四電晶體端子提供給電感器的或由第三電晶體端子和第四電晶體端子從電感器接收的電感器電流的平均幅度是否小於預定電流閾值;並且如果電感器電流的平均幅度小於預定電流閾值,則生成高載模式感測信號,以使驅動信號生成器停止對第一驅動信號的第一調變並停止對第二驅動信號的第二調變;其中,驅動信號生成器還被配置為:如果電感器電流的平均幅度小於預定電流閾值,則回應於高載模式感測信號,停止對第一驅動信號的第一調變和對第二驅動信號的第二調變,以使第一電晶體和第二電晶體保持關斷。
根據某些實施例,一種用於對一個或多個電池進行充電或放電的電池管理系統包括:第一電晶體,其包括第一電晶體端子、第二電晶體端子和第三電晶體端子,第二電晶體端子被配置為接收第一驅動信號;高載模式感測器,被配置為接收第一驅動信號並至少部分地基於第一驅動信號來生成高載模式感測信號;以及驅動信號生成器,被配置為接收高載模式感測信號並至少部分地基於高載模式感測信號來生成第一驅動信號;其中,高載模式感測器還被配置為:確定一個或多個連續週期的第一數量,在一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;確定一個或多個跳過週期的第二數量,在一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;並且如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成高載模式感測信號,以使驅動信號生成器停止對第一驅動信號的第一調變;其中,驅動信號生成器還被配置為:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則回應於高載模式感測信號,停止對第一驅動信號的第一調變,以使第一電晶體保持關斷。
根據一些實施例,一種用於對一個或多個電池進行充電 或放電的方法包括:接收第一驅動信號;處理與第一驅動信號相關聯的資訊;至少部分地基於第一驅動信號來生成高載模式感測信號;接收高載模式感測信號;處理與高載模式感測信號相關聯的資訊;以及至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號;其中,處理與第一驅動信號相關聯的資訊包括:確定第一驅動信號的一個或多個連續週期的第一數量,在一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;確定第一驅動信號的一個或多個跳過週期的第二數量,在一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;以及至少部分地基於一個或多個連續週期的第一數量和一個或多個跳過週期的第二數量,確定由第三電晶體端子和第四電晶體端子提供給電感器的或由第三電晶體端子和第四電晶體端子從電感器接收的電感器電流的平均幅度是否小於預定電流閾值;其中,至少部分地基於第一驅動信號來生成高載模式感測信號包括:如果電感器電流的平均幅度小於預定電流閾值,則生成高載模式感測信號以停止對第一驅動信號的第一調變並停止對第二驅動信號的第二調變;其中,至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號包括:如果電感器電流的平均幅度小於預定電流閾值,則回應於高載模式感測信號,停止對第一驅動信號的第一調變和對第二驅動信號的第二調變,以使第一電晶體和第二電晶體保持關斷。
根據某些實施例,一種用於對一個或多個電池進行充電或放電的方法包括:接收第一驅動信號;處理與第一驅動信號相關聯的資訊;至少部分地基於第一驅動信號來生成高載模式感測信號;接收高載模式感測信號;處理與高載模式感測信號相關聯的資訊;以及至少部分地基於高載模式感測信號來生成第一驅動信號;其中,處理與第一驅動信號相關聯的資訊包括:確定一個或多個連續週期的第一數量,在一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;並且確定一個或多個跳過週期的第二數量,在一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;其中,至少部分 地基於第一驅動信號來生成高載模式感測信號包括:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成高載模式感測信號,以停止對第一驅動信號的第一調變;其中,至少部分地基於高載模式感測信號來生成第一驅動信號包括:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則回應於高載模式感測信號,停止對第一驅動信號的第一調變。
取決於實施例,可以實現一個或多個益處。參考下面的詳細描述和圖式,可以充分理解本發明的這些優點以及各種其他目的、特徵和優點。
100,200,300:電池充電系統
110,210,310,410:電池管理系統(晶片)
112:電壓感測電路
114,214:閘極驅動器
116,118,216,218,260,316,318,416,418:電晶體
120,220,320,420:電感器
130:電阻器
140,240,340,440:電池
142,144,150,152,154,156,158,242,244,254,256,258,342,344,354,356,358,442,444,454,456,458:端子
162,164,262,264,362,364,462,464:閘極驅動信號
190,290,390:電源
192,392,Vin:輸入電壓
212:電流感測電路
312,412,712:高載模式感測電路
314,414:零電流感測電路
360,460:控制器和驅動器
370,372,374,470,472,474:時鐘信號
376,382,476,482:感測信號
380,480:電壓
384,484:電流
400:電池放電系統
490:負載
492,Vout:輸出電壓
510,520,530,630:曲線
720:閘極整流器
730:跳頻感測單元
740:連續切換感測單元
750:時序單元
722,732,742,763,770,772,774,776:信號
Iavg:平均幅度
IL_peak:峰值幅度
L:電感
T:時間
Vbat:電池電壓
第1圖是示出常規電池充電系統的簡化圖。
第2圖是示出另一常規電池充電系統的簡化圖。
第3圖是示出根據本發明的一些實施例的電池充電系統的簡化圖。
第4圖是示出根據本發明的一些實施例的電池放電系統的簡化圖。
第5圖是示出根據本發明的一些實施例的第3圖所示的電池充電系統和第4圖所示的電池放電系統的各種操作模式的簡化圖。
第6圖是示出根據本發明的一些實施例的第3圖所示的電池充電系統和第4圖所示的電池放電系統的突發操作模式的模式的簡化圖。
第7圖是示出根據本發明的一些實施例的作為第3圖所示的電池充電系統和/或第4圖所示的電池放電系統的一部分的高載模式感測電路的簡化圖。
本發明的某些實施例涉及積體電路。更具體地,本發明的一些實施例提供了用於低電流感測的系統和方法。僅通過舉例的方式,本發明的某些實施例已應用於電池的充電和/或放電。但是將認識到,本發明具有廣泛的適用範圍。
參考第1圖,電池管理系統110(例如,晶片)使用電阻器130來感測電池140的充電電流。這種配置通常會增加電路設計的複雜性和晶片面積。此外,晶片110外部的電阻器130通常會增加物料清單(BOM,bill of material)的總系統成本,並且還會降低電池充電系統100的功率傳輸效率。
參考第2圖,電池管理系統210(例如,晶片)使用感測電晶體260(例如,場效應電晶體)來感測電池240的充電電流。如上所述,流過電晶體260的電流等於流過電晶體216的電流除以N,並且N通常被選擇為較大整數(例如,從1000到10000範圍內的整數)。這樣的大比率N通常不會產生半導體器件匹配中的良好精度。此外,當電池240的充電電流在幅度上變的接近退出閾值電流時,端子254(例如,VIN端子)和端子256(例如,SW端子)之間的電壓差變得非常小,通常在mV水準。此外,與感測電晶體260有關的取樣電路的偏移通常為數十mV,這可能引起附加的感測誤差。另外,當電晶體216在高頻切換模式下操作時,切換延遲降低了感測精度。電池充電系統200經常遭受低感測精度的困擾。
第3圖是示出根據本發明的一些實施例的電池充電系統的簡化圖。該圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。電池充電系統300包括電池管理系統310、電感器320、電池340和電源390。電池管理系統310(例如,晶片)包括端子354、356和358(例如,引腳)。此外,電池管理系統310(例如,晶片)包括高載模式感測電路312、零電流感測電路314、控制器和驅動器360、以及電晶體316和318。例如,電晶體316、318中的每一個包括汲極端子、閘極端子和源極端子。作為示例,電池340包括連接到電感器320的端子342,並且電池340還包括連接到端子358並偏置到地電壓的端子344。
在一些示例中,控制器和驅動器360(例如,脈衝寬度調變控制器和閘極驅動器)生成閘極驅動信號362,其由電晶體316接收,並且控制器和驅動器360(例如,脈衝寬度調變控制器和閘極驅動器)還 生成閘極驅動信號364,其由電晶體318接收。在某些示例中,電源390將輸入電壓392提供給端子354,並且電池340(例如,鋰離子電池)至少通過電感器320在端子356和358之間被充電。例如,電晶體316和318中的每一個是NMOS電晶體。作為示例,電晶體316的汲極端子通過端子354從電源390接收輸入電壓392。
如第3圖所示,根據一些實施例,電池管理系統310和電感器320用於通過電源390對電池340充電,該電源390向端子354提供輸入電壓。例如,電池管理系統310可以感測電池340的充電電流是否下降到預定閾值(例如,退出閾值電流)以下。作為示例,回應於電池340的狀態,控制器和驅動器360(例如,脈寬調變控制器和閘極驅動器)將閘極驅動信號362輸出至電晶體316以導通或關斷電晶體316,並將閘極驅動信號364輸出至電晶體318以導通或關斷電晶體318,從而控制電池340的充電。
在一些實施例中,高載模式感測電路312接收閘極驅動信號362以及時鐘信號370、372和374。例如,高載模式感測電路312使用閘極驅動信號362來確定電池管理系統310是否在高載模式下操作,並使用時鐘信號370、372和374來確定與高載模式有關的某些時序參數。作為示例,時鐘信號370具有等於切換週期的持續時間的週期。例如,高載模式感測電路312至少基於閘極驅動信號362以及時鐘信號370、372和374來生成感測信號376,並且將感測信號376輸出到控制器和驅動器360。
在某些實施例中,零電流感測電路314連接到端子356並接收電壓380。例如,零電流感測電路314使用電壓380來確定流過電感器320的電流384在電池管理系統310在連續導通模式下操作時是否減小到零,並且向控制器和驅動器360輸出感測信號382。作為示例,如果零電流感測電路314確定流過電感器320的電流384在電池管理系統310在連續導通模式下操作時減小到零,則零電流感測電路314將感測信號382輸出到控制器和驅動器360以關斷電晶體318。
如上所述並在此進一步強調,第3圖僅是示例,其不應 不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。例如,電池340由多個電池代替,並且多個電池包括連接到電感器320的一個電池端子以及耦合到端子358並偏置到地電壓的另一電池端子。
第4圖是示出根據本發明的一些實施例的電池放電系統的簡化圖。該圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。電池放電系統400包括電池管理系統410、電感器420、電池440和負載490。電池管理系統410(例如,晶片)包括端子454、456和458(例如,引腳)。此外,電池管理系統410(例如,晶片)包括高載模式感測電路412、零電流感測電路414、控制器和驅動器460、以及電晶體416和418。例如,電晶體416、418中的每一個包括汲極端子、閘極端子和源極端子。作為示例,電池440包括連接到電感器420的端子442,並且電池440還包括連接到端子458並偏置到地電壓的端子444。
在一些示例中,控制器和驅動器460(例如,脈衝寬度調變控制器和閘極驅動器)生成閘極驅動信號462,其由電晶體416接收,並且控制器和驅動器460(例如,脈衝寬度調變控制器和閘極驅動器)還生成閘極驅動信號464,其由電晶體418接收。在某些示例中,負載490(例如,行動電話)從端子454接收輸出電壓492,並且電池440(例如,鋰離子電池)至少通過電感器420在端子456和458之間放電。例如,電晶體416和418中的每一個是NMOS電晶體。作為示例,電晶體416的汲極端子通過端子454將輸出電壓492提供給負載490。
如第4圖所示,根據某些實施例,電池管理系統410和電感器420用於通過負載490使電池440放電,該負載490從端子454接收輸出電壓。例如,電池管理系統410可以感測電池440的放電電流是否下降到預定閾值(例如,退出閾值電流)以下。作為示例,回應於電池440的狀態,控制器和驅動器460(例如,脈衝寬度調變控制器和閘極驅動器)將閘極驅動信號462輸出至電晶體416以導通或關斷電晶體416,並將閘極 驅動信號464輸出至電晶體418以導通或關斷電晶體418,從而控制電池440的放電。
在一些實施例中,高載模式感測電路412接收閘極驅動信號464以及時鐘信號470、472和474。例如,高載模式感測電路412使用閘極驅動信號464來確定電池管理系統310是否在高載模式下操作,並使用時鐘信號470、472和474來確定與高載模式有關的某些時序參數。作為示例,時鐘信號470具有等於切換週期的持續時間的週期。例如,高載模式感測電路412至少基於閘極驅動信號464以及時鐘信號470、472和474來生成感測信號476,並且將感測信號476輸出到控制器和驅動器460。
在某些實施例中,零電流感測電路414連接到端子456並接收電壓480。例如,零電流感測電路414使用電壓480來確定流過電感器420的電流484在電池管理系統410在連續導通模式下操作時是否減小到零,並且將感測信號482輸出到控制器和驅動器460。作為示例,如果零電流感測電路414確定流過電感器420的電流484在電池管理系統410在連續導通模式下操作時減小到零,則零電流感測電路414將感測信號482輸出到控制器和驅動器460以關斷電晶體416。
如上所述並且在此進一步強調,第4圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。例如,電池440由多個電池代替,並且多個電池包括連接到電感器420的一個電池端子以及耦合到端子458並偏置到地電壓的另一電池端子。
第5圖是示出根據本發明的一些實施例的電池充電系統300和電池放電系統400的各種操作模式的簡化圖。該圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。曲線510表示針對電池充電系統300和電池放電系統400的連續導通模式的電感器電流隨時間的變化,曲線520表示針對電池充電系統300和電池放電系統400的不連續導通模式的電感器電流隨時間的變化,以及曲線530表示針對電池充電系統300和電池放電系統400的高載模式 的電感器電流隨時間的變化。
在一些示例中,對於電池充電系統300,當電池340的充電電流平均地變得越來越小時,電感器電流(例如,電流384)逐漸從連續導通模式變為不連續模式,並然後逐漸從不連續模式變為高載模式。在某些示例中,對於電池放電系統400,當電池440的放電電流平均地變得越來越小時,電感器電流(例如,電流484)逐漸從連續導通模式變為不連續模式,並然後逐漸從不連續模式變為高載模式。
如曲線510所示,根據某些實施例,在連續導通模式下,電感器電流(例如,電流384和/或電流484)的幅度保持大於零。如曲線520所示,根據一些實施例,在不連續導通模式下,電感器電流(例如,電流384和/或電流484)的幅度下降到零。如曲線530所示,根據某些實施例,在高載模式下,電感器電流(例如,電流384和/或電流484)的幅度不僅下降到零,而且跳過一個或多個切換週期。
在一些實施例中,如曲線530所示,在持續時間T1期間,電感器電流(例如,電流384和/或電流484)從零增加到峰值幅度(例如,IL_peak)。例如,在持續時間T1期間,電池充電系統300的電晶體316導通,並且電池充電系統300的電晶體318關斷,並且持續時間T1表示電晶體316的導通時間和電晶體318的關斷時間。作為示例,在持續時間T1期間,電池放電系統400的電晶體416關斷並且電池放電系統400的電晶體418導通,並且持續時間T1表示電晶體416的關斷時間和電晶體418的導通時間。
在某些實施例中,如曲線530所示,在持續時間T2期間,電感器電流(例如,電流384和/或電流484)從峰值幅度(例如,IL_peak)減小到零。例如,在持續時間T2期間,電池充電系統300的電晶體316關斷並且電池充電系統300的電晶體318導通,並且持續時間T2表示電晶體316的關斷時間和電晶體318的導通時間。例如,在持續時間T2期間,電池放電系統400的電晶體416導通並且電池放電系統400的電晶體418關斷,並且持續時間T2表示電晶體416的導通時間和電晶體418的關斷時間。
在一些示例中,如第3圖所示,如果電流384減小到零,則零電流感測電路314將感測信號382輸出到控制器和驅動器360以便關斷電晶體318,使得電晶體316和318二者關斷,並且電流384保持等於零。在某些示例中,如第4圖所示,如果電流484減小到零,則零電流感測電路414將感測信號482輸出到控制器和驅動器460以便關斷電晶體416,使得電晶體416和418二者關斷,並且電流484保持等於零。
在某些實施例中,如曲線530所示,在持續時間T3期間,電感器電流(例如,電流384和/或電流484)的幅度保持等於零。例如,電池充電系統300的電晶體316和318二者在持續時間T3期間關斷。作為示例,電池放電系統400的電晶體416和418二者在持續時間T3期間關斷。例如,曲線530示出了高載模式的模式,其包括一個具有脈衝的週期和一個沒有任何脈衝的週期。
根據一些實施例,參考第3圖,在持續時間T1內,電感器電流384從零增加到峰值幅度,如下所示:
Figure 109107498-A0101-12-0012-1
其中,IL_peak表示電感器電流384的峰值幅度,Vin表示電源390在端子354處提供的輸入電壓,以及Vbat表示電池340的電池電壓。
根據某些實施例,參考第3圖,在持續時間T2內,電感器電流384從峰值幅度減小到零,如下所示:
Figure 109107498-A0101-12-0012-2
其中,IL_peak表示電感器電流384的峰值幅度,L表示電感器320的電感,以及Vbat表示電池340的電池電壓。例如,電感器電流384的下降速率等於Vbat/L。
在一些實施例中,參考第3圖,電感器電流384的平均幅度如下:
Figure 109107498-A0101-12-0012-3
其中,Iavg表示電感器電流384的平均幅度,以及IL_peak表 示電感器電流384的峰值幅度。
在某些實施例中,參考第4圖,電感器電流484的平均幅度如下:
Figure 109107498-A0101-12-0013-4
其中,Iavg表示電感器電流484的平均幅度,以及IL_peak表示電感器電流484的峰值幅度。
如上所述並且在此進一步強調,第5圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。例如,曲線530被修改為表示高載模式的另一模式,其包括各自具有脈衝的N個連續週期,以及各自沒有任何脈衝的M個跳過週期,其中,N是正整數並且M是正整數。
第6圖是示出根據本發明的一些實施例的電池充電系統300和電池放電系統400的突發操作模式的模式的簡化圖。該圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員將認識到許多變化、替代和修改。曲線630表示針對電池充電系統300和電池放電系統400的高載模式的電感器電流隨時間的變化。作為示例,曲線630表示高載模式的模式,其包括各自具有脈衝的四個連續週期,以及各自沒有任何脈衝的六個跳過週期。
在一些實施例中,參考第3圖,電感器電流384的平均幅度如下:
Figure 109107498-A0101-12-0013-5
其中,Iavg表示電感器電流384的平均幅度,以及IL_peak表示電感器電流384的峰值幅度。此外,T1表示各自具有脈衝的四個連續週期期間的電晶體316的總導通時間和電晶體318的總關斷時間,T2表示各自具有脈衝的四個連續週期期間的電晶體316的總關斷時間和電晶體318的總導通時間,以及T3表示各自沒有任何脈衝的六個跳過週期的總時間。
例如,如第6圖所示,T1確定如下:
T 1=T 1a +T 1b +T 1c +T 1d (等式5A)
其中,T1a、T1b、T1c和T1d分別表示各自具有脈衝的四個連續週期中的相應週期期間的電晶體316的導通時間和電晶體318的關斷時間。
作為示例,如第6圖所示,T2確定如下:
T 2=T 2a +T 2b +T 2c +T 2d (等式6A)
其中,T2a、T2b、T2c和T2d分別表示各自具有脈衝的四個連續週期中的相應週期期間的電晶體316的關斷時間和電晶體318的導通時間。
在一些實施例中,參考第4圖,電感器電流484的平均幅度如下:
Figure 109107498-A0101-12-0014-6
其中,Iavg表示電感器電流484的平均幅度,以及IL_peak表示電感器電流484的峰值幅度。此外,T1表示各自具有脈衝的四個連續週期期間的電晶體416的總關斷時間和電晶體418的總導通時間,T2表示各自具有脈衝的四個連續週期期間的電晶體416的總導通時間和電晶體418的總關斷時間,以及T3表示各自沒有任何脈衝的六個跳過週期的總時間。
例如,如第6圖所示,T1確定如下:
T 1=T 1a +T 1b +T 1c +T 1d (等式5B)
其中,T1a、T1b、T1c和T1d分別表示各自具有脈衝的四個連續週期中的相應週期期間的電晶體416的關斷時間和電晶體418的導通時間。
作為示例,如第6圖所示,T2確定如下:
T 2=T 2a +T 2b +T 2c +T 2d (等式6B)
其中,T2a、T2b、T2c和T2d分別表示各自具有脈衝的四個連續週期中的相應週期期間的電晶體416的導通時間和電晶體418的關斷時間。
根據一些實施例,如第3圖所示,電池340的充電電流等於電感器電流384。在某些示例中,如果電感器電流384的平均幅度(例如,如等式3A和/或等式4A所示)變得小於預定閾值(例如,退出閾值電流),則高載模式感測電路312將感測信號376從邏輯低位準變為邏輯高位準。在一些示例中,控制器和驅動器360接收感測信號376。作為示例,響應於感測信號376從邏輯低位準變為邏輯高位準,控制器和驅動器360通過將閘極驅動信號362和364保持在邏輯低位準以使得電晶體316和318保持關斷,來終止對閘極驅動信號362和364的調變。在某些示例中,控制器和驅動器360通過一種或多種自動動作和/或一種或多種手動動作來重新開始對閘極驅動信號362和364的調變。例如,如果電感器電流384的平均幅度(例如,如等式3A和/或等式4A所示)變得大於預定閾值(例如,退出閾值電流),則控制器和驅動器360自動重新開始對閘極驅動信號362和364的調變。
根據某些實施例,如等式3A和/或等式4A所示,電感器電流384的平均幅度與電感器電流384的峰值幅度IL_peak、持續時間T1、持續時間T2、持續時間T3有關。在一些示例中,根據等式1,電感器電流384的峰值幅度IL_peak與由電源390在端子354處提供的輸入電壓Vin、電池340的電池電壓Vbat、以及持續時間T1有關,因此電感器電流384的平均幅度與電源390在端子354處提供的輸入電壓Vin、電池340的電池電壓Vbat、持續時間T1、持續時間T2、持續時間T3有關。在某些示例中,由電源390在端子354處提供的輸入電壓Vin和電池340的電池電壓Vbat由應用規範預先確定,並且持續時間T1(在高載模式下等於電晶體316的最小導通時間)也由應用規範預先確定。作為示例,通過感測持續時間T2和持續時間T3,高載模式感測電路312被配置為確定電感器電流384的平均幅度是否變得小於預定閾值(例如,退出閾值電流),並且如果電感器電流384的平均幅度變得小於預定閾值(例如,退出閾值電流),則將感測信號376從邏輯低位準變為邏輯高位準。
在一些實施例中,如第4圖所示,電池440的放電電流等 於電感器電流484。在某些示例中,如果電感器電流484的平均幅度(例如,如等式3B和/或等式4B所示)變得小於預定閾值(例如,退出閾值電流),則高載模式感測電路412將感測信號476從邏輯低位準變為邏輯高位準。作為示例,響應於感測信號476從邏輯低位準變為邏輯高位準,控制器和驅動器460通過將閘極驅動信號462和464保持在邏輯低位準以使得電晶體416和418保持關斷,來終止對閘極驅動信號462和464的調變。在某些示例中,控制器和驅動器460通過一種或多種自動動作和/或一種或多種手動動作來重新開始對閘極驅動信號462和464的調變。例如,如果電感器電流484的平均幅度(例如,如等式3B和/或等式4B所示)變得大於預定閾值(例如,退出閾值電流),則控制器和驅動器460自動重新開始對閘極驅動信號462和464的調變。
在某些實施例中,如等式3B和/或等式4B所示,電感器電流484的平均幅度與電感器電流484的峰值幅度IL_peak、持續時間T1、持續時間T2、持續時間T3有關。在一些示例中,電感器電流484的峰值幅度IL_peak與負載490在端子454處接收的輸出電壓Vout、電池440的電池電壓Vbat、以及持續時間T1有關,因此電感器電流484的平均幅度與負載490在端子454處接收的輸出電壓Vout、電池440的電池電壓Vbat、持續時間T1、持續時間T2、持續時間T3有關。在某些示例中,由負載490在端子454處接收的輸出電壓Vout和電池440的電池電壓Vbat由應用規範預先確定,並且持續時間T1(在高載模式下等於電晶體418的最小導通時間)也由應用規範預先確定。作為示例,通過感測持續時間T2和持續時間T3,高載模式感測電路412被配置為確定電感器電流484的平均幅度是否變得小於預定閾值(例如,退出閾值電流),並且如果電感器電流484的平均幅度變得小於預定閾值(例如,退出閾值電流),則將感測信號476從邏輯低位準變為邏輯高位準。
第7圖是示出根據本發明的一些實施例的作為電池充電系統300和/或電池放電系統400的一部分的高載模式感測電路的簡化圖。該圖僅是示例,其不應不適當地限制申請專利範圍。本領域普通技術人員 將認識到許多變化、替代和修改。高載模式感測電路712包括閘極整流器720、跳頻感測單元730、連續切換感測單元740和時序單元750。
如第7圖所示,根據一些實施例,高載模式感測電路712接收信號763、770、772和774,並輸出信號776。在一些示例中,高載模式感測電路712是電池充電系統300的高載模式感測電路312。例如,信號763是閘極驅動信號362,信號770是時鐘信號370,信號772是時鐘信號372,信號774是時鐘信號374,以及信號776是感測信號376。在某些示例中,高載模式感測電路712是電池放電系統400的高載模式感測電路412。作為示例,信號763是閘極驅動信號464,信號770是時鐘信號470,信號772是時鐘信號472,信號774是時鐘信號474,以及信號776是感測信號476。
在一些實施例中,閘極整流器720接收信號763並輸出信號722。例如,如果信號763在邏輯高位準和邏輯低位準之間切換,則閘極整流器720在邏輯低位準處生成信號722。作為示例,如果信號763不在邏輯高位準和邏輯低位準之間切換,則閘極整流器720在邏輯高位準處生成信號722。在某些示例中,如果信號763停止切換並且在信號763中發生跳頻,則信號722從邏輯低位準變為邏輯高位準。在一些示例中,如果在信號763中停止跳頻並且信號763開始切換,則信號722從邏輯高位準變為邏輯低位準。
在某些實施例中,跳頻感測單元730接收信號722和770並輸出信號732。作為示例,時鐘信號770的一個時間段等於每個切換週期的持續時間。在一些示例中,跳頻感測單元730確定信號722是否處於邏輯高位準,並且如果信號722處於邏輯高位準,則確定信號722保持在邏輯高位準的持續時間是否等於或大於時鐘信號770的一個時間段乘以預定跳過閾值。在一些示例中,預定跳過閾值為正數。例如,預定跳過閾值是整數。作為示例,預定跳過閾值不是整數。作為示例,如果信號722處於邏輯低位準,或者如果信號722保持在邏輯高位準的持續時間小於時鐘信號770的一個時間段乘以預定跳過閾值,則跳頻感測單元730在邏輯高 位準處生成信號732。例如,如果信號722保持在邏輯高位準的持續時間等於或大於時鐘信號770的一個時間段乘以預定跳過閾值,則跳頻感測單元730在邏輯低位準處生成信號732。在某些示例中,每個切換週期的持續時間等於時鐘信號770的一個時間段。作為示例,如果持續時間T3(例如,如等式3A、等式3B、等式4A和/或等式4B中所示)大於或等於時鐘信號770的一個時間段乘以預定跳過閾值,則跳頻感測單元730在邏輯低位準處生成信號732。
在一些示例中,跳頻感測單元730處理信號722以確定是否在信號763中發生跳頻,並且如果在信號763中發生跳頻,則確定跳過的切換週期的數量是否等於或大於預定跳過閾值。例如,如果在信號763中未發生跳頻或者如果跳過的切換週期的數量小於預定跳過閾值,則跳頻感測單元730在邏輯高位準處生成信號732。作為示例,如果跳過的切換週期的數量等於或大於預定跳過閾值,則跳頻感測單元730在邏輯低位準處生成信號732。在某些示例中,如果信號722從邏輯高位準變為邏輯低位準,則信號732從邏輯低位準變為邏輯高位準。作為示例,如果在信號763中已停止跳頻並且信號763已開始在邏輯高位準和邏輯低位準之間切換,則信號732從邏輯低位準變為邏輯高位準。
在一些實施例中,連續切換感測單元740接收信號732和772並輸出信號742。在某些示例中,當信號732從邏輯低位準變為邏輯高位準時,按照連續切換週期的數量,連續切換感測單元740開始測量信號732保持在邏輯高位準的持續時間,並且還確定連續切換週期的數量是否變得大於預定連續閾值。在一些示例中,預定連續閾值為正數。例如,預定連續閾值是整數。作為示例,預定連續閾值不是整數。在某些示例中,預定連續閾值由時鐘信號772確定。例如,如果連續切換週期的數量未變得大於預定連續閾值,則連續切換感測單元740將信號742保持在邏輯高位準。作為示例,如果連續切換週期的數量變得大於預定連續閾值,則連續切換感測單元740將信號742從邏輯高位準變為邏輯低位準。
作為示例,如果持續時間T2(例如,如等式3A、等式 3B、等式4A和/或等式4B所示)等於或小於預定連續閾值乘以一個切換週期減去持續時間T1(例如,電晶體316的最小導通時間和/或電晶體418的最小導通時間)的差。例如,如果持續時間T2(例如,如等式3A、等式3B、等式4A和/或等式4B所示)變得大於預定連續閾值乘以一個切換週期減去持續時間T1(例如,電晶體316的最小導通時間和/或電晶體418的最小導通時間)的差,則連續切換感測單元740將信號742從邏輯高位準變為邏輯低位準。
在某些實施例中,信號742處於邏輯高位準表示持續時間T2(例如,如等式3A、等式3B、等式4A和/或等式4B所示)等於或小於預定連續閾值乘以每個切換週期的持續時間減去持續時間T1(例如,電晶體316的最小導通時間和/或電晶體418的最小導通時間)的差,並且持續時間T3(例如,如等式3A、等式3B、等式4A和/或等式4B所示)大於或等於每個切換週期的持續時間乘以預定跳過閾值。例如,信號742處於邏輯高位準表示連續切換週期的數量等於或小於預定連續閾值,並且跳過的切換週期的數量等於或大於預定跳過閾值。
在一些示例中,如果連續切換週期的數量變得大於預定連續閾值和/或跳過的切換週期的數量變得小於預定跳過閾值,則信號742從邏輯高位準變為邏輯低位準。在某些示例中,如果連續切換週期的數量等於或小於預定連續閾值並且跳過的切換週期的數量等於或大於預定跳過閾值,則信號742從邏輯低位準變為邏輯高位準。作為示例,如果連續切換週期的數量保持等於或小於預定連續閾值並且跳過的切換週期的數量保持等於或大於預定跳過閾值,則信號742保持在邏輯高位準。
根據一些實施例,時序單元750接收信號742和774並輸出信號776。在某些示例中,當信號742從邏輯低位準變為邏輯高位準時,時序單元750開始測量信號742保持在邏輯高位準的持續時間,並且還確定該持續時間是否變得大於預定時間閾值。例如,如果信號742保持在邏輯高位準的持續時間變得大於預定時間閾值,則時序單元750將信號776從邏輯低位準變為邏輯高位準。在一些示例中,預定時間閾值由時鐘信號 774確定。
在一些示例中,條件是連續切換週期的數量保持等於或小於預定連續閾值並且跳過的切換週期的數量保持等於或大於預定跳過閾值,並且如果該條件在大於預定時間閾值的持續時間內保持被滿足,則時序單元750在邏輯高位準處生成信號776。例如,如果該條件在大於預定時間閾值的持續時間內保持被滿足,則電感器電流384的平均幅度(例如,如等式3A和/或等式4A所示)小於預定閾值(例如,退出閾值電流)。作為示例,如果該條件在大於預定時間閾值的持續時間內保持被滿足,則電感器電流484的平均幅度(例如,如等式3B和/或等式4B所示)小於預定閾值(例如,退出閾值電流)。
在某些實施例中,信號776是如第3圖所示的感測信號376。作為示例,如果感測信號376處於邏輯高位準,則控制器和驅動器360不調變閘極驅動信號362和364,而是將閘極驅動信號362和364保持在邏輯低位準,以使得電晶體316和318保持關斷。例如,如果感測信號376處於邏輯高位準,則控制器和驅動器360不調變閘極驅動信號362和364,而是將閘極驅動信號362和364保持在邏輯低位準,以使得電晶體316和318在比跳過的切換週期的持續時間更長的關斷持續時間內保持關斷。
在一些實施例中,信號776是如第4圖所示的感測信號476。作為示例,如果感測信號476處於邏輯高位準,則控制器和驅動器460不調變閘極驅動信號462和464,而是將閘極驅動信號462和464保持在邏輯低位準,以使得電晶體416和418保持關斷。例如,如果感測信號476處於邏輯高位準,則控制器和驅動器460不調變閘極驅動信號462和464,而是將閘極驅動信號462和464保持在邏輯低位準,以使得電晶體416和418在比跳過的切換週期的持續時間更長的關斷持續時間內保持關斷。本發明的一些實施例提供了用於以高精度感測電流(例如,充電電流和/或放電電流)是否變得等於或小於退出閾值電流的簡單且可靠的系統和方法。
根據某些實施例,用於對一個或多個電池(例如,電池340和/或電池440)進行充電或放電的電池管理系統(例如,電池管理系統310和/或電池管理系統410)包括:第一電晶體(例如,電晶體316和/或電晶體418),其包括第一電晶體端子、第二電晶體端子和第三電晶體端子,該第二電晶體端子被配置為接收第一驅動信號(例如,閘極驅動信號362和/或閘極驅動信號464);第二電晶體(例如,電晶體318和/或電晶體416),其包括第四電晶體端子、第五電晶體端子和第六電晶體端子,該第五電晶體端子被配置為接收第二驅動信號(例如,閘極驅動信號364和/或閘極驅動信號462);高載模式感測器(例如,高載模式感測電路312和/或高載模式感測電路412),被配置為接收第一驅動信號,並至少部分地基於第一驅動信號來生成高載模式感測信號(例如,感測信號376和/或感測信號476);以及驅動信號生成器(例如,控制器和驅動器360和/或控制器和驅動器460),被配置為接收高載模式感測信號,並至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號;其中:第二電晶體的第四電晶體端子被連接至第一電晶體的第三電晶體端子;並且第三電晶體端子和第四電晶體端子通過電感器(例如,電感器320和/或電感器420)被耦合至一個或多個電池的第一電池端子(例如,電池340的端子342和/或電池440的端子442),該一個或多個電池還包括第二電池端子(例如,電池340的端子344和/或電池440的端子444);其中,高載模式感測器還被配置為:確定第一驅動信號的一個或多個連續週期的第一數量(例如,各自具有脈衝的N個連續週期,其中,N為正整數),在該一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;確定第一驅動信號的一個或多個跳過週期的第二數量(例如,各自沒有任何脈衝的M個跳過週期,其中,M為正整數),在該一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;至少部分地基於一個或多個連續週期的第一數量和一個或多個跳過週期的第二數量,確定由第三電晶體端子和第四電晶體端子提供給電感器的或由第三電晶體端子和第四電晶體端子從電感器接收的電感器電流(例 如,電流384和/或電流484)的平均幅度是否小於預定電流閾值;並且如果電感器電流的平均幅度小於預定電流閾值,則生成高載模式感測信號,以使驅動信號生成器停止對第一驅動信號的第一調變並停止對第二驅動信號的第二調變;其中,驅動信號生成器還被配置為:如果電感器電流的平均幅度小於預定電流閾值,則回應於高載模式感測信號,停止對第一驅動信號的第一調變以及對第二驅動信號的第二調變,使得第一電晶體和第二電晶體保持關斷。作為示例,電池管理系統至少根據第3圖和/或第4圖來實現。
在一些示例中,第一電晶體的第一電晶體端子被配置為從電源(例如,電源390)接收輸入電壓(例如,輸入電壓392)。在某些示例中,第二電晶體的第六電晶體端子被配置為向負載(例如,負載490)提供輸出電壓(例如,輸出電壓492)。在一些示例中,第二電晶體(例如,電晶體318)的第六電晶體端子被耦合到一個或多個電池(例如,電池340)的第二電池端子;並且第二電晶體的第六電晶體端子被偏置到預定電壓(例如,地電壓)。在某些示例中,第一電晶體(例如,電晶體418)的第一電晶體端子被耦合到一個或多個電池(例如,電池440)的第二電池端子;並且第一電晶體的第一電晶體端子被偏置到預定電壓(例如,地電壓)。
在一些示例中,電池管理系統還包括:零電流感測器(例如,零電流感測電路314和/或零電流感測電路414),被配置為:接收電壓信號(例如,電壓380和/或電壓480)、至少部分地基於電壓信號來確定電感器電流是否等於零、以及至少部分地基於電感器電流是否被確定為等於零來生成零電流感測信號(例如,感測信號382和/或感測信號482)。在某些示例中,驅動信號生成器(例如,控制器和驅動器360和/或控制器和驅動器460)還被配置為接收零電流感測信號,並至少部分地基於高載模式感測信號和零電流感測信號來生成第一驅動信號和第二驅動信號。在一些示例中,高載模式感測器還被配置為:接收至少一個時鐘信號(例如,時鐘信號370、時鐘信號372、時鐘信號374、時鐘信號470、 時鐘信號472、和/或時鐘信號474);並至少部分地基於第一驅動信號和時鐘信號來生成高載模式感測信號。
根據某些實施例,用於對一個或多個電池(例如,電池340和/或電池440)進行充電或放電的電池管理系統(例如,電池管理系統310和/或電池管理系統410)包括:第一電晶體(例如,電晶體316和/或電晶體418),其包括第一電晶體端子、第二電晶體端子和第三電晶體端子,該第二電晶體端子被配置為接收第一驅動信號(例如,閘極驅動信號362和/或閘極驅動信號464);高載模式感測器(例如,高載模式感測電路312和/或高載模式感測電路412),被配置為接收第一驅動信號,並至少部分地基於第一驅動信號生成高載模式感測信號(例如,感測信號376和/或感測信號476);以及驅動信號生成器(例如,控制器和驅動器360和/或控制器和驅動器460),被配置為接收高載模式感測信號並至少部分地基於高載模式感測信號來生成第一驅動信號;其中,高載模式感測器還被配置為:確定一個或多個連續週期的第一數量(例如,各自具有脈衝的N個連續週期,其中,N是正整數),在該一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;確定一個或多個跳過週期的第二數量(例如,各自沒有任何脈衝的M個跳過週期,其中,M為正整數),在該一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;並且如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成高載模式感測信號,以使驅動信號生成器停止對第一驅動信號的第一調變;其中,驅動信號生成器還被配置為:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則回應於高載模式感測信號,停止對第一驅動信號的第一調變,以使得第一電晶體保持關斷。作為示例,電池管理系統至少根據第3圖和/或第4圖來實現。
在一些示例中,其中,第一電晶體的第一電晶體端子被配置為從電源(例如,電源390)接收輸入電壓(例如,輸入電壓392)。 在某些示例中,電池管理系統還包括:第二電晶體(例如,電晶體318和/或電晶體416),其包括第四電晶體端子、第五電晶體端子和第六電晶體端子,該第五電晶體端子被配置為從驅動信號生成器接收第二驅動信號(例如,閘極驅動信號364和/或閘極驅動信號462)。
在一些示例中,第二電晶體的第四電晶體端子被連接至第一電晶體的第三電晶體端子;並且第三電晶體端子和第四電晶體端子通過電感器(例如,電感器320)被耦合到一個或多個電池的第一電池端子(例如,電池340的端子342),該一個或多個電池還包括第二電池端子(例如,電池340的端子344)。在某些示例中,第二電晶體的第六電晶體端子被耦合至一個或多個電池的第二電池端子;並且第二電晶體的第六電晶體端子被偏置到預定電壓(例如,地電壓)。
在一些示例中,第一電晶體的第三電晶體端子被耦合到一個或多個電池的第一電池端子(例如,電池440的端子444),該一個或多個電池還包括第二電池端子(例如,電池440的端子442);並且第一電晶體的第三電晶體端子被偏置到預定電壓(例如,地電壓)。在某些示例中,第二電晶體的第四電晶體端子被配置為向負載(例如,負載490)提供輸出電壓(例如,輸出電壓492)。在一些示例中,第二電晶體的第六電晶體端子被連接至第一電晶體的第一電晶體端子;並且第一電晶體端子和第六電晶體端子通過電感器(例如,電感器420)耦合到一個或多個電池的第二電池端子。在某些示例中,驅動信號生成器被配置為至少部分地基於高載模式感測信號來生成第二驅動信號;高載模式感測器還被配置為:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成高載模式感測信號以使驅動信號生成器停止對第二驅動信號的第二調變;並且驅動信號生成器還被配置為:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則回應於高載模式感測信號,停止對第二驅動信號的第二調變,以使得第二電晶體保持關斷。
在一些示例中,電池管理系統還包括:零電流感測器 (例如,零電流感測電路314和/或零電流感測電路414),被配置為接收電壓信號(例如,電壓380和/或電壓480)並至少部分地基於電壓信號來生成零電流感測信號(例如,感測信號382和/或感測信號482);其中,驅動信號生成器(例如,控制器和驅動器360和/或控制器和驅動器460)還被配置為接收零電流感測信號,並至少部分地基於高載模式感測信號和零電流感測信號來生成第一驅動信號。在某些示例中,高載模式感測器還被配置為:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成高載模式感測信號,以使驅動信號生成器在比對應於一個或多個跳過週期的跳過持續時間更長的關斷持續時間內停止對第一驅動信號的第一調變;並且驅動信號生成器還被配置為:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則回應於高載模式感測信號,停止對第一驅動信號的第一調變,以使得第一電晶體在比對應於一個或多個跳過週期的跳過持續時間更長的關斷持續時間內保持關斷。在一些示例中,其中,高載模式感測器還被配置為:接收至少一個時鐘信號(例如,時鐘信號370、時鐘信號372、時鐘信號374、時鐘信號470、時鐘信號472和/或時鐘信號474);並至少部分地基於第一驅動信號和時鐘信號來生成高載模式感測信號。
根據一些實施例,一種用於對一個或多個電池進行充電或放電的方法包括:接收第一驅動信號;處理與第一驅動信號相關聯的資訊;至少部分地基於第一驅動信號來生成高載模式感測信號;接收高載模式感測信號;處理與高載模式感測信號相關聯的資訊;以及至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號;其中,處理與第一驅動信號相關聯的資訊包括:確定第一驅動信號的一個或多個連續週期的第一數量(例如,各自具有脈衝的N個連續週期,其中,N是正整數),在該一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;確定第一驅動信號的一個或多個跳過週期的第二數量(例如,各自沒有任何脈衝的M個跳過週期,其中,M為正 整數),在該一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;以及至少部分地基於一個或多個連續週期的第一數量和一個或多個跳過週期的第二數量,確定由第三電晶體端子和第四電晶體端子提供給電感器的或由第三電晶體端子和第四電晶體端子從電感器接收的電感器電流(例如,電流384和/或電流484)的平均幅度是否小於預定電流閾值;其中,至少部分地基於第一驅動信號來生成高載模式感測信號包括:如果電感器電流的平均幅度小於預定電流閾值,則生成高載模式感測信號,以停止對第一驅動信號的第一調變並停止對第二驅動信號的第二調變;其中,至少部分地基於高載模式感測信號來生成第一驅動信號和第二驅動信號包括:如果電感器電流的平均幅度小於預定電流閾值,則回應於高載模式感測信號,停止對第一驅動信號的第一調變以及對第二驅動信號的第二調變,使得第一電晶體和第二電晶體保持關斷。作為示例,該方法至少根據第3圖和/或第4圖來實現。
根據某些實施例,一種用於對一個或多個電池進行充電或放電的方法包括:接收第一驅動信號;處理與第一驅動信號相關聯的資訊;至少部分地基於第一驅動信號來生成高載模式感測信號;接收高載模式感測信號;處理與高載模式感測信號相關聯的資訊;以及至少部分地基於高載模式感測信號來生成第一驅動信號;其中,處理與第一驅動信號相關聯的資訊包括:確定一個或多個連續週期的第一數量,在該一個或多個連續週期的每個週期期間,第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;並且確定一個或多個跳過週期的第二數量,在該一個或多個跳過週期的每個週期期間,第一驅動信號保持在第一邏輯位準;其中,至少部分地基於第一驅動信號來生成高載模式感測信號包括:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成高載模式感測信號以停止對第一驅動信號的第一調變;其中,至少部分地基於高載模式感測信號來生成第一驅動信號包括:如果第一數量小於預定連續閾值以及第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則回應於高載模式感測信號, 停止對第一驅動信號的第一調變。作為示例,該方法至少根據圖3和/或圖4來實現。
例如,本發明的各種實施例的一些或全部元件單獨地和/或與至少另一元件組合地使用一個或多個軟體元件、一個或多個硬體元件、和/或一個或多個軟體元件和硬體元件的組合來實現。在另一示例中,本發明的各種實施例的一些或全部元件單獨地和/或與至少另一元件組合地在一個或多個電路(例如,一個或多個類比電路和/或一個或多個數位電路)中實現。在又一示例中,本發明的各種實施例和/或示例可以被組合。
儘管已經描述了本發明的特定實施例,但是本領域技術人員將理解,存在等同於所描述的實施例的其他實施例。因此,應當理解,本發明不限於具體示出的實施例,而僅由所附申請專利範圍來限定。
300:電池充電系統
310:電池管理系統(晶片)
312:高載模式感測電路
314:零電流感測電路
316,318:電晶體
320:電感器
340:電池
342,344,354,356,358:端子
360:控制器和驅動器
362,364:閘極驅動信號
370,372,374:時鐘信號
376,382:感測信號
380:電壓
384:電流
390:電源
392,Vin:輸入電壓
Vbat:電池電壓

Claims (22)

  1. 一種用於對一個或多個電池進行充電或放電的電池管理系統,所述系統包括:
    第一電晶體,包括第一電晶體端子、第二電晶體端子和第三電晶體端子,所述第二電晶體端子被配置為接收第一驅動信號;
    第二電晶體,包括第四電晶體端子、第五電晶體端子和第六電晶體端子,所述第五電晶體端子被配置為接收第二驅動信號;
    高載模式感測器,被配置為接收所述第一驅動信號,並至少部分地基於所述第一驅動信號來生成高載模式感測信號;以及
    驅動信號生成器,被配置為接收所述高載模式感測信號,並至少部分地基於所述高載模式感測信號來生成所述第一驅動信號和所述第二驅動信號;
    其中:
    所述第二電晶體的所述第四電晶體端子連接至所述第一電晶體的所述第三電晶體端子;並且
    所述第三電晶體端子和所述第四電晶體端子通過電感器耦合至一個或多個電池的第一電池端子,所述一個或多個電池還包括第二電池端子;
    其中,所述高載模式感測器還被配置為:
    確定所述第一驅動信號的一個或多個連續週期的第一數量,在所述一個或多個連續週期的每個週期期間,所述第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;
    確定所述第一驅動信號的一個或多個跳過週期的第二數量,在所述一個或多個跳過週期的每個週期期間,所述第一驅動信號保持在所述第一邏輯位準;
    至少部分地基於所述一個或多個連續週期的所述第一數量和所述一個或多個跳過週期的所述第二數量,確定由所述第三電晶體端子和 所述第四電晶體端子提供給所述電感器的或由所述第三電晶體端子和所述第四電晶體端子從所述電感器接收的電感器電流的平均幅度是否小於預定電流閾值;並且
    如果所述電感器電流的所述平均幅度小於所述預定電流閾值,則生成所述高載模式感測信號,以使所述驅動信號生成器停止對所述第一驅動信號的第一調變並停止對所述第二驅動信號的第二調變;
    其中,所述驅動信號生成器還被配置為:如果所述電感器電流的所述平均幅度小於所述預定電流閾值,則回應於所述高載模式感測信號,停止對所述第一驅動信號的所述第一調變和對所述第二驅動信號的所述第二調變,以使所述第一電晶體和所述第二電晶體保持關斷。
  2. 如請求項1所述的電池管理系統,其中,所述第一電晶體的所述第一電晶體端子被配置為從電源接收輸入電壓。
  3. 如請求項1所述的電池管理系統,其中,所述第二電晶體的所述第六電晶體端子被配置為向負載提供輸出電壓。
  4. 如請求項1所述的電池管理系統,其中:
    所述第二電晶體的所述第六電晶體端子耦合至所述一個或多個電池的所述第二電池端子;並且
    所述第二電晶體的所述第六電晶體端子被偏置到預定電壓。
  5. 如請求項1所述的電池管理系統,其中:
    所述第一電晶體的所述第一電晶體端子耦合至所述一個或多個電池的所述第二電池端子;並且
    所述第一電晶體的所述第一電晶體端子被偏置到預定電壓。
  6. 如請求項1所述的電池管理系統,並且還包括:
    零電流感測器,被配置為:接收電壓信號、至少部分地基於所述電壓信號來確定所述電感器電流是否等於零、以及至少部分地基於所述電感器電流是否被確定為等於零來生成零電流感測信號。
  7. 如請求項6所述的電池管理系統,其中,所述驅動信號生成器還被 配置為:接收所述零電流感測信號,並至少部分地基於所述高載模式感測信號和所述零電流感測信號來生成所述第一驅動信號和所述第二驅動信號。
  8. 如請求項1所述的電池管理系統,其中,所述高載模式感測器還被配置為:
    接收至少一個時鐘信號;並且
    至少部分地基於所述第一驅動信號和所述時鐘信號來生成所述高載模式感測信號。
  9. 一種用於對一個或多個電池進行充電或放電的電池管理系統,所述系統包括:
    第一電晶體,包括第一電晶體端子、第二電晶體端子和第三電晶體端子,所述第二電晶體端子被配置為接收第一驅動信號;
    高載模式感測器,被配置為接收所述第一驅動信號,並至少部分地基於所述第一驅動信號來生成高載模式感測信號;以及
    驅動信號生成器,被配置為接收所述高載模式感測信號,並至少部分地基於所述高載模式感測信號來生成所述第一驅動信號;
    其中,所述高載模式感測器還被配置為:
    確定一個或多個連續週期的第一數量,在所述一個或多個連續週期的每個週期期間,所述第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;
    確定一個或多個跳過週期的第二數量,在所述一個或多個跳過週期的每個週期期間,所述第一驅動信號保持在所述第一邏輯位準;並且
    如果所述第一數量小於預定連續閾值以及所述第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成所述高載模式感測信號,以使所述驅動信號生成器停止對所述第一驅動信號的第一調變;
    其中,所述驅動信號生成器還被配置為:如果所述第一數量小於所述 預定連續閾值以及所述第二數量大於所述預定跳過閾值二者都被滿足達大於所述預定時間閾值的所述持續時間,則回應於所述高載模式感測信號,停止對所述第一驅動信號的所述第一調變,以使得所述第一電晶體保持關斷。
  10. 如請求項9所述的電池管理系統,其中,所述第一電晶體的所述第一電晶體端子被配置為從電源接收輸入電壓。
  11. 如請求項9所述的電池管理系統,並且還包括:
    第二電晶體,包括第四電晶體端子、第五電晶體端子和第六電晶體端子,所述第五電晶體端子被配置為從所述驅動信號生成器接收第二驅動信號。
  12. 如請求項11所述的電池管理系統,其中:
    所述第二電晶體的所述第四電晶體端子連接至所述第一電晶體的所述第三電晶體端子;並且
    所述第三電晶體端子和所述第四電晶體端子通過電感器耦合至一個或多個電池的第一電池端子,所述一個或多個電池還包括第二電池端子。
  13. 如請求項12所述的電池管理系統,其中:
    所述第二電晶體的所述第六電晶體端子耦合至所述一個或多個電池的所述第二電池端子;並且
    所述第二電晶體的所述第六電晶體端子被偏置到預定電壓。
  14. 如請求項11所述的電池管理系統,其中:
    所述第一電晶體的所述第三電晶體端子耦合至一個或多個電池的第一電池端子,所述一個或多個電池還包括第二電池端子;並且
    所述第一電晶體的所述第三電晶體端子被偏置到預定電壓。
  15. 如請求項14所述的電池管理系統,其中,所述第二電晶體的所述第四電晶體端子被配置為向負載提供輸出電壓。
  16. 如請求項15所述的電池管理系統,其中:
    所述第二電晶體的所述第六電晶體端子連接至所述第一電晶體的所述 第一電晶體端子;並且
    所述第一電晶體端子和所述第六電晶體端子通過電感器耦合至所述一個或多個電池的所述第二電池端子。
  17. 如請求項11所述的電池管理系統,其中:
    所述驅動信號生成器被配置為:至少部分地基於所述高載模式感測信號來生成所述第二驅動信號;
    所述高載模式感測器還被配置為:如果所述第一數量小於所述預定連續閾值以及所述第二數量大於所述預定跳過閾值二者都被滿足達大於所述預定時間閾值的所述持續時間,則生成所述高載模式感測信號,以使所述驅動信號生成器停止對所述第二驅動信號的第二調變;並且
    所述驅動信號生成器還被配置為:如果所述第一數量小於所述預定連續閾值以及所述第二數量大於所述預定跳過閾值二者都被滿足達大於所述預定時間閾值的所述持續時間,則回應於所述高載模式感測信號,停止對所述第二驅動信號的所述第二調變,以使得所述第二電晶體保持關斷。
  18. 如請求項9所述的電池管理系統,並且還包括:
    零電流感測器,被配置為接收電壓信號並至少部分地基於所述電壓信號來生成零電流感測信號;
    其中,所述驅動信號生成器還被配置為接收所述零電流感測信號,並至少部分基於所述高載模式感測信號和所述零電流感測信號來生成所述第一驅動信號。
  19. 如請求項9所述的電池管理系統,其中:
    所述高載模式感測器還被配置為:如果所述第一數量小於所述預定連續閾值以及所述第二數量大於所述預定跳過閾值二者都被滿足達大於所述預定時間閾值的所述持續時間,則生成所述高載模式感測信號,以使所述驅動信號生成器在比對應於所述一個或多個跳過週期的跳過持續時間更長的關斷持續時間內停止對所述第一驅動信號的所述第一調變;並且
    所述驅動信號生成器還被配置為:如果所述第一數量小於所述預定連 續閾值以及所述第二數量大於所述預定跳過閾值二者都被滿足達大於所述預定時間閾值的所述持續時間,則回應於所述高載模式感測信號,停止對所述第一驅動信號的所述第一調變,以使得所述第一電晶體在比對應於所述一個或多個跳過週期的所述跳過持續時間更長的所述關斷持續時間內保持關斷。
  20. 如請求項9所述的電池管理系統,其中,所述高載模式感測器還被配置為:
    接收至少一個時鐘信號;並且
    至少部分地基於所述第一驅動信號和所述時鐘信號來生成所述高載模式感測信號。
  21. 一種用於對一個或多個電池進行充電或放電的方法,所述方法包括:
    接收第一驅動信號;
    處理與所述第一驅動信號相關聯的資訊;
    至少部分地基於所述第一驅動信號來生成高載模式感測信號;
    接收所述高載模式感測信號;
    處理與所述高載模式感測信號相關聯的資訊;以及
    至少部分地基於所述高載模式感測信號來生成第一驅動信號和第二驅動信號;
    其中,所述處理與所述第一驅動信號相關聯的資訊包括:
    確定所述第一驅動信號的一個或多個連續週期的第一數量,在所述一個或多個連續週期的每個週期期間,所述第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;
    確定所述第一驅動信號的一個或多個跳過週期的第二數量,在所述一個或多個跳過週期的每個週期期間,所述第一驅動信號保持在所述第一邏輯位準;以及
    至少部分地基於所述一個或多個連續週期的所述第一數量和所述 一個或多個跳過週期的所述第二數量,確定由第三電晶體端子和第四電晶體端子提供給電感器的或由所述第三電晶體端子和所述第四電晶體端子從所述電感器接收的電感器電流的平均幅度是否小於預定電流閾值;
    其中,所述至少部分地基於所述第一驅動信號來生成高載模式感測信號包括:
    如果所述電感器電流的所述平均幅度小於所述預定電流閾值,則生成所述高載模式感測信號,以停止對所述第一驅動信號的第一調變並停止對所述第二驅動信號的第二調變;
    其中,所述至少部分地基於所述高載模式感測信號來生成第一驅動信號和第二驅動信號包括:
    如果所述電感器電流的所述平均幅度小於所述預定電流閾值,則回應於所述高載模式感測信號,停止對所述第一驅動信號的所述第一調變以及對所述第二驅動信號的所述第二調變,使得第一電晶體和第二電晶體保持關斷。
  22. 一種用於對一個或多個電池進行充電或放電的方法,所述方法包括:
    接收第一驅動信號;
    處理與所述第一驅動信號相關聯的資訊;
    至少部分地基於所述第一驅動信號來生成高載模式感測信號;
    接收所述高載模式感測信號;
    處理與所述高載模式感測信號相關聯的資訊;以及
    至少部分地基於所述高載模式感測信號來生成所述第一驅動信號;
    其中,所述處理與所述第一驅動信號相關聯的資訊包括:
    確定一個或多個連續週期的第一數量,在所述一個或多個連續週期的每個週期期間,所述第一驅動信號在第一邏輯位準和第二邏輯位準之間切換;並且
    確定一個或多個跳過週期的第二數量,在所述一個或多個跳過週期的每個週期期間,所述第一驅動信號保持在所述第一邏輯位準;
    其中,所述至少部分地基於所述第一驅動信號來生成高載模式感測信號包括:
    如果所述第一數量小於預定連續閾值以及所述第二數量大於預定跳過閾值二者都被滿足達大於預定時間閾值的持續時間,則生成所述高載模式感測信號,以停止對所述第一驅動信號的第一調變;
    其中,所述至少部分地基於所述高載模式感測信號來生成所述第一驅動信號包括:
    如果所述第一數量小於所述預定連續閾值以及所述第二數量大於所述預定跳過閾值二者都被滿足達大於所述預定時間閾值的所述持續時間,則回應於所述高載模式感測信號,停止對所述第一驅動信號的所述第一調變。
TW109107498A 2020-01-16 2020-03-06 用於低電流感測的系統和方法 TWI710781B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010056938.0A CN111261956B (zh) 2020-01-16 2020-01-16 用于低电流检测的系统和方法
CN202010056938.0 2020-01-16

Publications (2)

Publication Number Publication Date
TWI710781B true TWI710781B (zh) 2020-11-21
TW202129295A TW202129295A (zh) 2021-08-01

Family

ID=70945429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109107498A TWI710781B (zh) 2020-01-16 2020-03-06 用於低電流感測的系統和方法

Country Status (3)

Country Link
US (2) US11563335B2 (zh)
CN (1) CN111261956B (zh)
TW (1) TWI710781B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920395A1 (en) * 2020-06-05 2021-12-08 Nxp B.V. A controller for a power supply and a power supply
US11424684B2 (en) * 2020-06-10 2022-08-23 Apple Inc. High performance two stage power converter with enhanced light load management
CN115694180B (zh) * 2021-07-22 2024-05-10 圣邦微电子(北京)股份有限公司 开关变换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140347078A1 (en) * 2013-05-21 2014-11-27 Analog Devices Technology Current sensing of switching power regulators
WO2017124115A1 (en) * 2016-01-14 2017-07-20 Dialog Semiconductor (Uk) Limited Sensor-less buck current regulator with average current mode control
TW201815045A (zh) * 2016-10-09 2018-04-16 昂寶電子(上海)有限公司 一種buck變換器及其控制方法
WO2018208434A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Master-slave charging circuit with slave charger input current sensing and adaptive battery current limiting
TWI643426B (zh) * 2018-01-17 2018-12-01 茂達電子股份有限公司 快速充電電路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200841565A (en) * 2007-04-04 2008-10-16 Richtek Techohnology Corp Device for detecting zero current applied in switching regulator and method thereof
JP4600464B2 (ja) * 2007-11-22 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
CN103887980B (zh) * 2014-03-13 2016-10-05 昂宝电子(上海)有限公司 用于调节电源变换系统的系统和方法
US9246383B2 (en) * 2012-10-05 2016-01-26 Linear Technology Corporation System and method for input voltage regulation of switch mode supplies implementing burst mode operation
US9577527B2 (en) * 2015-03-20 2017-02-21 Active-Semi, Inc. Current metering for transitioning between operating modes in switching regulators
US10931198B2 (en) * 2017-12-08 2021-02-23 Texas Instruments Incorporated Buck-boost power converter controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140347078A1 (en) * 2013-05-21 2014-11-27 Analog Devices Technology Current sensing of switching power regulators
WO2017124115A1 (en) * 2016-01-14 2017-07-20 Dialog Semiconductor (Uk) Limited Sensor-less buck current regulator with average current mode control
TW201815045A (zh) * 2016-10-09 2018-04-16 昂寶電子(上海)有限公司 一種buck變換器及其控制方法
WO2018208434A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Master-slave charging circuit with slave charger input current sensing and adaptive battery current limiting
TWI643426B (zh) * 2018-01-17 2018-12-01 茂達電子股份有限公司 快速充電電路

Also Published As

Publication number Publication date
US11563335B2 (en) 2023-01-24
US20210226470A1 (en) 2021-07-22
CN111261956B (zh) 2023-02-03
TW202129295A (zh) 2021-08-01
CN111261956A (zh) 2020-06-09
US20230223780A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
TWI710781B (zh) 用於低電流感測的系統和方法
US7330019B1 (en) Adjusting on-time for a discontinuous switching voltage regulator
TWI402645B (zh) 形成電源供應控制器之方法及其結構
US8912778B1 (en) Switching voltage regulator employing current pre-adjust based on power mode
US8754613B2 (en) Charging device, electronic equipment including same, and control method of charging device
USRE37609E1 (en) Voltage regulator that operates in either PWM or PFM mode
US11063516B1 (en) Power converters with bootstrap
US6696821B2 (en) DC-DC converter, duty-ratio setting circuit and electric appliance using them
TWI410771B (zh) 形成電力供應控制器的方法
US8198881B2 (en) Chopper type DC-DC converter
US7535284B2 (en) Switching control circuit
US20090096427A1 (en) Apparatus for detecting end-of-charge for a battery charger
CN107342680B (zh) Dcdc转换器
US7142040B2 (en) Stabilized power supply circuit
US20140159691A1 (en) Switching power source device
KR101343305B1 (ko) 전하 펌프 제어기 및 그것을 위한 방법
US10931198B2 (en) Buck-boost power converter controller
US11705909B1 (en) Frequency-locked circuit for variable frequency topology and frequency-locked method thereof
JP2007151322A (ja) 電源回路およびdc−dcコンバータ
JP4048723B2 (ja) 太陽電池の充電回路とそれを搭載した半導体装置
JP6069700B2 (ja) スイッチング電源回路、電子装置、および半導体集積回路装置
CN111669028B (zh) 开关电源和应用于反激式开关电源的采样保持方法与电路
JP2009171757A (ja) 電源回路およびこれを備えた電子機器
JP2008517575A (ja) 効率を改善したコンバータ回路
JPH1169788A (ja) 電源装置