TWI707874B - 重組多肽及其組成物及方法 - Google Patents

重組多肽及其組成物及方法 Download PDF

Info

Publication number
TWI707874B
TWI707874B TW107133348A TW107133348A TWI707874B TW I707874 B TWI707874 B TW I707874B TW 107133348 A TW107133348 A TW 107133348A TW 107133348 A TW107133348 A TW 107133348A TW I707874 B TWI707874 B TW I707874B
Authority
TW
Taiwan
Prior art keywords
amino acid
seq
bone
protein
acid sequence
Prior art date
Application number
TW107133348A
Other languages
English (en)
Other versions
TW201915028A (zh
Inventor
孫大偉
許佩雯
陳芊蓓
Original Assignee
博晟生醫股份有限公司
日商奧斯堤歐製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博晟生醫股份有限公司, 日商奧斯堤歐製藥股份有限公司 filed Critical 博晟生醫股份有限公司
Publication of TW201915028A publication Critical patent/TW201915028A/zh
Application granted granted Critical
Publication of TWI707874B publication Critical patent/TWI707874B/zh

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本發明提供一種重組多肽、包含該重組多肽之同型二聚體和異型二聚體蛋白、編碼該重組多肽之核酸分子,以及包含該核酸分子的載體及宿主細胞。本發明也提供包含該重組多肽之組成物,以及製備、使用該重組多肽的方法。

Description

重組多肽及其組成物及方法
本發明係關於一種重組多肽、核酸分子及其組成物以及製造、使用之方法,尤其是指一種具有誘發鹼性磷酸酶活性能力之重組多肽、核酸分子及其組成物以及製造、使用之方法。
骨是一種高度剛性的組織,構成脊椎骨骼的一部分並具有衍生自其廣泛基質結構之獨特機械性質。動物終其一生中,骨組織會不斷地更新。
骨生成及更新的過程由特定的細胞進行。成骨作用(osteogenesis,骨生成或骨成長)是由成骨細胞(osteoblasts,骨生成細胞)進行。骨再成型作用(Bone remodeling)是由稱為破骨細胞(osteoclasts)的骨吸收細胞與骨生成的成骨細胞間相互作用所完成。由於這些過程是由特定的活細胞進行,所以化學(例如:藥物和/或激素)、物理及物理化學的變化可影響骨組織的品質、數量及形狀。
各種生長因子(例如:PDGF)及細胞激素會參與骨生成的過程。因此,辨識出可在預定位點誘發骨生成的生理可接受的化學介質(例如:激素、藥物、生長因子及細胞激素)是相當有價值的。然而,為了成功地將化學介質作為治療工具,需克服幾個障礙。障礙之一包括開發具有骨誘發(osteoinductive)活性的重組多肽。例如:重組人類血小板衍生的生長因子-BB中的骨誘發活性尚未得到證實。另一障礙是在化學介質中骨誘發的變異性。例如:去礦物質骨基質(demineralized bone matrix,DBM)是一種化學介質,是一種衍生自加工骨的骨誘發同種異體移植物。市場上以DBM為基礎的產品越來越多,但是在不同產品及同一產品不同批號之間已發現骨誘發的變異性。因此,需要一種化學介質展現一致的骨誘發活性,例如:重組多肽及相關組成物。
本發明揭示內容係關於一種重組多肽,其包含:一第一域(domain),其係選自由SEQ ID NO: 35及SEQ ID NO: 39所組成之群組;一第二域,其係選自由SEQ ID NO: 47及SEQ ID NO: 49所組成之群組;及一第三域,其係選自由SEQ ID NO: 57及SEQ ID NO: 61所組成之群組;其中該第一域擇一融合於該第二域的C端或N端,該第三域融合於該第二域或該第一域,且其中該重組多肽係具誘發鹼性磷酸酶活性之能力。
於一實施態樣中,其中該第一域相較於該第二域位於接近該重組多肽之C端、該第三域相較於該第二域位於接近該重組多肽之N端、或該第一域相較於該第三域位於接近該重組多肽之N端。
於一實施態樣中,該重組多肽之該第二域包含在該第二域的第23個胺基酸和該第二域的第27個胺基酸之間之一個分子內雙硫鍵(intramolecular disulfide bond)。
於一實施態樣中,該重組多肽之該第三域包含:一第一胺基酸序列PKACCVPTE (SEQ ID NO: 356)及一第二胺基酸序列GCGCR (SEQ ID NO: 357),且其中該第三域包含在該第一和該第二胺基酸序列之間之二個分子內雙硫鍵。
於一實施態樣中,該重組多肽包含在該第一胺基酸序列的該第4個胺基酸和該第二胺基酸序列的該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該第一胺基酸序列的該第5個胺基酸和該第二胺基酸序列的該第4個胺基酸之間之一第二分子內雙硫鍵。
於一實施態樣中,該重組多肽包含在該第一胺基酸序列的該第5個胺基酸和該第二胺基酸序列的該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該第一胺基酸序列的該第4個胺基酸和該第二胺基酸序列的該第4個胺基酸之間之一第二分子內雙硫鍵。於一實施態樣中,該重組多肽係選自由SEQ ID NO: 260、SEQ ID NO: 268、SEQ ID NO: 276、SEQ ID NO: 284、SEQ ID NO: 292、SEQ ID NO: 300、SEQ ID NO: 308、SEQ ID NO: 316、SEQ ID NO: 324、SEQ ID NO: 332、SEQ ID NO: 340及SEQ ID NO: 348所組成之群組。
本發明揭示內容係關於一種同型二聚體蛋白,其包含任一如上所述之二個相同的重組多肽,其中該同型二聚體蛋白包含在該二個相同重組多肽的該些第一域之間之一個分子間雙硫鍵。
於一實施態樣中,該同型二聚體蛋白包含在該二個相同重組多肽之其一的該第一域中之第15個胺基酸和另一重組多肽的該第一域中之第15個胺基酸之間之一個分子間雙硫鍵。
於一實施態樣中,該同型二聚體蛋白之該二個相同重組多肽之其一或全部的該第二域包含一分子內雙硫鍵。
於一實施態樣中,該同型二聚體蛋白之每一該重組多肽的該第三域包含:一第一胺基酸序列PKACCVPTE (SEQ ID NO: 356)及一第二胺基酸序列GCGCR (SEQ ID NO: 357),且其中該同型二聚體蛋白包含在該二個相同重組多肽之其一的該第三域中之該第一胺基酸序列和該另一重組多肽的該第三域中之該第二胺基酸序列之間之二個分子間雙硫鍵。於一實施態樣中,該同型二聚體蛋白包含在該二個相同重組多肽之其一的該第一胺基酸序列之該第4個胺基酸和該另一重組多肽的該第二胺基酸序列之該第2個胺基酸之間之一第一分子間雙硫鍵,以及在該二個相同重組多肽之其一的該第一胺基酸序列之該第5個胺基酸和該另一重組多肽的該第二胺基酸序列之該第4個胺基酸之間之一第二分子間雙硫鍵。於一實施態樣中,該同型二聚體蛋白包含在該二個相同重組多肽之其一的該第一胺基酸序列之該第5個胺基酸和該另一重組多肽的該第二胺基酸序列之該第2個胺基酸之間之一第一分子間雙硫鍵,以及在該二個相同重組多肽之其一的該第一胺基酸序列之該第4個胺基酸和該另一重組多肽的該第二胺基酸序列之該第4個胺基酸之間之一第二分子間雙硫鍵。
於一實施態樣中,該同型二聚體蛋白的每一該重組多肽的該第三域包含:一第一胺基酸序列PKACCVPTE (SEQ ID NO:356)和一第二胺基酸序列GCGCR (SEQ ID NO:357),且該同型二聚體蛋白包含:在該二個相同重組多肽之其一的該第三域中之該第一胺基酸序列和該其一重組多肽的該第三域中之該第二胺基酸序列之間之二個分子內雙硫鍵。於一實施態樣中,該同型二聚體蛋白包含:在該其一重組多肽的該第一胺基酸序列之該第4個胺基酸和該其一重組多肽的該第二胺基酸序列之該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該其一重組多肽的該第一胺基酸序列之該第5個胺基酸和該其一重組多肽的該第二胺基酸序列之該第4個胺基酸之間之一第二分子內雙硫鍵。於一實施態樣中,該同型二聚體蛋白包含:在該其一重組多肽的該第一胺基酸序列之第5個胺基酸和該其一重組多肽的該第二胺基酸序列之該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該其一重組多肽的該第一胺基酸序列之該第4個胺基酸和該其一重組多肽的該第二胺基酸序列之該第4個胺基酸之間之一第二分子內雙硫鍵。
本發明揭示內容係關於一種異型二聚體蛋白,其包含任一如上所述之重組多肽之二個相異的重組多肽,其中該異型二聚體蛋白包含:在該二個相異重組多肽的該些第一域之間之一個分子間雙硫鍵。
於一實施態樣中,該異型二聚體蛋白包含在該二個相異重組多肽之其一的該第一域中之第15個胺基酸和另一重組多肽的該第一域中之第15個胺基酸之間之一個分子間雙硫鍵。
於一實施態樣中,該異型二聚體蛋白之該二個相異重組多肽之其一或全部的該第二域包含一分子內雙硫鍵。
本發明揭示內容係關於一種重組多肽,其包含一胺基酸序列,該胺基酸序列係選自由SEQ ID NO: 260、SEQ ID NO: 268、SEQ ID NO: 276、SEQ ID NO: 284、SEQ ID NO: 292、SEQ ID NO: 300、SEQ ID NO: 308、SEQ ID NO: 316、SEQ ID NO: 324、SEQ ID NO: 332、SEQ ID NO: 340及SEQ ID NO: 348所組成之群組,其中該重組多肽係具誘發鹼性磷酸酶活性之能力。
本發明揭示內容係關於一種組成物,其包含任一如上所述之重組多肽、任一如上所述之同型二聚體蛋白或任一如上所述之異型二聚體蛋白。
本發明揭示內容係關於一種持續性釋出組成物,其包含一磷酸鈣載體,該磷酸鈣載體係選自由磷酸三鈣(TCP)、α-磷酸三鈣(α-TCP)、β-磷酸三鈣(β-TCP)、雙相磷酸鈣(BCP)及其混合物所組成之群組;及一可生物分解基質,該可生物分解基質係選自由聚乳酸(PLA)、聚羥基乙酸(PGA)、聚乳酸-羥基乙酸共聚物(PLGA)、聚乙烯醇(PVA)及其混合物所組成之群組;及一如前所述之同型二聚體蛋白。更進一步地,該持續性釋出組成物包含(a)約2-11% (w/w)的該磷酸鈣載體;(b)約88-97% (w/w)的該可生物分解基質;及(c)約0.017-0.039% (w/w)的該同型二聚體蛋白。
本發明揭示內容係關於一種需要這種治療的對象中促進長骨骨折癒合的方法,其包含:製備含有如前所述之同型二聚體蛋白的一組成物,該同型二聚體蛋白均勻地容置在一緩釋型可生物分解磷酸鈣載體內,該可生物分解磷酸鈣載體供該同型二聚體蛋白流入該可生物分解磷酸鈣載體於該對象體內時不滲漏,從而使該長骨骨折癒合限制於該磷酸鈣載體的體積內;且植入該組成物於該長骨骨折發生位置,其中該同型二聚體蛋白的量為約0.03 mg/g至約3.2 mg/g的該磷酸鈣載體。
於一實施態樣中,該促進長骨骨折癒合的方法更進一步包含:隨著該磷酸鈣載體降解,該所容置的同型二聚體蛋白於該磷酸鈣載體位置逐漸暴露,其中該磷酸鈣載體具有約0.4至約1.8的鈣與磷酸鹽比率。
本發明揭示內容係關於一種可生物分解組成物,具有誘發骨生成以在一位置形成骨質之能力,其包含:一如前所述之同型二聚體蛋白;及一可生物分解磷酸鈣載體,其具有複數個孔洞。更進一步地,該同型二聚體蛋白係約0.003-0.32 % (w/w)。
於一實施態樣中,其中該可生物分解組成物的該可生物分解磷酸鈣載體之孔隙率係大於70%,且孔徑為約300 μm至約600 μm。
於一實施態樣中,該可生物分解磷酸鈣載體之該些孔洞係連通分布於該可生物分解磷酸鈣載體;其中該同型二聚體蛋白的有效量為約0.03 mg/g至約3.2 mg/g的該可生物分解磷酸鈣載體。
於一實施態樣中,該可生物分解組成物適用於使一組織凸出,該組織選自鼻溝、眉間、中面部組織、下顎輪廓線、下巴及臉頰。
於一實施態樣中,該位置係選自長骨骨折缺損、二個相鄰脊椎骨體之空間、不癒合骨之缺陷、上顎截骨切口、下顎截骨切口、矢狀劈開截骨切口、頦整型截骨切口、快速顎擴張截骨切口、以及在二個相鄰脊椎骨的二個相鄰橫突之間縱向延伸的空間。
於一實施態樣中,一單一劑量的該同型二聚體蛋白為約0.006 mg至約15 mg。
於一實施態樣中,該可生物分解磷酸鈣載體供該同型二聚體蛋白流入該可生物分解磷酸鈣載體於該對象體內時不滲漏,從而使所形成的骨質限制於該可生物分解磷酸鈣載體的體積內。
本發明揭示內容係關於一種用以促進關節固定(arthrodesis)的方法,其包含將如前所述之該同型二聚體蛋白及一可生物分解磷酸鈣載體施用於一畸形或退化的關節。
於一實施態樣中,施用該同型二聚體蛋白的步驟係包括每一次治療將約0.006 mg至約10.5 mg的該同型二聚體蛋白施用至該畸形或退化的關節。
本發明揭示內容係關於一種促進脊椎融合的方法,該方法之步驟包含:暴露一上脊椎骨和一下脊椎骨;在該上脊椎骨和該下脊椎骨之間辨別出一用以融合之部位;在該上脊椎骨及該下脊椎骨之各個用以融合之該部位上暴露一骨表面;及於該部位上施用如前所述之該同型二聚體蛋白及一可生物分解磷酸鈣載體。
於一實施態樣中,該可生物分解磷酸鈣載體係一種不可壓縮遞送載具,且其中該不可壓縮遞送載具係施用於需要骨生長但不自然發生骨生長的二個骨表面之間的該部位。
於一實施態樣中,該可生物分解磷酸鈣載體包含至少一個用以施用於該部位的植入棒,該植入棒在該上脊椎骨及該下脊椎骨之間縱向延伸。
本發明揭示內容係關於一種脊椎融合裝置,其含有一如前所述之可生物分解組成物;及一脊椎融合器,其被配置用以容置該可生物分解磷酸鈣載體。
本發明揭示內容係關於一種於有需求的對象之脊椎中產生骨質以融合二個相鄰脊椎骨體的方法,其步驟包括:準備一用以產生該骨質之組成物;及將該組成物引入該二個相鄰脊椎骨體之間的位置。更進一步地,該組成物含有一如前所述之同型二聚體蛋白,該同型二聚體蛋白均勻地容置在一緩釋型可生物分解載體內,該可生物分解載體供該同型二聚體蛋白流入該可生物分解載體於該對象體內時不滲漏,從而使所形成骨質限制於該緩釋型可生物分解載體的體積內。隨著該緩釋型可生物分解載體降解,所容置的同型二聚體蛋白於該緩釋型可生物分解載體位置逐漸暴露,且其中該同型二聚體蛋白的量為該位置約0.2 mg/site (即每一部位約0.2 mg)至約10.5 mg/site (即每一部位約10.5 mg)。
於一實施態樣中,該緩釋型可生物分解載體具有多孔結構,且來自該二個相鄰脊椎骨的細胞遷移到該多孔結構中以產生該骨質。
於一實施態樣中,該緩釋型可生物分解載體具有一初始體積,且隨著該緩釋型可生物分解載體被再吸收,該骨質取代該緩釋型可生物分解載體之該初始體積。
本發明揭示內容係關於一種在有需求的對象中藉由後方融合術(posterior fusion)或椎間孔融合術(transforaminal fusion)用以融合相鄰脊椎骨體的方法,其步驟包括:準備一盤空間,用以在該相鄰脊椎骨之間的椎間空間中接收一椎間盤植入物;將含有一如前所述之同型二聚體蛋白之一緩釋型載體引入該椎間盤植入物中;並將該椎間盤植入物引入該相鄰脊椎骨之間的盤空間中,以在該盤空間中產生骨質。更進一步地,該同型二聚體蛋白的量為約0.2 mg/site至約10.5 mg/site的該緩釋型載體。
本發明揭示內容係關於一種用於填補骨孔隙之可模製組成物,其包含:含有該可模製組成物約90 wt%至約99.5 wt%的一可模製基質;及如前所述之該同型二聚體蛋白。更進一步地,於植入後約1、24、48、72、168、240或約336小時,從該可模製組成物釋出少於約25%百分率的該同型二聚體蛋白。
本發明揭示內容係關於一種持續性釋出組成物,其包含一磷酸鈣載體;一可生物分解基質;及一如前所述之重組蛋白。更進一步地,該磷酸鈣載體係約2-11 % (w/w),該可生物分解基質係約88-97 % (w/w),及該重組蛋白係約0.017-0.039 % (w/w)。
於一實施態樣中,該磷酸鈣載體係選自由磷酸三鈣(TCP)、α-磷酸三鈣(α-TCP)、β-磷酸三鈣(β-TCP)、雙相磷酸鈣(BCP)及其任意組合所組成之群組。於一實施態樣中,該可生物分解基質係選自由聚乳酸(PLA)、聚羥基乙酸(PGA)、聚乳酸-羥基乙酸共聚物(PLGA)、聚乙烯醇(PVA)及其任意組合所組成之群組。
本發明揭示內容係關於一種於一對象中用以促進長骨骨折癒合的方法,其包含:(a)製備一組成物,其含有一如前所述之重組蛋白及一可生物分解磷酸鈣載體;(b)使該組成物硬化;及(c)於一位置植入該組成物。更進一步地,該位置係所述對象中發生長骨骨折的受傷部位,且該重組蛋白係約0.003-0.32 % (w/w)。
於一實施態樣中,該方法進一步包含(d)隨著該磷酸鈣載體降解,於該位置暴露該組成物。於一實施態樣中,該磷酸鈣載體包含約0.4-1.8之鈣與磷酸鹽比率(calcium-to-phosphate ratio)。
本發明揭示內容係關於一種於一對象中用以促進關節固定(arthrodesis)的方法,其步驟包括:將含有一如前所述之重組蛋白及一可生物分解磷酸鈣載體之一組成物施用於所述對象中的一位置。更進一步地,該重組蛋白的量係約0.006至10.5 mg,且該位置係選自由畸形關節、退化性關節及其組合所組成之群組。
本發明揭示內容係關於一種於一對象中用以促進脊椎融合的方法,其包含:(a)暴露所述對象的一上脊椎骨和一下脊椎骨;(b)在該上脊椎骨和該下脊椎骨之間辨別出一用以融合之部位;(c)在該上脊椎骨和該下脊椎骨之各個用以融合之部位上暴露一骨表面;及(d)於該部位上施用一如前所述之重組蛋白及一可生物分解磷酸鈣載體。
於一實施態樣中,該可生物分解磷酸鈣載體係一種不可壓縮遞送載具,其能夠施用於需要骨生長但不自然發生骨生長的部位。
於一實施態樣中,該可生物分解磷酸鈣載體於該用以促進脊椎融合的方法中包含有在該上脊椎骨和該下脊椎骨之間縱向延伸的一植入棒。
本發明揭示內容係關於一種脊椎融合裝置,其含有一如前所述之可生物分解組成物;及一脊椎融合器,其被配置用以保留該可生物分解磷酸鈣載體。
本發明揭示內容係關於一種於一對象之脊椎中用以產生骨質以融合二個相鄰脊椎骨體的方法,其步驟包括:(a)準備一用以產生該骨質之組成物,該組成物包含有一如前所述之重組蛋白及一緩釋型可生物分解載體;(b) 使該組成物硬化;(c)將該組成物引入該二個相鄰脊椎骨體之間;及(d)釋出該組成物並暴露該重組蛋白。更進一步地,該重組蛋白的量係約0.2至10.5 mg/site。
於一實施態樣中,該緩釋型可生物分解載體具有能夠接收用以產生骨質的細胞之多孔結構。
於一實施態樣中,該緩釋型可生物分解載體具有一初始體積,且隨著該緩釋型可生物分解載體被再吸收,該骨質取代該緩釋型可生物分解載體之該初始體積。
本發明揭示內容係關於一種於有需求的對象中用以融合相鄰脊椎骨體的方法,其步驟包括:(a)準備一盤空間,用以在該相鄰脊椎骨之間接收一椎間盤植入物;(b)將包含有一如前所述之重組蛋白之一緩釋載體引入該椎間盤植入物中;(c)將該椎間盤植入物引入該盤空間;及(d)於該盤空間中產生骨質。更進一步地,該重組蛋白的量係約0.2至10.5 mg/site。
本發明揭示內容係關於一種用以植入於骨孔隙中之可模製組成物,其包含:一可模製基質及一如前所述之重組蛋白。更進一步地,該可模製基質的量係約90至99.5 % (w/w);並且於植入後之一預定時間之後,少於25 %的該重組蛋白從該可模製組成物釋放。
於一實施態樣中,該預定時間係約1、24、48、72、168、240或336小時。
本文提供重組多肽、包含該重組多肽之同型二聚體及異型二聚體蛋白、編碼該重組多肽之核酸分子及載體,及表達該重組多肽的宿主細胞。本文也提供該重組多肽之組合物及製造、使用該重組多肽的方法。
本文引用的所有出版物於此透過引用整體併入,包括但不限於本文引用的所有期刊文章、書籍、手冊、專利申請和專利,其程度和範圍如同每個單獨的出版物被具體地和單獨地指出藉由引用而併入。 [專門用語]
除非另有定義,本文中所有技術和科學用語與本發明所屬領域中具有通常知識者所理解的含義相同。如在整個本申請中所使用的,以下術語應具有如下意涵。
除非上下文中另有指定外,本文及申請專利範圍所述單數格式之「一」、「一個」、「一種」及「該」包含複數指涉。因此,例如:「一域」係包含一個域或複數個域、「該重組多肽」包含一個或多個重組多肽,諸如此類。本文中之用語例如:「一」、「該」、「一或多」、「複數」及「至少為一」可互相代換。
除非另有說明,本文所述之「或」表示「和/或」之意。相似地,本文所述之「包含」、「包括」、「含有」、「囊括」、「具有」也可互相代換而不受限制。
除此之外,本文所述之「和/或」、「及/或」被用作特指表達兩個特定特徵或構件的其一或全部。因此,用語「和(及)/或」用於表達語句如「A和/或B」係包含「A和B」、「A或B」、「(單獨)A」「(單獨)B」之意。相同的,用語「和/或」用於表達語句如「A、B和/或C」係包含如後所述之意涵:A、B和C;A、B或C;A或C;A或B;B或C;A和C;A和B;B和C;(單獨)A;(單獨)B;(單獨)C。
應當理解,本文用語「包含」無論在描述任何方面的情況下,也提供了以「由…組成」和/或「基本上由…組成」所描述的其他類似方面之意含。
「胺基酸」是一種具有一與氫原子連結的中心碳原子(α-碳原子)、一羧酸基(該碳原子在本文中稱為「羧酸碳原子」)、一胺基(該氮原子在本文中稱為「胺基氮原子」)以及一側鏈R基團之結構的分子。當併入肽、多肽或蛋白質時,胺基酸會在脫水反應中失去其胺基酸羧酸基上的一或多個原子將一個胺基酸與另一個胺基酸連結。因此,當併入蛋白質時,將胺基酸稱為「胺基酸殘基」。
「蛋白質」或「多肽」係指經由肽鍵連結的二或更多個單獨胺基酸的任何聚合物(無論是否為天然存在),並且係發生在當與一胺基酸(或胺基酸殘基)上之α-碳原子鍵結的羧酸基上之羧酸碳原子對於與一鄰近胺基酸上非α-碳原子鍵結的胺基之胺基氮原子變為共價鍵。所述之「蛋白質/蛋白」係包含「多肽」和「肽」之意涵(內文用語會互相代換)。除此之外,蛋白質包含多個多肽次單元(如:DNA聚合酶III、RNA聚合酶II)或其他組成物(如:RNA分子、也會在端粒酶中發生)在本文中也被理解包含進「蛋白質」之意涵。相似地,蛋白質和多肽的碎片也在本文揭示涉及的「蛋白質」範疇。一方面,本文揭示之多肽包含二或多個親代肽段的嵌合體。用語「多肽」也涉及和包含該多肽轉譯後修飾(Post-translation modification,PTM)的產物,包含但不限於雙硫鍵生成、醣化、胺甲醯化、脂化、乙醯化、磷酸化、醯胺化、已知的保護/阻斷基團衍生、分解蛋白切割、被非天然胺基酸修飾、或任何其他調控或修飾,例如與標記成分接合。多肽可衍生自天然生物源或藉由基因重組科技產生,其未必係從特定核酸序列轉譯。其可經由任何方法包括化學合成之方式生成。「經分離」的多肽或片段、變體或其衍生物是指不在其天然環境中的多肽。不需要特定程度的純化。例如:經分離多肽可以是簡單的從其天生或天然環境移除。為了本公開之用,在宿主細胞中表達的重組製造多肽及蛋白質被認為是經過分離的,視同天然或重組多肽已經被經由任何適當技術分離、分級、部分或大體上的純化。
本文所述之「域」可被用語「肽段」代換,其係涉及較大的多肽或蛋白質的部分或碎片。域不需具有本身的機能活性,然而在一些例子中,域可具有其自身的生物活性。
一給定蛋白質的特定胺基酸序列(即當從胺基末端到羧酸基末端寫入時,該多肽的「主要結構」)係由mRNA編碼部分的核苷酸序列所確定,其又由遺傳訊息來指明,通常是基因體DNA(包括胞器DNA,如:粒線體或葉綠體DNA)。因此,確定基因的序列有助於預測對應多肽的主要序列,更具體而言是經由該基因或多核苷酸序列的編碼預測多肽或蛋白質之作用或活性。
本文所述之「N端」是指多肽中相對於該多肽上胺基末端的胺基酸、域或肽段的方位或位置。例如:「A域位於B域和C域的N端」意指A域是位於相較於B域和C域更靠近胺基末端的位置,如此,當B域和C域的位置未特別指定時,該多肽中的域其自胺基末端的排列順序則可理解為A-B-C或A-C-B。此外,包含零的任何數量胺基酸可存在於一域之間,該域係另一域之N端。相似地,包含零的任何數量胺基酸可存在於該多肽之N端及一域之間,該域係該多肽中其它域之N端。
本文所述之「C端」是指多肽中相對於多肽上羧酸基末端的胺基酸、域或肽段的方位或位置。例如:「A域位於B域和C域的C端」意指A域是位於相較於B域和C域更靠近羧酸基末端的位置,如此,當B域和C域的位置未特別指定時,該多肽中的域其自胺基末端的排列順序則可理解為B-C-A或C-B-A。此外,包含零的任何數量胺基酸可存在於一域之間,該域係另一域之C端。相似地,包含零的任何數量胺基酸可存在於該多肽之C端及一域之間,該域係該多肽中其它域之C端。
當提及雙硫鍵時,本文所述之「分子內」及「分子間」,其係分別涉及發生在多肽鏈之內及多肽鏈之間的雙硫鍵。
當涉及二個或更多個域以廣義地指形成本文所揭示之重組多肽中任何化學或物理偶合(coupling)該二個或更多個域時,用語「融合」、「操作性連結(operably linked)」及「操作性結合(operably associated)」在本文中可互相代換。於一實施態樣中,如本文所揭示之重組多肽係包含來自二個或更多個相異多肽的複數個域之嵌合體多肽。
包含本文所揭示之二個或更多個域的重組多肽可以由包含編碼每個域的多核苷酸序列的單個編碼序列所編碼。除非另有說明,編碼每個域的多核苷酸序列為「in frame (框架內)」,如此包含該多核苷酸序列之單一mRNA的轉譯會使單一多肽包含每個域。一般而言,本文所揭示之重組多肽中的域會直接彼此融合或被肽連結子(peptide linker)所分離。編碼肽連結子的各種多核苷酸序列是本領域已知的。
本文所述之「同型二聚體蛋白(質)」、「異型二聚體蛋白(質)」、及「同型二聚體或異型二聚體蛋白(質)」係指具有二個相同或相異重組多肽的蛋白。因此,本文所述之該「同型二聚體蛋白(質)」、「異型二聚體蛋白(質)」、及「同型二聚體或異型二聚體蛋白(質)」亦指「同型二聚體重組蛋白(質)」、「異型二聚體重組蛋白(質)」、及「同型二聚體或異型二聚體重組蛋白(質)」。更進一步地,本文所述之「重組蛋白(質)」係指「同型二聚體蛋白(質)」、「異型二聚體蛋白(質)」、或「同型二聚體或異型二聚體蛋白(質)」。
本文所述之「多核苷酸」或「核酸」是指聚合形式的核苷酸。在一些情況下,多核苷酸包含其來源的有機體天然存在之基因體中的一序列,該序列若非是非直接緊鄰該編碼序列就是直接緊鄰(在5’終端或3’終端上)該編碼序列。因此,該用語包含例如:被併入載體中之重組DNA、被併入自主複製的質體或病毒中之重組DNA、或被併入原核或真核的基因體DNA中之重組DNA,或者是獨立於其他序列如同分離分子(如cDNA)般存在的重組DNA。本文所述的核苷酸可以係核糖核苷酸、去氧核糖核苷酸或該核苷酸之一的修飾型。本文所述的多核苷酸尤其係指單股及雙股DNA、單股及雙股區域混合體之DNA、單股及雙股RNA以及單股及雙股區域混合體之RNA、包含DNA及RNA的雜交分子,其可以係單股,或更典型地係雙股或單股及雙股區域混合體。用語多核苷酸包含基因體DNA或RNA(取決於生物體,即病毒的RNA基因體)及被該基因體DNA編碼的mRNA,以及cDNA。於某些實施態樣中,多核苷酸包含傳統磷酸二酯鍵或非傳統鍵(如:醯胺鍵,在肽核酸(peptide nucleic acids,PNA)中發現)。「經分離」核酸或多核苷酸是指從其天然環境中移出的核酸分子如:DNA或RNA。舉例而言,為了本文揭示之目的,「經分離」認為係核酸分子包含一多核苷酸,該多核苷酸編碼載體中含有的重組多肽。進一步舉例經分離的多核苷酸包括維持在異源宿主細胞中的重組多核苷酸或在溶液中從其他多核苷酸純化(一部分或大部分)的重組多核苷酸。經分離的RNA分子包含本文揭示之多核苷酸的體內(in vivo )或體外(in vitro )RNA轉錄物。根據本文揭示之經分離的多核苷酸或核酸進一步包括合成產生的多核苷酸和核酸(如:核酸分子)。
本文所述之「編碼區」或「編碼序列」是多核苷酸的一部分,其由可轉譯成胺基酸的密碼子組成。儘管「終止密碼子(stop codon)」(TAG、TGA或TAA)一般不會被轉譯成胺基酸,其被認為可以係編碼區的一部分,但任何毗鄰序列如:啟動子、核糖體結合位、轉錄終止子、內含子等等並非編碼區的一部分。編碼區的邊界通常由位於5’端的起始密碼子(即編碼所得多肽的胺基末端),及位於3’端的轉譯終止密碼子(即編碼所得多肽的羧酸基末端)所決定,但本發明不限於此。
本文所述之「表達控制區」是指轉錄控制單元,其可操作地與編碼區結合,以引導或控制由編碼區編碼的產物表達,包括如:啟動子、強化子、操縱子、抑制子、核糖體結合位、轉譯前導序列、內含子、多腺苷酸化識別序列、RNA加工位、效應子結合位、莖環結構及轉錄終止訊號。舉例而言,若啟動子功能的誘發導致包含編碼產物的編碼區之mRNA轉錄,且如果啟動子和編碼區之間的連接性質不會干擾啟動子引導由編碼區編碼的產物其表達的能力或是干擾DNA模板被轉錄的能力,則編碼區和啟動子是「可操作地結合」。表達控制區包含位於編碼區上游(5’非編碼序列)內部或下游(3’非編碼序列)的核苷酸序列,其會影響相關聯編碼區的轉錄、RNA加工、穩定性、或轉譯。如果編碼區用於真核細胞中的表達,則多腺苷酸化訊號及轉錄終止序列通常位於編碼序列3’端。
「核苷酸片段」、「寡核苷酸片段」或「多核苷酸片段」是指一較之大多核苷酸分子的一部分。多核苷酸片段不需對應至蛋白質經編碼的功能域,然而在某些情況下,該片段將編碼蛋白質的功能域。多核苷酸片段的長度可為大約6個或更多的核苷酸(例如:6-20、20-50、50-100、100-200、200-300、300-400個或更多核苷酸的長度)。
本文所述之「載體」是指用以將核苷酸分子轉殖和/或轉移到宿主細胞中的任何媒介物。用語「載體」包括病毒及非病毒載體(如:質體、噬菌體、黏接質體、病毒),用以體外、離體或體內將該核酸導入至一細胞中。
本文所述之「宿主細胞」及「細胞」用語可相互代換,其是指攜帶或能夠攜帶核酸分子(如:重組核酸分子)之任何類型的細胞或細胞群體,如:初級細胞、培養系統中的細胞、或來自細胞株的細胞。宿主細胞可以係原核細胞或是真核細胞,例如:真菌細胞如酵母菌細胞、各種動物細胞如昆蟲細胞或哺乳動物細胞。
本文所述之「培養(Culture、to culture、culturing)」是指允許細胞生長、分裂或維持細胞處於存活狀態之體外條件下孵育細胞。本文所述之「經培養細胞」是指經體外繁殖之細胞。
本文所述之「骨誘發性/骨誘導性(Osteoinductive)」是指可誘發(或稱誘導)骨和/或軟骨之形成或生長,包括例如:誘發與骨和/或軟骨生成或生長相關的標記(如:誘發鹼性磷酸酶活性)。
本文所述之「酵母雙雜交試驗」或「酵母雙雜交系統」用語可被相互代換,其是指用以檢測蛋白質對之間的交互作用之試驗或系統。在典型的雙雜交篩選試驗/系統中,轉錄因子被分裂為兩個獨立的片段,分別為結合域(binding domain,BD)和活化域(activation domain,AD),該些片段各別提供於獨立的質體上,且該些片段各別與感興趣的蛋白質融合。該酵母雙雜交試驗系統包含(1)一「誘餌」載體,其包括一誘餌蛋白質及系統中所用該轉錄因子之結合域;(2)一「獵物」載體,其包括一獵物蛋白質(或一裂物蛋白質資料庫,被篩選用以與該誘餌蛋白質進行交互作用)及該轉錄因子之活化域;及(3)一合適的報導酵母菌株,其含有結合序列用以於系統中所使用之該轉錄因子之該結合域。當誘餌-獵物發生交互作用時,該轉錄因子的該活化域驅動一個或更多個報導蛋白質的表達。將該誘餌載體和該獵物載體導入該報導酵母菌株,其中經表達的誘餌蛋白質和經表達的獵物蛋白質可能相互作用。或者,可將各自含有誘餌載體或獵物載體的獨立單倍體酵母菌株配對,而所得到的二倍體酵母菌株表達兩種蛋白質。相互作用的誘餌及獵物蛋白質對會導致該轉錄因子的重組和活化,然後與該報導酵母菌株中所提供與其相容的活化域結合,依次觸發該報導基因的表達,其隨後可被偵測。 [重組多肽及組成物]
本文之揭示係關於一種重組多肽,其包含任二個或多個選自由SEQ ID NO:33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77及355所組成之群組之域,包含但不限於如表3所示二個域的任何組合。於一實施態樣中,該重組多肽包含任三個域,包含但不限於如表3所示三個域的任何組合。
如本文所述之重組多肽的任一域可位於相對該重組多肽的胺基末端或羧酸基末端之任何位置。舉例而言,如本文所述之重組多肽的任一域可位於該重組多肽中任一個或多個其他域的N端。相似地,如本文所述之重組多肽的任一域可位於該重組多肽中任一個或多個其他域的C端。
本文揭示一種重組多肽,其包含任二個或多個選自由SEQ ID NO:33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77及355所組成之群組之域,其具有相較於在該重組多肽中任何個別域更高地活化素受體IIB蛋白質(即ActRIIBecd)細胞外域的親和力。ActRIIB的核酸序列及多肽序列以及天然存在的變異係已知的。舉例而言,ActRIIBecd可為如本文所述之SEQ ID NO:9,其對應如本文所述之SEQ ID NO:8的27-117殘基。親和力可藉由如:放射性免疫測定法(RIA)、表面電漿子共振(如:BIAcoreTM )或本領域已知的任何其他結合分析來測量。於一些實施態樣中,此般重組多肽包含二個域的組合,選自如後之域的組合:SEQ ID NO:39及SEQ ID NO:49、SEQ ID NO:49及SEQ ID NO:61、SEQ ID NO:61及SEQ ID NO:39、SEQ ID NO:35及SEQ ID NO:47、SEQ ID NO:57及SEQ ID NO:35、SEQ ID NO:57及SEQ ID NO:47,其中該二個域中的任一個是位於另一域的N端或C端。於一些實施態樣中,此般二個域的組合產生一包含選自由如後所述序列之群組所組成的重組多肽:SEQ ID NO:188、194、200、206、212、218、224、230、236、242、248及254。於一些實施態樣中,此般重組多肽包含三個域的組合,該域的組合選自如下:SEQ ID NO:39、49及61;SEQ ID NO:35、47及57;SEQ ID NO:39、47及61;SEQ ID NO:35、49及57;SEQ ID NO:39、57及47;SEQ ID NO:35、61及49,其中任一域是位於另一或另二個域的N端或C端。於一些實施態樣中,此般三個域的組合產生一包含選自如後所述序列之群組所組成的重組多肽:SEQ ID NO:260、268、276、284、292、300、308、316、324、332、340及348。
本文揭示一種重組多肽,其包含一SEQ ID NO:39的第一域、一SEQ ID NO:49的第二域及一SEQ ID NO:61的第三域,其中該第一域相較於該第二域位於接近該重組多肽之C端、該第三域相較於該第二域位於接近該重組多肽之N端、或其組合。於某些實施態樣中,該重組多肽包含第一域係選自由SEQ ID NO:35及SEQ ID NO:39所組成之群組、第二域係選自由SEQ ID NO:47及SEQ ID NO:49所組成之群組、第三域係選自由SEQ ID NO:57及SEQ ID NO:61所組成之群組,其中該第一域相較於該第二域位於接近該重組多肽之C端、該第三域相較於該第二域位於接近該重組多肽之N端、或當該第一域、第二域及第三域分別為SEQ ID NO:39、49及61時其之組合。
於某些實施態樣中,本文所揭示之重組多肽包含一後轉譯修飾(post-translation modification,PTM),包含但不限於雙硫鍵形成、醣苷化、胺甲醯化、脂化、乙醯化、磷酸化、醯胺化、藉由已知的保護/阻斷基團衍生化、分解蛋白切割、藉由非天然存在胺基酸修飾,或任何其他操作或修飾,例如:與標記成分接合。
於某些實施態樣中,重組多肽可包含一個或更多個半胱胺酸,其在生理條件下或任何其他標準條件(例如:純化條件或儲存條件)下能夠參與一個或更多個雙硫鍵的生成。於某些實施態樣中,雙硫鍵是在重組多肽中之二個半光胺酸殘基間所形成的分子內雙硫鍵。於某些實施態樣中,雙硫鍵是在二聚體中二個重組多肽之間形成的分子間雙硫鍵。在某些實施態樣中,分子間雙硫鍵是在如本文所述之二個相同重組多肽之間所形成,其中該二個相同的重組多肽形成一同型二聚體。於某些實施態樣中,同型二聚體包括至少一個或多於三個分子間雙硫鍵。於某些實施態樣中,分子間雙硫鍵是在如本文所述之二個相異重組多肽之間所形成,其中該二個相異重組多肽形成一異型二聚體。於某些實施態樣中,異型二聚體包括至少一個或多於三個分子間雙硫鍵。
本文揭示一種重組多肽,其包含一第一域,其係選自由SEQ ID NO:35及SEQ ID NO:39所組成之群組;一第二域,其係選自由SEQ ID NO:47及SEQ ID NO:49所組成之群組;以及一第三域,其係選自由SEQ ID NO:57及SEQ ID NO:61所組成之群組;其中該重組多肽包含一個分子內雙硫鍵。
於某些實施態樣中,該第一域、該第二域、該第三域或其組合包含一個分子內雙硫鍵。於某些實施態樣中,一個或更多個分子內雙硫鍵位於單一域之內、一域和另一域之間、具有多於二個半胱胺酸的一個域和一個或多個另一域之間、或其組合。於某些實施態樣中,該第一域包含一雙硫鍵。於某些實施態樣中,該第二域包含一雙硫鍵。於某些實施態樣中,該第三域包含一雙硫鍵。於某些實施態樣中,每一個域包含一雙硫鍵。當涉及分子內雙硫鍵時,本文所述之「域包含一雙硫鍵」係指當一個域中存在多於一個半胱胺酸時單一域中二個半胱胺酸之間的雙硫鍵,或是指在兩個之其中一域中的半胱胺酸和另一域中的半胱胺酸之間的雙硫鍵。
於某些實施態樣中,如本文所述之重組多肽的該第二域包含在該第二域的第23個胺基酸和該第二域的第27個胺基酸之間之一個分子內雙硫鍵。於某些實施態樣中,於該第一域和該第三域之間、該第三域內、或兩者皆是,該重組多肽進一步包含一個或多個附加的分子內雙硫鍵。於某些實施態樣中,於該第三域的第9個胺基酸和該第三域的第43胺基酸之間、在該第三域的第8胺基酸和該第三域的第41胺基酸之間、在該第三域的第8胺基酸和該第三域的第43胺基酸之間、或在該第三域的第9胺基酸和該第三域的第41個胺基酸之間,該重組多肽進一步包含一個分子內雙硫鍵。於某些實施態樣中,該重組多肽於該第三域的第9胺基酸和該第三域的第43的胺基酸之間進一步包含一個雙硫鍵,以及在該第三域的第8胺基酸和該第三域的第41胺基酸之間包含一個雙硫鍵。於某些實施態樣中,該重組多肽在該第三域的第8胺基酸和該第三域的第43的胺基酸之間進一步包含一個雙硫鍵,以及在該第三域的第9胺基酸和該第三域的第41胺基酸之間包含一個雙硫鍵。
於某些實施態樣中,如本文所述之重組多肽的該第三域包含一第一胺基酸序列PKACCVPTE (SEQ ID NO:356)和一第二胺基酸序列GCGCR (SEQ ID NO:357),其中該第三域在該第一胺基酸序列和該第二胺基酸序列之間包含二個分子內雙硫鍵或二個分子間雙硫鍵。於某些實施態樣中,該重組多肽在該第一胺基酸序列的第4個胺基酸和該第二胺基酸序列的第2個胺基酸之間包含一個第一分子內雙硫鍵或第一分子間雙硫鍵,以及在該第一胺基酸序列的第5個胺基酸和該第二胺基酸序列的第4個胺基酸之間包含一個第二分子內雙硫鍵或第二分子間雙硫鍵。於某些實施態樣中,該重組多肽在該第一胺基酸序列的第5個胺基酸和該第二胺基酸序列的第2個胺基酸之間包含一個第一分子內雙硫鍵或第一分子間雙硫鍵,以及在該第一胺基酸序列的第4個胺基酸和該第二胺基酸序列的第4個胺基酸之間包含一個第二分子內雙硫鍵或第二分子間雙硫鍵。於某些實施態樣中,該重組多肽在該第二域的第23個胺基酸和該第二域的第27個胺基酸之間進一步包含一個分子內雙硫鍵。
本文揭示係關於一種重組多肽,其包含一胺基酸序列,該胺基酸序列係選自由SEQ ID NO:260、SEQ ID NO:268、SEQ ID NO:276、SEQ ID NO:284、SEQ ID NO:292、SEQ ID NO:300、SEQ ID NO:308、SEQ ID NO:316、SEQ ID NO:324、SEQ ID NO:332、SEQ ID NO:340、及SEQ ID NO:348所組成之群組,其中該重組多肽包含一個分子內雙硫鍵。於某些實施態樣中,該分子內雙硫鍵包含一個或多個雙硫鍵,其包含從重組多肽胺基末端編號的半胱胺酸15、半胱胺酸44、半胱胺酸48、半胱胺酸79、半胱胺酸80、半胱胺酸112、半胱胺酸114、及其組合,該重組多肽係選自由SEQ ID NO:260、SEQ ID NO:292、SEQ ID NO:324、及SEQ ID NO:332所組成之群組。於某些實施態樣中,該分子內雙硫鍵包含從重組多肽胺基末端編號的半胱胺酸44、半胱胺酸48、或兩者皆含,該重組多肽係選自由SEQ ID NO:260、SEQ ID NO:292、SEQ ID NO:324、及SEQ ID NO:332所組成之群組。
於某些實施態樣中,選自由SEQ ID NO:260、SEQ ID NO:292、SEQ ID NO:324、及SEQ ID NO:332所組成之群組之重組多肽,其從該重組多肽之胺基末端編號的半胱胺酸44和半胱胺酸48之間包含一分子內雙硫鍵。於某些實施態樣中,於半胱胺酸79和半胱胺酸112之間、半胱胺酸80和半胱胺酸114之間、半胱胺酸80和半胱胺酸112之間、或半胱胺酸79和半胱胺酸114之間,該重組多肽進一步包含一分子內雙硫鍵或一分子間(即,於二聚體中)雙硫鍵。於某些實施態樣中,該重組多肽於半胱胺酸79和半胱胺酸112之間進一步包含一分子內雙硫鍵或一分子間雙硫鍵,以及於半胱胺酸80和半胱胺酸114之間進一步包含一分子內雙硫鍵或一分子間雙硫鍵。於某些實施態樣中,該重組多肽於半胱胺酸80和半胱胺酸112之間進一步包含一分子內雙硫鍵或一分子間雙硫鍵,以及於半胱胺酸79和半胱胺酸114之間進一步包含一分子內雙硫鍵或一分子間雙硫鍵。
本文揭示係關於一種同型二聚體蛋白,其包含如本文所述之二個相同的重組多肽。
本文揭示係關於一種異型二聚體蛋白,其包含如本文所述之二個相異的重組多肽。
於某些實施態樣中,於該二個重組多肽的該些第一域之間、該二個重組多肽的該些第二域之間、該二個重組多肽的該些第三域之間、該二個重組多肽的該第一域和該第二域之間、該二個重組多肽的該第一域和該第三域之間、該二個重組多肽的該第二域和該第三域之間、或其組合,如本文所述之同型二聚體蛋白或異型二聚體蛋白包含一個或多個分子間雙硫鍵。
於某些實施態樣中,於該二個之其一重組多肽的該第一域之第15個胺基酸和該另一重組多肽的該第一域之第15個胺基酸之間,如本文所述之同型二聚體蛋白或異型二聚體蛋白包含一分子間雙硫鍵。於某些實施態樣中,於該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間、在該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間、在該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間、或在該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間,該同型二聚體蛋白或該異型二聚體蛋白進一步包含一分子間雙硫鍵。於某些實施態樣中,該同型二聚體蛋白或該異型二聚體蛋白進一步於該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間包含一雙硫鍵,以及於該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間包含一雙硫鍵。於某些實施態樣中,該同型二聚體蛋白或該異型二聚體蛋白進一步於該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間包含一雙硫鍵,以及於該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間包含一雙硫鍵。
於某些實施態樣中,於該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間、於該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間、在該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間、或在該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間,該同型二聚體蛋白或該異型二聚體蛋白包含一分子間雙硫鍵。於某些實施態樣中,該同型二聚體蛋白或該異型二聚體蛋白於該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間包含一雙硫鍵,以及在該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間包含一雙硫鍵。於某些實施態樣中,該同型二聚體蛋白或該異型二聚體蛋白於該二個之其一重組多肽的該第三域之第8個胺基酸和該另一重組多肽的該第三域之第43個胺基酸之間包含一雙硫鍵,以及在該二個之其一重組多肽的該第三域之第9個胺基酸和該另一重組多肽的該第三域之第41個胺基酸之間包含一雙硫鍵。
於某些實施態樣中,如本文所述之同型二聚體蛋白或異型二聚體蛋白的每一該重組多肽之該第三域包含一第一胺基酸序列PKACCVPTE (SEQ ID NO:356)及一第二胺基酸序列GCGCR (SEQ ID NO:357),其中該同型二聚體蛋白或該異型二聚體蛋白於該二個之其一重組多肽的該第三域中之該第一胺基酸序列和該另一重組多肽的該第三域中之該第二胺基酸序列之間包含二個分子間雙硫鍵。於某些實施態樣中,該同型二聚體蛋白或該異型二聚體蛋白於該二個之其一重組多肽的該第一胺基酸序列之第4個胺基酸和該另一重組多肽的該第二胺基酸序列之第2個胺基酸之間包含一第一分子間雙硫鍵,以及於該二個之其一重組多肽的該第一胺基酸序列之第5個胺基酸和該另一重組多肽的該第二胺基酸序列之第4個胺基酸之間包含一第二分子間雙硫鍵。於某些實施態樣中,該同型二聚體蛋白或該異型二聚體蛋白於該二個之其一重組多肽的該第一胺基酸序列之第5個胺基酸和該另一重組多肽的該第二胺基酸序列之第2個胺基酸之間包含一第一分子間雙硫鍵,以及於該二個之其一重組多肽的該第一胺基酸序列之第4個胺基酸和該另一重組多肽的該第二胺基酸序列之第4個胺基酸之間包含一第二分子間雙硫鍵。
於某些實施態樣中,如本文所述之同型二聚體蛋白或異型二聚體蛋白之該單一或全部二個重組多肽包含如本文所述之任一個或多個該分子內雙硫鍵。
於某些實施態樣中,如本文所述之同型二聚體蛋白或異型二聚體蛋白的該單一或全部二個重組多肽之該第二域包含一分子內雙硫鍵。於某些實施態樣中,如本文所述之同型二聚體蛋白或異型二聚體蛋白之該單一或全部二個重組多肽於該第二域的第23個胺基酸和該第二域的第27個胺基酸包含一分子內雙硫鍵。
於某些實施態樣中,如本文所述之同型二聚體蛋白或異型二聚體蛋白的該單一或全部二個重組多肽包含一分子內雙硫鍵,位於從該重組多肽的胺基末端編號的SEQ ID NO:260、SEQ ID NO:292、SEQ ID NO:324、或SEQ ID NO:332之任一個的半胱胺酸44和半胱胺酸48之間、SEQ ID NO:284、SEQ ID NO:308、SEQ ID NO:340、或SEQ ID NO:348之任一個的半胱胺酸88和半胱胺酸92之間、SEQ ID NO:268、或SEQ ID NO:300之任一個的半胱胺酸23和半胱胺酸27之間、或SEQ ID NO:276、或SEQ ID NO:316之任一個的半胱胺酸67和半胱胺酸71之間。
於某些實施態樣中,如本文所述之同型二聚體蛋白包含二個重組多肽,其中每一個多肽包含相同序列,其中該序列係選自由SEQ ID NO:260、SEQ ID NO:268、SEQ ID NO:276、SEQ ID NO:284、SEQ ID NO:292、SEQ ID NO:300、SEQ ID NO:308、SEQ ID NO:316、SEQ ID NO:324、SEQ ID NO:332、SEQ ID NO:340、及SEQ ID NO:348所組成之群組。於一些實施態樣中,該重組多肽包含如本文所述之相同分子內雙硫鍵。於一些實施態樣中,該重組多肽包含如本文所述之相異分子內雙硫鍵。
於某些實施態樣中,如本文所述之異型二聚體蛋白包含二個相異重組多肽,其中每一個多肽包含相異序列,該序列選自由SEQ ID NO:260、SEQ ID NO:268、SEQ ID NO:276、SEQ ID NO:284、SEQ ID NO:292、SEQ ID NO:300、SEQ ID NO:308、SEQ ID NO:316、SEQ ID NO:324、SEQ ID NO:332、SEQ ID NO:340、及SEQ ID NO:348所組成之群組。於某些實施態樣中,該異型二聚體蛋白中之該二個之其一重組多肽包含序列SEQ ID NO:260,而該另一重組多肽包含一序列其選自由SEQ ID NO:268、SEQ ID NO:276、SEQ ID NO:284、SEQ ID NO:292、SEQ ID NO:300、SEQ ID NO:308、SEQ ID NO:316、SEQ ID NO:324、SEQ ID NO:332、SEQ ID NO:340、及SEQ ID NO:348所組成之群組。於一些實施態樣中,該重組多肽包含如本文所述之相同分子內雙硫鍵。於一些實施態樣中,該重組多肽包含如本文所述之相異分子內雙硫鍵。
於某些實施態樣中,如本文所述之重組多肽、同型二聚體蛋白或異型二聚體蛋白在如表4或5中所列之半胱胺酸對之間包含該一個或多個該雙硫鍵。
於某些實施態樣中,如本文所述之重組多肽、同型二聚體蛋白或異型二聚體蛋白包含骨誘發活性。骨誘發活性可以常規實務上用於測量此類活性的任何條件狀況下量測 (即「骨誘發條件」)。
例如:C2C12細胞是來自營養不良小鼠肌肉的鼠類的肌纖維母細胞品系。將C2C12細胞暴露於具有骨誘發活性的多肽可將C2C12細胞從肌肉轉移到骨之分化,例如:藉由誘發骨相關蛋白如鹼性磷酸酶的表達為特徵的成骨細胞形成。鹼性磷酸酶是一種廣泛接受的骨標記,且檢測鹼性磷酸酶活性的測定被接受可用以表達骨誘發活性。參見如:Peel等人(2003年公開於J. Craniofacial Surg. 14 :284-291)、Hu等人(2004年公開於Growth Factors 22 :29033)及Kim等人(2004年公開於J. Biol. Chem .279 :50773-50780)之研究。
於某些實施態樣中,如本文所述之重組多肽、同型二聚體蛋白或異型二聚體蛋白係具有誘發鹼性磷酸酶活性之能力。
於某些實施態樣中,骨誘發活性可利用醫學影像技術或骨樣本的組織學檢驗來進行檢測,或是任何其他用以檢測骨生成或成長的常規檢驗方法。於某些實施態樣中,上述檢測包括放射攝影影像,例如:X光影像。於某些實施態樣中,上述檢測包括電腦斷層攝影(CT)掃描。於一些實施態樣中,上述檢測包括分子影像或核影像(即,正電子發射斷層攝影術(PET))。於某些實施態樣中,上述檢測包括組織學檢驗。於某些實施態樣中,上述檢測包括蘇木素-伊紅(HE)染色法。
於某些實施態樣中,如本文所述之重組多肽、同型二聚體蛋白或異型二聚體蛋白可包含但不限於片段、變體或其衍生物分子。當涉及多肽時,用語「片段」、「變體」、「衍生物」和「類似物」包含保留參考多肽的至少一些性質或生物活性的任何多肽。多肽片段可包含分解蛋白片段、缺失片段、及當植入動物中時更容易到達作用位點的片段。多肽片段可包含變體區域,包括如上所述之片段,以及由於胺基酸取代、缺失或插入而具有經改變胺基酸序列之多肽。可以使用本領域已知的誘變技術產生非天然存在的變體。本文揭示之多肽片段可包含保守或非保守的胺基酸取代、缺失或添加。變體多肽在本文中也可稱為「多肽類似物」。本文揭示之多肽片段也可包括衍生分子。本文所用多肽或多肽片段的「衍生物」是指一主體多肽,其具有一個或多個由官能側基團的反應以化學性衍生之殘基。「衍生物」也包括含有20個標準胺基酸的一種或多種天然存在胺基酸衍生物之該些多肽。例如:4-羥脯胺酸可被取代以作為脯胺酸;5-羥離胺酸可被取代以作為離胺酸;3-甲基組胺酸可被取代以作為組胺酸;高絲胺酸可被取代以作為絲胺酸;及鳥胺酸可被取代以作為離胺酸。
於某些實施態樣中,如本文所述之重組多肽、同型二聚體蛋白或異型二聚體蛋白其包含一標記。於某些實施態樣中,該標記是一種可催化基質化合物或組成物之化學改變之酵素標記、放射性標記、螢光團、發色團、成像劑、或包括金屬離子之金屬。
於某些實施態樣中,本文所述之重組多肽包括一個或多個保守的胺基酸取代。「保守的胺基酸取代」是一種具有相似側鏈之相異胺基酸殘基的胺基酸取代。本領域已定義具有相似胺基酸側鏈之胺基酸殘基家族,包括鹼性側鏈(如:離胺酸、精胺酸、組胺酸)、酸性側鏈(如:天冬胺酸、麩胺酸)、不帶電極性側鏈(如:甘胺酸、天冬醯胺、麩醯胺酸、絲胺酸、蘇胺酸、酪胺酸、半胱氨酸)、非極性側鏈(如:丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸、色胺酸)、β-支鏈側鏈(如:蘇胺酸、纈胺酸、異白胺酸)、及芳香族側鏈(如:酪胺酸、苯丙胺酸、色胺酸、組胺酸)。因此,若多肽中的胺基酸被來自同一側鏈家族的另一胺基酸替換,則認為該取代是保守的。於另一實施態樣中,一胺基酸串可被以差異在於順序和/或側鏈家族成員的組成之結構相似之串進行保守的替換。
於某些實施態樣中,本文揭示之重組多肽藉由如本文所述之核酸分子或載體所編碼,或是藉由如本文所述之宿主細胞所表達。 [核酸分子、載體及宿主細胞]
本文揭示係關於一種經分離之核酸分子,其包含一編碼如本文所述之任一重組多肽之多核苷酸序列。
於某些實施態樣中,該經分離之核酸分子包含任二個或多個編碼如本文所述之域之多核苷酸序列。於某些實施態樣中,該經分離之核酸分子包含任二個或多個多核苷酸序列,該多核苷酸序列係選自由SEQ ID NO:32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、及78所組成之群組,其編碼如本文所述之域分別對應SEQ ID NO:33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、及355。於某些實施態樣中,該經分離核酸分子包含二個或三個多核苷酸序列的任何組合,該些多核苷酸序列編碼本文表3中所示之二個或三個域的對應組合。
於某些實施態樣中,該經分離之核苷酸分子包含一多核苷酸序列,該多核苷酸序列係選自由SEQ ID NO:115、157、187、193、199、205、211、217、223、229、235、241、247、253、259、267、275、283、291、299、307、315、323、331、339、及347所組成之群組,其編碼如本文所述之重組多肽分別對應SEQ ID NO:116、158、188、194、200、206、212、218、224、230、236、242、248、254、260、268、276、284、292、300、308、316、324、332、340、及348。
於某些實施態樣中,多核苷酸序列經密碼子最佳化(codon-optimized)。
本文揭示是關於一種重組核酸分子,其包含一表達控制區可操作的連結至如本文所述之經分離之核酸分子。於某些實施態樣中,該表達控制區是啟動子、增強子、操縱子、抑制子、核糖體結合位、轉譯前導序列、內含子、多腺苷酸化識別序列、RNA加工位、效應子結合位、莖環結構、轉錄終止訊號、或其組合。於某些實施態樣中,該表達控制區是一啟動子。表達控制區可以是轉錄控制區和/或轉譯控制區。
本發明所屬技術領域已知各種轉錄控制區。該些轉錄控制區包括但不限於在脊椎動物細胞中起作用之轉錄控制區,例如但不限於:來自巨細胞病毒的啟動子及增強子片段(迅早期啟動子,與內含子-A (intron-A)接合)、猴病毒40 (早期啟動子)、及反轉錄病毒(如勞斯肉瘤病毒)。其他轉錄控制區包括那些衍生自脊椎動物基因如:肌動蛋白、熱休克蛋白、牛生長激素及兔β-球蛋白,以及在真核細胞中能控制基因表達的其他序列。另外,適合的轉錄控制區包括組織特異性啟動子和增強子,以及淋巴介質誘導型(lymphokine-inducible)啟動子(如:干擾素或介白素可誘導之啟動子)。
類似地,本發明所屬技術領域已知各種轉譯控制控制單元。該些轉譯控制單元包括但不限於:核糖體結合位、轉譯起始與終止密碼子,以及衍生自微小核醣核酸病毒之單元(特別係內部核糖體進入位(internal ribosome entry site,IRES),亦稱為CITE序列)。
於某些實施態樣中,該重組核酸分子是一種重組載體。
載體可以是將核酸轉殖和/或轉移至宿主細胞內的任何媒介。本領域已知和已使用大量載體,包括例如:質體、噬菌體、黏接質體、染色體、病毒、經修飾之真核病毒、經修飾之細菌病毒。將多核苷酸插入至合適之載體可以藉由將適當的多核苷酸片段連接至具有互補的黏合端之所選載體中來完成。
可以將載體設計成編碼選擇性標記或報導子,該選擇性標記或報導子提供用來選擇或辨識已併入該載體的細胞。選擇性標記或報導子之表達允許宿主細胞辨識和/或選擇,該宿主細胞是併入且表達該載體上所含的其他編碼區。本領域已知及已使用之選擇性標記基因包括例如:對於胺芐青黴素、鏈黴素、健他黴素、康黴素、潮黴素、新黴素、嘌黴素、雙丙胺磷除草劑(bialaphos herbicide)、磺醯胺、及其類似物提供抗性的基因,以及使用作為表型標記的基因,即花青素調節基因、異戊烯基轉移酶基因、及其類似物。本領域已知及已使用之報導子包括例如:螢光素酶(Luc)、綠螢光蛋白(GFP)、氯黴素乙醯基移轉酶(CAT)、β-半乳糖苷酶(LacZ)、β-葡萄醣醛酸酶(Gus)、及其類似物。選擇性標記也可當作報導子。
用語「質體」是指通常帶有基因的染色體外單元,該基因並非細胞中心代謝的一部分,且通常是環狀雙股DNA分子形式。此般單元可以是衍生自任何來源的自主複製序列(ARS)、基因體整合序列、噬菌體或核苷酸序列、線性、環狀或超旋扭的單股或雙股DNA或RNA,其中許多核苷酸序列已被連接或重組成一獨特構造,該獨特構造能夠將所選基因產物的啟動子片段和DNA序列連同適當3’端未轉譯序列一起導入細胞中。
可以使用的真核病毒載體包括但不限於:腺病毒載體、反轉錄病毒載體、腺相關病毒載體及痘病毒,如牛痘病毒載體、桿狀病毒載體或疱疹病毒載體。非病毒載體包括質體、脂質體、帶電性脂質(細胞增生素)、DNA-蛋白質複合物及生物聚合物。哺乳動物表達載體可包含非轉錄單元如:複製起源、連結至待表達基因的合適啟動子和增強子、及其他5’端或3’端毗鄰非轉錄序列及5’端或3’端非轉譯序列,如必需的核糖體結合位、多腺苷酸化位、剪接供給者與接受者位及轉錄終止序列。
該重組載體可以是一種「重組表達載體」,其是指任何核酸構造,該核酸構造含有用以轉錄和轉譯已插入之編碼序列的必須單元,或是在RNA病毒載體的情況下,當導入至適當宿主細胞時用以複製和轉譯的必須單元。
本文揭示是關於一種製備一重組載體的方法,其包含將如本文所述之經分離之核酸分子插入至一載體內。
本文揭示是關於一種經分離之宿主細胞,其包含如本文所述之經分離之核酸分子或重組核酸分子。於某些實施態樣中,該經分離之宿主細胞包含如本文所述之重組載體。
核酸分子可以藉由本領域已知的方法導入至宿主細胞中,例如:轉染、電穿孔、顯微注射、轉導、細胞融合、DEAE葡聚糖、磷酸鈣沉澱、脂轉染(溶酶體融合)、基因槍的使用、或DNA載體轉運蛋白。
本文揭示係關於一種製備重組宿主細胞的方法,其包含將如本文所述之經分離之核酸分子或重組核酸分子導入至一宿主細胞內。於某些實施態樣中,該方法包含將如本文所述之重組載體導入至一宿主細胞內。
如本文所述之宿主細胞可表達任何如本文所述之經分離之核酸分子或重組核酸分子。關於在宿主細胞中核酸分子的表達所使用的術語「表達/表現」是指藉由基因引起生物化學的過程,例如:RNA或多肽。該過程包括細胞內所具有該基因之功能出現的任何具體呈現,包括但不限於:瞬態表達或穩定表達。其包括但不限於將該基因轉錄成傳訊RNA(mRNA)以及將該mRNA轉譯成多肽。
宿主細胞包括但不限於原核生物或真核生物。適當宿主細胞的代表性實例包括:細菌細胞、真菌細胞如酵母菌、昆蟲細胞及經分離之動物細胞。細菌細胞可包括但不限於革蘭氏陰性或革蘭氏陽性細菌,例如:大腸桿菌(Escherichia coli )。或者,也可使用乳酸桿菌(Lactobacillus )屬物種或芽孢桿菌(Bacillus )屬物種作為宿主細胞。真核細胞可以包括但不限於已建立的哺乳動物來源細胞品系。合適的哺乳動物細胞品系包括例如:COS-7、L、C127、3T3、中國倉鼠卵巢(CHO)、HeLa及BHK細胞品系。
該宿主細胞可以在適合用以活化啟動子、選擇轉化體或擴增如本文所述之核酸分子的經適當修飾之常規營養培養基中進行培養。該培養之條件如溫度、pH等等,可以是當使用選擇用以表達的宿主細胞時已知使用或經常規修飾的任何條件,並且對於本發明所屬技術領域中具有普通知識者是顯而易見地。
本文揭示係關於一種製造一重組多肽的方法,其包含:培養如本文所述之經分離之宿主細胞,以及從該宿主細胞分離該重組多肽。從經培養的宿主細胞分離多肽的技術,可以是當從該選擇用以表達的宿主細胞分離多肽時已知使用或經常規修飾的任何技術,並且對於本發明所屬技術領域中具有普通知識者是顯而易見地。 [組合物及裝置]
本文揭示係關於一種組合物,其包含如本文所述之重組多肽、同型二聚體蛋白、或異型二聚體蛋白。
於某些實施態樣中,該組合物進一步包含生理可接受載體、賦形劑、或穩定劑。參見如1990年美國賓州伊士頓的麥克出版社(Mack Publishing Co., Easton, PA)出版之雷明頓藥物科學(Remington's Pharmaceutical Sciences)。可接受載體、賦形劑、或穩定劑可包含對受試者無毒的物質。於某些實施態樣中,該組合物或該組合物中一個或多個成分是無菌的。無菌成分可使用如過濾(如通過無菌過濾膜)或放射線照射(如通過γ-射線照射)來製備。
於某些實施態樣中,如本文所述之組合物進一步包含同種異體移植物或自體移植物的骨或骨碎片。
於某些實施態樣中,如本文所述之組合物進一步包含骨移植替代物。
於某些實施態樣中,該骨移植替代物是一種生物陶瓷(bioceramic)材料。用語「生物陶瓷材料」及「生物陶瓷」於本文中可相互代換。於某些實施態樣中,該生物陶瓷在體內是可生物相容的且是可再吸收的。於某些實施態樣中,該生物陶瓷是任何以磷酸鈣鹽類為基礎的生物陶瓷。於某些實施態樣中,該生物陶瓷係選自由磷酸三鈣(TCP)、α-磷酸三鈣(α-TCP)、β-磷酸三鈣(β-TCP)、雙相磷酸鈣(BCT)、氫氧磷灰石、硫酸鈣及碳酸鈣所組成之群組。於某些實施態樣中,該生物陶瓷是β-磷酸三鈣(β-TCP)。
於某些實施態樣中,該骨移植替代物是一種生物活性玻璃(bioactive glass)。於某些實施態樣中,該生物活性玻璃包含二氧化矽(SiO2 )、氧化鈉(Na2 O)、氧化鈣(CaO)、或氧化鉑(Pt2 O5 )。
本文揭示係關於一種可生物分解組成物,其包含:一如本文所述之同型二聚體蛋白,具有誘發骨生成以在一位置形成骨質之能力;及帶有孔洞之一可生物分解磷酸鈣載體(如β-TCP),該些孔洞係連通分布於該可生物分解磷酸鈣載體;其中該同型二聚體蛋白的有效量為約0.03 mg/g至約3.2 mg/g的該可生物分解磷酸鈣載體,且該可生物分解磷酸鈣載體之孔隙率係大於70%,且孔徑為約300 μm至約600 μm。
於某些實施態樣中,該可生物分解組成物適用於使一組織凸出,該組織選自鼻溝、眉間、中面部組織、下顎輪廓線、下巴、臉頰、及其組合所組成之群組。
於某些實施態樣中,該位置置係選自由長骨骨折缺損、二個相鄰脊椎骨體之空間、不癒合骨之缺陷、上顎截骨切口、下顎截骨切口、矢狀劈開截骨切口、頦整型截骨切口、快速顎擴張截骨切口、在二個相鄰脊椎骨的二個相鄰橫突之間縱向延伸的空間、及其組合所組成之群組。
於某些實施態樣中,一單一劑量的該同型二聚體蛋白為約0.006 mg至15 mg。
於某些實施態樣中,該可生物分解之磷酸鈣載體供該同型二聚體蛋白流入該可生物分解之磷酸鈣載體於該對象體內時不滲漏,從而使所形成的骨質限制於該可生物分解之磷酸鈣載體的體積內。
本文揭示係關於一種持續性釋出組成物,其包含一磷酸鈣載體、一可生物分解基質、及一如本文所述之同型二聚體蛋白。
於某些實施態樣中,該磷酸鈣載體係選自由:磷酸三鈣(TCP)、α-磷酸三鈣(α-TCP)、β-磷酸三鈣(β-TCP)、雙相磷酸鈣(BCP)及其組合所組成之群組。
於某些實施態樣中,該可生物分解基質係選自由:聚乳酸(PLA)、聚羥基乙酸(PGA)、聚乳酸-羥基乙酸共聚物(PLGA)、聚乙烯醇(PVA)、及其組合所組成之群組。
於某些實施態樣中,該持續性釋出組成物包含:(a)約2-11% (w/w)的該磷酸鈣載體;(b)約88-97% (w/w)的該可生物分解基質;及(c)約0.017-0.039% (w/w)的該同型二聚體蛋白。
本文揭示係關於一種用於填補骨孔隙之可模製組成物,其包含:含有該可模製組成物約90 wt%至約99.5 wt%的一可模製基質;及如本文所述之一同型二聚體蛋白,其中,於植入後約1、24、48、72、168、240或約336小時,從該可模製組成物釋出少於約25%百分率的該同型二聚體蛋白。
本文揭示係關於一種脊椎融合裝置,其包含一如本文所述之可生物分解組成物;及一脊椎融合器(如護架(peek cage)),其被配置用以保留該可生物分解磷酸鈣載體。
方法:
本文揭示係關於一種需要這種治療的對象中促進長骨骨折癒合的方法,其包含:製備含有如本文所述之同型二聚體蛋白的一組成物,該同型二聚體蛋白均勻地容置在一緩釋型可生物分解磷酸鈣載體內(如β-TCP),該可生物分解磷酸鈣載體供該同型二聚體蛋白流入該可生物分解磷酸鈣載體於該對象體內時不滲漏,從而使該長骨骨折癒合限制於該磷酸鈣載體的體積內;且植入該組成物於該長骨骨折發生位置,其中該同型二聚體蛋白的量為約0.03 mg/g至約3.2 mg/g的該磷酸鈣載體。
於某些實施態樣中,該促進長骨骨折癒合的方法更進一步包含:隨著該磷酸鈣載體降解,所容置的同型二聚體蛋白於該磷酸鈣載體位置逐漸暴露,其中該磷酸鈣載體具有約0.4至約1.8的鈣與磷酸鹽比率。
本文揭示係關於一種促進脊椎融合的方法,其包含:暴露一上脊椎骨和一下脊椎骨;在該上脊椎骨和該下脊椎骨之間辨別出一用以融合之部位;在該上脊椎骨及該下脊椎骨之各個用以融合之該部位上暴露一骨表面;及於該部位上施用如本文所述之一同型二聚體蛋白及一可生物分解磷酸鈣載體(如β-TCP)。
於某些實施態樣中,該可生物分解磷酸鈣載體係一種不可壓縮遞送載具,且其中該不可壓縮遞送載具係施用於需要骨生長但不自然發生骨生長的二個骨表面之間的該部位。
於某些實施態樣中,該可生物分解磷酸鈣載體包含至少一個用以施用於該部位的植入棒,該植入棒在該上脊椎骨及該下脊椎骨之間縱向延伸。
於某些實施態樣中,該部位係選自由二個相鄰脊椎骨體之空間、以及在二個相鄰脊椎骨的二個相鄰橫突之間縱向延伸的空間。
本文揭示係關於一種用以促進關節固定(arthrodesis)的方法,其包含將如前所述之一同型二聚體蛋白及一可生物分解磷酸鈣載體施用於一畸形或退化的關節。
於某些實施態樣中,施用該同型二聚體蛋白係包括將從約0.006 mg至約10.5 mg的該同型二聚體蛋白施用至該畸形或退化的關節。
本文揭示係關於一種於有需求的對象之脊椎中產生骨質以融合二個相鄰脊椎骨體的方法,其步驟包括:準備一用以產生該骨質之組成物,該組成物含有一如本文所述之同型二聚體蛋白,該同型二聚體蛋白均勻地容置在一緩釋型可生物分解載體內,該可生物分解載體供該同型二聚體蛋白流入該可生物分解載體於該對象體內時不滲漏,從而使所形成骨質限制於該緩釋型可生物分解載體的體積內;及將該組成物引入該二個相鄰脊椎骨體之間的位置,且其中隨著該緩釋型可生物分解載體降解,所容置的同型二聚體蛋白於該緩釋型可生物分解載體位置逐漸暴露,更且其中該同型二聚體蛋白的量為該位置的約0.2 mg/site (即每一部位約0.2 mg)至約10.5 mg/site (即每一部位約10.5 mg)。
於某些實施態樣中,該緩釋型可生物分解載體具有多孔結構,其中來自該二個相鄰脊椎骨的細胞遷移到該多孔結構中以產生該骨質。
於某些實施態樣中,該緩釋型可生物分解載體具有一初始體積,且隨著該緩釋型可生物分解載體被再吸收,該骨質取代該緩釋型可生物分解載體之該初始體積。
本文揭示係關於一種在有需求的對象中藉由後方融合術(posterior fusion)或椎間孔融合術(transforaminal fusion)用以融合相鄰脊椎骨體的方法,其步驟包括:準備一盤空間,用以在該相鄰脊椎骨之間的椎間空間中接收一椎間盤植入物;將一緩釋型載體引入該椎間盤植入物中,其中如本文所述之同型二聚體蛋白的量為從約0.2 mg/site至約10.5 mg/site的該緩釋型載體;並將該椎間盤植入物引入該相鄰脊椎骨之間的盤空間中,以在該盤空間中產生骨質。
以下實施例是用以說明而非限制本發明。 [實施例] [實施例1]-質體建構
為了建構質體pQE-80L-Kana,利用Bsp HI (BioLab公司)從pET-24a(+) (Novagen公司)切割康黴素抗性基因,以產生875-bp康黴素抗性基因(+3886到+4760)片段(SEQ ID NO:1)。用Bsp HI切割pQE-80L (凱杰公司)載體以去除胺芐青黴素抗性基因(+3587到+4699)片段(SEQ ID NO:2),然後將該康黴素抗性基因片段連接到該pQE-80L載體中以生成4513-bp質體(pQE-80L-Kana)。(SEQ ID NO:3)。 [實施例2]-酵母雙雜合(two-hybrid)篩選 A. 誘餌質體建構
使用市售系統(媒合雙雜合系統2;美國加州帕洛阿爾托的CLONTECH公司)進行酵母雙雜合篩選。為建構誘餌質體,pCRII/ActRIIB作為模板進行聚合酶連鎖反應(polymerase chain reaction,PCR) (1994年Hilden等人公開於Blood 83(8):2163-70之研究)以生產IIB型活化素受體(ActRIIB)蛋白之細胞外域(+103到+375 bp) (SEQ ID NO:4)的編碼區。設計用於擴增ActRIIB該細胞外域(ActRIIBecd)的引子(Xma I:5'- CCCGGGACGGGAGTGCATCTACAACG-3'(SEQ ID NO:5);Sal I:5'- GTCGACTTATGGCAAATGAGTGAAGCGTTC -3'(SEQ ID NO:6))使其在5’末端分別包含一個Xma I和Sal I限制位。使用模板DNA 10 ng、每個引子0.2 μM、每個dNTP 0.2 mM、1X PCR緩衝液(10 mM三羥甲基氨基甲烷(Tris-HCl)、pH 8.3、50 mM氯化鉀(KCl)及1.5 mM氯化鎂(MgCl2 ))以及pfu DNA聚合酶(勁因科技有限公司)1.25 U,在總體積50 μl下進行PCR。進行PCR 30次循環:在95℃下變性30秒,接著在45℃下黏合1分鐘,在68℃下延伸5分鐘。以Xma I-Sal I切割該PCR產物,然後在框架內經次轉殖(subcloned)到在pAS2-1載體(CLONTECH公司GenBank登入號:U30497)中GAL4的DNA-結合域中相同的限制位,以產生質體pAS-ActRIIBecd。
已知ActRIIB的核酸序列和多肽序列以及天然存在的變體。例如野生型ActRIIB核酸序列為SEQ ID NO:7。對應的多肽序列為SEQ ID NO:8。ActRIIB的細胞外域(ActRIIBecd)為SEQ ID NO:9,其對應SEQ ID NO:8的殘基21-117,且由核酸序列SEQ ID NO:4編碼。 B. pACT2/MC3T3 cDNA資料庫建構
為了建構pACT2/MC3T3 cDNA資料庫,由Tu Q.等人(2003年公開於J Bone Miner Res. 18(10):1825-33)所揭示大約7×106 轉殖的小鼠MC3T3-E1成骨細胞cDNA資料庫,並進行一些修飾以容許cDNA資料庫插入小於1.5 kb,該資料庫建構到pACT2載體(CLONTECH公司GenBank登入號:U29899)中,其中在S1核酸酶處理後(英杰生命科技公司cDNA合成系統CAT.編號18267-013),在pACT2載體中轉殖該雙股cDNA,其經Sma I切割以表達具有GAL4活化域的融合蛋白。接著根據製造商(美國加州帕洛阿爾托的CLONTECH公司)的方案,以「HIS3 Jump-Start」程序篩選pACT2/MC3T3 cDNA資料庫。於另一實施態樣中,該pACT2 cDNA資料庫是由市售產品獲得。 C. 酵母菌株選擇
首先以誘餌質體轉化釀酒酵母(Saccharomyces cerevisiae )Y190細胞(美國加州帕洛阿爾托的CLONTECH公司,MATa、ura3-52、his3-D200、lys2-801、ade2-101、trp1-901、leu2-3、112、gal4D、gal80D、URA3::GAL1UAS -GAL1TATA -lacZ、cyhr 2、LYS2::GALUAS -HIS3TATA -HIS3),並在不含色胺酸的合成葡萄糖培養基(SD-Trp)上進行篩選。隨後以pACT2/MC3T3 cDNA資料庫轉化在該SD-Trp培養基上生長的轉化體,並在不含色胺酸和白胺酸的培養基(SD-Trp-Leu)上進行篩選。於不含色胺酸、白胺酸及組胺酸(SD-Trp-Leu-His)並具有30 mM的3-胺基-1,2,4-三唑(3-amino-1,2,4-triazole)之培養基上(美國密蘇里州聖路易,西格瑪奧瑞奇公司)收集並再培養該誘餌與資料庫共轉化後的轉殖體,以抑制Y190細胞的滲漏生長。進一步測定在此步驟中所選的轉殖體其β-半乳糖苷酶活性。經過30℃培養3天後,將培養皿拍照攝影。至少進行了三次獨立實驗,並有相似結果。從個別陽性轉殖體純化該pACT2資料庫質體,並在大腸桿菌(Escherichia coli. )中進行擴增。用珀金埃爾默ABI自動DNA定序儀定序插入陽性轉殖體中的該cDNA,如表1所示(引子5'-AATACCACTACAATGGAT-3' (SEQ ID NO:10))。 表1
Figure 107133348-A0304-0001
[實施例3]-易誤(Error-prone)隨機誘變PCR A.從質體設計引子之誘變
將來自實施例2的陽性轉殖體的DNA序列誘發突變。
於一實施態樣中,經定序的陽性轉殖體被次轉殖到pQE-80L-Kana中,接著進行隨機誘變PCR。用於擴增陽性轉殖體DNA序列如表1所示之引子,經設計在其5’末端包含一個Mse I或Bam HI限制位。該PCR條件如實施例2所述。該PCR產物以Mse I-Bam HI進行切割,接著在框架內經次轉殖到該pQE-80L-Kana載體中的相同限制位。在Leung等人(1989年公開於Technique , 1, 11-15)揭示的易誤PCR基礎下,經些微修飾,將隨機誘變導入至該經次轉殖之pQE-80L-Kana質體內。使用線性化pQE-80L-Kana(經Xho I切割)作為模板DNA。用於使誘變PCR擴增的引子(Mse I:5'- GAATTCATTAAAGAGGAGAAATTAA (SEQ ID NO:29);Bam HI:5'-CCGGGGTACCGAGCTCGCATGCGGATCC TTA (SEQ ID NO:30)),經設計在其5’末端分別包含一個Mse I或Bam HI限制位。使用模板DNA 10 ng、每個引子40 pM、每個dNTP 0.2 mM、1X PCR緩衝液(10 mM Tris-HCl、pH 8.3、50 mM KCl及1.5 mM MgCl2 )、氯化錳(MnCl2 ) 0.2-0.3 mM、二甲亞碸1 %及Taq DNA聚合酶1.25 U (美國加州卡爾斯巴德的英杰公司),在總體積50 μl下進行誘變PCR。誘變PCR進行30次循環:在94℃下變性30秒,接著在55℃下黏合2分鐘,在72℃下延伸3分鐘。用Mse I和Bam HI切割該PCR產物。這個片段與經Mse I和Bam HI切割之pQE-80L-Kana的4.5-kb片段連接。以所得之pQE-80L-Kana衍生物轉化大腸桿菌BL 21(Novagen公司)。菌落在LTB-瓊脂培養基(LB補充有1 % v/v甘油三丁酸酯、0.1 % v/v土溫乳化劑-80、100 mg/L的康黴素、0.01 μM的異丙基β-D-硫代吡喃半乳糖苷及1.5 %瓊脂)的培養皿中於37℃環境下生長。 B. 表1引子之誘變
於另一實施態樣中,基於先前Lenug所揭示的易誤PCR並經一些修改,將隨機誘變導入至來自該陽性轉殖體的該pACT2資料庫質體中。使用該線性化pACT2(經Xba I切割)作為模板DNA。使用具有如表1所示Mse I和Bam HI限制位的合成寡核苷酸作為誘變PCR擴增反應之引子。使用模板DNA 10 ng、每個引子40 pM、每個dNTP 0.2 mM、1X PCR緩衝液(10 mM Tris-HCl、pH 8.3、50 mM KCl及1.5 mM MgCl2 )、MnCl2 0.2-0.3 mM、二甲亞碸1 %及Taq DNA聚合酶1.25 U(美國加州卡爾斯巴德,英杰公司),在總體積50 μl下進行誘變PCR。誘變PCR進行30次循環:在94℃下變性30秒,接著在55℃下黏合1.5分鐘,在72℃下延伸4分鐘。用Mse I和Bam HI切割該PCR產物。將此片段與經Mse I和Bam HI切割之pQE-80L-Kana的4.5-kb片段連接。以所得之pQE-80L-Kana衍生物轉化大腸桿菌BL 21(Novagen公司)。菌落在LTB-瓊脂培養基(LB補充有1 % v/v甘油三丁酸酯、0.1 % v/v土溫乳化劑-80、100 mg/L的康黴素、0.01 μM的異丙基β-D-硫代吡喃半乳糖苷及1.5 %瓊脂)的培養皿中於37 ℃環境下生長。 [實施例4]- ActRIIBecd相關多肽的表達
使用如實施例3所述經穩定轉化之大腸桿菌細胞,以表達來自實施例2之該誘變DNA的與ActRIIBecd交互作用之多肽(即「域」)。 A. 轉化體發酵
於一實施態樣中,將具有pQE-80L-Kana衍生物的大腸桿菌BL21轉化體在含有康黴素25-32 μg/mL的65 mL培養基(10 g/L BBL植物蛋白腖、5 g/L Bacto酵母萃取物、10 g/L NaCl)於500 mL錐形瓶中,在30℃至37℃下,以180±20 rpm攪拌,進行隔夜培養(約10小時)。將前述隔夜培養物37-420 mL加至3.7-42 L的TB培養基(BBL植物蛋白腖18 g、Bacto酵母萃取物36 g、磷酸二氫鉀(KH2 PO4 ) 18.81 g、甘油6 mL,於1 L水中)中,該培養基於5-50 L發酵槽中含有23.8-38.5 μg/mL的康黴素及1-3 mmol/L的異丙基β-D-硫代吡喃半乳糖苷(IPTG),並且將溫度控制在37℃至42℃範圍內,以260-450 rpm攪拌該培養基10-24小時。在GSA旋轉器(索福公司)中,經8,000 rpm離心10分鐘後,在冰水浴中收集該細胞。
於另一實施態樣中,將1 L的LB液狀培養基(具有100 mg/L康黴素)與新鮮長成之菌落(具有pQE-80L-Kana衍生物的大腸桿菌BL21轉化體)或10 mL的新鮮長成之培養物接菌,並在37℃下孵育直到OD600 達0.4-0.8。藉由加入40或400 μM的IPTG在37℃下經3至5小時,以誘發該多肽表達。經離心後(約8,000 rpm),於4℃下收集細胞。 B. 回收與純化來自大腸桿菌的多肽
如先前實施例4A所述,發酵大腸桿菌BL21/pQE-80L-Kana衍生物細胞。於一實施態樣中,在4℃下將來自那些衍生物的多肽進行細胞破碎和回收。將約18 g的濕細胞懸浮於60 mL之0.1 M的TRIS/HCl、10 mM EDTA(乙二胺四醋酸)、1 mM PMSF(苯基甲烷磺醯氟)、pH 8.3(破碎緩衝液)之中。根據製造商的說明書,該些細胞通過法式細胞破碎器(Frenchpress,SLM儀器公司)2次,並用破碎緩衝液將體積調整至200 mL。將懸浮液在15,000 g下離心20分鐘。將所獲得的沉澱物懸浮於含有1M氯化鈉(NaCl)的100 mL破碎緩衝液中,並如上所述離心10分鐘。將沉澱物懸浮於含有1 % Triton X-100(Pierce公司)的100 mL破碎緩衝液中,並再次如上所述離心10分鐘。然後將沖洗下來之沉澱物懸浮於50 mL的Tris/HCl、1 mM EDTA、1 mM PMSF、1 % DTT(二硫蘇糖醇)中,並在鐵氟龍(Teflon)組織研磨機中均質化。所得之懸浮液中含有不可溶型態之粗多肽(crude polypeptide)。
將根據前述實施態樣所獲得之10 mL多肽懸浮液以10 %醋酸酸化至pH 2.5,並使用Eppendorf離心機在室溫下離心10分鐘。上清液在10 %醋酸流速1.4 mL/min下,使用Sephacryl S-100型管柱(法瑪西亞公司,2.6×78 cm)進行層析。合併在適當時間區間沖提出的含多肽之層析餾分。使用此材料用於再折疊以得到生物活性多肽或是用於進一步純化。
將來自前述實施態樣的5 mg多肽溶解於140 mL之50 mM之Tris/HCl、pH 8.0、1 M之NaCl、5 mM之EDTA、2 mM之還原型麩胱甘肽、1 mM之氧化型麩胱甘肽和33 mM之Chaps生化試劑(Calbiochem公司)中。在4℃下經72小時後,將上述溶液之酸鹼值以鹽酸(HCl)調整至pH 2.5,並將前述混合物在Amicon超濾杯(stirred cell)中以YM 10薄膜(美國麻州丹佛斯,Amicon公司)進行超濾10倍濃縮。將前述經濃縮的溶液以10 mM之HCl稀釋至原始體積,並再經同樣方法濃縮至最終體積為10 mL。所形成的沉澱物以5000 g離心30分鐘移除。在非還原狀態下,利用十二烷基硫酸鈉聚丙烯醯胺凝膠電泳法(SDS-PAGE)判斷含有雙硫連結之多肽的前述上清液。使用表面電漿共振式生物分子感測器(BIAcoreTM )量測前述製劑之生物活性(實施例5)。
將來自前述實施態樣中的該濃縮溶液以1 mL/min流速施加到Mono S HR 5/5型管柱(法瑪西亞公司),該管柱經85 %緩衝液A(20 mM醋酸鈉、30 %異丙醇,pH 4.0)及15 %緩衝液B(含有1 M氯化鈉的緩衝液A)之混合物平衡。然後以相同流速沖洗該管柱,保持上述緩衝液混合物之組成恆定直到280 nm吸光度讀值達基線水平,接著在平衡狀態下開始注射線性梯度超過20分鐘,最後以50 %緩衝液A/50 %緩衝液B的混合物結束。生物活性多肽在梯度開始後約9分鐘被沖提,並將其收集。利用生物活性測定及非還原條件下的SDS-PAGE判斷。
於另一實施態樣中,該多肽經由實施例4所收集細胞的包涵體製備。在室溫下隔夜萃取(50 mM之醋酸鈉、pH 5、8 M之尿素、14 mM之2-巰基乙醇),並對水徹底透析後,該多肽再折疊、濃縮,並通過Sephacryl S-100 HR型管柱(法瑪西亞公司)以1 %之醋酸或5 mM之HCL在流速1.8 mL/min下濃化。最後以蛋白質層析儀(FPLC,Fractogel EMD SO3 - 650、50 mM之醋酸鈉、pH 5、30 %之2-丙醇)純化並以從0至1.5 M之NaCl梯度沖提。合併在適當時間區間沖提出的含多肽餾分。對水徹底透析後,該多肽經冷凍/乾燥後儲存於-20℃。以SDS-PAGE分析該多肽的純度,接著以考馬斯亮藍R染色。
於另一實施態樣中,將衍生自例如上述實施例4A的每1克的細胞顆粒再懸浮於10-20 mL的10 mM之TRIS/HCl、150 mM之NaCl、1 mM之EDTA、5 mM之DTT、pH 8.0(破碎緩衝液)中,並以音波處理使細胞爆破,該音波處理是使用具有1號增幅器(Enhance Booster #1)探針的Misonix S4000儀器在30 A(儀器刻度)上使用5分鐘。可選擇性地藉由離心(18,000×g經20分鐘或15,000×g經30分鐘)澄清前述細胞裂解混合物,並將沉澱物以含有1 v/v % Triton X-100的10-20 mL破碎緩衝液沖洗數次,並如上述離心10分鐘。將細胞裂解物以含有6 M尿素的100-200 mL破碎緩衝液溶解,並如上述離心10分鐘,保留含有該多肽的上清液以進一步純化。
將前述上清液溶解於再折疊緩衝液(100 mL之Tris/HCl pH 8.0、500 mM之精胺酸-HCl、5 mM之EDTA、25 mM之Chaps、2 mM之氧化型麩胱甘肽和1 mM之還原型麩胱甘肽)中。在室溫經4-7天後,該多肽以FPLC(Fractogel EMD SO3 - 650、20 mM醋酸鈉、pH 4-5、30 % 2-丙醇和25 mM Chaps)純化並以從0至3 M之NaCl梯度沖提。合併在適當時間區間沖提出的含多肽餾分。以SDS-PAGE分析該多肽的純度,接著以考馬斯亮藍R染色。
於某些實施態樣中,本文揭示之異型二聚體可以藉由如先前在實施例3所述在瞬態表達系統中共表達(co-expression)來製備,且可以從該培養基分離出該異型二聚體以實施例5之測定進行篩選。 [實施例5]-體外BIAcoreTM 測定
生物感應器實驗。於一實施態樣中,在BIAcoreTM T100/T200型儀器(Pharmacia Biosensor AB公司)之多通道模式(串流路徑涉及細胞流動室1+2+3+4)下進行實驗。流速為10 μl/min,溫度為25℃,並以2.5點/秒記錄數據。利用胺基偶聯法將所有四個片段的感應器晶片CM5塗覆鏈親和素(streptavidin,西格瑪公司)至密度2000 pg/mm2 (2000共振單位)。將ActRIIBecd (10mg)和胺-PEG3-生物素(amine-PEG3-Biotin,10mg,美國伊利諾州羅克福德,Pierce公司)溶於200 μl之水中,並加入10 mg之氰基硼氫化鈉(NaCNBH3 )以製備生物素化之ActRIIBecd。將反應混合物於70℃下加熱24小時,之後再進一步加入10 mg之NaCNBH3 ,接著將該反應物於70℃下再加熱24小時。冷卻至室溫後,該混合物以旋轉管柱(3,000截留分子量(MWCO))脫鹽。收集生物素化之ActRIIBecd,經冷凍乾燥後用於鏈親和素(SA)晶片製備。然後將胺基生物素化之ActRIIBecd在流速為5 μL/min下獨立地固定在細胞流動室2-4上10分鐘,並在10 mM醋酸鈉中濃度為20 μM,pH 4.0,密度為50-250共振單位(RU)。將儲存之該多肽溶解於甘胺酸緩衝液(2.5 g之甘胺酸、0.5 g之蔗糖、370 mg之L-麩胺酸鹽、10 mg之氯化鈉和10mg之土溫乳化劑-80,於100 mL水中,pH 4.5)中以製備10 mg/mL溶液,接著用先前的甘胺酸緩衝液稀釋以製備成各種濃度的分析物。在分析物(如先前所述之ActRIIBecd相關多肽(即,域))流動期間記錄感應圖譜,首先通過細胞流動室1(對照),接著通過細胞流動室2(生物素化之ActRIIBecd)。將細胞流動室2獲得的感應圖譜減去細胞流動室1獲得的感應圖譜。藉由儀器提供的程式(Pharmacia Biosensor AB公司,1995年軟體手冊,BIA評估2.1),評估在1、11、3.33、10、30和90 nM分析物上獲得的感應圖譜之平衡結合、結合速率和解離速率。分析物和牛血清白蛋白(BSA,陰性對照)列於表2中。使用如前所述之珀金埃爾默ABI自動DNA定序儀進行與分析物相關轉殖體中該pQE-80L-Kana衍生物的定序(引子5'-CTCGAGAAAT CATAAAAAAT TTATTTG-3' (SEQ ID NO:31)),該pQE-80L-Kana衍生物具有相較於白蛋白更高的親和力常數。 表2
Figure 107133348-A0304-0002
Figure 107133348-A0304-0002-1
Figure 107133348-A0304-0002-2
Figure 107133348-A0304-0002-3
Figure 107133348-A0304-0002-4
Figure 107133348-A0304-0002-5
[實施例6]-重組多肽的製造
為了確定是否可以增強親和力常數,使用Atanassov等人(2009年公開於Plant Methods 5:14)所揭示之PCR融合(PCR-Fusion)方法經一些修改,將表2中的各別域彼此融合以製造重組多肽。使用Phusion DNA聚合酶(芬蘭,Finnzymes公司)和標準熱循環儀進行PCR融合。以BP Clonase II和LR Clonase II酵素混合物(英杰公司)進行通路重組反應(Gateway recombination reactions)。勝任大腸桿菌DH5α細胞是根據Nojima等人揭示內容(1990年公開於Gene 96 (1):23-28)製備。使用QIAprep® 公司的Spin Miniprep試劑盒和QIAquick® 公司的膠體萃取和PCR純化試劑盒(德國,凱杰公司)純化質體DNA和PCR片段。
所得重組多肽的DNA模板、PCR引子和DNA/多肽序列如表3所示。PCR融合涉及來自質體模板的二個或三個平行PCR擴增。在來自該些平行反應的膠體經純化PCR片段上,進行通過單個重疊延伸擴增片段的PCR融合。根據Phusion DNA聚合酶指引(NewEnglandBiolabs公司:Phusion™高保真度(HF)DNA聚合酶手冊)在本稿中對於所有PCR擴增用於反應混合及條件的循環參數皆相同。質體模板的黏合溫度為55℃。
對於融合二個PCR片段,使用30 μl重疊延伸反應,其包含:16 μl的該二個PCR片段混合物(通常每個8 μl,約200-800 ng,DNA)、6 μl的5× Phusion HF緩衝液、3 μl的2 mM dNTP混合物、0.3 μl的PhusionTM DNA聚合酶(2 U/μl)。在重疊延伸混合物中不加入引子。當融合三個DNA片段時,使用18 μl該PCR混合物(通常每個6 μl)。一般而言,使用等體積的經純化PCR片段不會檢查精確的DNA濃度。若該經擴增PCR片段的莫耳比看起來明顯不同(例如:在瓊脂糖電泳後估計DNA帶強度超過5-7倍),來自純化過的PCR片段體積則應對應調整。上述反應混合物在98℃培養30秒、60℃培養1分鐘、72℃培養7分鐘。使用PCR純化試劑盒純化該重疊延伸反應後所獲得的DNA。如前所述,PCR產物經切割並結合於pQE-80L-Kana載體中用以蛋白質/多肽表達。利用先前討論過之BIAcoreTM T100/T200型(GE Healthcare公司)監測經純化之蛋白質/多肽對於ActRIIBecd的親和力,並使用實施例5中BIA評估軟體版本4.1(GE Healthcare公司)進行資料分析。 表3
Figure 107133348-A0304-0003
Figure 107133348-A0304-0003-1
Figure 107133348-A0304-0003-2
Figure 107133348-A0304-0003-3
Figure 107133348-A0304-0003-4
Figure 107133348-A0304-0003-5
Figure 107133348-A0304-0003-6
Figure 107133348-A0304-0003-7
Figure 107133348-A0304-0003-8
Figure 107133348-A0304-0003-9
Figure 107133348-A0304-0003-10
Figure 107133348-A0304-0003-11
Figure 107133348-A0304-0003-12
Figure 107133348-A0304-0003-13
Figure 107133348-A0304-0003-14
Figure 107133348-A0304-0003-15
Figure 107133348-A0304-0003-16
Figure 107133348-A0304-0003-17
Figure 107133348-A0304-0003-18
Figure 107133348-A0304-0003-19
Figure 107133348-A0304-0003-20
Figure 107133348-A0304-0003-21
數據顯示,與來自每一單個轉殖體的個別多肽相比,來自如後述之二個轉殖體組合所形成的重組多肽,其親和力常數(KD )較低:轉殖體編號10可操作地連接轉殖體編號15 (SEQ ID NO:188)、轉殖體編號15可操作地連接轉殖體編號10(SEQ ID NO:194)、轉殖體編號15可操作地連接轉殖體編號21(SEQ ID NO:200)、轉殖體編號21可操作地連接轉殖體編號15(SEQ ID NO:206)、轉殖體編號21可操作地連接轉殖體編號10(SEQ ID NO:212)、轉殖體編號10可操作地連接轉殖體編號21(SEQ ID NO:218)、轉殖體編號8可操作地連接轉殖體編號14(SEQ ID NO:224)、轉殖體編號14可操作性地連接轉殖體編號8(SEQ ID NO:230)、轉殖體編號19可操作地連接轉殖體編號8(SEQ ID NO:236)、轉殖體編號8可操作地連接轉殖體編號19(SEQ ID NO:242)、轉殖體編號19可操作性地連接轉殖體編號14連接(SEQ ID NO:248)及轉殖體編號14可操作地連接轉殖體編號19(SEQ ID NO:254)。換言之,來自所述組合所形成的該重組多肽相對於來自轉殖體編號8 (SEQ ID NO:35)、轉殖體編號10 (SEQ ID NO:39)、轉殖體編號14 (SEQ ID NO:47)、轉殖體編號15 (SEQ ID NO:49)、轉殖體編號19 (SEQ ID NO:57)及轉殖體編號21 (SEQ ID NO:61)之每個轉殖體的各別多肽,具有對ActRIIBecd更高的親和力。
除此之外,來自三個轉殖體之組合而製成重組多肽,該轉殖體是使用:轉殖體編號8 (SEQ ID NO:35)、轉殖體編號10 (SEQ ID NO:39)、轉殖體編號14 (SEQ ID NO:47)、轉殖體編號15 (SEQ ID NO:49)、轉殖體編號19 (SEQ ID NO:57)及轉殖體編號21 (SEQ ID NO:61)。令人意外的,與來自各別轉殖體的多肽或來自二個轉殖體組合之多肽相比,來自如後述之三個轉殖體組合所形成的重組多肽之KD 較低,該轉殖體為:轉殖體編號10可操作地連接轉殖體編號15及21(SEQ ID NO:260)、轉殖體編號15可操作地連接轉殖體編號10及21(SEQ ID NO:268)、轉殖體編號21可操作地連接轉殖體編號15及10(SEQ ID NO:276)、轉殖體編號21可操作地連接轉殖體編號10及15(SEQ ID NO:284)、轉殖體編號8可操作地連接轉殖體編號14及19(SEQ ID NO:292)、轉殖體編號14可操作地連接轉殖體編號8及19(SEQ ID NO:300)、轉殖體編號19可操作地連接轉殖體編號8及14(SEQ ID NO:308)、轉殖體編號19可操作地連接轉殖體編號14及8(SEQ ID NO:316)、轉殖體編號10可操作地連接轉殖體編號14及21(SEQ ID NO:324)、轉殖體編號8可操作地連接轉殖體編號15及19(SEQ ID NO:332)、轉殖體編號10可操作地連接轉殖體編號19及14(SEQ ID NO:340)及轉殖體編號8可操作地連接轉殖體編號21及15(SEQ ID NO:348)。 [實施例7]-轉譯後修飾
研究關於轉譯後修飾(PTM)對於該重組多肽KD 值的影響。PTM的一實施例是雙硫鍵連接。表4所示為雙硫鍵位置和結合親和力之間關係的數據,結果顯示PTM會影響該重組多肽對ActRIIBecd的結合親和力。該PTM測定是根據以下實驗進行。 A. 酵素切割和二甲基標記
如實施例4和6製備多肽。標準蛋白購自西格瑪公司(美國密蘇里州聖路易士)。可選擇性地使用pH 6含有5 mM之N-乙基順丁烯二醯亞胺(NEM,西格瑪公司)的100 mM醋酸鈉(美國紐澤西州非力普堡,J.T.Baker公司)在室溫下阻斷游離半胱胺酸30分鐘。酵素切割直接於醋酸鈉中在37℃下以1:50胰蛋白酶(美國威斯康辛州麥迪遜,勁因公司)進行。在二甲基標記之前,將蛋白質切割物使用100 mM之醋酸鈉(pH 5)進行三倍稀釋。
於某些實施態樣中,如實施例4和6製備之重組多肽以50 mM三乙基碳酸氫銨(Triethylammonium bicarbonate,TEABC,T7408,西格瑪奧瑞奇公司)緩衝液(pH 7)稀釋,並分裝於二個試管用以不同酵素切割。首先,加入NEM(N-乙基順丁烯二醯亞胺,E3876,西格瑪奧瑞奇公司)至最終濃度5 mM以阻斷游離半胱胺酸。烷基化反應在室溫下進行30分鐘。經NEM烷基化後,該兩個試管之其一於37℃下加入胰蛋白酶(V5111,勁因公司)( 1:65)18小時,隨後在37℃下以Glu-C(P8100S,New England BioLabs公司)(1:50)進行隔夜切割。另一試管則於37℃下加入Glu-C (1:50) 18小時,隨後在37℃下以胰凝乳蛋白酶(1:50)進行隔夜切割。
為進行二甲基標記,於50 μL的蛋白質切割物中加入2.5 μL的4 % (w/v)甲醛-H2 (J. T. Baker公司)或2.5 μL的4 % (w/v)甲醛-D2 (奧瑞奇公司),接著加入2.5 μL的600 mM氰基硼氫化鈉(西格瑪公司),上述反應在pH 5-6進行30分鐘。 B. 質譜分析
使用配有CapLC系統(美國麻州密爾福,沃特斯公司)的電灑式四極棒-飛行時間(ESI Q-TOF)利用毛細管柱(台灣,志聖工業股份有限公司,內徑75 μm、長度10 cm)進行測量掃描(MS,m/z 400-1600;MS/MS,m/z 50-2000)。將該經烷基化及二甲基化標記之蛋白質切割物進行液相層析串聯式質譜(LC-MS/MS)分析,其在含有0.1%甲酸的乙腈線性梯度5 %至50 %中45分鐘。
於某些實施態樣中,上述經切割及標記的蛋白質切割物以高分辨質譜(Q-Exactive Plus MS)連接快速液相層析(Ultimate 3000 RSLC)系統進行分析。使用C18管柱(Acclaim PepMap RSLC, 75 μm x 150 mm, 2 μm, 100 Å)進行液相層析(LC)分離,其使用之梯度如下:
Figure 107133348-A0304-0004
移動相A:0.1 %甲酸 移動相B:95 %乙腈/0.1 %甲酸
以m/z 300-2000範圍進行全MS掃描,並將MS掃描中10個最強的離子用於串聯式質譜(MS/MS)光譜碎片分析。 C. 資料分析
使用MassLynx 4.0從原始數據產生峰值列表(減去30 %,3/2 Savitzky Golay平滑法,中央三通道80%質心)。可以用相對高地減法以消除背景雜訊。真正的a1離子通常顯示為主波峰,以使其可保留於峰值列表中。 D. 逆相層析
在具有二元幫浦的安捷倫1100型高效液相層析系統(Agilent 1100 HPLC)裝備有UV偵測器和自動進樣器。將蛋白質注入75℃操作下的Zorbax 300SB C8管柱(150 ± 2.1 mm,5 μm,300 Å )。流速為0.5 ml/min。移動相A為含有0.1 %三氟乙酸的水。移動相B為70 %異丙醇、20 %乙腈、以及0.1 %三氟乙酸水溶液。樣品在10 % B的負載條件下注入,並在2分鐘內增加至19 % B。在兩分鐘時開始1.1 % B/min的線性沖提梯度,並在24分鐘時結束。然後使用95 % B沖洗該管柱5分鐘。將該管柱於負載條件下5分鐘以重新平衡。此方法能夠部份分離區別雙硫鍵異構物。 表4
Figure 107133348-A0304-0005
Figure 107133348-A0304-0005-1
Figure 107133348-A0304-0005-2
Figure 107133348-A0304-0005-3
Figure 107133348-A0304-0005-4
Figure 107133348-A0304-0005-5
Figure 107133348-A0304-0005-6
Figure 107133348-A0304-0005-7
Figure 107133348-A0304-0005-8
Figure 107133348-A0304-0005-9
Figure 107133348-A0304-0005-10
Figure 107133348-A0304-0005-11
Figure 107133348-A0304-0005-12
Figure 107133348-A0304-0005-13
如表4所示,不同半胱胺酸位置間的雙硫鍵會影響親和力常數(KD )的值。除此之外,數據也顯示,二聚體中兩個重組多肽間的雙硫鍵會顯著降低KD 值。換言之,二聚合作用可能有助於重組多肽的二聚體和該ActRIIBecd間體外之分子交互作用。
觀察到一些重組多肽自發性形成如表4所示之二聚體蛋白。所有該二聚體蛋白可經由如實施例4B所述之凝膠過濾將其從重組多肽中分離純化。於此實施態樣中,該二聚體蛋白係同型二聚體蛋白,因為其單體相同。於其它實施態樣中,若如實施例4中所述之經穩定轉化之大腸桿菌細胞由選自SEQ ID No:260、268、276、284、292、300、308、316、324、332、340和348所組成之群組之兩個相異重組多肽共表達,則該二聚體蛋白可以係異型二聚體蛋白。 [實施例8]-鹼性磷酸酶生物活性測定
使用已公開之C2C12細胞中鹼性磷酸酶誘發檢驗法,研究該重組多肽與細胞受體結合以及誘發訊號傳導途徑的能力。參見如:Peel等人(2003年公開於J Craniofacial Surg. 14:284-291)及Hu等人(2004年公開於Growth Factors 22:29033)之研究。
在合流之前將C2C12細胞(美國維吉尼亞州馬納薩斯,ATCC登錄號CRL-1772)繼代,並再懸浮於補充有10%經熱滅活之胎生牛血清的DMEM中1×105 cells/mL。將96孔組織培養板(康寧公司,Cat #3595)的每孔植入100 μL細胞懸浮液。加入連續稀釋標準品及測試樣本的等分試樣,並將培養物保持於37℃和5 %之CO2 環境中。測試樣本包括經限制之培養基、經純化之重組多肽以及作為陽性對照的市售經純化之重組人類BMP-2「rhBMP-2」(美國明尼亞波利斯,R&D Systems公司)。rhBMP-2已顯示在骨及軟骨發展上扮演重要角色,例如:Mundy GR等人(2004年公開於Growth Factors. 22 (4):233–41)之研究。陰性對照培養物(培養基不加入樣本或rhBMP-2)經培養2至7天。培養基每兩日更換一次。
收獲培養物時以生理食鹽水潤洗(0.90 %之NaCl,pH 7.4),並將潤洗後的食鹽水丟棄。在該些培養物中加入50 μL萃取溶液(Takara Bio公司,catalogue #MK301),然後在室溫下超音波處理10分鐘。溶菌液的鹼性磷酸酶(ALP)的檢測,是藉由如Peel等人(2003年公開於J Craniofacial Surg. 14:284-291)所揭示監測鹼性緩衝液(美國密蘇里州聖路易,西格瑪奧瑞奇公司,catalog P5899)中硝基酚磷酸酯的水解作用,或是根據製造商的說明書使用TRACP & ALP檢測試劑盒(Takara Bio公司,catalogue #MK301)。藉由記錄405 nm吸光度測定ALP活性。經重複樣本的平均ALP活性計算活性評分。使用4參數曲線擬合法(4-parameter curve fit)對連續稀釋樣本及其相對活性評分作圖以計算各個重組多肽之EC50 濃度。數據顯示如表5。於一些實施態樣中,使用考馬斯亮藍(布拉德福)蛋白質檢測法(Coomasie (Bradford) Protein Assay,Pierce生物科技股份有限公司,catalogue #23200)將每個孔中細胞蛋白質含量的該ALP活性進行標準化。藉由將每個孔的該ALP活性除以每個孔的蛋白質含量以計算每個樣本該經標準化的ALP活性。
於另一實施態樣中。進行由Katagiri, T.等人(1990年公開於Biochem. Biophys. Res. Cornrnun. 172, 295-299)所揭示的鹼性磷酸酶檢測。將來自C3H10T1/2品系的小鼠纖維母細胞培養於加上10 %胎生小牛血清的BME-Earle培養基,將1 mL的1 x 105 cells/mL等分試樣置於24孔培養板中,維持37℃和10% CO2 環境下24小時。移除上清液後,加入帶有各種濃度樣本的1 mL新鮮培養基。在進一步培養4天後,將細胞溶解於0.2 mL緩衝液 (0.1 M之甘油、pH 9.6、1 %之NP-40、1 mM之MgCl2 、1 mM之ZnCl2 )中,鹼性磷酸酶活性在50 μL等分試樣溶胞液中測定,該溶胞液是經過使用pH 9.6緩衝液作為基質,以0.3 mM對硝基酚磷酸酯150 μL處理。在37℃下培養20分鐘後記錄405 nm之吸光度。該活性是與每個樣本中的蛋白質含量(BCA蛋白質檢測法,Pierce化學公司)有關。 表5
Figure 107133348-A0304-0006
Figure 107133348-A0304-0006-1
Figure 107133348-A0304-0006-2
Figure 107133348-A0304-0006-3
NA:尚未分析。 a) 分子內雙硫鍵連接。 b) 分子間雙硫鍵連結以二聚合。
如表5所示,具有某些雙硫連結的大多數重組多肽,其EC50 值較rhBMP-2的EC50 值為低。換言之,具有某些雙硫連結的大多數重組多肽能夠誘發骨或軟骨生成或成骨作用相關的訊號傳導路徑。 [實施例9]-體內骨誘發活性
在兔子的尺骨軸缺損中,對於同型二聚體蛋白的骨誘發活性進行評估,前述同型二聚體蛋白的骨誘發活性包括依據實施例6所製造之二個重組多肽(即SEQ ID NO:260,包括分子內雙硫鍵C44-C48)及作為載體材料之多孔β-磷酸三鈣(β-TCP)。該磷酸鈣載體具有約0.4至約1.65的鈣與磷酸鹽比率。
在40隻雌兔(NZW品系,日本SLC股份有限公司)上,以外科手術暴露左和右的尺骨軸製造圓周20 mm大的缺損。簡言之,使用氯胺酮鹽酸鹽(商品名Ketalar,第一三共股份有限公司)及甲苯噻嗪(xylazine,商品名Selactar 2 %注射液,拜耳醫藥有限公司)以3:1的組合進行複合麻醉。在長時間的手術中使用相同溶液作為額外麻醉。手術前,將氟黴寧(Flumarin學名flomoxef sodium,塩野義製藥股份有限公司)作為抗生素皮下給藥。前臂一般區域的毛使用電動剃刀將其刮除,並使用希必定酒精(Hibitane,葡萄糖酸氯己定-乙醇溶液,大日本住友製藥股份有限公司)進行消毒。在尺骨的每個肢的後內側部位製造一縱向切口。將肌肉組織抬起以暴露該尺骨。使用手術刀從該暴露尺骨的手部關節25 mm處製造一標記。使用15 mm直徑的鑽頭在該標記處縱向及垂直鑽孔,密切注意不造成該骨斷裂。使用骨剪將該骨分割。在距離近端方向20 mm處也製造一標記,並以相似方式分割。當分割時,該尺骨覆蓋骨膜,接著將該骨膜移除,並用鹽水徹底清潔該骨碎片。
如下表6所示,根據實驗組A-G之其一,對每個尺骨植入或不植入植入物。實驗組A-D之尺骨植入由β-TCP攜帶特定劑量同型二聚體蛋白的單一植入物。實驗組E之尺骨植入僅β-TCP的單一植入物,沒有任何同型二聚體蛋白。實驗組F之尺骨植入骨自體移植之單一植入物。實驗組G之尺骨則沒有植入物。之後,迅速縫合肌肉及真皮組織。 表6
Figure 107133348-A0304-0007
實驗組A-E中所使用的β-TCP為1-3 mm的顆粒型式,其孔隙率為75 %,孔徑為50-350 μm(日本,SuperporeTM 公司,pentax陶瓷人工骨系列,「HOYA」人工骨替代物)。
於某些實施態樣中,實驗組A-E中所使用的β-TCP為1-3 mm的顆粒型式,其孔隙率為70 %或以上,孔徑為300-600 μm(台灣微創醫療器材公司,「台微醫」康骨益人工骨替代物)。
實驗組A-D中包含重組多肽(即SEQ ID NO:260)的同型二聚體蛋白是在每隻動物植入前立即使用0.5 mM鹽酸(以注射劑(大塚製藥公司)進行標準溶液稀釋)從冷凍批次準備。對於單側植入設定流體體積為180 μl,並在已滅菌培養皿中200 mg的β-TCP顆粒上均勻滴加。當流體完全滴落,以刮勺輕輕攪拌該β-TCP顆粒,在室溫下靜置超過15分鐘,接著進行植入。
關於實驗組F,自體移植骨是利用骨剪從左翼或右翼的胯骨獲得。將骨加工成碎片,且植入的骨量與實驗組A-E的量相同。 X光評估
拍攝側面及前面的X光影像(即,放射線照片),分別為植入後立即拍攝以及每兩週拍攝一次直至植入後8週。使用該放射線照片評估植入部位的狀況及骨生成的程度。每一實驗組代表性實施例的X光影像如圖1A (實驗組A-D)及圖1B (實驗組E-G)所示。
在2週時,在所有實驗組別中可以清楚地看到受植床其移植材料的顆粒和邊界的對比。在4週時,在該同型二聚體蛋白組(即實驗組A-D)中的TCP顆粒變的不明顯,顯示出該顆粒的吸收及骨生成的進度。在具有高劑量同型二聚體蛋白的實驗組C和實驗組D的部分樣本中,該植入部位和該受植床之間的邊界變的不明顯。在6週時,實驗組B中該植入部位和該受植床之間的邊界變的不明顯。在實驗組C和實驗組D的某些樣本中觀察到該受植床的連續性及骨皮質生成的改善。在8週時,實驗組A和實驗組B中該受植床的邊界變得更加不明顯。實驗組C中該受植床的連續性及骨皮質生成改善。實驗組D中觀察到該尺骨缺損區的重建,如6週的影像所示。
在單獨使用TCP的實驗組E中,隨著時間可觀察到該受植床有骨生成。然而,即使在8週時剩餘的TCP顆粒仍清晰可見,顯示該植入部位上骨生成不足並且該受植床中的連續性差。因此,實驗組E中缺損的修復在8週時仍然不完整。
在具有自體移植的實驗組F中,隨著時間可觀察到骨生成的進度,且在8週時跟該受植床已達融合。然而,生成並不均勻。
在僅具有缺損而沒有移植物的實驗組G中,在8週時於橈骨上可觀察到些微骨生成,而沒有任何其他該缺損的修復。 電腦斷層(Computerized Tomography,CT)掃描
在移植後當下、移植後4週及8週時使用CT掃描,以1 mm間隔進行軸定向(GE橫河醫療系統有限公司)。主要掃描該植入部位的影像。在圖2A (實驗組A-D)和圖2B (實驗組E-G)中的代表性實施例顯示該植入部位中心隨著時間推移的橫截面影像變化。
在具有同型二聚體蛋白的實驗組A至D中,在移植後立刻觀察到的顆粒在4週的橫截面影像中部分降解,顯示骨生成發生。在60 μg劑量的實驗組D中,進一步觀察到骨生成的進度,並且在一些樣本中觀察到骨髓腔生成。8週時,在6 μg以上劑量組別的影像中觀察到骨髓腔和骨皮質生成的進度。在僅有TCP的實驗組E中,即使在8週時仍有顆粒團聚體。在有自體移植的實驗組F中,8週時觀察到骨髓腔生成,如再成型過程中。在僅有缺損的實驗組G中,僅觀察到些微的骨生成。 抗扭強度測試
該移植材料從植入後8週安樂死的兔子中取出,從每一實驗組的尺骨樣本分離出的橈骨上進行抗扭強度測試。使用858 Mini Bionix II工具(MTS系統公司)進行測試。該測試在50 mm長的區域進行,即在該尺骨軸中心的20 mm長的重建區域及在該重建區域之近側和遠側15 mm長的區域。每側的邊緣用牙科樹脂固定。將樹脂部分夾在量測設備中。以30°/min的旋轉速度將左側尺骨以逆時鐘方向旋轉,右側尺骨以順時鐘方向旋轉,以確定失敗時的最大扭矩。並檢查和比較分別獲得的健康兔子尺骨。該些健康兔子尺骨是從日本白兔獲得,與實驗組A至E中使用的類型不同。然而,該些日本白兔在安樂死時的年齡和性別與實驗組A至E相同,即26週齡的雌兔。
圖3所示為該抗扭強度測試下每一實驗組所獲得的最大扭矩。在具有同型二聚體蛋白的實驗組A至D中,最大扭矩和劑量的相依性高。
與單獨使用TCP的實驗組E相比,在具有同型二聚體蛋白劑量2 μg及超過2 μg的之實驗組A至D中觀察到顯著高的值。
與僅有缺損的實驗組G相比,在具有同型二聚體蛋白劑量6 μg及超過6 μg之實驗組B至D中觀察到顯著高的值。
在完整無缺損尺骨、自體移植或同型二聚體蛋白的實驗組別間未觀察到顯著差異。
由於在實驗組E和實驗組G中骨生成不足,當分離橈骨時,難以確保在一些樣本中的支承。故,在測試中僅使用實驗組E的2個樣本和實驗組G的4個樣本,而實驗組A至實驗組D和實驗組F則各使用6個樣本。
下表7所示為使用相同動物模型的本發明與Kokubo等人(2003年公開於Biomaterials 24:1643–1651,2003)對於CHO衍生BMP-2的評估研究間測試條件和結果的比較。與Kokubo等人的報告相比,本發明在更為困難的條件下進行,例如:較大的骨缺損、較小劑量之活性劑,以及在抗扭強度測試之前較短的植入期間。然而,本發明顯示尺骨成功修復,且本發明中的最大扭矩非常相似。 表7
Figure 107133348-A0304-0008
* PGS:塗佈PLGA之明膠海綿 ^ h.p.:同型二聚體蛋白 組織學評估
在8週和4週之實驗組別中對所有動物製備標本。將屍體剖檢時獲得的組織保存於4 %多聚甲醛溶液中並以10 %之EDTA脫鈣。接著將該組織以石蠟包埋。在平行於橈骨長軸的平面上製作薄片樣本,以蘇木素和伊紅(HE)染色,並進行組織學評估。以確定骨生成和對該受植床的融合條件。
在具有同型二聚體蛋白的實驗組A至D中,在4週時骨生成進展成橫紋型。在高劑量同型二聚體蛋白的樣本中觀察到主動性地骨生成。在60 μg劑量的實驗組D中觀察到顯著大量的新生骨和血管新生。在低劑量之實驗組A和實驗組B的一些樣本中觀察到殘餘材料,在實驗組C和實驗組D中則幾乎沒有觀察到殘餘材料。在實驗組A和實驗組B中,一些樣本的該受植床邊界附近觀察到軟骨生成。在所有樣本中,該受植床直接與該橫紋型的新生骨連接。在8週時,2 μg劑量的實驗組A仍可觀察到橫紋及殘餘材料。在受植床邊界附近也可觀察到軟骨。即使再成型不足,仍可觀察到骨生成的進展。在一些樣本中觀察到橈骨中骨皮質的生成。劑量超過6 μg的實驗組B至實驗組D,通過再成型形成骨皮質及骨髓。在更高劑量的實驗組別中進步更為顯著。在植入部位上的連續性也增加。
在單獨使用TCP的實驗組E中,在橈骨中觀察到移植材料上有骨生成,但即使在8週時殘餘材料仍清晰可見,顯示在軸上骨生成不足且連續性差。
在具有自體移植物的實驗組F中,4週時可見移植骨碎片上良好的骨生成,且新生骨與受植床接觸。在受植床邊界附近觀察到軟骨生成。8週時可觀察到新生骨再成型及骨皮質生成的進展,但是仍可觀察到殘餘的移植骨碎片。
在僅有缺損的實驗組G中,僅在橈骨中觀察到骨生成,且該缺損尚未完成修復。
於實施態樣中,提供了需要這種治療的對象中促進長骨骨折癒合的方法。該方法包含製備含有該同型二聚體蛋白的一組成物,該同型二聚體蛋白均勻地容置在一緩釋型可生物分解磷酸鈣載體(如β-TCP)內,該可生物分解磷酸鈣載體供該同型二聚體蛋白流入該可生物分解磷酸鈣載體於該對象體內時不滲漏,從而使該長骨骨折癒合限制於該磷酸鈣載體的體積內,且植入該組成物於該長骨骨折發生位置,其中該同型二聚體蛋白的量為該磷酸鈣載體的約0.03 mg/g至約3.2 mg/g。 [實施例10]-綿羊後外側融合之體內研究
在綿羊的後外側融合模型中,對於同型二聚體蛋白的骨誘發活性進行評估,前述同型二聚體蛋白的骨誘發活性包括依據實施例6所製造之一重組多肽(Rcp)(即SEQ ID NO:260,包括分子內雙硫鍵C44-C48、C80-C112及C79-C114)及作為載體材料之多孔β-磷酸三鈣(β-TCP)。該磷酸鈣載體具有約1.2至約1.8的鈣與磷酸鹽比率。
綿羊後外側融合模型以Zoletil (8-12 mg/kg,肌肉注射(IM))及異氟烷(2%)和氧氣(每分鐘2公升)放氣,使綿羊鎮靜。插入氣管內導管,並使動物通氣,使用異氟烷(2至3%)和氧氣(每分鐘2至4公升)維持麻醉。給予抗生素(Keflin® :1 gm靜脈注射(IV);苯唑西林(Benacillin) 5 ml肌肉注射(IM))。在手術前注射卡洛芬(Carprofen,一種非類固醇抗發炎藥(NSAID),4 ml肌肉注射(IM))和丁基原啡因(Burprenorphine,商品名Temgesic® ,0.324 mg皮下注射(SC))。依據需求,在手術前及手術過程中以4至10 ml/kg/h靜脈內給予晶體溶液(哈特曼氏(Hartmann)液)。
在第3腰椎至第4腰椎高度處(L3-L4),創造一平行於腰椎橫突的15-cm大的中線切口。鈍性腹膜後剝離使腰椎前外側部分暴露。此舉可不受膈肌干擾。將軟組織收起。使用氣動切削鑽頭(產品名Midas Rex)剝離所有動物於該高度間的橫突(側向15 mm)及相鄰脊椎體。
將移植物材料置於該橫突的剝離面和根據實驗組1至6中之其一之該脊椎體(脊椎旁床)之間,實驗組1至6如下表8所示。實驗組1至3植入由β-TCP攜帶特定劑量同型二聚體蛋白的單一植入物。實驗組4植入僅β-TCP的單一植入物,沒有任何同型二聚體蛋白。實驗組6植入具有特定劑量rhBMP-2之可吸收膠原蛋白海綿(absorbable collagen sponge,ACS)的單一植入物,此為公認的骨誘發因子作為陽性對照組。實驗組5植入骨自體移植之單一植入物。自體移植物係採集自自體移植實驗組動物中的髂(骨)崤。使用骨鉗將該骨粉碎顆粒化,並將5.0 g的自體移植骨用於融合的每一側。該切口以2-0可吸收縫線縫合,而皮膚以3-0縫線縫合。 表8
Figure 107133348-A0304-0009
^ h.p.: 同型二聚體蛋白。 Infuse® 及Mastergraft® 分別為商售骨移植物及骨填補材。
實驗組1至4中所使用的β-TCP係2-4 mm顆粒的型式,其具有70%的孔隙率及50-350 μm的孔徑(日本,SuperporeTM 公司,pentax陶瓷人工骨系列,「HOYA」人工骨替代物)。
於某些實施態樣中,實驗組1至4中所使用的β-TCP為2-8 mm的顆粒型式,其孔隙率為65 %或以上,孔徑為250-730 μm(台灣微創醫療器材公司,「台微醫」康骨益人工骨替代物)。
於實驗組1中,藉由將2 ml注射用水加入至具有10 mg同型二聚體蛋白的每一個小瓶中,以製備包含Rcp(即SEQ ID NO:260)的同型二聚體蛋白儲備溶液H。該儲備溶液H與體積比為3:1的注射用水混合,形成同型二聚體蛋白高劑量溶液(Homodimeric Protein High Dose Solution,於2.8 ml溶液中含有10.5 mg同型二聚體蛋白)。2.8 ml同型二聚體蛋白高劑量溶液係藉由均勻滴入至3.5 g β-TCP顆粒來遞送。
於實驗組2中,藉由將4 ml注射用水加入至具有10 mg同型二聚體蛋白的每一個小瓶中,以製備同型二聚體蛋白儲備溶液ML (2.5 mg/ml)。該儲備溶液ML與體積比為1:1的注射用水混合,形成同型二聚體蛋白中劑量溶液(homodimeric protein Middle Dose Solution,於2.8 ml溶液中含有3.5 mg同型二聚體蛋白)。2.8 ml同型二聚體蛋白中劑量溶液係藉由均勻滴入至3.5 g β-TCP顆粒來遞送。
於實驗組3中,藉由將4 ml注射用水加入至具有10 mg同型二聚體蛋白的每一個小瓶中,以製備同型二聚體蛋白儲備溶液ML (2.5 mg/ml)。該儲備溶液ML與體積比為17:3的注射用水混合,形成同型二聚體蛋白低劑量溶液(homodimeric protein Low Dose Solution,於2.8 ml溶液中含有1.05 mg同型二聚體蛋白)。2.8 ml同型二聚體蛋白低劑量溶液係藉由均勻滴入至3.5 g β-TCP顆粒來遞送。
實驗組6係以Infuse® 和Mastergraft® 作為移植材料進行商售產品的比較,兩者皆係由美敦力(Medtronic)公司分銷。Infuse® 係由以CHO表達系統所製備的rh-BMP-2以及可吸收膠原海綿(「ACS」)所組成。Mastergraft® 係顆粒狀磷酸鈣骨替代物,其係由85%的β-TCP及15%的羥磷石灰(Hydroxyapatite)所組成。將Infuse® 及Mastergraft® 結合應用於後外側腰椎融合已顯示具有療效,其是由E. Dawson等人以證據強度2的臨床研究報導(骨關節外科手術期刊(J Bone Joint Surg Am.) 2009; 91: 1604-13)。用於實驗組6的移植材料係由每一部位3.15 mg的rh-BMP-2、4 cc的ACS、及5 cc的Mastergraft® 所組成,移植材料的製備步驟是依照E. Dawson的報告。手術記錄中記錄Infuse® 和Mastergraft® 的批號。
在手術後的首7日,每日監測該動物,並在每隻動物的手術後監測表上記錄觀察結果。
於4週時拍攝所有動物前後方向的放射線攝影。以Zoletil (8-12 mg/kg,肌肉注射)及異氟烷(2%)和氧氣(每分鐘2公升)放氣,使動物鎮靜。該放射線攝影係用於比較術後X光是否有新骨出現以及TCP材料的吸收。於手術後12週,以致死心臟注射Lethobarb犧牲所有動物。
為監測骨形成的時間,如下表9所示,於三個不同的時間點靜脈內注射三種不同的螢光染料。 表9:螢光染料使用的日期和劑量*
Figure 107133348-A0304-0010
*使用前通過0.22 μm過濾器全部過濾 X光評估
收獲腰椎(L1-L6),並用數位相機拍攝照片。使用Faxitron® 機器將收穫的脊椎造影(設定24 kV,45秒)。拍攝後前側(posterior-anterior,PA)的數位放射線攝影,由三位不知情的(盲試)觀察員在右側和左側對新骨形成和融合進行分級。使用定性分級系統以評估該放射線攝影(表10)。融合的評估係基於從一橫突至次節之骨的連續性(0=不連續,1-為連續)。基於表10中概述的百分比對融合塊每側上橫突間的骨量進行分級。基於與具有相同材料量的0時(0 time)放射線攝影進行比較,以記錄TCP再吸收的量。 表10:放射線攝影分級參數
Figure 107133348-A0304-0011
所有動物的後前側放射線攝影於術後、4週、及12週拍攝。每一實驗組的代表性X光如圖4至9所示。實驗組1、2、3、4、5、及6的術後X光顯示顆粒明顯。於第4週的時間點,實驗組1及實驗組2有些可見的顆粒,可以注意到其存在。實驗組3及實驗組4的顆粒較多,實驗組6清楚的顯示剩餘的粒子或顆粒。於第12週時,實驗組1、實驗組2、及實驗組3已無法從骨中分辨出粒子或顆粒。實驗組4顯示少量的骨形成,且沒有清晰可見的顆粒。實驗組6於12週時顆粒仍然明顯。
3位盲試觀察員進行放射線攝影評估。分級係由融合的二項式評估及融合塊內存在骨量之5及評估所組成。結果如表11所示。首先計算每隻動物的各級平均值,接著計算各實驗組的平均值及標準偏差。 表11:顯示平均值和(標準偏差)的分級匯總結果
Figure 107133348-A0304-0012
[實施例11]-綿羊椎體間融合模型之體內骨誘發活性
在綿羊椎體間融合模型中,對於同型二聚體蛋白的骨誘發活性進行評估,前述同型二聚體蛋白的骨誘發活性包括依據實施例6所製造之重組多肽(即SEQ ID NO:260,包括分子內雙硫鍵C44-C48及分子間C79-C112及C80-C114雙硫鍵)、作為載體材料之多孔β-磷酸三鈣(β-TCP)、及作為容納器(accommodator)之護架(peek cage)。該磷酸鈣載體具有約0.7至約1.7的鈣與磷酸鹽比率,且β-TCP孔隙率係大於70 %、孔徑為約300-600 μm。
術前準備
根據標準操作程序為手術準備動物(物種:綿羊Ovis Aries;品種:Border Leicester Merino Cross;來源:新南威爾斯大學(UNSW)批准的供應商-新南威爾斯州,乾草,Hay Field Station,動物是新南威爾斯大學動物護理和道德委員會批准後購買;年齡:四歲;性別:雌性(母羊))。手術前24小時,藉由將酚太尼枸椽酸鹽(fentanyl,100 mg – 2 mcg/kg/hr)的透皮貼片施用於每隻動物的右前腿(使用左前腿的靜脈路徑)以進行預先鎮痛。進行之前,將羊毛剪掉並以酒精棉片清潔皮膚以確保足夠的吸收。至少手術前12小時使動物禁食並禁水。
手術
分配給本研究的羊隻係在手術當日隨機選擇。羊隻一旦被選擇後,根據標準操作程序分配一編號並進行耳標。該辨識編號被記錄於研究記錄本。
於手術當日及開始前,研究獸醫檢查每隻動物以確保其未患病或其他任何可能干擾研究目的或進行的狀況。於研究記錄本中記錄每隻動物的狀況及適合納入研究的動物編號。
根據標準操作程序,於程序期間誘導、麻醉、保持、及監測動物。左前腿頭部靜脈通路。根據標準操作程序於靜脈施予哈特曼氏溶液前採集血液進行手術前分析。血樣上標記「手術前(PRE-OP)」、研究ID、動物編號、日期,並將其送至澳洲生物科技產業研究中心(IDEXX)用於常規生物化學(4 ml)及血液學(4 ml)。
根據標準操作程序的修改版進行手術。
手術程序- L45微創脊椎前方融合術(XLIF) + 椎弓螺釘(pedicle screw)
於手術之前,所有動物都受到48小時的食物限制(NPO),並安置在隔離畜舍護理設施中。施用麻醉藥物並誘導全身麻醉後,無菌地處理腰椎區後位、髂(骨)崤及脛骨近端。
移植物混合程序
將該同型二聚體蛋白(10 mg/瓶)溶於0.3 mL蒸餾水中,以製備33.3 mg/mL之同型二聚體蛋白(HP)儲備溶液A。將一塊β-TCP (約150 mg)置於椎間融合器中。於每一組中,從HP儲備溶液A稀釋或分得之「同型二聚體蛋白溶液(HP溶液)」,其均勻地滴在置於無菌培養皿的β-TCP塊(約150 mg)上。液體完全滴完後,在植入之前使β-TCP塊於室溫下放置超過15分鐘。
實驗組A至F使用上述與β-TCP載體結合之同型二聚體蛋白(Hp)作為移植材料,各部位的同型二聚體蛋白劑量如表12所示。混合程序的製備如下。 表12
Figure 107133348-A0304-0013
於實驗組A,Hp 4 mg/site:藉由將0.3 ml注射用水加入至具有10 mg同型二聚體蛋白的每一個小瓶中,以製備同型二聚體蛋白(Hp)儲備溶液A (33.3 mg/ml)。將β-TCP塊(約150 mg)置入護架(peek cage)中。將120 μL之Hp儲備溶液A均勻滴入至150 mg β-TCP塊內。
於實驗組B,同型二聚體蛋白2 mg/site:將水與Hp儲備溶液A以體積比1:1的比例混合,以獲得Hp溶液B (16.7 mg/mL)。將β-TCP塊(約150 mg)置入護架中。將120 μL之Hp溶液B均勻滴入至150 mg β-TCP塊內。
於實驗組C,同型二聚體蛋白1 mg/site:將水與Hp溶液B以體積比1:1的比例混合,以獲得Hp溶液C (8.3 mg/mL)。將β-TCP塊(約150 mg)置入護架中。將120 μL之Hp溶液C藉由均勻滴入至150 mg β-TCP塊來遞送。
於實驗組D,同型二聚體蛋白0.5 mg/site:將水與Hp溶液C以體積比1:1的比例混合,以獲得Hp溶液D (4.2 mg/mL)。將β-TCP塊(約150 mg)置入護架中。將120 μL之Hp溶液D均勻滴入至150 mg β-TCP塊內。
於實驗組E,同型二聚體蛋白0.1 mg/site:將水與Hp溶液D以體積比1:4的比例混合,以獲得Hp溶液E (0.8 mg/mL)。將β-TCP塊(約150 mg)置入護架中。將120 μL之Hp溶液E均勻滴入至150 mg β-TCP塊內。
於實驗組F,同型二聚體蛋白0 mg/site:將β-TCP塊(約150 mg)置入護架中。將120 μL之水均勻滴入至150 mg β-TCP塊內。
椎體間護架
觸診橫突以確定適當的脊椎節段。該節段藉由螢光檢查進行驗證。將Caspar針置入第4節(L4)和第5節(L5)腰椎體,並使用Caspar牽開器(retractor)以分開椎間盤空間。該椎間盤被迅速的剝離和刮除,並準備軟骨板。將填充有移植材料的椎體間裝置小心地放入該椎間盤空間,並鬆開該牽開器。軟組織重新合併,並將皮膚分層閉合。
圖10所示為椎體間護駕之外觀。
椎弓螺釘(pedicle screw)
完成XLIF手術後,將動物置於俯臥位,並用無菌技術肢手術用布覆蓋;初始皮膚切口位於腰椎第3節(L3)至薦椎第一節(S1)下背中央的背側中線處。必要時,使用Cobb剝離子(elevator)和電烙電刀沿著椎弓矢狀面上進行鈍性剝離–允許暴露L45面和橫突,並在該節段插入椎弓螺釘及桿。
使用移動式X光機(POSKOM)及數位膠片盒(AGFA)在手術後立即拍攝後前側的放射線攝影。數據以DICOM格式儲存。並使用ezDICOM醫學顯示器軟體輸出JPG影像。此係根據標準操作程序執行。
術後監測
在手術後的首7日,每日監測並記錄該動物。在本研究期間,獸醫技術人員每日至少檢查動物一次,並每週進行記錄。技術人員發現任何健康問題皆會向獸醫工作人員報告,以供實驗室主持人進一步評估和管理。
依照研究現場標準操作程序監測綿羊。手術後首週每日以及此後每週,監測手術切口、食慾、皮膚和毛髮變化、眼睛和黏膜、呼吸系統、循環系統、姿勢/步態、行為模式(發生震顫、痙攣、過度流涎、及嗜眠)。此後監測之體徵為警覺性/注意力、食慾,以及手術部位、眼睛外觀、步行、及保持抬頭的能力。介入標準是有感染的跡象。
手術後,在首3日動物接受口服抗生素(Kelfex)和鎮痛劑(丁基原啡因,0.005-0.01 mg/kg,肌肉注射)。手術後首7日進行每日神經評估。此後基於臨床監測提供術後疼痛緩解。
移出物(EXPLANT)
按照標準操作程序,於指定時間點,在誘導及麻醉前確認每隻動物的辨識編號。
根據標準操作程序,在麻醉誘導後,從頸靜脈或頭靜脈採血。血樣標有研究ID、動物編號、及日期。將血樣密封在生物危害帶中並保持在攝氏30度以下運送到SORL,並將其送至澳洲生物科技產業研究中心(IDEXX)用於常規生物化學(4 ml)及血液學(4 ml)。運輸時間記錄於記錄本。
根據標準操作程序,在仍處於麻醉誘導的狀況下,以致死注射Lethobarb使動物安樂死。屍體立即運送至SORL並保持溫度在低於攝氏30度之下。
根據標準操作程序檢查並解剖每隻動物。收獲腰椎並用數位相機拍照。檢查手術部位是否有不良反應或感染跡象,並將結果記錄及拍照。
於收獲後立即,在所有動物12週內藉由人工觸診評估融合團塊的穩定性。兩名經訓練且富經驗的盲試觀察員一起作業,以評估該溶合團塊側向彎曲和屈曲–延伸時隨著將該椎弓桿完好無損的移除。
當人工觸診評估該治療節段的右側及左側之側向彎曲以及屈曲–延伸性時,將融合分級為融合(僵硬,無活動性)或不融合(不僵硬,檢測到活動性)。當評估右側及左側之側向彎曲以及屈曲–延伸時,以非治療節段的活動性作為人工觸診時的相對比較。
運動範圍(RANGE OF MOTION,ROM)測試
小心從脊椎收獲L45節段。將4 mm x 15 mm之螺釘插入該脊椎體,以用於輔助封裝樣品。
將該些節段小心地裝入樹脂中以進行ROM評估。使用Denso機器人測定屈曲–延伸性(flexion – extension,FE)、側向彎曲(lateral bending,LB)、及軸向旋轉(axial rotation,AR)等之運動範圍。在測試前將椎弓桿移除。在FE、LB、及AR測試時,於脊椎上施加7.5 Nm的純矩,並由檢測設備記錄角變形。每一負荷曲線進行3次重覆,得到每一治療節段的FE、LB、及AR平均值,如圖11所示。於機械測試後將樣本定位在磷酸鹽緩衝的福馬林中,以將該融合之一面以石蠟組織學、另一面以聚甲基丙烯酸甲酯(PMMA)組織學作為如下輪廓。ROM數據使用SPSS以ANOVA分析。
如表13所示,人工觸診指出劑量低於0.5 mg係非僵硬活動節段,而劑量0.5 mg、0.5 mg以上及自體移植係僵硬活動節段。 表13
Figure 107133348-A0304-0014
* FE: 屈曲–延伸性 ^ LB: 側向彎曲
如圖11所示,在任何治療組別中對於軸向旋轉之運動範圍幾乎沒有變化。然而,對於所有治療的組別之屈曲延伸性從完整而下降,並隨著同型二聚體蛋白劑量提高呈現穩定性增加的趨勢。自體移植及1.0 mg同型二聚體蛋白最為相似。所有的治療組別之側向彎曲亦下降,降至< 50%的完整值。隨著同型二聚體蛋白劑量提高,側向彎曲的活動範圍亦呈現下降。劑量的影響在0.1 mg至0.5 mg階段最為普遍。
微米級電腦斷層掃描(Micro Computed tomography)–脊椎
用Inveon掃描儀(美國,西門子)在脊椎上進行微米級電腦斷層掃描(μCT/Micro CT)。對於所有掃描設定切片厚度大約為50 微米。CT掃描以DICOM格式儲存。基於軸向、矢狀、及冠狀重塑三維模型,並進行檢查。DICOM庫送至研究發起人進行進一步分析。
為每隻動物提供軸向、矢狀、及冠狀影像以及前側、後側三維模型。藉由檢查冠狀及矢狀面評估μCT之重塑,以檢驗受治療節段間的融合。將整體μCT庫藉由兩名經訓練且富經驗的觀察員對治療組別不知情的情況下(盲試),使用相同的放射線攝影分級評分(表14)對該μCT進行分級。每個融合也將依據1至4的等級進行分級,該等級係代表骨量於品質上的分級:1:0-25%、2:26-50%、3:51-75%、4:76-100%。 表14 μCT之分級標準
Figure 107133348-A0304-0015
在三個正交平面以及前後視圖中的三維模型中製備每隻動物的μCT代表性影像。使用西門子Inveon體內微型計算機斷層掃描儀對射線照相後的所有動物進行微米級電腦斷層(μCT) 掃描,以獲得三個平面中脊椎融合的高解析度放射照相影像。此係根據標準操作程序執行;然而,除此之外還使用500微米累加圖像技術對每隻動物進行更厚的重塑。需注意的是,對三維重塑進行了審查以評估整體融合狀態,且報告和附錄中提供了所有動物的代表性影像。此係根據標準操作程序進行。對於矢狀和冠狀CT影像進行審查,並根據表14提出對於融合的總體分級。參圖12至14所示。
融合分級
在使用劑量0 Hp mg/site時,主要在終板處顯示出殘留的TCP和一些骨生成。在使用劑量0.1 Hp mg/site的情況下,產生新生骨並且存在最小量的殘留TCP,但是並未見固態骨架橋接。在使用劑量0.5 Hp mg/site的情況下,產生良好的骨品質,但移植物內存在一些透明線。在使用劑量1.0 Hp mg/site和2.0 Hp mg/site的情況下,護架內的空間充滿優質骨,並具有最小的透明面積。在使用劑量4.0 Hp mg/site的情況下,基於體積產生高等級的骨;然而,骨骼內部存有透明感,包括一些大型和小型袋部。自體移植(髂嵴)表現出可變的結果,具有良好的骨形成和不結合的區域。 下表總結了每個部位的評分。
基於Micro CT分析的融合分級顯示於表15中。總體骨分級和融合分級以1.0 mg和2.0 mg的Hp劑量達到峰值。骨以1至4的等級進行分級,其係代表骨品質的量處於:1:0-25%、2:26-50%、3:51-75%、4:76-100%。融合分級0至3係 基於:0-無新生骨、1-可見新生骨,但不連續、2-可能(possible)有融合,呈現透明、3-可能(probable)與橋接骨融合。 表15
Figure 107133348-A0304-0016
[實施例12]- 控制釋放系統製備(雙重乳液法/基礎物質/親水性藥物)
於一實施態樣中,將0.25 g之PLGA (poly lactic-co-glycolic acid,乳酸/乙醇酸比率65/35,MW 40000-75000,Sigma-Aldrich公司)溶於2.5 mL之二氯甲烷(Merck)使用震盪器(1000 rpm)震盪5分鐘,以形成10%之PLGA溶液(10%油相溶液)。將2.5 mL再蒸餾水(double-distilled water,DDW)與10%之PLGA溶液緩慢混合,並在1,000 rpm下攪拌15分鐘,以形成第一乳液(w/o)。將第一乳液添加到10mL之0.1% (w/v)聚乙烯醇(PVA,MW 〜130000,Fluka公司)第二水溶液中,以500 rpm攪拌並抽空氣5分鐘以形成第二乳液(w/o/w)。連續攪拌第二乳液4小時,然後靜置1分鐘。通過以4,000 rpm離心5分鐘收集沉澱中的顆粒。用5mL之DDW洗滌顆粒數分鐘。離心並洗滌三次後,收集離心顆粒並凍乾3天以形成PLGA微粒。將2 mg和/或4 mg之β-TCP粉末(Sigma-Aldrich公司)與50 μL之DDW及10 μg同型二聚體蛋白(Hp)混合形成漿液,其中該同型二聚體蛋白係含有根據實施例6(即,SEQ ID NO:260)所製造的重組多肽。然後將漿液混合或塗佈在50 mg之PLGA微粒表面,並凍乾3天以形成PLGA微粒,其是控制釋放系統(控釋系統)之一。於某些實施態樣中,凍乾的控釋系統可以被壓製而形成扁平片劑 (flat piece)。
於另一實施態樣中,將2.5 mL之二氯甲烷與0.25 g之PLGA (供應商Sigma公司)混和並攪拌5分鐘(1,000 rpm),以形成10%之油相溶液(P1)。在P1中加入0.25 mL再蒸餾水(double-distilled water,DDW)並攪拌15分鐘(1,000 rpm),以形成第一乳液相(w/o,P2)。將P2置於10 mL之0.1% (w/v)聚乙烯醇(PVA,MW ~130000,Fluka公司)中,並攪拌(500 rpm) 4小時(P3)。P3以4,000 rpm離心5分鐘,棄去上清液,收集殘餘溶液。向P3中加入5 mL之PBS並重複三次,收集殘餘溶液並凍乾。將PLGA微球體的凍乾粉末稱重,計算產率(%)。將0.06 mL之DDW與2 mg之β-TCP粉末(Sigma-Aldrich公司)混合,然後將20 μg之同型二聚體蛋白加入至β-TCP中攪拌5分鐘。之後,將50 mg之PLGA微球體加入到β-TCP與二聚體蛋白之混合物中並均勻攪拌。將含PLGA、β-TCP與二聚體蛋白之微球體(PLGA/Hp-β-TCP)凍乾並壓製成Φ10 mm大小的片劑。(適當的壓力為5~10公斤)。
於一些實施態樣中,2 mg和/或4 mg之β-TCP粉末可被替換為4 mg磷酸三鈣(TCP)或1 mg之α-磷酸三鈣(α-TCP)。於某些實施態樣中,PLGA 65/35可以用PLGA 50/50、聚乳酸(polylactic acid,PLA)或聚乙醇酸(polyglycolic acid,PGA)替代。 從PLGA/Hp-β-TCP釋放同型二聚體蛋白(Hp)之評估
將100 mg之PLGA/Hp-β-TCP浸泡在1 mL人體血清中,並37 °C、轉速60 rpm下振盪。在15分鐘、1小時、第1天、第2天、第3天、第7天、第10天、及第14天收集含有經釋放之同型二聚體蛋白的人體血清溶液,並在每個時間點用800 μL新鮮人體血清替換。將所收集之人體血清儲存於-80 °C,並用直接ELISA分析法同時分析所有樣本。
圖15a和15b所示為被覆β-TCP和同型二聚體蛋白之PLGA微粒的釋放曲線。ELISA分析結果顯示,以物理方式吸附或非共價鍵結合在PLGA微粒或/β-TCP表面上的同型二聚體蛋白經由擴散和PLGA分解作用,同型二聚體蛋白隨著時間連續釋放到人體血清溶液中,在15分鐘和1小時分別釋放17%和31.5%的同型二聚體蛋白相對量。同型二聚體蛋白的相對釋放百分比分別為14.5% (60分鐘至第1天)、14.3% (第1天至第2天)、7.6% (第2天至第3天)、9.3% (第3天至第7天)、5.4% (第7天至第10天)和0.4% (第10天至第14天),此釋放曲線顯示同型二聚體蛋白由此PLGA/Hp-β-TCP片劑中呈現緩慢釋放模式。此PLGA/Hp-β-TCP製劑緩解了常見的突發釋放問題[Giteau等人,Int J Pharm 350 :14 (2008)];大多數遞送系統在首幾個小時內會突發性的釋放,通常釋放60%以上的包封/表面結合產物[Woodruff等人,J Mol Histol 38 :425 (2007)及Sawyer等人,Biomaterials 30 :2479 (2009)]。
圖16所示為電子顯微鏡下PLGA微粒的形態和直徑分佈。PLGA微粒為球狀,直徑分佈為100 μm至150 μm。
於另一實施態樣中,將2 g之PLGA溶解於20 mL之二氯甲烷(DCM)中,以形成10%之PLGA/DCM溶液。 將雙相磷酸鈣(BCP)粉末分散於水中以形成水溶液。然後將水溶液與PLGA/DCM溶液混合並使用磁攪拌器攪拌30分鐘,以形成乳液。接著,將乳液加入造粒機(granular machine)中,以進行噴霧造粒程序形成PLGA微粒。 在Balb/C小鼠骨壞死模型中評估PLGA/Hp-β-TCP之新生骨形成
手術程序
於動物骨壞死模型中,為模擬真正的骨壞死情況,將整個脛骨骨膜剝離。用鋸切出小鼠右側脛骨中軸2 mm長。使用液態氮將切割的骨表面冷凍5分鐘,以模仿壞死的骨。接著,將該骨段倒轉並放回到其在脛骨中的原始位置,並通過使用注射器針頭(第26號)作為髓內固定而將其兩端與脛骨的其他部分固定。再將測試物品放置在骨折周圍之後,用絲縫線縫合傷口。將小鼠分為6組,包括壞死骨對照組(C)、PLGA/β-TCP (PT) 組、PLGA/0.2 μg Hp-β-TCP (POT-0.2) 組、PLGA/0.8 μg Hp-β-TCP (POT-0.8) 組、PLGA/1.6 μg Hp-β-TCP (POT-1.6) 組、及PLGA/3.2 μg Hp-β-TCP (POT-3.2)組。手術後4週,觀察每個實驗組中3至6隻小鼠。
X光觀察
術後4週,在43 KVP和2 mA時間為1.5 s下用X光(日本,SOFTEX公司,M-100型)對脛骨骨折進行放射線照相檢查。在整個觀察期間應用適當的放大倍數,並將所得的顯微照片一起與對照進行比較。
圖17顯示與對照組(C)或PLGA/β-TCP (PT) 組相比,在植入包含不同劑量的同型二聚體蛋白PLGA/Hp-β-TCP 4週後,小鼠脛骨骨壞死片段骨痂形成的X光照片。對照組的骨修復效果出現不完全的融合,而在PT組骨壞死區存在一個小缺口。在POT-0.2、POT-0.8、POT-1.6和POT-3.2組中觀察到明顯的融合區塊。 結果表明,PLGA/Hp-β-TCP組的骨修復效果優於對照組和PT組。 骨組織的組織學分析
同時應用組織化學分析來評估骨組織中的顯微變化。在蘇木精-伊紅(H&E)染色之前,使用0.5%之EDTA將所有骨組織樣本脫鈣。將所得樣本包埋在石蠟中,製備5 μm切片。切片常規用H&E染色並用顯微鏡觀察。放大400倍時,將骨痂面積與對照組進行比較。
如圖18所示,在植入PLGA/Hp-β-TCP(POT) 4週後評估新骨生成。 PLGA/β-TCP (PT)組的骨生成速率與對照組相比顯示出相似的結果。而與PT組和對照組相比,POT組的骨生成速率增加,除了POT-3.2組之外,其他劑量組係以劑量依賴性(dose-dependent)方式增加。此般結果證實了同型二聚體蛋白控制釋放載體的潛在優點,其可以在Balb/C小鼠骨壞死模型上誘發骨再生。 [實施例13]-持續釋放系統 膠體(putty)製備
粉末係根據表16之配方來製備及混合。粉末在4 ℃下儲存過夜。 在製備膠體當日,所有材料(即該粉末、β-TCP、甘油、及去離子水)用紫外光照射20分鐘。根據2×0.5×0.5 cm的動物實驗骨缺陷範圍,並根據表16中所示的配方製備約0.9 g重的膠體。 表16
Figure 107133348-A0304-0017
*1半水合硫酸鈣(台灣,MT3公司);*2二水合硫酸鈣(美國,J.T. baker公司);*3羥丙基甲基纖維素(美國,Sigma-Aldrich公司);*4同型二聚體蛋白(Hp),包括根據實施例6所製備之重組多肽(即,SEQ ID NO:260)最終體積20 μg;*5磷酸鈣(美國,Sigma-Aldrich公司);*6磷酸三鈣Beta形式(台灣,Wiltrom公司);*7甘油(日本Showa公司)。
配方A:在無菌條件下,將160微升之0.125 mg/mL的Hp溶液滴入約50 mg之β-TCP,並使其吸附15分鐘。
配方B:在無菌條件下,將40微升之0.5 mg/mL的Hp溶液滴入約50 mg之β-TCP,並使其吸附15分鐘。將粉末和液體(如表16之配方B所示)和預先製備的β-TCP顆粒混合在一起並模製成型。
配方C:將粉末和液體(如表16之配方C所示)均勻混合。
配方D:在無菌條件下,將40微升之0.25 mg/mL的Hp溶液滴入約50 mg之β-TCP,並使其吸附15分鐘以形成Hp/β-TCP顆粒。將粉末和液體(如表16之配方D所示)混合在一起以形成基質,並將該基質模製成特定形狀。Hp/β-TCP顆粒均勻分佈在該基質的外層。
配方E:在無菌條件下,將40微升之0.5 mg/mL的Hp溶液滴入約50 mg之β-TCP,並使其吸附15分鐘以形成Hp/β-TCP顆粒。將粉末和液體(如表16之配方E所示)混合在一起以形成基質,並將該基質模製成特定形狀。Hp/β-TCP顆粒均勻分佈在該基質的外層。
配方F:在無菌條件下,將40微升之0.25 mg/mL的Hp溶液滴入約50 mg之β-TCP,並使其吸附15分鐘以形成Hp/β-TCP顆粒。將粉末和液體(如表16之配方F所示)混合在一起以形成基質,並將該基質模製成特定形狀。Hp/β-TCP顆粒均勻分佈在該基質的外層。
配方G:將粉末和液體(如表16之配方G所示)均勻混合。 樣本製備
將表16中所示的配方膠體置於15 ml試管中。將含有或不含有用Hp浸泡的β-TCP之膠體置於3 mL人體血清中,並使其在37℃、5%之CO2 下靜置。於初始時、1小時、第1天、第2天、第3天、第7天、第10天、第14天、及第21天收集含有經釋放Hp的人體血清溶液,並且在每個時間點用2.5 mL新鮮人體血清替換。將所收集的人體血清儲存於-80℃,並用ELISA測定法分析所有樣本。 OIF量化
為了量化同型二聚體蛋白的總濃度,使用ELISA方法定量人血清中同型二聚體蛋白的濃度(該測定法係來自美國inVentive衛生臨床系統(inVentive Health clinical systems)開發之分析方法)。簡言之,將樣本、QC樣本及標準品加入至覆蓋I07捕獲抗體(由Pharma Foods國際股份有限公司生成)的96孔板中。反應並除去未結合的物質後,加入HRP-I07檢測抗體。該步驟之後是進一步的洗滌步驟並與顯色基質進行反應。停止顯色反應並在適當的波長下測量光密度。從標準偏差的非線性回歸中計算同型二聚體蛋白的濃度。
為評估生物可吸收骨傳導複合材料(如β-TCP或膠體) 對同型二聚體蛋白的釋放曲線行為,並加以評估其是否適合骨再生。觀察到自配方A釋放的同型二聚體蛋白在開始時具有突發釋放曲線,但在突發期後(約0至1小時)觀察到如圖20所示的緩慢釋放(緩釋)模式。而與配方A相比,配方B和配方C中的同型二聚體蛋白被膠體或基質包裹起來,以至於在開始的幾小時內無法釋放。與此相對,當在被覆於膠體或基質表面上含有β-TCP顆粒之同型二聚體蛋白(例如配方D)時,則達到了持續釋放的效果。據了解,膠體是一種具有加速骨再生能力的骨移植替代物。膠體的組成決定了增塑、硬化、或固化能力。此後,不同的配方比例可以實現持續釋放的劑型,前述配方例如選擇二水合硫酸鈣或硫酸鈣用於製備膠體。
骨替代材料的發展趨向於生物可吸收材料、骨傳導材料、骨誘發(誘導)材料、以及生物相容材料。換言之,複合骨缺陷填充材料的發展方向是開發具有多功能性的材料。在設計的膠體中含有的骨替代材料具有適合骨細胞向內生長的孔隙,而同型二聚體蛋白可以在材料分解過程中緩慢並長期性的釋放,以使間葉幹細胞分化成前成骨細胞 (preosteoblasts),進而分化為造骨細胞(osteoblasts)。因此,將有效的加速骨缺陷部位的癒合。 [實施例14]-臨床研究設計
研究設計1
一項隨機、評估者-盲試、對照的研究,調查三個劑量等級同型二聚體蛋白(Hp)的療效和安全性,該同型二聚體蛋白係包括根據實施例6(即,SEQ ID NO:260)所製造的重組多肽/β-TCP治療開放性脛骨骨折需要骨移植才能進行。總共約35名患者具有初始開放性脛骨骨折(Gustilo IIIA型或IIIB型)參與本研究並將其分成(隨機) 4組以及一對照組(約5名患者),其他各組由約10名患者(見下文)所組成。一瓶含有5.5 mg同型二聚體蛋白的凍乾粉末。還原後(用於獲得預期濃度的確切水量將如表17中所述),經還原之同型二聚體蛋白將與β-TCP混合,以製成最終濃度為1.5 mg/g Hp/β-TCP (第2組)、2 mg/g Hp/β-TCP (第3組)、或3 mg/g Hp/β-TCP (第4組),然後將特定量的該些混合物施用於發生骨折後3個月內之骨折部位。對照組(第1組)患者將接受自體移植骨移植但缺乏同型二聚體蛋白及/或β-TCP。在30週的主要研究期間,將追蹤受試者的療效及安全性,在完全的治療後延長安全性追蹤至52週。於一些實施態樣中,所使用的β-TCP總量是基於對醫生的判斷和調整。 表17
Figure 107133348-A0304-0018
*對於最終濃度為3.0 mg/g (Hp/β-TCP),需要2瓶凍乾粉末與1瓶β-TCP混合;每瓶凍乾粉末係由1.5 ml之WFI還原;每瓶1 ml還原Hp (總共2 ml)與1瓶(2.4 g) β-TCP混合。 患者納入/排除標準
若受試者適用以下「所有」之納入標準,則納入該名受試者:
受試者≥20歲;
手術前72小時內非生育潛力的女性或在妊娠試驗中具有陰性結果的女性、或男性;
初始開放性脛骨骨折(Gustilo IIIA型或IIIB型)和骨折3個月內植骨;
在雙側脛骨開放性骨折中,隨機治療分配於右脛骨;
在初始損傷後3個月內進行確定性治療;及
具有生育潛力的女性受試者(即沒有經過手術絕育或未經絕經後至少1年的女性)和具有生育潛力的男性受試者的伴侶必須同意在整個研究期間使用醫學上可接受的避孕方法。醫學上可接受的避孕方法包括荷爾蒙貼布、植入或注射宮內節育器、或雙重屏障法(帶有泡沫或陰道殺精子栓的保險套、帶有殺精子的膈膜)。完全禁慾可被認為是一種可接受的避孕方法。在研究之前口服避孕藥是一種可接受的避孕方法,但在研究期間需要另一種替代方法;
若受試者適用以下「任何」之排除標準,則排除該名受試者:
具有初始意識損失的頭部損傷;
來自骨折的膿性排液、或活動性骨髓炎的跡象;
間隔症候群(Compartment syndrome);
病理性骨折;佩吉特氏病(Paget's disease)或其他骨營養不良(osteodystrophy)病史;或異位骨化病史;
影響骨生成的內分泌或代謝疾病(例如:甲狀腺或副甲狀腺低下或亢進、腎性骨病變(renal osteodystrophy)、艾登二氏症候群(Ehlers-Danlos syndrome)、或成骨不全症);
具有腎功能和/或肝功能異常,並具有肌酸酐或ALT值> 5倍正常上限;
最近5年具有惡性腫瘤、對於任何惡性腫瘤進行放射治療、或化學療法的病史;
自體免疫疾病(例如全身性紅斑狼瘡(Systemic Lupus Erythematosus)或皮肌炎(dermatomyositis));
先前暴露於rhBMP-2;
對蛋白質藥物過敏,例如:單株抗體、γ球蛋白、及磷酸三鈣;
植入手術的28天內用任何研究性療法進行治療;
治療使用普賴鬆(prednisone)7天或更長時間(6個月內累積劑量> 150 mg或其他具有等效劑量的類固醇)、降血鈣素(calcitonin,6個月內)。治療使用雙膦酸酯類(12個月內使用30天或更長時間)、治療劑量的氟化物(12個月內使用30天);
哺乳期的女性受試者;及
基於醫生的判斷,不適合參與本研究的任何病症。 療效評估 初級終點:
初級研究的療效終點是在確定傷口閉合後30週內接受次級介入的受試者的比例。 次級終點:
確定傷口閉合後之術後第6週、第12週、第18週、第24週、第42周、和第52週接受次級介入的受試者比例;
從確定傷口閉合到次級介入的時間;
確定傷口閉合後之術後第6週、第12週、第18週、第24週、第30週、第42周、和第52週臨床骨折癒合的比率;
從確定傷口閉合至臨床骨折癒合的時間;
確定傷口閉合後之術後第6週、第12週、第18週、第24週、第30週、第42周、和第52週放射線攝影癒合的比率;
從確定傷口閉合至放射線攝影癒合的時間;
用語「次級介入」係指與進行或任何發生可能刺激骨折癒合的事件之任何程序有關,其包括但不限於:骨移植、交換釘、板固定、釘動力化、超聲波、電刺激、或磁場刺激或其他可能促進癒合之事。
用語「臨床骨折癒合」是指從骨折部位的人工觸診沒有壓痛出現。 於一些實施態樣中,用語「臨床骨折癒合」是指在完全負重的骨折部位無疼痛或輕微疼痛(疼痛評分0-3),使用視覺模擬量表記錄疼痛評分。
用語「放射線攝影骨折癒合」是指考慮到前後位片和側位片的放射線攝影,研究者和/或個別的放射科醫師鑑定到皮質層橋接及/或骨折部位處4個皮質的3個皮質上的骨折線消失的情形。 方法評估 安全評估方法
不良反應(Adverse effect,AE):類型、嚴重程度、管理和結果。
系統性AE:不論因果關係如何,在治療後發生或惡化的任何系統徵兆、症狀、疾病、實驗室測試結果、放射線攝影發現、或生理學觀察。
局部AE:包括炎症、感染(任何疑似或確診為伴有軟組織或骨的淺層或深層感染、伴隨或不伴隨細菌學確認)、硬體故障、疼痛(新增或提高)、外周水腫、異位骨化/軟組織鈣化、及與傷口癒合有關的併發症。 療效評估方法
初級療效結果和次級療效結果基於全分析集(Full Analysis Set,FAS)群體和符合方案集(Per Protocol,PP)群體進行分析。初級分析將於FAS群體中進行。
初級療效終點是在確定傷口閉合後30週內接受次級介入的受試者的比例。使用Cochran-Armitage趨勢測試對FAS群體進行初級分析,以指出隨著同型二聚體蛋白劑量增加之反應率的線性趨勢。對初級療效終點以PP群體進行支持性分析。
此外,次級療效終點分析或總結如下:
確定傷口閉合後30週內放射線攝影骨折癒合的受試者比例及臨床骨折癒合的受試者比例,將使用Cochran-Armitage趨勢測試個別進行比較,以指出隨著同型二聚體蛋白劑量增加之反應率的線性趨勢。
從確定傷口閉合到次級介入的時間評估、從確定傷口閉合到臨床骨折癒合的時間評估、以及從確定傷口閉合到放射線攝影骨折癒合的時間評估,將藉由使用描述性統計學(平均值(mean)、標準偏差(SD))按照組別個別概述。
在確定傷口閉合後之術後第6週、第12週、第18週、第24週、第42周、和第52週內,接受次級介入的受試者的比例、臨床骨折癒合的受試者比例、和放射線攝影骨折癒合的受試者比例將藉由使用描述性統計學(n、%)按照組別個別概述。如果適用,每組95%信賴區間(CI)將基於Clopper-Pearson信賴區間估計法計算單一二項式比例。
研究設計2
一項隨機、評估者-盲試、對照的研究,調查三個劑量等級同型二聚體蛋白(Hp)的安全性和療效,該同型二聚體蛋白係包括根據實施例6(即,SEQ ID NO:260)所製造的重組多肽/β-TCP結合器(cage)及後側輔助固定,於患有單節段(L1至S1之間)退化性椎間盤疾病(degenerative disk disease,DDD)使用後側開放法以腰椎椎體間融合之病患之中。將24名受試者隨機分配(1:1:1:1)至4組(1個對照組及3個不同劑量組),用於治療每組的臨床試驗研究用裝置如下:
對照組(6名受試者):標準護理(後側開放法以伴隨器使用的腰椎椎體間融合術)加上自體骨移植植入(有或無β-TCP);
1 mg Hp/site (6名受試者):每個部位(site)以標準護理加1 mg同型二聚體蛋白;
2 mg Hp/site (6名受試者):每個部位以標準護理加2 mg同型二聚體蛋白;及
3 mg Hp/site (6名受試者):每個部位以標準護理加3 mg同型二聚體蛋白。
同型二聚體蛋白將以5.5 mg Hp/瓶之凍乾粉末與水一起供應於注射。還原後,該同型二聚體蛋白將與β-TCP混合,最終濃度為1 mg Hp/site、2 mg Hp/site、或3 mg Hp/site。然後將特定量的混合物施加到器中,特定量係取決於所使用器的大小。
在三種不同濃度的儲備溶液中還原同型二聚體蛋白(用於獲得預期濃度的確切體積將在表18中說明),且在聚醚醚酮(PEEK)器(Wiltrom股份有限公司/xxx系列)中各儲備溶液中每0.24 ml需要與β-TCP塊(0.3 g)混合。
應用於DDD部位的同型二聚體蛋白最終濃度為:1.0 mg Hp/site、2.0 mg Hp/site、3.0 mg Hp/site。
同型二聚體蛋白之儲備溶液:5.5 (mg)/1.32 (ml) = 4.2 (mg/ml);
同型二聚體蛋白(mg)/site最終濃度為:4.2 (mg/ml) ×0.24 (ml) = 1.0 mg。 表18
Figure 107133348-A0304-0019
自體移植物的來源可以是後上髂脊(posterior superior iliac spine,PSIS)或從後椎板切除術獲得的骨碎片。如果自體移植物量不足,自體移植物可與β-TCP混合。根據研究者的判斷,可以在所有組別中使用單側或雙側後外側融合(可以是單側或雙側)局部移植和後部輔助固定措施。手術前連續3天靜脈注射萬古黴素(每6小時500 mg)。
在24週的主要研究期間,將追蹤受試者的療效及安全性,且在指標手術後延長安全性追蹤至24個月。於一些實施態樣中,臨床研究者和獨立評估者將通過評估試驗期間的放射線攝影結果來評估功效。 納入標準:
若受試者適用以下「所有」之納入標準,則納入該名受試者:
受試者≥20歲;
在L1至S1間有單節段DDD顯示出椎間盤源性背部疼痛、神經根壓迫繼發神經根病變或不伴神經根壓迫的神經根病變表現、表現為腿部或臀部放射狀疼痛病史、感覺異常、麻木、或無力、或有神經源性跛行病史;
有放射學證據顯示腰椎退化性疾病,如:椎間盤高度降低;髓鞘核突出;黃韌帶、纖維環纖維化、或小關節囊肥大或增厚;小關節肥大、小關節間隙變窄、或小關節周圍骨贅形成;三葉草椎管形狀(trefoil canal shape);或側面(次關節)狹窄;或椎體終板骨贅形成;並至少有下列之一:
上方(顱骨)脊椎體在相較於下方(尾骨)脊椎體之前或後方的矢狀面平移(滑動)大於4 mm或角度大於10°、或上方(顱骨)脊椎體在相較於下方(尾骨)脊椎體之側向的冠狀面平移(滑動)大於4 mm、或者腰椎管和/或椎間孔狹窄(狹窄症(stenosis));
對非手術性治療無反應至少6個月;
手術前72小時內非生育潛力的女性或在妊娠試驗中具有陰性結果的女性、或男性;
具有生育潛力的女性受試者(即沒有經過手術絕育或未經絕經後至少1年的女性)和具有生育潛力的男性受試者的伴侶必須同意在整個研究期間使用醫學上可接受的避孕方法。醫學上可接受的避孕方法包括荷爾蒙貼布、植入或注射宮內節育器、或雙重屏障法(帶有泡沫或陰道殺精子栓的保險套、帶有殺精子的膈膜)。完全禁慾可被認為是一種可接受的避孕方法。在研究之前口服避孕藥是一種可接受的避孕方法,但在研究期間需要另一種替代方法;
若為女性,受試者係非哺乳期;
願意在參與任何研究相關程序之前提供簽名知情同意書(ICF),並在試驗期限中遵守研究要求。 排除標準:
若受試者適用以下「任何」之排除標準,則排除該名受試者:
大於等級1之脊髓滑脫症1 (Meyerding的分類);
所涉及的節段有脊椎儀器植入或椎體間融合術病史、或於計畫插入椎弓螺釘的節段有脊椎體骨折;
確定的骨質軟化症(osteomalacia);
過去5年有活性惡性腫瘤或前惡性腫瘤病史(除原發性皮膚基底細胞癌和宮頸原位癌外);
活性局部或全身性感染;
總體肥胖,定義為BMI≥30;
發燒 > 38°C;
精神上失能。若為可疑,則取得精神科諮詢;
Waddell非器質性體徵 ≥3;
酒精或藥物濫用,定義為目前正在接受酒精及/或藥物濫用的治療。 酒精濫用是一種飲酒模式,會對健康、人際關係、或工作能力造成傷害;
自身免疫性疾病(例如:全身性紅斑狼瘡(SLE)或皮肌炎);
對蛋白質藥物過敏(單株抗體或γ球蛋白);
先前暴露於rhBMP-2;
影響骨生成的內分泌或代謝疾病(例如:甲狀腺或副甲狀腺低下或亢進、腎性骨病變(renal osteodystrophy)、艾登二氏症候群(Ehlers-Danlos syndrome)、或成骨不全症);
治療使用普賴鬆(prednisone)7天或更長時間(6個月內累積劑量> 150 mg或其他具有等效劑量的類固醇)、降血鈣素(calcitonin,6個月內)。治療使用雙膦酸酯類(12個月內使用30天或更長時間)、治療劑量的氟化物(12個月內使用30天)、及在植入指定治療之前30天內使用抗腫瘤、免疫刺激、或免疫抑製劑;
植入手術的28天內用任何研究性療法進行治療;
脊柱側彎大於30度;
受試者具有顯著中樞神經系統(CNS)、心血管、肺、肝、腎、代謝、胃腸、泌尿、內分泌、或血液疾病的病史或臨床表現;
具有會妨礙本研究中治療的安全性和療效的準確臨床評估的醫學疾病或症狀,例如:運動無力、感覺喪失、或會抑制正常步行或其他日常生活活動的痛苦狀況;
具有腎功能及/或肝功能異常,並具有肌酸酐或ALT或AST值 > 5倍正常上限;
具有對PEEK過敏或不耐症的紀錄;
對萬古黴素過敏(allergy)或過敏症(hypersensitivity)的病史;
根據醫生的判斷,任何不適合受試者參加研究的情況。 計劃研究時間:
篩選期:14天。確保受試者已經簽署了ICF並評估該受試者是否符合研究條件。 所述評估包括體格檢查、生命徵象、心電圖、血液或尿液妊娠試驗、實驗室檢驗、術前臨床和放射性評估。應收集人口統計學、病史、伴隨用藥和不良事件等資料。
治療期:1天。檢查受試者是否符合研究條件,取得基線樣本/數據並管理研究結果。所述評估包括體格檢查、生命徵象和放射檢查。應收集手術資訊、伴隨用藥和不良事件等資料。
追蹤期:在24週的主要研究期間追蹤受試者,且在植入後延長安全性追蹤至24個月。在治療後第6週、第12週、第18週、第24週、第12個月、第18個月、第24個月進行評估。所述評估包括伴隨治療、體格檢查、實驗室評估、生命徵象和放射線攝影檢查(前視/後視及側視、屈曲/延伸片)。在第24週和第24個月進行高解析度薄層CT掃描(1 mm切片,軸向矢狀和冠狀重塑指標為1 mm)。 療效評估 初級終點:
初級研究的療效終點是術後第24週具有融合成功的受試者比例。 次級終點:
在術後第12個月、第18個月、及第24個月具有融合成功的受試者比例。
從基線到放射線攝影融合的時間。
在術後第24週、第12個月、第18個月、及第24個月內進行額外手術/介入的受試者比例;記錄手術時間(從皮膚切口到傷口閉合)、失血(手術過程中)和住院時間。
在術後第24週、第12個月、第18個月、及第24個月Oswestry功能障礙指數(Oswestry Disability Index,ODI)的成功率;ODI問卷用於評估患者背部功能。ODI得分介於0-100之間。最好的分數是0 (沒有失能),最差的分數是100 (最大失能)。ODI成功率報告為受試者其ODI得分的百分比達到:術前得分 - 術後得分 ≥ 15。
在術後第24週、第12個月、第18個月、及第24個月,視覺類比量表(Visual Analogous Scale,VAS)的成功率得到改善。背部疼痛成功率報告為受試者其背部疼痛改善的百分比達到:術前得分 - 術後得分 > 0。腿部疼痛成功率報告為受試者腿部疼痛改善的百分比達到:術前得分 - 術後得分 > 0。 療效分析
初級療效結果和次級療效結果將基於全分析集(Full Analysis Set,FAS)群體和符合方案集(Per Protocol,PP)群體進行分析。初級分析將於FAS群體中進行。
初級研究的療效終點是術後第24週具有融合成功的受試者比例。使用Cochran-Armitage趨勢測試對FAS群體進行初級分析,以指出隨著同型二聚體蛋白劑量增加之反應率的線性趨勢。對初級療效終點以PP群體進行支持性分析。
此外,次級療效終點分析或總結如下:
在術後第12個月、第18個月、及第24個月具有融合成功的受試者比例,以及在術後第24週、第12個月、第18個月、及第24個月內進行額外手術/介入的受試者比例,將使用Cochran-Armitage趨勢測試個別進行比較,以指出隨著同型二聚體蛋白劑量增加之反應率的線性趨勢。
從基線到放射線攝影融合的時間評估,將藉由使用描述性統計學(平均值(mean)、標準偏差(SD))按照組別概述。
手術時間(從皮膚切口到傷口閉合)、失血(手術過程中)和住院時間的時間評估,將藉由使用描述性統計學(平均值(mean)、標準偏差(SD))按照組別個別概述。
術後第24週、第12個月、第18個月、及第24個月之ODI成功率及術後第24週、第12個月、第18個月、及第24個月之VAS成功率將藉由使用描述性統計學(n、%)按照組別個別概述。如果適用,每組95%信賴區間(CI)將基於Clopper-Pearson信賴區間估計法計算單一二項式比例。
本發明不限於本文所述之具體實施例之範圍。實際上,除了所描述的內容之外,對於本發明所屬技術領域之技術人員根據先前描述及附圖中顯而易見的各種修飾。此般修飾意同落入所附申請專利範圍之範疇中。
其它實施態樣在所附之申請專利範圍內。
無。
圖1A和1B所示為實驗組A-G之雌兔(NZW品系)尺骨的代表性X光影像。每個實驗組中的尺骨包含一外科手術創造的20 mm大之圓周缺陷(即缺損部位)。於實驗組A-F,將植入物製成於該缺損部位之中。實驗組A-E中的每個尺骨接受一200 mg之β-TCP植入物。實驗組A、B、C和D中的該β-TCP係分別作為包含有二個重組多肽的同型二聚體蛋白(即SEQ ID NO:260,含有分子內雙硫鍵C44-C48)的2、6、20和60 µg載體。實驗組E中的該β-TCP不攜帶任何重組多肽。實驗組F接受一髂骨碎片自體植入物。實驗組G在該缺損部位未接受任何植入物。對實驗組A-G各組於0週(即手術後立即攝影,以「0W」表示)時,以及在手術後2、4、6及8週(即分別以「2W」、「4W」、「6W」及「8W」表示)時拍攝X光影像。該尺骨上的植入部位(實驗組A-F)或缺損部位(實驗組G)位於每個影像中白色星號的正上方。
圖2A及2B所示為實驗組A-G之代表性電腦斷層掃描(CT)影像。植入部位(實驗組A-F)或缺損部位(實驗組G)中心處的橫斷面影像隨著時間的變化,所顯示為0週(即手術後立即攝影,以「0W」表示),以及手術後4週及8週(即分別以「4W」和「8W」表示)。實驗組A-G係如圖1所述。
圖3所示為未經手術改造無缺損的尺骨及實驗組A-G(即分別以「A」至「G」表示)的抗扭強度測試結果圖示。顯示了牛頓-公尺(Newton-meters,以「N-m」表示)的最大扭矩。實驗組A-G係如圖1所述。
圖4至9所示為實驗組1至6之綿羊脊柱的代表性X光影像。實驗組1至3係接受3.5 g之β-TCP單一植入物,該植入物係分別帶有10.5、3.5或1.05 mg包含有二個重組多肽的同型二聚體蛋白(即SEQ ID NO:260,含有分子內雙硫鍵C44-C48、C80-C112及C79-C114)。實驗組4係接受3.5 g之β-TCP單一植入物,該植入物不帶有任何同型二聚體蛋白。實驗組5係接受骨自體移植之單一植入物。實驗組6係接受含有3.15 mg rhBMP-2之可吸收膠原蛋白海綿之單一植入物。圖4至9的每張圖中,從左至右所示分別為實驗組1至6之手術後(post-operatively)、第4週及第12週(收獲)拍攝的放射線圖像。於圖4至9中,分別將實驗組1至6指定為「2179」、「2192」、「2187」、「2160」、「2162」及「2166」。
圖10所示為椎體融合器的代表性圖式。每排左側之圖像所示為該椎體融合器的俯視圖,右側之圖像所示為側視圖。放大倍率:頂行 = x0.67;中行 = x2;底行 = x4。椎體融合器尺寸:約8 mm × 24 mm × 10 mm。
圖11所示為運動角度範圍的代表性圖式,分別為:在0週時測量接受150 mg之β-TCP植入物的綿羊脊柱(即「零時」);在12週時測量接受150 mg之β-TCP植入物的綿羊脊柱,該β-TCP分別帶有0、0.1、0.5、1.0、2.0或4.0 mg包含有二個重組多肽的同型二聚體蛋白(即SEQ ID NO:260,含有分子內雙硫鍵C44-C48,及分子間雙硫鍵C79-C112及C80-C114);在12週時測量接受骨自體移植之植入物的綿羊脊柱。綿羊係雌性,品系為Ewe。圖式顯示了每種測試條件和方向的運動範圍之平均值和標準差。
圖12A至C所示分別為代表性微電腦斷層掃描(μCT)影像之軸向、冠狀及矢狀面圖像,其係接受帶有如圖11所述之同型二聚體蛋白的量為0.1 mg/site之植入物的綿羊脊柱。其中「V」、「D」、「R」、「L」、「S」及「I」分別表示腹側、背側、右側、左側、上方及下方。該部位產生了骨骼而充滿了椎體融合器內大部分的空間,然而,在兩終板介面處出現透明。
圖13A至C所示分別為代表性微電腦斷層掃描(μCT)影像之軸向、冠狀及矢狀面圖像,其係接受帶有如圖11所述之同型二聚體蛋白的量為0.5 mg/site之植入物的綿羊脊柱。其中「V」、「D」、「R」、「L」、「S」及「I」如圖12A至C所述。該部位表現出良好的骨骼品質,但移植物內存在一些透明線。
圖14A至C所示分別為代表性微電腦斷層掃描(μCT)影像之軸向、冠狀及矢狀面圖像,其係接受帶有如圖11所述之自體移植物的綿羊脊柱。其中「V」、「D」、「R」、「L」、「S」及「I」如圖12A至C所述。該部位在當下時間點骨骼並未完全填滿該器。此外,終板內還有一些透明。
圖15a及15b所示為微粒在14天釋放期間之該同型二聚體蛋白釋放的相對量(圖15a)及該同型二聚體蛋白釋放的累積百分比(圖15b)。
圖16所示為代表性掃描電子顯微鏡影像,其係在-20℃、4℃及25℃下儲存6個月之聚乳酸-乙醇酸/同型二聚體蛋白-磷酸三鈣(PLGA/Hp-β-TCP)。
圖17所示為代表性X光影像,其係植入如圖16所述的PLGA/Hp-β-TCP且帶有不同劑量的同型二聚體蛋白於0週及4週後的Balb/C小鼠脛骨。每張影像中的白色箭頭是用以標識該骨缺損。(C組:壞死骨對照(即沒有植入任何支架的骨碎片);PT組:PLGA/β-TCP (即無同型二聚體蛋白);POT-02組:PLGA/0.2 μg Hp-β-TCP;POT-08組:PLGA/0.8 μg Hp-β-TCP;POT-1.6組:PLGA/1.6 μg Hp-β-TCP;及POT-3.2組:PLGA/3.2 μg Hp-β-TCP)。
圖18所示為於壞死骨中植入4週後新骨生成/面積百分比的代表性圖式,其中各組如圖17所述。
圖19A至D所示為本文之實施例製劑的橫斷面表示圖:攜帶本文之多肽/蛋白質的載體(如β-TCP)顆粒(圖19A);與攜帶該本文之多肽/蛋白質的載體顆粒混合的膠體(圖19B);包含本文之多肽/蛋白質的膠體(圖19C);及包含本文之多肽/蛋白質的膠體,其係具有均勻分布在該膠體外層的攜帶本文之多肽/蛋白質的載體顆粒(圖19D)。
圖20所示為在特定小時的時間區間內所釋放之同型二聚體蛋白的累積百分比之圖式。
無。
<110> 博晟生醫股份有限公司 奧斯堤歐製藥股份有限公司
<120> 重組多肽及其組成物及方法
<130> P181482TW
<150> US 62/562,515
<151> 2017-09-25
<160> 357
<170> PatentIn version 3.5
<210> 1
<211> 875
<212> DNA
<213> 人工序列
<220>
<223> 康黴素抗性基因(+3886 to +4760)片段
<400> 1
Figure 107133348-A0305-02-0146-1
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166

Claims (19)

  1. 一種可生物分解組成物,其包含:一重組多肽,其包含一胺基酸序列,該胺基酸序列係SEQ ID NO:260,且該胺基酸序列可區分為:一第一域(domain),其係SEQ ID NO:39;一第二域,其係SEQ ID NO:49;及一第三域,其係SEQ ID NO:61;且該第二域包含一分子內雙硫鍵(intramolecular disulfide bond),且其中該重組多肽係具有誘發骨生成以在一位置形成骨質之能力;及一可生物分解之磷酸鈣載體,其具有複數個孔洞。
  2. 如請求項1之可生物分解組成物,其中該第三域包含:一第一胺基酸序列PKACCVPTE(SEQ ID NO:356)及一第二胺基酸序列GCGCR(SEQ ID NO:357),且其中該第三域包含在該第一和該第二胺基酸序列之間之二個分子內雙硫鍵。
  3. 如請求項2之可生物分解組成物,其中該重組多肽包含:(a)在該第一胺基酸序列的該第4個胺基酸和該第二胺基酸序列的該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該第一胺基酸序列的該第5個胺基酸和該第二胺基酸序列的該第4個胺基酸之間之一第二分子內雙硫鍵;或(b)在該第一胺基酸序列的該第5個胺基酸和該第二胺基酸序列的該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該第一胺基酸序列的該第4個胺基酸和該第二胺基酸序列的該第4個胺基酸之間之一第二分子內雙硫鍵。
  4. 如請求項1之可生物分解組成物,其中該重組多肽包含在半胱胺酸44和半胱胺酸48之間之一個分子內雙硫鍵。
  5. 一種可生物分解組成物,其包含:一同型二聚體蛋白,其包含二個相同的重組多肽,每一該重組多肽包含一胺基酸序列;該胺基酸序列係SEQ ID NO:260,且該胺基酸序列可區分為:一第一域(domain),其係SEQ ID NO:39;一第二域,其係SEQ ID NO:49;及一第三域,其係SEQ ID NO:61,其中該重組多肽包含在半胱胺酸44和半胱胺酸48之間之一個分子內雙硫鍵,且該重組多肽係具有誘發骨生成以在一位置形成骨質之能力;及一可生物分解之磷酸鈣載體,其具有複數個孔洞;且其中該同型二聚體蛋白包含在該二個重組多肽的該些第一域之間之一個分子間雙硫鍵。
  6. 如請求項5之可生物分解組成物,其中每一該重組多肽的該第三域包含:一第一胺基酸序列PKACCVPTE(SEQ ID NO:356)及一第二胺基酸序列GCGCR(SEQ ID NO:357),且其中該同型二聚體蛋白包含在該二個重組多肽之其一的該第三域中之該第一胺基酸序列和該另一重組多肽的該第三域中之該第二胺基酸序列之間之二個分子間雙硫鍵。
  7. 如請求項5之可生物分解組成物,其中每一該重組多肽的該第三域包含:一第一胺基酸序列PKACCVPTE(SEQ ID NO:356)及一第二胺基酸序列GCGCR(SEQ ID NO:357),該同型二聚體蛋白包含:(a)在該二個重組多肽之其一的該第一胺基酸序列之該第4個胺基酸和該另一重組多肽的該第二胺基酸序列之該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該二個重組多肽之其一的該第一胺基酸序列之該第5個胺 基酸和該另一重組多肽的該第二胺基酸序列之該第4個胺基酸之間之一第二分子內雙硫鍵;或(b)在該二個重組多肽之其一的該第一胺基酸序列之該第5個胺基酸和該另一重組多肽的該第二胺基酸序列之該第2個胺基酸之間之一第一分子內雙硫鍵,以及在該二個重組多肽之其一的該第一胺基酸序列之該第4個胺基酸和該另一重組多肽的該第二胺基酸序列之該第4個胺基酸之間之一第二分子內雙硫鍵。
  8. 如請求項5至7任一項所述之可生物分解組成物,其中該可生物分解之磷酸鈣載體之孔隙率係大於70%,且孔徑為約300μm至約600μm,其中該同型二聚體蛋白係約0.003-0.32%(w/w)。
  9. 如請求項5至7任一項所述之可生物分解組成物,其中該可生物分解之磷酸鈣載體之該些孔洞係連通分布於該可生物分解之磷酸鈣載體;其中該同型二聚體蛋白的有效量為約0.03mg/g至3.2mg/g的該可生物分解之磷酸鈣載體。
  10. 如請求項1至7任一項所述之可生物分解組成物,其中該可生物分解組成物適用於使一組織凸出,該組織選自鼻溝、眉間、中面部組織、下顎輪廓線、下巴及臉頰。
  11. 如請求項1至7任一項所述之可生物分解組成物,其中該位置係選自由長骨骨折缺損、二個相鄰脊椎骨體之空隙、不癒合骨之缺陷、上顎截骨切口、下顎截骨切口、矢狀劈開截骨切口、頦整型截骨切口、快速顎擴張截骨切口、以及在二個相鄰脊椎骨的二個相鄰橫突之間縱向延伸的空間所組成之群組。
  12. 如請求項5至7任一項所述之可生物分解組成物,其中一單一劑量 的該同型二聚體蛋白為約0.006mg至15mg。
  13. 如請求項5至7任一項所述之可生物分解組成物,其中該可生物分解之磷酸鈣載體供該同型二聚體蛋白流入該可生物分解之磷酸鈣載體於體內時不滲漏,從而使所形成的骨質限制於該可生物分解之磷酸鈣載體的體積內。
  14. 一種如請求項5至7任一項所述之可生物分解組成物在製備用於植入一對象之長骨骨折發生位置以促進長骨骨折癒合之物之用途,其中,該可生物分解之磷酸鈣載體供該同型二聚體蛋白流入該可生物分解之磷酸鈣載體於該對象體內時不滲漏,從而使該長骨骨折癒合限制於該生物可分解之磷酸鈣載體的體積內;且該同型二聚體蛋白的量為約0.03mg/g至約3.2mg/g的該生物可分解之磷酸鈣載體。
  15. 一種如請求項1至7任一項所述之可生物分解組成物在製備用於一對象中以促進脊椎融合之物之用途,該用途係將該生物可分解組成物施用於一骨表面;該骨表面係以下列方式暴露:暴露該對象之一上脊椎骨和一下脊椎骨;在該上脊椎骨和該下脊椎骨之間辨別出一用以融合之部位;在該上脊椎骨及該下脊椎骨之各個用以融合之該部位上暴露該骨表面。
  16. 如請求項15之用途,其中該可生物分解之磷酸鈣載體係一種不可壓縮遞送載具,且其中該不可壓縮遞送載具係施用於需要骨生長但不自然發生骨生長的二個骨表面之間的該部位,該部位係選自由二個相鄰脊椎骨體之空間、以及在二個相鄰脊椎骨的二個相鄰橫突之間縱向延伸的空間。
  17. 一種脊椎融合裝置,其含有一如請求項1至7任一項所述之可生物分解組成物;及一脊椎融合器,其被配置用以容置該可生物分解之磷酸鈣載體。
  18. 一種如請求項5至7任一項所述之可生物分解組成物在製備用於一 對象之脊椎中以產生骨質以融合二個相鄰脊椎骨體之物之用途,其中該生物可分解組成物係引入該二個相鄰脊椎骨體之間,且該同型二聚體蛋白的量係約0.2至10.5mg/site。
  19. 一種用以植入於骨孔隙中之可模製組成物,其包含:一可模製基質及一如請求項5至7任一項所述之同型二聚體蛋白,其中該可模製基質的量係約90至99.5%(w/w);並且於植入後之一預定時間之後,少於25%的該同型二聚體蛋白從該可模製組成物釋放。
TW107133348A 2017-09-25 2018-09-21 重組多肽及其組成物及方法 TWI707874B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762562515P 2017-09-25 2017-09-25
US62/562,515 2017-09-25

Publications (2)

Publication Number Publication Date
TW201915028A TW201915028A (zh) 2019-04-16
TWI707874B true TWI707874B (zh) 2020-10-21

Family

ID=66992184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133348A TWI707874B (zh) 2017-09-25 2018-09-21 重組多肽及其組成物及方法

Country Status (1)

Country Link
TW (1) TWI707874B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201215414A (en) * 2010-09-01 2012-04-16 Osteopharma Inc Lyophilized formulation of recombinant human bone morphogenetic protein-2
TW201823268A (zh) * 2016-12-30 2018-07-01 博晟生醫股份有限公司 重組多肽、核酸分子及其組合物以及製造、使用之方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201215414A (en) * 2010-09-01 2012-04-16 Osteopharma Inc Lyophilized formulation of recombinant human bone morphogenetic protein-2
TW201823268A (zh) * 2016-12-30 2018-07-01 博晟生醫股份有限公司 重組多肽、核酸分子及其組合物以及製造、使用之方法

Also Published As

Publication number Publication date
TW201915028A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
Lohmann et al. Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect
Mariner et al. Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical‐sized calvaria bone defects in rats
DK172503B1 (da) Gen, som koder for BMP-3-protein, vektor indeholdende et sådant gen, celle transformeret med en sådan vektor, BMP-3-protein
Coletta et al. Bone regeneration mediated by a bioactive and biodegradable extracellular matrix-like hydrogel based on elastin-like recombinamers
JP5105216B2 (ja) 移植可能なパテ状材料
US8497236B2 (en) Implantable putty material
JPH03503649A (ja) 硬骨および軟骨誘導組成物
US20200360561A1 (en) Materials and methods for filling bone voids
Lu et al. Collagen/β-TCP composite as a bone-graft substitute for posterior spinal fusion in rabbit model: a comparison study
US20230203115A1 (en) Therapeutic compositions comprising graft materials and beta-tcp binding peptides and uses thereof
JP6629488B2 (ja) 組換えポリペプチド、核酸分子、それらを含む組成物及びそれらの製造、使用方法
TWI707874B (zh) 重組多肽及其組成物及方法
JP6984829B2 (ja) 椎間板変性の治療剤および椎間板細胞培養材
US10589001B2 (en) Pharmaceutical formulation for use in spinal fusion
TWI667253B (zh) 重組多肽、核酸分子及其組合物以及製造、使用之方法
DK3107592T3 (en) Implant Comprehensive FGF-18
CN101098717A (zh) 用于修复骨折的补充的基质