TWI710772B - Antenna intelligent measuring system - Google Patents

Antenna intelligent measuring system Download PDF

Info

Publication number
TWI710772B
TWI710772B TW108114614A TW108114614A TWI710772B TW I710772 B TWI710772 B TW I710772B TW 108114614 A TW108114614 A TW 108114614A TW 108114614 A TW108114614 A TW 108114614A TW I710772 B TWI710772 B TW I710772B
Authority
TW
Taiwan
Prior art keywords
antenna
measurement
identification
pattern
radiation
Prior art date
Application number
TW108114614A
Other languages
Chinese (zh)
Other versions
TW202040144A (en
Inventor
何松林
簡郅融
邱宗文
吳彬睿
陳銘廷
Original Assignee
川升股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川升股份有限公司 filed Critical 川升股份有限公司
Priority to TW108114614A priority Critical patent/TWI710772B/en
Publication of TW202040144A publication Critical patent/TW202040144A/en
Application granted granted Critical
Publication of TWI710772B publication Critical patent/TWI710772B/en

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna intelligent measuring system comprises a RF measuring device and an algorithm device. The RF measuring device comprises a standard antenna and a moving part. The moving part is controlled to carry the standard antenna to a plurality of measurement positions in the space, so that the standard antenna measures a plurality of antenna gains of an antenna under test (AUT). The algorithm device is electrically connected to the RF measuring device, and generates a detection field pattern according to the measurement positions and the plurality of antenna gains of the AUT. The algorithm device further stores a plurality of reference field patterns, wherein the reference field patterns respectively correspond to antennas of different radiation field types, and the algorithm device further compares the detection field pattern with the reference field patterns to generate a recognition signal recognizing what type of the AUT. The RF measuring device also receives the recognition signal and determines the measurement range of the AUT and the number of measurement points within the measurement range based on the recognition signal.

Description

天線智能量測系統 Antenna Intelligent Measurement System

本發明是關於一種量測系統;特別是一種用於量測天線輻射場型的智能量測系統。 The invention relates to a measurement system; in particular, it is an intelligent measurement system for measuring the antenna radiation pattern.

參閱圖1及圖2,各是一種傳統的天線輻射場型量測方法的示意圖,圓球面上的每一個黑點代表的是每一個量測取樣點1,並利用多數個量測取樣點1所量得的天線增益值對應球面座標資訊作圖,進而得到三維輻射場型圖。 Refer to Figure 1 and Figure 2. Each is a schematic diagram of a traditional antenna radiation field measurement method. Each black dot on the spherical surface represents each measurement sampling point 1, and multiple measurement sampling points 1 are used. The measured antenna gain value is plotted against the spherical coordinate information to obtain a three-dimensional radiation pattern.

這兩種量測方法的共同缺點在於:無論待測天線的類型為何,都一律採用全向性、全球面量測,如果要得到更精確的輻射場型圖就必須增加量測取樣點1的數目,進而增加量測時間,換句話說,量測的準確度與量測時間兩者無法同時兼顧。 The common shortcoming of these two measurement methods is: regardless of the type of antenna to be tested, omni-directional and global surface measurement are used. If you want to obtain a more accurate radiation pattern, you must increase the measurement sampling point 1 The number increases the measurement time. In other words, the accuracy of the measurement and the measurement time cannot be considered at the same time.

而上述的缺點在過去第4代行動通訊的年代還不至於十分明顯,但在第5代行動通訊就會被凸顯出來,因為第4代行動通訊的天線其工作頻段大約都不超過數個GHz,而第5代行動通訊的天線是工作在數十GHz的毫米波頻段,毫米波頻段的天線相較先前世代的通訊系統所採用的天線具有更高的指向性特徵(主波束集中在更小的空間角度範圍),因此在量測輻射場型時就必須更密集的取樣才能準確地建構出輻射場型的主波束的 形狀與強度,但越密集的取樣代表越長的量測時間、越低的研發效率。 The above-mentioned shortcomings were not very obvious in the past 4th generation mobile communication era, but it will be highlighted in the 5th generation mobile communication, because the antennas of the 4th generation mobile communication do not exceed a few GHz. , And the antenna of the 5th generation mobile communication works in the millimeter wave frequency band of tens of GHz. Compared with the antenna used in the previous generation communication system, the antenna of the millimeter wave frequency band has higher directivity characteristics (the main beam is concentrated in a smaller Space angle range), so when measuring the radiation pattern, more intensive sampling is required to accurately construct the main beam of the radiation pattern Shape and strength, but the denser the sampling, the longer the measurement time and the lower the R&D efficiency.

由於已知的方法有前述的問題,因此需要發展一種能解決前述缺點以量測天線輻射場型的智能量測系統。 Since the known method has the aforementioned problems, it is necessary to develop an intelligent measurement system that can solve the aforementioned shortcomings to measure the antenna radiation pattern.

本發明天線智能量測系統的較佳實施例適用於量測一待測天線的輻射參數,該較佳實施例包含一電波量測裝置及一演算法裝置。 The preferred embodiment of the antenna intelligent measurement system of the present invention is suitable for measuring the radiation parameters of an antenna to be tested. The preferred embodiment includes a radio wave measurement device and an algorithm device.

該電波量測裝置包括一標準天線及一移動部件。該標準天線設置於該移動部件上,該移動部件受控制連動該標準天線到空間中多數個量測位置,以讓該標準天線對該待測天線進行增益量測。 The radio wave measuring device includes a standard antenna and a moving part. The standard antenna is arranged on the moving part, and the moving part is controlled to link the standard antenna to a plurality of measurement positions in space, so that the standard antenna can measure the gain of the antenna under test.

該演算法裝置電連接該電波量測裝置,並記錄每一個量測位置,及計算且記錄每一個量測位置所對應的該待測天線的一辨識輻射增益,並根據該等量測位置及該等辨識輻射增益產生一偵測場型圖。該演算法裝置更儲存多張的參考場型圖,該等參考場型圖分別對應多種不同輻射場型的天線。該演算法裝置更將該偵測場型圖與該等參考場型圖相比對,以產生一對應該待測天線的類型的辨識訊號。該電波量測裝置更接收該辨識訊號,且根據該辨識訊號決定該標準天線對該待測天線進行增益量測的一量測範圍,以及決定該量測範圍中的量測點數。 The algorithm device is electrically connected to the radio wave measurement device, and records each measurement position, and calculates and records an identification radiation gain of the antenna to be tested corresponding to each measurement position, and based on the measurement positions and The identified radiation gains produce a detection pattern. The algorithm device further stores a plurality of reference field patterns, which respectively correspond to antennas with different radiation patterns. The algorithm device compares the detection field pattern with the reference field patterns to generate an identification signal corresponding to the type of the antenna under test. The radio wave measurement device further receives the identification signal, and according to the identification signal, determines a measurement range for the standard antenna to measure the gain of the antenna under test, and determines the number of measurement points in the measurement range.

較佳地,該演算法裝置包括一辨識控制單元,該辨識控制單元電連接該移動部件以控制該移動部件移動到每一個量測位置(r,θ i ,ψ i),並記錄每一個量測位置(r,θ i ,ψ i );該辨識控制單元電連接該標準天線以計算並記錄該標準天線位於每一個量測位置(r,θ i ,ψ i )時,該待測天線的該辨識輻射增益G i ;該辨識控制單元一共記錄下N筆量測位置的極角θ i 與方位角ψ i ,及記錄下N個辨識輻射增益G i ;該辨識控制單元更將該N筆的極角θ i=1~N N筆的方位角ψ i=1~N 分別作為該偵測場型圖的兩垂直軸,以及將N個辨識輻射增益G i 的大小對應為該偵測場型圖的色階來區分顯示;並且,每一個極角θ i 與每一個方位角ψ i 兩者共同對應一個該辨識輻射增益G i ,參數i=1~N,參數N是正整數。 Preferably, the algorithm device includes an identification control unit that is electrically connected to the moving part to control the moving part to move to each measurement position (r, θ i , ψ i ) , and record each quantity Measurement position (r, θ i , ψ i ); the identification control unit is electrically connected to the standard antenna to calculate and record when the standard antenna is located at each measurement position (r, θ i , ψ i ), the antenna under test identification of the radiation gain G i; the identification control means records the total measuring position N pen polar angle θ i and the azimuth angle ψ i, and record the identification of the N radiation gain G i; the identification unit further controls the pen N The polar angle θ i =1~ N and the azimuth angle ψ i =1 ~N of N pens are respectively used as the two vertical axes of the detection field pattern, and the magnitude of the N identification radiation gains G i corresponds to the detection The color scale of the field pattern is distinguished and displayed; and each polar angle θ i and each azimuth angle ψ i both correspond to the identified radiation gain G i , the parameter i =1~ N , and the parameter N is a positive integer.

較佳地,該參數N是大於或等於6的正整數。 Preferably, the parameter N is a positive integer greater than or equal to 6.

較佳地,該參數N=6時,該6個量測位置分別為(r,θ 1=90°,ψ 1=0°)、(r,θ 2=90°,ψ 2=90°)、(r,θ 3=90°,ψ 3=180°)、(r,θ 4=90°,ψ 4=270°)、(r,θ 5=0°,ψ 5)及(r,θ 6=180°,ψ 6),其中,參數r是該標準天線到該待測天線之間的一固定距離。 Preferably, when the parameter N =6, the 6 measurement positions are (r, θ 1 =90°, ψ 1 =0°), (r, θ 2 =90°, ψ 2 =90°) , (R, θ 3 =90°, ψ 3 =180°), (r, θ 4 =90°, ψ 4 =270°), (r, θ 5 =0°, ψ 5 ) and (r, θ 6 =180°, ψ 6 ), where the parameter r is a fixed distance from the standard antenna to the antenna under test.

較佳地,該參數N=14時,該14個量測位置分別為(r,θ 1=90°,ψ 1=0°)、(r,θ 2=90°,ψ 2=90°)、(r,θ 3=90°,ψ 3=180°)、(r,θ 4=90°,ψ 4=270°)、(r,θ 5=0°,ψ 5)、(r,θ 6=180°,ψ 6)、(r,θ 7=45°,ψ 7=45°)、(r,θ 8=45°,ψ 8=135°)、(r,θ 9=45°,ψ 9=225°)、(r,θ 10=45°,ψ 10=315°)、(r,θ 11=135°,ψ 11=45°)、(r,θ 12=135°,ψ 12=135°)、(r,θ 13=135°,ψ 13=225°)、(r,θ 14=135°,ψ 14=315°),其中,參數r是該標準天線到該待測天線之間的一固定距離° Preferably, when the parameter N =14, the 14 measurement positions are (r, θ 1 =90°, ψ 1 =0°), (r, θ 2 =90°, ψ 2 =90°) , (R, θ 3 =90°, ψ 3 =180°), (r, θ 4 =90°, ψ 4 =270°), (r, θ 5 =0°, ψ 5 ), (r, θ 6 =180°, ψ 6 ), (r, θ 7 =45°, ψ 7 =45°), (r, θ 8 =45°, ψ 8 =135°), (r, θ 9 =45°, ψ 9 =225°), (r, θ 10 =45°, ψ 10 =315°), (r, θ 11 =135°, ψ 11 =45°), (r, θ 12 =135°, ψ 12 =135°), (r, θ 13 =135°, ψ 13 =225°), (r, θ 14 =135°, ψ 14 =315°), where the parameter r is the standard antenna to the antenna under test A fixed distance between °

較佳地,該演算法裝置更包括一儲存該等參考場型圖的大數據儲存單元。 Preferably, the algorithm device further includes a big data storage unit for storing the reference field patterns.

較佳地,該等參考場型圖分別對應多種不同輻射場型的天線,包括:單極天線、偶極天線、全向性天線,及高指向性陣列天線° Preferably, the reference field patterns correspond to a variety of antennas with different radiation patterns, including: monopole antennas, dipole antennas, omnidirectional antennas, and high-directivity array antennas.

較佳地,該辨識控制單元更電連接該大數據儲存單元以讀取該等參考場型圖,並將該偵測場型圖與該等參考場型圖相比對,以在該 等參考場型圖中選擇出與該偵測場型圖最近似的一張,而最近似的該張參考場型圖所對應的天線類型就是該待測天線最接近的輻射類型,並且,該辨識控制單元更產生對應該待測天線的類型的該辨識訊號° Preferably, the identification control unit is further electrically connected to the big data storage unit to read the reference field patterns, and compare the detection field pattern with the reference field patterns, so that the Wait for the reference field pattern to select the one that is most similar to the detection field pattern, and the antenna type corresponding to the most similar reference field pattern is the radiation type closest to the antenna under test. The identification control unit further generates the identification signal corresponding to the type of antenna to be tested°

較佳地,每一張參考場型圖的兩垂直軸分別是極角θ j 及方位角ψ j ,每一個極角θ j 與每一個方位角ψ j 兩者共同對應一個參考增益G j ,該等參考增益G j 的強度是以色階來區分顯示。 Preferably, the two vertical axes of each reference field pattern are the polar angle θ j and the azimuth angle ψ j , and each polar angle θ j and each azimuth angle ψ j jointly correspond to a reference gain G j , The intensities of the reference gains G j are differentiated and displayed by color scale.

較佳地,該電波量測裝置更包括一電連接於該標準天線及該辨識控制單元之間的網路分析儀。 Preferably, the radio wave measuring device further includes a network analyzer electrically connected between the standard antenna and the identification control unit.

本發明之效果在於:該電波量測裝置根據該辨識訊號決定對該待測天線進行增益量測時的量測範圍及該量測範圍中的量測點數,而非如傳統技術完全未考慮該待測天線的類型一律進行全球面量測,因此能減少量測時間又能兼顧量測精確度,解決傳統技術的缺點。 The effect of the present invention is that the radio wave measurement device determines the measurement range during gain measurement of the antenna under test and the number of measurement points in the measurement range according to the identification signal, instead of being completely ignored by the traditional technology The types of antennas to be tested are uniformly subjected to global surface measurement, so the measurement time can be reduced while the measurement accuracy can be taken into account, and the shortcomings of the traditional technology can be solved.

1‧‧‧量測取樣點 1‧‧‧Measurement sampling point

2‧‧‧待測天線 2‧‧‧Antenna to be tested

3‧‧‧電波量測裝置 3‧‧‧Radio wave measuring device

31‧‧‧標準天線 31‧‧‧Standard antenna

32‧‧‧移動部件 32‧‧‧Moving Parts

33‧‧‧網路分析儀 33‧‧‧Network Analyzer

4‧‧‧演算法裝置 4‧‧‧Algorithm device

41‧‧‧辨識控制單元 41‧‧‧Identification control unit

42‧‧‧大數據儲存單元 42‧‧‧Big Data Storage Unit

51~56‧‧‧量測位置 51~56‧‧‧Measurement position

第1圖是一種傳統的天線輻射場型量測方法的示意圖。 Figure 1 is a schematic diagram of a traditional antenna radiation pattern measurement method.

第2圖是另一種傳統的天線輻射場型量測方法的示意圖。 Figure 2 is a schematic diagram of another traditional antenna radiation pattern measurement method.

第3圖是本發明天線智能量測系統的較佳實施例的示意圖。 Figure 3 is a schematic diagram of a preferred embodiment of the antenna smart measurement system of the present invention.

第4圖是本發明較佳實施例對待測天線進行量測的球座標的示意圖。 Fig. 4 is a schematic diagram of the spherical coordinates measured by the antenna to be tested in a preferred embodiment of the present invention.

參閱圖3,本發明一種天線智能量測系統適用於量測一待測 天線2的輻射參數,該天線智能量測系統的較佳實施例包含一電波量測裝置3及一演算法裝置4。 Referring to Figure 3, an antenna intelligent measurement system of the present invention is suitable for measuring a to-be-tested For the radiation parameters of the antenna 2, the preferred embodiment of the antenna intelligent measurement system includes a radio wave measurement device 3 and an algorithm device 4.

該電波量測裝置3包括一標準天線31、一移動部件32,及一網路分析儀33。該網路分析儀33電連接該標準天線31,該標準天線31設置於該移動部件32上,該移動部件32受控制連動該標準天線31到空間中多數個量測位置,以讓該標準天線31對該待測天線2進行增益量測。 The radio wave measuring device 3 includes a standard antenna 31, a moving part 32, and a network analyzer 33. The network analyzer 33 is electrically connected to the standard antenna 31. The standard antenna 31 is disposed on the moving part 32. The moving part 32 is controlled to link the standard antenna 31 to a plurality of measurement positions in space, so that the standard antenna 31 Perform gain measurement on the antenna 2 under test.

該待測天線2位於一球座標的球心位置,且該電波量測裝置3對該待測天線2進行量測時的每一個量測位置(r,θ,ψ)是如圖4所示以球座標來表示。 The antenna under test 2 is located at the center of a spherical coordinate, and each measurement position (r, θ , ψ ) when the radio wave measuring device 3 measures the antenna 2 under test is as shown in FIG. 4 Expressed in spherical coordinates.

當該待測天線2的輻射類型還未知時,該電波量測裝置3會先執行場型辨識,該場型辨識的執行方法是:該電波量測裝置3於預設的N個量測位置(r,θ i ,ψ i ),i=1~N,分別去量測該待測天線2的N個辨識輻射增益G i ,該參數N是大於或等於6的正整數,參數r是該標準天線31到該待測天線2之間的一固定距離,所以這N個量測位置都位於一個共同的圓球面上。 When the radiation type of the antenna 2 under test is not yet known, the radio wave measuring device 3 will first perform field pattern recognition. The method for performing the field pattern recognition is: the radio wave measuring device 3 is at N preset measurement positions (r, θ i , ψ i ), i =1~ N , respectively, to measure the N identification radiation gains G i of the antenna 2 under test. The parameter N is a positive integer greater than or equal to 6, and the parameter r is the There is a fixed distance between the standard antenna 31 and the antenna under test 2, so the N measurement positions are all located on a common spherical surface.

參閱圖3及圖4,該參數N=6時,代表該電波量測裝置3從該待測天線2的前、右、後、左、上、下這6個方向對該待測天線2進行增益量測,這6個量測位置51、52、53、54、55、56以球座標分別表示為(r,θ 1=90°,ψ 1=0°)、(r,θ 2=90°,ψ 2=90°)、(r,θ 3=90°,ψ 3=180°)、(r,θ 4=90°,ψ 4=270°)、(r,θ 5=0°,ψ 5)及(r,θ 6=180°,ψ 6)。 Referring to Figures 3 and 4, when the parameter N =6, it means that the radio wave measuring device 3 performs the measurement on the antenna 2 under test from the six directions of the front, right, back, left, up, and down of the antenna under test 2. Gain measurement, these 6 measurement positions 51, 52, 53, 54, 55, 56 are expressed in spherical coordinates as (r, θ 1 =90°, ψ 1 =0°), (r, θ 2 =90 °, ψ 2 =90°), (r, θ 3 =90°, ψ 3 =180°), (r, θ 4 =90°, ψ 4 =270°), (r, θ 5 =0°, ψ 5 ) and (r, θ 6 =180°, ψ 6 ).

該演算法裝置4包括一辨識控制單元41及一大數據儲存單元42。 The algorithm device 4 includes an identification control unit 41 and a large data storage unit 42.

該辨識控制單元41電連接該移動部件32以控制該移動部件 32移動到每一個量測位置(r,θ i ,ψ i ),且該辨識控制單元41更電連接該電波量測裝置3的網路分析儀33以計算並記錄該標準天線31位於每一個量測位置(r,θ i ,ψ i )時,該待測天線2的一辨識輻射增益G i ,該辨識控制單元41更記錄每一個量測位置(r,θ i i )。該辨識控制單元41在N個量測位置(r,θ i ,ψ i) i=1~N,執行完該場型辨識後會記錄下N個辨識輻射增益G i=1~N,及N筆量測位置的極角θ i=1~N與方位角ψ i=1~N 。該辨識控制單元41更將該N筆的極角θ i=1~N N筆的方位角ψ i=1~N分別作為一幅二維圖像的兩垂直軸(例如X軸是極角θ 1~N 的值,Y軸是方位角ψ 1~N 的值),並且,每一個極角θ i 與每一個方位角ψ i 兩者共同對應一個辨識輻射增益G i ,該辨識輻射增益G i 的大小是以色階來區分顯示,因此,該辨識控制單元41會產生一幅粗略顯示該待測天線2的輻射場型分布的偵測場型圖。 The identification control unit 41 is electrically connected to the moving part 32 to control the moving part 32 to move to each measurement position (r, θ i , ψ i ), and the identification control unit 41 is further electrically connected to the electric wave measuring device 3 The network analyzer 33 calculates and records an identification radiation gain G i of the antenna 2 under test when the standard antenna 31 is located at each measurement position (r, θ i , ψ i ), and the identification control unit 41 further records Each measurement position (r, θ i , ψ i ). The identification control unit 41 is at N measurement positions (r, θ i , ψ i) , i =1~ N , after performing the field pattern identification, it will record N identification radiation gains G i =1~N , and The polar angle θ i =1~N and the azimuth angle ψ i =1~ N of the measured position with N pens. The identification control unit 41 further pen the N polar angle θ i = 1 ~ N N T and the azimuth angle ψ i = 1 ~ N, respectively, as a two-dimensional image of a vertical axis (X-axis is a polar angle e.g. The value of θ 1~ N , the Y axis is the value of azimuth angle ψ 1~ N ), and each polar angle θ i and each azimuth angle ψ i both correspond to an identification radiation gain G i , the identification radiation gain The size of G i is distinguished and displayed by color scale. Therefore, the identification control unit 41 generates a detection field pattern roughly showing the radiation field distribution of the antenna 2 under test.

該大數據儲存單元42更預先儲存多張的參考場型圖,該等參考場型圖分別對應多種不同輻射場型的天線,包括單極天線、偶極天線、全向性天線,及高指向性陣列天線等,但不以此為限。每一張的參考場型圖都包括球座標的多個不同的極角θ j 、多個不同的方位角ψ j ,及多個增益G j ,於本較佳實施例,每一張參考場型圖的兩垂直軸分別是極角θ j及方位角ψ j ,每一個極角θ j 與每一個方位角ψ j 兩者共同對應一個參考增益G j ,該等參考增益G j 的強度是以色階來區分顯示。 The big data storage unit 42 further stores a plurality of reference field patterns in advance, and the reference field patterns correspond to a variety of antennas with different radiation patterns, including monopole antennas, dipole antennas, omnidirectional antennas, and high-direction antennas. Array antenna, etc., but not limited to this. Each reference field pattern includes multiple different polar angles θ j of spherical coordinates, multiple different azimuth angles ψ j , and multiple gains G j . In the preferred embodiment, each reference field The two vertical axes of the graph are the polar angle θ j and the azimuth angle ψ j respectively . Each polar angle θ j and each azimuth angle ψ j corresponds to a reference gain G j , and the intensity of the reference gain G j is The display is distinguished by color scale.

該辨識控制單元41更電連接該大數據儲存單元42以讀取這多張的參考場型圖,並將該偵測場型圖與該等參考場型圖相比對,以在該等參考場型圖中選擇出與該偵測場型圖最近似的一張,而最近似的該張參考場型圖所對應的天線類型就是該待測天線2最接近的輻射類型,並且,該 辨識控制單元41更產生一對應該待測天線2的類型的辨識訊號。 The identification control unit 41 is further electrically connected to the big data storage unit 42 to read the plurality of reference field patterns, and compare the detection field pattern with the reference field patterns, so that the reference pattern In the field pattern diagram, the one that is most similar to the detection field pattern is selected, and the antenna type corresponding to the most similar reference field pattern is the radiation type closest to the antenna 2 under test, and the The identification control unit 41 further generates an identification signal corresponding to the type of the antenna 2 to be tested.

該電波量測裝置3的移動部件32更接收該辨識訊號,且根據該辨識訊號決定該標準天線31對該待測天線2進行增益量測的一量測範圍,以及該量測範圍中的量測點數。 The moving part 32 of the radio wave measuring device 3 further receives the identification signal, and according to the identification signal, determines a measurement range for the standard antenna 31 to measure the gain of the antenna 2 under test, and the quantity in the measurement range Number of measuring points.

舉例說明,當被選擇出的、與該偵測場型圖最近似的該幅參考場型圖所對應的天線類型是具有單一主波束的陣列天線,則該量測範圍就可以是僅涵蓋這個主波束的部分球面就夠了,例如1/4球面、1/8球面,或是極角θ與方位角ψ所界定出的一塊量測範圍(r,θ1<θ21<ψ2),而不用如傳統技術進行全球面的量測,這樣就可以相對縮短量測時間,甚至,在固定的量測點數下(量測點數正相關於量測時間),可以針對指向性越高的該待測天線2縮小量測範圍,對指向性越低的該待測天線2增加量測範圍,因為指向性越高的天線代表的就是波束寬越窄,所以量測範圍就可以縮小,但兩兩相鄰的量測點也必須要越近才能維持量測精準度,相反地,指向性越低的天線代表的就是波束寬越寬,所以量測範圍就相對要增大,但兩兩相鄰的量測點則可以相對遠離且不致影響量測精準度。 For example, when the selected antenna type corresponding to the reference pattern pattern that is most similar to the detection pattern pattern is an array antenna with a single main beam, then the measurement range can only cover this Part of the spherical surface of the main beam is sufficient, such as 1/4 sphere, 1/8 sphere, or a measurement range defined by the polar angle θ and the azimuth angle ψ (r,θ 1 < θ21 < ψ2 ), instead of global measurement like traditional technology, this can shorten the measurement time, even under a fixed number of measurement points (the number of measurement points is positively related to the measurement time) , The measurement range can be reduced for the antenna under test 2 with higher directivity, and the measurement range can be increased for the antenna under test 2 with lower directivity, because the antenna with higher directivity represents the narrower beam width, so The measurement range can be reduced, but the two adjacent measurement points must be closer to maintain measurement accuracy. Conversely, the lower the directivity of the antenna represents the wider the beam width, so the measurement range is Relatively larger, but two adjacent measurement points can be relatively far away without affecting the measurement accuracy.

綜上所述,本發明利用該演算法裝置4對該待測天線2的類型進行辨識,且該電波量測裝置3更根據該辨識訊號決定對該待測天線2進行增益量測時的量測範圍及該量測範圍中的量測點數,既能減少量測時間又能兼顧量測精確度,因此能解決傳統技術的缺點。 In summary, the present invention uses the algorithm device 4 to identify the type of the antenna 2 under test, and the radio wave measurement device 3 determines the amount of gain measurement for the antenna 2 under test according to the identification signal. The measurement range and the number of measurement points in the measurement range can not only reduce the measurement time but also take into account the measurement accuracy, so it can solve the shortcomings of the traditional technology.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單地等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification still belong to This invention patent covers the scope.

2‧‧‧待測天線 2‧‧‧Antenna to be tested

3‧‧‧電波量測裝置 3‧‧‧Radio wave measuring device

31‧‧‧標準天線 31‧‧‧Standard antenna

32‧‧‧移動部件 32‧‧‧Moving Parts

33‧‧‧網路分析儀 33‧‧‧Network Analyzer

4‧‧‧演算法裝置 4‧‧‧Algorithm device

41‧‧‧辨識控制單元 41‧‧‧Identification control unit

42‧‧‧大數據儲存單元 42‧‧‧Big Data Storage Unit

Claims (10)

一種天線智能量測系統,用於量測一待測天線的輻射參數,包含:一電波量測裝置,包括一標準天線及一移動部件,該標準天線設置於該移動部件上,該移動部件受控制連動該標準天線到空間中多數個量測位置,以讓該標準天線對該待測天線進行增益量測;及一演算法裝置,電連接該電波量測裝置,並記錄每一個量測位置,及計算且記錄每一個量測位置所對應的該待測天線的一辨識輻射增益,並根據該等量測位置及該等辨識輻射增益產生一偵測場型圖,該演算法裝置更儲存多張的參考場型圖,該等參考場型圖分別對應多種不同輻射場型的天線,該演算法裝置更將該偵測場型圖與該等參考場型圖相比對,以產生一對應該待測天線的類型的辨識訊號,該電波量測裝置更接收該辨識訊號,且根據該辨識訊號決定該標準天線對該待測天線進行增益量測的一量測範圍,以及決定該量測範圍中的量測點數。 An antenna intelligent measurement system for measuring the radiation parameters of an antenna to be tested, comprising: an electric wave measuring device, including a standard antenna and a moving part, the standard antenna is arranged on the moving part, and the moving part is Control and link the standard antenna to multiple measurement positions in space, so that the standard antenna can measure the gain of the antenna to be tested; and an algorithm device, which is electrically connected to the radio wave measurement device, and records each measurement position , And calculate and record an identification radiation gain of the antenna under test corresponding to each measurement location, and generate a detection field pattern based on the measurement locations and the identification radiation gains, and the algorithm device further stores A plurality of reference field patterns corresponding to antennas with different radiation patterns respectively. The algorithm device compares the detection pattern with the reference pattern patterns to generate a Corresponding to the identification signal of the type of antenna under test, the radio wave measurement device further receives the identification signal, and according to the identification signal, determines a measurement range in which the standard antenna performs gain measurement on the antenna under test, and determines the amount The number of measurement points in the measurement range. 根據申請專利範圍第1項之天線智能量測系統,其中該演算法裝置包括一辨識控制單元,該辨識控制單元電連接該移動部件以控制該移動部件移動到每一個量測位置(r,θ i ,ψ i ),並記錄每一個量測位置(r,θ i ,ψ i ), 該辨識控制單元電連接該標準天線以計算並記錄該標準天線位於每一個量測位置(r,θ i ,ψ i )時,該待測天線的該辨識輻射增益G i ,該辨識控制單元一共記錄下N筆量測位置的極角θ i 與方位角ψ i ,及記錄下N個辨識輻射增益G i ,該辨識控制單元更將該N筆的極角θ i=1~N N筆的方位角ψ i=1~N 分別作為該偵測場型圖的兩垂直軸,以及將N個辨識輻射增益G i 的大小對應為該偵測場型圖的色階來區分顯示,並且,每一個極角θ i 與每一個方位角ψ i 兩者共同對應一個該辨識輻射增益G i ,參數i=1~N,參數N是正整數。 The antenna intelligent measurement system according to the first item of the patent application, wherein the algorithm device includes an identification control unit, and the identification control unit is electrically connected to the moving part to control the moving part to move to each measurement position (r, θ i , ψ i ), and record each measurement position (r, θ i , ψ i ), the identification control unit is electrically connected to the standard antenna to calculate and record the standard antenna at each measurement position (r, θ i , ψ i ), the identification radiation gain G i of the antenna under test, the identification control unit records the polar angle θ i and the azimuth angle ψ i of the N measurement positions, and records N identification radiation gains G i, the identification unit further controls the polar angle N T θ i = 1 ~ N N T and the azimuth angle ψ i = 1 ~ N are respectively detected as the vertical axis of the two field pattern, and identification of the N The size of the radiation gain G i corresponds to the color scale of the detection field pattern to distinguish and display, and each polar angle θ i and each azimuth angle ψ i both correspond to the identified radiation gain G i , the parameter i =1~ N , the parameter N is a positive integer. 根據申請專利範圍第2項之天線智能量測系統,其中該參數N是大於或等於6的正整數。 According to the antenna intelligent measurement system of the second item of the scope of patent application, the parameter N is a positive integer greater than or equal to 6. 根據申請專利範圍第3項之天線智能量測系統,其中該參數N=6時,該6個量測位置分別為(r,θ1=90°,ψ1=0°)、(r,θ2=90°,ψ2=90°)、(r,θ3=90°,ψ3=180°)、(r,θ4=90°,ψ4=270°)、(r,θ5=0°,ψ5)及(r,θ6=180°,ψ6),其中,參數r是該標準天線到該待測天線之間的一固定距離。 According to the antenna intelligent measurement system of item 3 in the scope of patent application, when the parameter N = 6, the 6 measurement positions are (r, θ 1 = 90°, ψ 1 =0°), (r, θ 2 =90°,ψ 2 =90°), (r,θ 3 =90°,ψ 3 =180°), (r,θ 4 =90°,ψ 4 =270°), (r,θ 5 = 0°, ψ 5 ) and (r, θ 6 =180°, ψ 6 ), where the parameter r is a fixed distance from the standard antenna to the antenna under test. 根據申請專利範圍第3項之天線智能量測系統,其中該參數N=14時,該14個量測位置分別為(r,θ1=90°,ψ1=0°)、(r,θ2=90°,ψ2=90°)、(r,θ3=90°,ψ3=180°)、(r,θ4=90°,ψ4=270°)、(r,θ5=0°,ψ5)、(r,θ6=180°,ψ6)、(r,θ7=45°,ψ7=45°)、 (r,θ8=45°,ψ8=135°)、(r,θ9=45°,ψ9=225°)、(r,θ10=45°,ψ10=315°)、(r,θ11=135°,ψ11=45°)、(r,θ12=135°,ψ12=135°)、(r,θ13=135°,ψ13=225°)、(r,θ14=135°,ψ14=315°),其中,參數r是該標準天線到該待測天線之間的一固定距離。 According to the antenna intelligent measurement system of item 3 of the scope of patent application, when the parameter N = 14, the 14 measurement positions are (r, θ 1 =90°, ψ 1 =0°), (r, θ 2 =90°,ψ 2 =90°), (r,θ 3 =90°,ψ 3 =180°), (r,θ 4 =90°,ψ 4 =270°), (r,θ 5 = 0°,ψ 5 ), (r,θ 6 =180°,ψ 6 ), (r,θ 7 =45°,ψ 7 =45°), (r,θ 8 =45°,ψ 8 =135° ), (r,θ 9 =45°,ψ 9 =225°), (r,θ 10 =45°,ψ 10 =315°), (r,θ 11 =135°,ψ 11 =45°), (r,θ 12 =135°,ψ 12 =135°), (r,θ 13 =135°,ψ 13 =225°), (r,θ 14 =135°,ψ 14 =315°), where, The parameter r is a fixed distance from the standard antenna to the antenna under test. 根據申請專利範圍第2項之天線智能量測系統,其中該演算法裝置更包括一儲存該等參考場型圖的大數據儲存單元。 According to the second antenna intelligent measurement system of the scope of patent application, the algorithm device further includes a big data storage unit storing the reference field patterns. 根據申請專利範圍第6項之天線智能量測系統,其中該等參考場型圖分別對應多種不同輻射場型的天線,包括:單極天線、偶極天線、全向性天線,及高指向性陣列天線。 According to the antenna intelligent measurement system of item 6 of the scope of patent application, the reference field patterns correspond to various antennas of different radiation field patterns, including: monopole antenna, dipole antenna, omnidirectional antenna, and high directivity Array antenna. 根據申請專利範圍第6項之天線智能量測系統,其中該辨識控制單元更電連接該大數據儲存單元以讀取該等參考場型圖,並將該偵測場型圖與該等參考場型圖相比對,以在該等參考場型圖中選擇出與該偵測場型圖最近似的一張,並且,該辨識控制單元更產生該辨識訊號。 According to the antenna intelligent measurement system of item 6 of the scope of patent application, the identification control unit is further electrically connected to the big data storage unit to read the reference field patterns, and compare the detection field patterns with the reference fields The pattern pattern is compared, and the one that is most similar to the detection pattern pattern is selected from the reference pattern patterns, and the identification control unit further generates the identification signal. 根據申請專利範圍第1項之天線智能量測系統,其中每一張參考場型圖的兩垂直軸分別是極角θ j 及方位角ψ j ,每一個極角θ j 與每一個方位角ψ j 兩者共同對應一個參考增益G j ,該等參考增益G j 的大小是以色階來區分顯示。 According to the antenna intelligent measurement system of the first item in the scope of patent application, the two vertical axes of each reference field pattern are the polar angle θ j and the azimuth angle ψ j , each polar angle θ j and each azimuth angle ψ Both j and j jointly correspond to a reference gain G j , and the size of the reference gain G j is distinguished and displayed by color scale. 根據申請專利範圍第2項之天線智能量測系統,其中該電波量測裝置更包括一電連接於該標準天線及該辨識控制單元之間的網路分析儀。 According to the second antenna intelligent measurement system of the scope of patent application, the electric wave measurement device further includes a network analyzer electrically connected between the standard antenna and the identification control unit.
TW108114614A 2019-04-24 2019-04-24 Antenna intelligent measuring system TWI710772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108114614A TWI710772B (en) 2019-04-24 2019-04-24 Antenna intelligent measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108114614A TWI710772B (en) 2019-04-24 2019-04-24 Antenna intelligent measuring system

Publications (2)

Publication Number Publication Date
TW202040144A TW202040144A (en) 2020-11-01
TWI710772B true TWI710772B (en) 2020-11-21

Family

ID=74201154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114614A TWI710772B (en) 2019-04-24 2019-04-24 Antenna intelligent measuring system

Country Status (1)

Country Link
TW (1) TWI710772B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776669B (en) * 2021-09-07 2022-09-01 川升股份有限公司 Phantom modeling system for evaluating antenna radiation efficiency after being affected by the human body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073246A1 (en) * 2006-12-04 2010-03-25 Soon-Soo Oh System and method for measuring antenna radiation pattern in fresnel region based on phi-variation method
CN106656359A (en) * 2016-12-20 2017-05-10 深圳市通用测试系统有限公司 Measurement system
TW201730569A (en) * 2016-02-26 2017-09-01 國立中正大學 Near field antenna measuring method and measuring system thereof which is characterized by selecting a measurement region corresponding to an antenna under test to measure antenna signals emitted by the antenna under test on the measurement region
TWI617814B (en) * 2017-04-14 2018-03-11 Self-detection method for wireless base station and its array antenna
TWI635290B (en) * 2017-07-11 2018-09-11 川升股份有限公司 Antenna radiation pattern measurement system for multipath scenario application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073246A1 (en) * 2006-12-04 2010-03-25 Soon-Soo Oh System and method for measuring antenna radiation pattern in fresnel region based on phi-variation method
TW201730569A (en) * 2016-02-26 2017-09-01 國立中正大學 Near field antenna measuring method and measuring system thereof which is characterized by selecting a measurement region corresponding to an antenna under test to measure antenna signals emitted by the antenna under test on the measurement region
CN106656359A (en) * 2016-12-20 2017-05-10 深圳市通用测试系统有限公司 Measurement system
TWI617814B (en) * 2017-04-14 2018-03-11 Self-detection method for wireless base station and its array antenna
TWI635290B (en) * 2017-07-11 2018-09-11 川升股份有限公司 Antenna radiation pattern measurement system for multipath scenario application

Also Published As

Publication number Publication date
TW202040144A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
CN113225147B (en) Method, device and system for measuring total radiation power of array antenna
Azzouzi et al. New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach
CN109581078B (en) Directional diagram measuring system and method suitable for antenna in half-space environment
CN110999134B (en) Method and measuring system for the precise evaluation of a device under test
CN109061323B (en) Near-field antenna measurement method adopting spherical amplitude scanning
CN104820987B (en) A kind of method based on optical imagery and microwave imagery detection target scattering performance deficiency
CN110018363A (en) Antenna phase center determines method
TWI710772B (en) Antenna intelligent measuring system
EP3995842A1 (en) System and method for antenna diagnosis
CN116420082A (en) System and method for performing measurements on a measured antenna offset from the center of the dead zone
CN108663577A (en) A kind of cross polarization bearing calibration of Multi probe spherical surface near field
CN102998660A (en) Robustness multi-beam forming method in near field scope
CN117250412B (en) Test method and test system for vehicle-mounted 5G antenna
Nesterova et al. Evaluating power density for 5G applications
CN107942145A (en) A kind of angle change sphere triple antenna radiated electromagnetic field measuring system and method
CN111856158B (en) Intelligent antenna measuring system
WO2018023928A1 (en) Test system and method used in ota performance test of active base station antenna or base station system
CN108549922A (en) A kind of ultra-high frequency RFID label accurate positioning method based on label coupling
Grundmann et al. Evaluation Method and Design Guidance for Direction Finding Antenna Systems
WO2022082635A1 (en) System and method for determining corrected total radiated power (trp) or corrected total isotropic sensitivity (tis) of offset antenna under test
Lee et al. A 3D RFID static test system using a spherical near-field antenna measurement chamber
CN107817390A (en) A kind of antenna synthesis test system
Beuster et al. UHF RFID tag response measurements using a do-it-yourself platform and components off-the-shelf
CN111965602A (en) Method and system for detecting amplitude-phase consistency of phased array radar
CN112711040B (en) Satellite navigation antenna performance evaluation system and method