TWI707451B - Memory device and method for manufacturing the same - Google Patents

Memory device and method for manufacturing the same Download PDF

Info

Publication number
TWI707451B
TWI707451B TW108141008A TW108141008A TWI707451B TW I707451 B TWI707451 B TW I707451B TW 108141008 A TW108141008 A TW 108141008A TW 108141008 A TW108141008 A TW 108141008A TW I707451 B TWI707451 B TW I707451B
Authority
TW
Taiwan
Prior art keywords
opening
columnar structure
drain
hole
source
Prior art date
Application number
TW108141008A
Other languages
Chinese (zh)
Other versions
TW202119592A (en
Inventor
江昱維
胡志瑋
邱家榮
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108141008A priority Critical patent/TWI707451B/en
Application granted granted Critical
Publication of TWI707451B publication Critical patent/TWI707451B/en
Publication of TW202119592A publication Critical patent/TW202119592A/en

Links

Images

Abstract

A memory device and a method for manufacturing the same are provided. A memory device includes a drain pillar structure, a source pillar structure, a charge trapping structure, a vertical channel structure and a gate structure. The drain pillar structure is formed in a first opening. The source pillar structure is formed in a second opening. The vertical channel structure and the vertical channel structure are formed in a hole partially overlapping the first opening and the second opening. The vertical channel structure is divided into two arc channel parts by the drain pillar structure and the source pillar structure. The gate structure surrounds the drain pillar structure, the source pillar structure and the vertical channel structure.

Description

記憶裝置及其製造方法Memory device and manufacturing method thereof

本揭露有關於記憶裝置及製造其的方法,更特別是有關於具有垂直通道的記憶裝置及製造其的方法。The present disclosure relates to memory devices and methods of manufacturing them, and more particularly to memory devices with vertical channels and methods of manufacturing them.

在現代的電腦系統中,動態隨機存取記憶體(a dynamic random-access memory; DRAM)類型的記憶裝置與反及閘快閃記憶體(NAND flash)類型的記憶裝置已被廣泛地使用於儲存資料。一般而言,DRAM類型的記憶裝置的優勢在於延遲(latency)較低及存取速度(access speed)較高,但DRAM類型的記憶裝置的記憶體容量(capacity)有限,且每位元的成本較高。相較之下,NAND flash類型的記憶裝置的優勢在於儲存密度高及每位元的成本較低,然而NAND flash類型的記憶裝置具有較高的延遲及較低的存取速度。由於DRAM類型的記憶裝置與NAND flash類型的記憶裝置在存取速度上存在巨大落差,使得資料傳遞過程出現瓶頸,進而導致電腦系統之資料處理速度下降。雖然,市面上早已出現編碼型快閃記憶體(NOR flash)類型的記憶裝置,相較於NAND flash類型的記憶裝置,NOR flash類型的記憶裝置具有較高的存取速度與較低的延遲,然而現有NOR flash類型的記憶裝置之儲存密度有限,無法滿足大容量的儲存需求。In modern computer systems, a dynamic random-access memory (DRAM) type memory device and a NAND flash type memory device have been widely used for storage data. Generally speaking, the advantages of DRAM type memory devices are lower latency and higher access speed, but DRAM type memory devices have limited memory capacity and cost per bit. Higher. In contrast, the advantages of the NAND flash type memory device are high storage density and lower cost per bit. However, the NAND flash type memory device has higher latency and lower access speed. Due to the huge gap in access speed between DRAM type memory devices and NAND flash type memory devices, a bottleneck occurs in the data transfer process, which in turn causes the data processing speed of the computer system to drop. Although NOR flash memory devices have already appeared on the market, NOR flash memory devices have higher access speed and lower latency than NAND flash memory devices. However, the storage density of the existing NOR flash type memory device is limited and cannot meet the large-capacity storage requirements.

近年來,一種新的記憶體技術-儲存級記憶體(storage-class memory; SCM)已被提出,在電腦系統的儲存架構中,儲存級記憶體被視為介於DRAM類型的記憶裝置與NAND flash類型的記憶裝置之間,可填補DRAM類型的記憶裝置與NAND flash類型的記憶裝置之間的存取速度落差。儲存級記憶體已發展出多種類型,例如3D XPoint記憶體、磁阻式隨機存取記憶體(magnetoresistive random access memory; MRAM)與相變化記憶體(phase change memory; PCM)。然而,這些類型的儲存級記憶體仍無法滿足市場上對儲存級記憶體的所有需求。In recent years, a new memory technology-storage-class memory (SCM) has been proposed. In the storage architecture of computer systems, storage-class memory is considered to be between DRAM-type memory devices and NAND. Flash memory devices can fill the gap in access speed between DRAM memory devices and NAND flash memory devices. Storage-level memory has developed many types, such as 3D XPoint memory, magnetoresistive random access memory (MRAM), and phase change memory (PCM). However, these types of storage-class memory still cannot meet all the demands for storage-class memory in the market.

因此,有需要提供一種具有高儲存密度、高存取速度與低延遲的三維記憶體技術。Therefore, there is a need to provide a three-dimensional memory technology with high storage density, high access speed and low latency.

本揭露有關於記憶體裝置與製造其的方法。根據實施例,製造方法可提供記憶裝置,記憶裝置包含汲極柱狀結構、源極柱狀結構與兩個弧形通道部件,從而改善了記憶裝置之儲存密度與操作速度。The present disclosure relates to memory devices and methods of manufacturing them. According to an embodiment, the manufacturing method can provide a memory device, which includes a drain columnar structure, a source columnar structure, and two arc-shaped channel components, thereby improving the storage density and operating speed of the memory device.

根據本揭露之一實施例,提出一種用以製造記憶裝置的方法。用以製造記憶裝置的方法包含以下多個步驟。在氧化物-氮化物堆疊中形成孔洞。在該孔洞的內壁形成垂直通道結構和電荷捕捉結構。形成第一開口和第二開口,第一開口和第二開口部分重疊該孔洞,且第一開口和第二開口貫穿垂直通道結構。垂直通道結構被第一開口和第二開口分開為兩弧形通道部件。分別在第一開口和第二開口中形成汲極柱狀結構和源極柱狀結構。形成閘極結構,閘極結構圍繞汲極柱狀結構、源極柱狀結構和垂直通道結構。According to an embodiment of the disclosure, a method for manufacturing a memory device is provided. The method for manufacturing the memory device includes the following multiple steps. Holes are formed in the oxide-nitride stack. A vertical channel structure and a charge trapping structure are formed on the inner wall of the hole. A first opening and a second opening are formed, the first opening and the second opening partially overlap the hole, and the first opening and the second opening penetrate the vertical channel structure. The vertical channel structure is divided into two arc-shaped channel parts by the first opening and the second opening. A drain columnar structure and a source columnar structure are formed in the first opening and the second opening, respectively. A gate structure is formed, and the gate structure surrounds the drain columnar structure, the source columnar structure and the vertical channel structure.

根據本揭露之一實施例,提出一種記憶裝置。記憶裝置包含汲極柱狀結構、源極柱狀結構、電荷捕捉結構、垂直通道結構和閘極結構。汲極柱狀結構形成於第一開口中。源極柱狀結構形成於第二開口中。垂直通道結構與電荷捕捉結構形成於孔洞中,孔洞部分重疊於第一開口和第二開口。垂直通道結構被汲極柱狀結構和源極柱狀結構分開為兩弧形通道部件。閘極結構圍繞汲極柱狀結構、源極柱狀結構和垂直通道結構。According to an embodiment of the disclosure, a memory device is provided. The memory device includes a drain columnar structure, a source columnar structure, a charge trapping structure, a vertical channel structure and a gate structure. The drain columnar structure is formed in the first opening. The source columnar structure is formed in the second opening. The vertical channel structure and the charge trapping structure are formed in the hole, and the hole partially overlaps the first opening and the second opening. The vertical channel structure is divided into two arc-shaped channel parts by the drain columnar structure and the source columnar structure. The gate structure surrounds the drain columnar structure, the source columnar structure and the vertical channel structure.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下。In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

在本揭露之實施例中,提出一種記憶裝置及製造記憶裝置的方法。根據製造方法之實施例可得到記憶裝置,例如是包含汲極柱狀結構、源極柱狀結構和兩弧形通道部件的記憶裝置,兩弧形通道部件被汲極柱狀結構和源極柱狀結構分開,藉以填補DRAM類型的記憶裝置與NAND flash類型的記憶裝置之間的存取速度落差,且同時優化記憶裝置之儲存密度與操作速度。In the embodiment of the present disclosure, a memory device and a method of manufacturing the memory device are provided. According to the embodiment of the manufacturing method, a memory device can be obtained, for example, a memory device including a drain columnar structure, a source columnar structure, and two arc-shaped channel members. The two arc-shaped channel members are drained by a drain columnar structure and a source column. The structure is separated to fill the gap in access speed between the DRAM type memory device and the NAND flash type memory device, and at the same time optimize the storage density and operating speed of the memory device.

在實際應用上,本揭露之實施例可實施為多種不同的記憶裝置。例如,實施例可應用於三維垂直通道類型記憶裝置,但本揭露不限於此應用。以下係提出相關實施例,配合圖式以詳細說明本揭露所提出之記憶裝置及其製造方法。然而,本揭露並不以此為限。實施例中之敘述,例如細部結構、製造方法之步驟和材料應用等,僅為舉例說明之用,本揭露欲保護之範圍並非僅限於所述態樣。In practical applications, the embodiments of the disclosure can be implemented as a variety of different memory devices. For example, the embodiment can be applied to a three-dimensional vertical channel type memory device, but the present disclosure is not limited to this application. The following are related embodiments, in conjunction with the drawings, to describe in detail the memory device and its manufacturing method proposed in this disclosure. However, this disclosure is not limited to this. The descriptions in the embodiments, such as the detailed structure, the steps of the manufacturing method, and the material application, are for illustrative purposes only, and the scope of the disclosure to be protected is not limited to the described aspects.

同時,需注意的是,本揭露並非顯示出所有可能的實施例。相關技術領域者當可在不脫離本揭露之精神和範圍之前提下,對實施例之結構和製造方法加以變化與修飾,以符合實際應用所需。因此,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式係簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖式僅作敘述實施例之用,而非用以限縮本揭露保護範圍。At the same time, it should be noted that this disclosure does not show all possible embodiments. Those in the relevant technical field can change and modify the structures and manufacturing methods of the embodiments without departing from the spirit and scope of the present disclosure to meet the needs of practical applications. Therefore, other implementation aspects not mentioned in this disclosure may also be applicable. Furthermore, the drawings are simplified to clearly illustrate the content of the embodiments, and the size ratios on the drawings are not drawn in proportion to the actual product. Therefore, the description and the drawings are only used to describe the embodiments, rather than to limit the protection scope of the disclosure.

再者,說明書與申請專利範圍中所使用的序數例如「第一」、「第二」、「第三」等用詞,是為了修飾請求項之元件,其本身並不意含及代表該所請元件有任何之前的序數,也不代表某一所請元件與另一所請元件的順序、或是製造方法上的順序,該些序數的使用,僅是用來使具有某命名的一所請元件得以和另一具有相同命名的所請元件能作出清楚區分。Moreover, the ordinal numbers used in the specification and the scope of the patent application, such as the terms "first", "second", "third", etc., are used to modify the elements of the claim, and do not in itself imply or represent the requested item. The component has any previous ordinal number, which does not represent the order of a requested component and another requested component, or the order of the manufacturing method. The use of these ordinal numbers is only used to make a request with a certain name The component can be clearly distinguished from another requested component with the same name.

第1A-14B圖繪示根據本揭露之一實施例之用以製造記憶裝置的方法。第1A圖係繪示此處理階段的示例性結構之俯視圖,而第1B圖係繪示此處理階段的示例性結構剖面圖。如同第1A-1B圖所示,底氧化物層102形成於基板101上,且氧化物-氮化物堆疊形成於底氧化物層102上。氧化物-氮化物堆疊包含複數個氮化物層103與複數個氧化物層104,複數個氮化物層103與複數個氧化物層104沿著垂直於基板101之第三方向D3(例如:Z方向)交替堆疊。在一示例中,複數個氮化物層103可包含氮化矽(silicon nitride; SiN)。在一示例中,氧化物-氮化物堆疊可僅包含一氮化物層103與一形成於氮化物層103上的氧化物層104。Figures 1A-14B illustrate a method for manufacturing a memory device according to an embodiment of the disclosure. FIG. 1A is a top view of an exemplary structure in this processing stage, and FIG. 1B is a cross-sectional view of an exemplary structure in this processing stage. As shown in FIGS. 1A-1B, the bottom oxide layer 102 is formed on the substrate 101, and the oxide-nitride stack is formed on the bottom oxide layer 102. The oxide-nitride stack includes a plurality of nitride layers 103 and a plurality of oxide layers 104, and the plurality of nitride layers 103 and the plurality of oxide layers 104 are along a third direction D3 perpendicular to the substrate 101 (for example, the Z direction ) Stacked alternately. In an example, the plurality of nitride layers 103 may include silicon nitride (SiN). In an example, the oxide-nitride stack may only include a nitride layer 103 and an oxide layer 104 formed on the nitride layer 103.

接著,如同第2A-2B圖所示,第2A圖係繪示此處理階段的示例性結構之俯視圖,而第2B圖係繪示此處理階段的示例性結構剖面圖。在此處理階段中,氧化物-氮化物堆疊被圖案化以形成數個孔洞110,例如是藉由光刻處理(photolithography process)來圖案化氧化物-氮化物堆疊。孔洞110可具有圓柱形或圓錐形,但本揭露不對此加以侷限。孔洞110使氧化物-氮化物堆疊之側壁暴露出來。在一示例中,對孔洞110之蝕刻處理可停止於底氧化物層102,也就是說,孔洞110於第三方向D3向下延伸以貫穿氧化物-氮化物堆疊與底氧化物層102,以暴露出底氧化物層102。接著,電荷捕捉結構105形成於氧化物-氮化物堆疊上且襯裡式形成於孔洞110中。在孔洞110中,電荷捕捉結構105形成於孔洞110之內壁與底部上。電荷捕捉結構105可藉由沉積處理來形成,沉積處理例如是化學氣相沉積(chemical vapor deposition; CVD)處理。在一示例中,電荷捕捉結構105形成於爐管(furnace)中。接著,垂直通道結構106形成於電荷捕捉結構105上,且在孔洞110之底部使電荷捕捉結構105暴露出來。Next, as shown in FIGS. 2A-2B, FIG. 2A is a top view of an exemplary structure in this processing stage, and FIG. 2B is a cross-sectional view of an exemplary structure in this processing stage. In this processing stage, the oxide-nitride stack is patterned to form a plurality of holes 110, for example, the oxide-nitride stack is patterned by a photolithography process. The hole 110 may have a cylindrical shape or a conical shape, but the disclosure is not limited thereto. The hole 110 exposes the sidewall of the oxide-nitride stack. In one example, the etching process for the hole 110 can be stopped at the bottom oxide layer 102, that is, the hole 110 extends downward in the third direction D3 to penetrate the oxide-nitride stack and the bottom oxide layer 102 to The bottom oxide layer 102 is exposed. Then, the charge trapping structure 105 is formed on the oxide-nitride stack and is lined in the hole 110. In the hole 110, the charge trapping structure 105 is formed on the inner wall and bottom of the hole 110. The charge trapping structure 105 can be formed by a deposition process, such as a chemical vapor deposition (CVD) process. In one example, the charge trapping structure 105 is formed in a furnace. Next, the vertical channel structure 106 is formed on the charge trapping structure 105, and the charge trapping structure 105 is exposed at the bottom of the hole 110.

以上描述之電荷捕捉結構105可包含多層(multilayer)結構,例如記憶體技術中已知的的ONO (氧化物-氮化物-氧化物)、ONONO (氧化物-氮化物-氧化物-氮化物-氧化物)、ONONONO (氧化物-氮化物-氧化物-氮化物-氧化物-氮化物-氧化物)、SONOS (矽-氧化物-氮化物-氧化物-矽)、BE-SONOS (能帶隙工程-矽-氧化物-氮化物-氧化物-矽 (bandgap engineered silicon-oxide-nitride-oxide-silicon))、TANOS (氮化鉭、氧化鋁、氮化矽、氧化矽、矽 (tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, silicon) )、以及MA BE-SONOS (高介電係數金屬能帶隙工程-矽-氧化物-氮化物-氧化物-矽 (metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon) ),或其他類型的電荷捕捉層,或這些層的組合。在一示例中,垂直通道結構106可包含多晶矽(polysilicon)。The charge trapping structure 105 described above may include a multilayer structure, such as ONO (oxide-nitride-oxide), ONONO (oxide-nitride-oxide-nitride- Oxide), ONONONO (oxide-nitride-oxide-nitride-oxide-nitride-oxide), SONOS (silicon-oxide-nitride-oxide-silicon), BE-SONOS (energy band Gap engineered silicon-oxide-nitride-oxide-silicon (bandgap engineered silicon-oxide-nitride-oxide-silicon), TANOS (tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, tantalum nitride) , aluminum oxide, silicon nitride, silicon oxide, silicon), and MA BE-SONOS (metal-high-k bandgap-silicon-oxide-nitride-oxide-silicon) engineered silicon-oxide-nitride-oxide-silicon)), or other types of charge trapping layers, or a combination of these layers. In an example, the vertical channel structure 106 may include polysilicon.

接著,如同第3A-3B圖所示,第3A圖係繪示此處理階段的示例性結構之俯視圖,而第3B圖係繪示此處理階段的示例性結構剖面圖。介電材料107形成於垂直通道結構106上,且填充孔洞110。介電材料107可包含氧化物。Next, as shown in FIGS. 3A-3B, FIG. 3A is a top view of an exemplary structure in this processing stage, and FIG. 3B is a cross-sectional view of an exemplary structure in this processing stage. The dielectric material 107 is formed on the vertical channel structure 106 and fills the hole 110. The dielectric material 107 may include oxide.

第4A圖係繪示此處理階段的示例性結構之俯視圖,而第4B圖係繪示此處理階段的示例性結構剖面圖。在此處理階段中,氧化物-氮化物堆疊上方的電荷捕捉結構105、垂直通道結構106與介電材料107被移除,以暴露出氧化物-氮化物堆疊的頂部,並在第一方向D1 (例如:X方向)上使結構形成平坦的頂表面。在一示例中,可對結構施加平坦化(planarization)處理,平坦化處理停止於氧化物-氮化物堆疊上的垂直通道結構106,平坦化處理可為化學機械平坦化(chemical-mechanical planarization; CMP)處理。接著,對結構施加蝕刻處理,蝕刻處理停止於氧化物-氮化物堆疊的頂部。在一示例中,如第4B圖所示,電荷捕捉結構105具有中空柱狀形狀且一端封閉,而垂直通道結構106具有中空柱狀形狀且兩端開放。FIG. 4A is a top view of an exemplary structure in this processing stage, and FIG. 4B is a cross-sectional view of an exemplary structure in this processing stage. In this processing stage, the charge trapping structure 105, the vertical channel structure 106 and the dielectric material 107 above the oxide-nitride stack are removed to expose the top of the oxide-nitride stack and move in the first direction D1 (For example: X direction) to form a flat top surface of the structure. In one example, a planarization process may be applied to the structure. The planarization process stops at the vertical channel structure 106 on the oxide-nitride stack. The planarization process may be chemical-mechanical planarization (chemical-mechanical planarization; CMP). )deal with. Next, an etching process is applied to the structure, and the etching process stops at the top of the oxide-nitride stack. In an example, as shown in FIG. 4B, the charge trapping structure 105 has a hollow columnar shape and one end is closed, while the vertical channel structure 106 has a hollow columnar shape and both ends are open.

第5A圖係為在第4A-4B圖所示之處理階段後的的示例性結構俯視圖,而第5B圖係為沿著第5A圖之線P5繪示之示例性結構剖面圖。第一開口510、512、514和516與第二開口511、513、515和517形成為和孔洞110部分重疊。第一開口510、512、514和516與第二開口511、513、515和517可藉由乾式蝕刻(dry etching)處理加以形成,但本揭露不對此加以侷限。第一開口510、512、514和516與第二開口511、513、515和517於第三方向D3向下延伸以貫穿氧化物-氮化物堆疊、電荷捕捉結構105、垂直通道結構106與介電材料107。在一示例中,在第三方向D3上,第一開口510、512、514和516與第二開口511、513、515和517停止於底氧化物層102。在一示例中,在第三方向D3上,第一開口510、512、514和516與第二開口511、513、515和517之深度大於孔洞110在第三方向D3上之深度。在一示例中,第一開口510、512、514和516與第二開口511、513、515和517可具有圓柱形或圓錐形,但本揭露不對此加以侷限。FIG. 5A is a top view of the exemplary structure after the processing stage shown in FIG. 4A-4B, and FIG. 5B is a cross-sectional view of the exemplary structure along the line P5 of FIG. 5A. The first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 are formed to partially overlap with the hole 110. The first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 can be formed by a dry etching process, but the present disclosure is not limited thereto. The first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 extend downward in the third direction D3 to penetrate the oxide-nitride stack, the charge trapping structure 105, the vertical channel structure 106 and the dielectric Material 107. In an example, in the third direction D3, the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 stop at the bottom oxide layer 102. In an example, in the third direction D3, the depths of the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 are greater than the depth of the hole 110 in the third direction D3. In an example, the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 may have a cylindrical shape or a conical shape, but the present disclosure is not limited thereto.

第一開口510、512、514和516與第二開口511、513、515和517形成於孔洞110之兩側。在一示例中,第一開口510、512、514和516與第二開口511、513、515和517形成於孔洞110的相對側。The first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 are formed on both sides of the hole 110. In an example, the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 are formed on opposite sides of the hole 110.

在第一開口510、512、514和516與第二開口511、513、515和517形成後,孔洞110中的垂直通道結構106被第一開口510、512、514和516與第二開口511、513、515和517分開為兩弧形通道部件。在一示例中,弧形通道部件分別設置於孔洞110的對側內壁上。此外,電荷捕捉結構105被第一開口510、512、514和516與第二開口511、513、515和517分開為兩弧形電荷捕捉部件。After the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 are formed, the vertical channel structure 106 in the hole 110 is divided by the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515 and 517 are divided into two arc-shaped channel parts. In an example, the arc-shaped channel members are respectively disposed on the inner walls of the opposite side of the hole 110. In addition, the charge trapping structure 105 is divided into two arc-shaped charge trapping parts by the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517.

第6A圖係為在第5A-5B圖所示之處理階段後的的示例性結構俯視圖,而第6B圖係為沿著第6A圖之線P6繪示之示例性結構剖面圖。在此處理階段中,汲極柱狀結構601與源極柱狀結構602分別形成於第一開口510、512、514和516與第二開口511、513、515和517中。具體而言,導電材料沉積於第一開口510、512、514和516與第二開口511、513、515和517中,接著對結構之頂表面施加平坦化處理以形成汲極柱狀結構601與源極柱狀結構602。汲極柱狀結構601與源極柱狀結構602直接接觸電荷捕捉結構105與垂直通道結構106。孔洞110中的電荷捕捉結構105被汲極柱狀結構601與源極柱狀結構602分開為兩弧形電荷捕捉部件。孔洞110中的垂直通道結構106被汲極柱狀結構601與源極柱狀結構602分開為兩弧形通道部件。弧形通道部件的兩端分別連接汲極柱狀結構601與源極柱狀結構602。FIG. 6A is a top view of the exemplary structure after the processing stage shown in FIG. 5A-5B, and FIG. 6B is a cross-sectional view of the exemplary structure along the line P6 of FIG. 6A. In this processing stage, the drain columnar structure 601 and the source columnar structure 602 are formed in the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517, respectively. Specifically, conductive material is deposited in the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517, and then the top surface of the structure is planarized to form the drain column structure 601 and Source columnar structure 602. The drain columnar structure 601 and the source columnar structure 602 directly contact the charge trapping structure 105 and the vertical channel structure 106. The charge trapping structure 105 in the hole 110 is divided into two arc-shaped charge trapping components by the drain columnar structure 601 and the source columnar structure 602. The vertical channel structure 106 in the hole 110 is divided into two arc-shaped channel parts by the drain columnar structure 601 and the source columnar structure 602. Two ends of the arc-shaped channel component are respectively connected to the drain columnar structure 601 and the source columnar structure 602.

在一示例中,導電材料可包含N+型多晶矽(N+ polysilicon)。在一示例中,平坦化處理可為化學機械平坦化處理。在一示例中,當第一開口510、512、514和516與第二開口511、513、515和517部分重疊孔洞110,汲極柱狀結構601與源極柱狀結構602係部分位於孔洞110中,且部分位於孔洞110外。在一示例中,汲極柱狀結構601與源極柱狀結構602皆為部分位於孔洞110中,且部分位於孔洞110外。在一示例中,汲極柱狀結構601與源極柱狀結構602中的一者係為部分位於孔洞110中且部分位於孔洞110外,而汲極柱狀結構601與源極柱狀結構602中的另一者完全設置於孔洞110中。在包含第一方向D1與第二方向D2的平面上(即D1-D2平面上),汲極柱狀結構601與源極柱狀結構602之剖面面積可小於孔洞110在D1-D2平面上之剖面面積,但本揭露不對此加以侷限。In one example, the conductive material may include N+ polysilicon (N+ polysilicon). In an example, the planarization process may be a chemical mechanical planarization process. In an example, when the first openings 510, 512, 514, and 516 and the second openings 511, 513, 515, and 517 partially overlap the hole 110, the drain columnar structure 601 and the source columnar structure 602 are partially located in the hole 110 In the middle, and partly outside the hole 110. In one example, the drain columnar structure 601 and the source columnar structure 602 are both partially located in the hole 110 and partially located outside the hole 110. In an example, one of the drain columnar structure 601 and the source columnar structure 602 is partly located in the hole 110 and partly outside the hole 110, and the drain columnar structure 601 and the source columnar structure 602 The other one is completely disposed in the hole 110. On a plane including the first direction D1 and the second direction D2 (that is, on the D1-D2 plane), the cross-sectional area of the drain columnar structure 601 and the source columnar structure 602 can be smaller than that of the hole 110 on the D1-D2 plane Sectional area, but this disclosure does not limit this.

如同第6A圖所示,在D1-D2平面上,孔洞110具有一中心點C1,孔洞110之邊緣與中心點C1之間的距離被定義為距離R1 (即孔洞110之半徑)。汲極柱狀結構601之邊緣與中心點C1之間的最大距離被定義為距離R2。源極柱狀結構602之邊緣與中心點C1之間的最大距離被定義為距離R3。距離R2與距離R3大於距離R1。在一示例中,距離R2與距離R3皆大於距離R1。As shown in FIG. 6A, on the D1-D2 plane, the hole 110 has a center point C1, and the distance between the edge of the hole 110 and the center point C1 is defined as the distance R1 (ie the radius of the hole 110). The maximum distance between the edge of the drain columnar structure 601 and the center point C1 is defined as the distance R2. The maximum distance between the edge of the source columnar structure 602 and the center point C1 is defined as the distance R3. The distance R2 and the distance R3 are greater than the distance R1. In an example, the distance R2 and the distance R3 are both greater than the distance R1.

在一示例中,在D1-D2平面上,汲極柱狀結構601與源極柱狀結構602中至少一者可和孔洞110之邊緣交錯而產生多於兩個相異交點。例如,在D1-D2平面上,汲極柱狀結構601之邊緣與孔洞110之邊緣交錯而產生兩個相異交點。例如,在D1-D2平面上,源極柱狀結構602之邊緣與孔洞110之邊緣交錯而產生兩個相異交點。例如,在D1-D2平面上,汲極柱狀結構601之邊緣及源極柱狀結構602之邊緣與孔洞110之邊緣分別交錯於兩個相異交點,而產生四個相異交點。In one example, on the D1-D2 plane, at least one of the drain columnar structure 601 and the source columnar structure 602 may be intersected with the edge of the hole 110 to generate more than two dissimilar points. For example, on the D1-D2 plane, the edge of the drain columnar structure 601 and the edge of the hole 110 are staggered to produce two dissimilar points. For example, on the D1-D2 plane, the edge of the source columnar structure 602 is staggered with the edge of the hole 110 to generate two dissimilar points. For example, on the D1-D2 plane, the edge of the drain columnar structure 601 and the edge of the source columnar structure 602 and the edge of the hole 110 are respectively staggered at two dissimilar points, resulting in four dissimilar points.

第7A圖係為在第6A-6B圖所示之處理階段後的的示例性結構俯視圖,而第7B圖係為沿著第7A圖之線P7繪示之示例性結構剖面圖。在此處理階段中,氧化物-氮化物堆疊被圖案化以形成狹縫710和712且停止於底氧化物層102,例如是藉由光刻處理來圖案化氧化物-氮化物堆疊。狹縫710和712於第三方向D3向下延伸以貫穿氧化物-氮化物堆疊與底氧化物層102,以暴露出底氧化物層102。FIG. 7A is a top view of the exemplary structure after the processing stage shown in FIG. 6A-6B, and FIG. 7B is a cross-sectional view of the exemplary structure along the line P7 of FIG. 7A. In this processing stage, the oxide-nitride stack is patterned to form slits 710 and 712 and stops at the bottom oxide layer 102, for example, by patterning the oxide-nitride stack by photolithography. The slits 710 and 712 extend downward in the third direction D3 to penetrate the oxide-nitride stack and the bottom oxide layer 102 to expose the bottom oxide layer 102.

第8A圖係為在第7A-7B圖所示之處理階段後的的示例性結構俯視圖,而第8B圖係為沿著第8A圖之線P8繪示之示例性結構剖面圖。接著,如同第8A-8B圖所示,氧化物-氮化物堆疊中的複數個氮化物層103透過狹縫710和712被移除以形成空洞103x,空洞103x係為複數個氮化物層103原本生成的地方。可藉由蝕刻處理來移除複數個氮化物層103。空洞103x使汲極柱狀結構601、源極柱狀結構602與電荷捕捉層105之部分側壁暴露出來,這些暴露出來的側壁係為原本接觸複數個氮化物層103之處。FIG. 8A is a top view of the exemplary structure after the processing stage shown in FIG. 7A-7B, and FIG. 8B is a cross-sectional view of the exemplary structure along the line P8 of FIG. 8A. Next, as shown in FIGS. 8A-8B, the plurality of nitride layers 103 in the oxide-nitride stack are removed through the slits 710 and 712 to form a cavity 103x. The cavity 103x is originally the plurality of nitride layers 103 Where it is generated. The plurality of nitride layers 103 can be removed by an etching process. The cavity 103x exposes part of the sidewalls of the drain columnar structure 601, the source columnar structure 602, and the charge trapping layer 105, and these exposed sidewalls are originally in contact with the plurality of nitride layers 103.

第9A圖係為在第8A-8B圖所示之處理階段後的的示例性結構俯視圖,而第9B圖係為沿著第9A圖之線P9繪示之示例性結構剖面圖。接著,如同第9A-9B圖所示,多個介電部601s設置於汲極柱狀結構601與源極柱狀結構602被空洞103x暴露出來的側壁上。在一示例中,可藉由對汲極柱狀結構601與源極柱狀結構602被空洞103x暴露出來的側壁施加氧化處理,來形成介電部601s。在一示例中,介電部601s可包含多晶矽氧化物。介電部601s在第二方向D2上之寬度大約為200埃(angstrom; Å),更佳係為大於200埃,然而本揭露對此數值不加以限制。介電部601s可避免或改善字元線與汲極柱狀結構601接觸或字元線與源極柱狀結構602接觸而引起的短路(short-circuit)問題。FIG. 9A is a top view of the exemplary structure after the processing stage shown in FIG. 8A-8B, and FIG. 9B is a cross-sectional view of the exemplary structure along the line P9 of FIG. 9A. Next, as shown in FIGS. 9A-9B, a plurality of dielectric portions 601s are disposed on the sidewalls of the drain columnar structure 601 and the source columnar structure 602 exposed by the cavity 103x. In an example, the dielectric portion 601s can be formed by applying oxidation treatment to the sidewalls of the drain columnar structure 601 and the source columnar structure 602 exposed by the cavity 103x. In an example, the dielectric portion 601s may include polysilicon oxide. The width of the dielectric portion 601s in the second direction D2 is about 200 angstroms (angstrom; Å), more preferably greater than 200 angstroms, but the present disclosure does not limit this value. The dielectric portion 601s can avoid or improve the short-circuit problem caused by the contact between the word line and the drain columnar structure 601 or the contact between the word line and the source columnar structure 602.

第10A圖係為在第9A-9B圖所示之處理階段後的的示例性結構俯視圖,而第10B圖係為沿著第10A圖之線P10繪示之示例性結構剖面圖。在此處理階段中,高介電常數(high dielectric constant; high-k)材料層108形成於狹縫710和712的側壁與底部上、形成於複數個氧化層104被空洞103x暴露出來的壁上、形成於電荷捕捉結構105被空洞103x暴露出來的側壁上、及形成於介電部601s被暴露出來的側壁上。換言之,高介電常數材料層108襯裡式形成於狹縫710和712與空洞103x中。高介電常數材料層108可包含高介電常數材料,例如是氧化鋁(Al 2O 3)、二氧化鉿(HfO 2)、氮化矽(Si 3N 4)、二氧化鋯(ZrO 2)、二氧化鈦(TiO 2)、氧化鉭(Ta 2O 5)、氧化鑭(La 2O)或其他合適的材料等。可藉由沉積處理或搭配磷酸(H 3PO 4)溶液進行溼式蝕刻(wet etching)處理來形成高介電常數材料層108。 FIG. 10A is a top view of the exemplary structure after the processing stage shown in FIG. 9A-9B, and FIG. 10B is a cross-sectional view of the exemplary structure along the line P10 of FIG. 10A. In this processing stage, a high dielectric constant (high-k) material layer 108 is formed on the sidewalls and bottoms of the slits 710 and 712, and on the walls where the plurality of oxide layers 104 are exposed by the void 103x , Formed on the sidewall of the charge trapping structure 105 exposed by the cavity 103x, and formed on the sidewall of the exposed dielectric portion 601s. In other words, the high dielectric constant material layer 108 is lined and formed in the slits 710 and 712 and the cavity 103x. The high dielectric constant material layer 108 may include high dielectric constant materials, such as aluminum oxide (Al 2 O 3 ), hafnium dioxide (HfO 2 ), silicon nitride (Si 3 N 4 ), zirconium dioxide (ZrO 2) ), titanium dioxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O) or other suitable materials. The high dielectric constant material layer 108 can be formed by a deposition process or a wet etching process with a phosphoric acid (H 3 PO 4 ) solution.

第11A圖係為在第10A-10B圖所示之處理階段後的的示例性結構俯視圖,而第11B圖係為沿著第11A圖之線P11繪示之示例性結構剖面圖。在此處理階段中,閘極材料103g形成於空洞103x與狹縫710和712之剩餘空間中。在一示例中,閘極材料103g沉積於空洞103x與狹縫710和712之剩餘空間中。閘極材料103g可包含金屬,例如氮化鈦(TiN)、氮化鉭(TaN)等。FIG. 11A is a top view of the exemplary structure after the processing stage shown in FIG. 10A-10B, and FIG. 11B is a cross-sectional view of the exemplary structure along the line P11 of FIG. 11A. In this processing stage, the gate material 103g is formed in the remaining space between the cavity 103x and the slits 710 and 712. In an example, the gate material 103g is deposited in the remaining space between the cavity 103x and the slits 710 and 712. The gate material 103g may include metal, such as titanium nitride (TiN), tantalum nitride (TaN), and the like.

第12A圖係為在第11A-11B圖所示之處理階段後的的示例性結構俯視圖,而第12B圖係為沿著第12A圖之線P12繪示之示例性結構剖面圖。接著,對結構施加回蝕(etching back)處理以透過狹縫710和712移除部分閘極材料103g,從而形成多個凹室710r和712r,如同第12B圖所示。在一示例中,多個凹室710r和712r中的每一者係為側向凹室,從狹縫710和712延伸(沿著第二方向D2)進入閘極材料103g。因此,凹室710r中的每一者連接狹縫710,且凹室712r中的每一者連接狹縫712。凹室710r中的每一者可定義為由兩相鄰氧化物層104、介於此兩相鄰氧化物層104之間的閘極材料103g與狹縫710所形成的空間。凹室712r中的每一者可定義為由兩相鄰氧化物層104、介於此兩相鄰氧化物層104之間的閘極材料103g與狹縫712所形成的空間。在回蝕處理後,剩餘的閘極材料103g可被視為閘極結構,且閘極結構圍繞汲極柱狀結構601、源極柱狀結構602與垂直通道結構106。介電部601s形成於汲極柱狀結構601與閘極結構之間,或者形成於源極柱狀結構602與閘極結構之間。FIG. 12A is a top view of the exemplary structure after the processing stage shown in FIG. 11A-11B, and FIG. 12B is a cross-sectional view of the exemplary structure along the line P12 of FIG. 12A. Next, an etching back process is applied to the structure to remove part of the gate material 103g through the slits 710 and 712, thereby forming a plurality of recesses 710r and 712r, as shown in FIG. 12B. In an example, each of the plurality of recesses 710r and 712r is a lateral recess, extending from the slits 710 and 712 (along the second direction D2) into the gate material 103g. Therefore, each of the alcoves 710r connects the slit 710, and each of the alcoves 712r connects the slit 712. Each of the recesses 710r can be defined as a space formed by two adjacent oxide layers 104, the gate material 103g between the two adjacent oxide layers 104, and the slit 710. Each of the recesses 712r can be defined as a space formed by two adjacent oxide layers 104, the gate material 103g between the two adjacent oxide layers 104, and the slit 712. After the etch-back process, the remaining gate material 103g can be regarded as a gate structure, and the gate structure surrounds the drain columnar structure 601, the source columnar structure 602, and the vertical channel structure 106. The dielectric portion 601s is formed between the drain column structure 601 and the gate structure, or between the source column structure 602 and the gate structure.

從而,結構中形成了複數個記憶單元。每一記憶單元包含一汲極柱狀結構601、一源極柱狀結構602、兩弧形通道部件與閘極材料103g (即閘極結構),這兩個弧形通道部件形成於一孔洞110中且介於此汲極柱狀結構601此源極柱狀結構602之間。每一記憶單元係為雙通道類型。Thus, a plurality of memory cells are formed in the structure. Each memory cell includes a drain columnar structure 601, a source columnar structure 602, two arc-shaped channel members and 103g of gate material (ie, gate structure), the two arc-shaped channel members are formed in a hole 110 Between the drain column structure 601 and the source column structure 602. Each memory unit is a dual channel type.

在本揭露之一實施例中,在第12A-12B圖所示之處理階段後,還可對示例性結構施加第13A-14B圖繪示之處理階段。In an embodiment of the present disclosure, after the processing stage shown in FIGS. 12A-12B, the processing stage shown in FIGS. 13A-14B may be applied to the exemplary structure.

第13A圖係為在第12A-12B圖所示之處理階段後的的示例性結構俯視圖,而第13B圖係為沿著第13A圖之線P13繪示之示例性結構剖面圖。在此處理階段中,低溫氧化物(low temperature oxide; LTO)層109形成於狹縫710和712中,接著溝槽115形成,溝槽115於第三方向D3向下延伸以貫穿低溫氧化物層109。溝槽115使低溫氧化物層109暴露出來,但閘極材料103g (即閘極結構)及高介電常數材料層108並未被溝槽115暴露出來。在一示例中,低溫氧化物層109係藉由沉積處理形成於狹縫710和712中,且然後蝕刻低溫氧化物層109以形成溝槽115。FIG. 13A is a top view of the exemplary structure after the processing stage shown in FIG. 12A-12B, and FIG. 13B is a cross-sectional view of the exemplary structure along the line P13 of FIG. 13A. In this processing stage, a low temperature oxide (LTO) layer 109 is formed in the slits 710 and 712, and then a trench 115 is formed. The trench 115 extends downward in the third direction D3 to penetrate the low temperature oxide layer 109. The trench 115 exposes the low-temperature oxide layer 109, but the gate material 103g (that is, the gate structure) and the high dielectric constant material layer 108 are not exposed by the trench 115. In one example, the low temperature oxide layer 109 is formed in the slits 710 and 712 by a deposition process, and then the low temperature oxide layer 109 is etched to form the trench 115.

接著,如同第14A-14B圖所示,導電膜116形成於溝槽115中。第14A圖係為在第13A-13B圖所示之處理階段後的的示例性結構俯視圖,而第14B圖係為沿著第14A圖之線P14繪示之示例性結構剖面圖。在一示例中,導電膜116沉積於溝槽115中且填充溝槽115,接著對此結構施加化學機械平坦化處理。在一示例中,導電膜116可與閘極材料103g包含相同的材料。狹縫710和712中,低溫氧化物層109使導電膜116和閘極材料103g分離。Next, as shown in FIGS. 14A-14B, a conductive film 116 is formed in the trench 115. FIG. 14A is a top view of the exemplary structure after the processing stage shown in FIG. 13A-13B, and FIG. 14B is a cross-sectional view of the exemplary structure along the line P14 of FIG. 14A. In one example, the conductive film 116 is deposited in the trench 115 and fills the trench 115, and then chemical mechanical planarization is applied to the structure. In an example, the conductive film 116 may include the same material as the gate material 103g. In the slits 710 and 712, the low-temperature oxide layer 109 separates the conductive film 116 and the gate material 103g.

接著,外部電路120連接至導電膜116,以對導電膜116施加電流。通過導電膜116的電流可產生熱,亦被稱為焦耳加熱(Joule heating)。此過程所產生的熱有助於修復記憶單元。Next, the external circuit 120 is connected to the conductive film 116 to apply current to the conductive film 116. The current passing through the conductive film 116 can generate heat, which is also known as Joule heating. The heat generated by this process helps to repair the memory cell.

根據本揭露,記憶裝置之汲極柱狀結構與源極柱狀結構與有垂直通道結構形成於其中的孔洞部分重疊,從而孔洞的尺寸得以縮小。因此,本發明之益處在於,記憶裝置中的每一記憶單元之尺寸降低、記憶裝置之儲存密度與記憶容量提升、且記憶裝置之尺寸降低。此外,本發明提出的記憶裝置之架構可執行隨機存取,也就是無論將要讀取或寫入的記憶體位址為何,皆可在相同的時間內完成,因此,相較於僅能執行序列式存取(block access)之NAND flash類型的記憶裝置,本發明提出的記憶裝置具有較高的存取速度。再者,相較於傳統的平面(2D)架構記憶裝置,本發明提出的記憶裝置具有三維堆疊架構,所以可顯著提升記憶裝置之儲存密度與記憶容量。According to the disclosure, the drain columnar structure and the source columnar structure of the memory device partially overlap the holes formed in the vertical channel structure, so that the size of the holes can be reduced. Therefore, the benefits of the present invention are that the size of each memory cell in the memory device is reduced, the storage density and memory capacity of the memory device are increased, and the size of the memory device is reduced. In addition, the architecture of the memory device proposed in the present invention can perform random access, that is, regardless of the memory address to be read or written, it can be completed in the same time. Therefore, compared to only the serial type For block access NAND flash type memory devices, the memory device proposed in the present invention has a higher access speed. Furthermore, compared with the traditional planar (2D) structure memory device, the memory device proposed in the present invention has a three-dimensional stacked structure, so the storage density and memory capacity of the memory device can be significantly improved.

應注意的是,如上所述之圖式、結構和步驟,是用以敘述本揭露之部分實施例或應用例,本揭露並不限制於上述結構和步驟之範圍與應用態樣。其他不同結構態樣之實施例,例如不同內部組件的已知構件都可應用,其示例之結構和步驟可根據實際應用之需求而調整。因此圖式之結構僅用以舉例說明之,而非用以限制本發明。通常知識者當知,應用本揭露之相關結構和步驟過程,例如記憶裝置中的相關元件和層的排列方式或構型,或製造步驟細節等,都可能以依實際應用樣態所需而可能有相應的調整和變化。It should be noted that the above-mentioned drawings, structures and steps are used to describe some embodiments or application examples of the present disclosure, and the present disclosure is not limited to the scope and application of the above-mentioned structures and steps. Other embodiments with different structural aspects, such as known components of different internal components, can be applied, and the structure and steps of the examples can be adjusted according to actual application requirements. Therefore, the structure of the drawings is only used for illustration, not for limiting the present invention. Generally, the knowledgeable person should know that the relevant structures and steps of the application of the present disclosure, such as the arrangement or configuration of the relevant elements and layers in the memory device, or the details of the manufacturing steps, etc., may be as required by the actual application. There are corresponding adjustments and changes.

綜上所述,雖然本發明已以實施例揭露如上,然而其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍前提下,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present invention has been disclosed as above by embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.

101:基板 102:底氧化物層 103:氮化物層 103g:閘極材料 103x:空洞 104:氧化物層 105:電荷捕捉結構 106:垂直通道結構 107:介電材料 108:高介電常數材料層 109:低溫氧化物層 110:孔洞 115:溝槽 116:導電膜 120:外部電路 510、512、514、516:第一開口 511、513、515、517:第二開口 601:汲極柱狀結構 601s:介電部 602:源極柱狀結構 710、712:狹縫 710r、712r:凹室 C1:中心點 D1:第一方向 D2:第二方向 D3:第三方向 P5-P14:線 R1、R2、R3:距離101: substrate 102: bottom oxide layer 103: Nitride layer 103g: Gate material 103x: Hollow 104: oxide layer 105: charge trapping structure 106: vertical channel structure 107: Dielectric materials 108: high dielectric constant material layer 109: low temperature oxide layer 110: Hole 115: groove 116: conductive film 120: external circuit 510, 512, 514, 516: first opening 511, 513, 515, 517: second opening 601: Drain columnar structure 601s: Dielectric Department 602: source columnar structure 710, 712: slit 710r, 712r: Alcove C1: Center point D1: First direction D2: second direction D3: Third party P5-P14: line R1, R2, R3: distance

第1A-14B圖繪示根據本揭露之一實施例之用以製造記憶裝置的方法。Figures 1A-14B illustrate a method for manufacturing a memory device according to an embodiment of the disclosure.

103g:閘極材料 103g: Gate material

108:高介電常數材料層 108: high dielectric constant material layer

710、712:狹縫 710, 712: slit

710r、712r:凹室 710r, 712r: Alcove

D1:第一方向 D1: First direction

D2:第二方向 D2: second direction

D3:第三方向 D3: Third party

Claims (10)

一種記憶裝置之製造方法,包括: 在一氧化物-氮化物堆疊中形成一孔洞; 在該孔洞的一內壁形成一垂直通道結構和一電荷捕捉結構; 形成一第一開口和一第二開口,該第一開口和該第二開口部分重疊於該孔洞,且該第一開口和該第二開口貫穿該垂直通道結構,其中該垂直通道結構被該第一開口和該第二開口分開為兩個弧形通道部件; 分別在該第一開口和該第二開口中形成一汲極柱狀結構和一源極柱狀結構;以及 形成一閘極結構,該閘極結構圍繞該汲極柱狀結構、該源極柱狀結構和該垂直通道結構。 A manufacturing method of a memory device includes: Forming a hole in an oxide-nitride stack; Forming a vertical channel structure and a charge trapping structure on an inner wall of the hole; A first opening and a second opening are formed, the first opening and the second opening partially overlap the hole, and the first opening and the second opening penetrate the vertical channel structure, wherein the vertical channel structure is covered by the second opening. One opening and the second opening are separated into two arc-shaped channel parts; Forming a drain columnar structure and a source columnar structure in the first opening and the second opening respectively; and A gate structure is formed, and the gate structure surrounds the drain columnar structure, the source columnar structure and the vertical channel structure. 如申請專利範圍第1項所述之製造方法,其中在分別在該第一開口和該第二開口中形成該汲極柱狀結構和該源極柱狀結構之步驟中,該汲極柱狀結構或該源極柱狀結構係部分位於該孔洞內,且部分位於該孔洞外。According to the manufacturing method described in claim 1, wherein in the step of forming the drain columnar structure and the source columnar structure in the first opening and the second opening, respectively, the drain columnar The structure or the source columnar structure is partially located in the hole and partially located outside the hole. 如申請專利範圍第1項所述之製造方法,其中在分別在該第一開口和該第二開口中形成該汲極柱狀結構和該源極柱狀結構之該步驟中,各該弧形通道部件中之兩端點分別連接該汲極柱狀結構和該源極柱狀結構。According to the manufacturing method described in claim 1, wherein in the step of forming the drain columnar structure and the source columnar structure in the first opening and the second opening, each of the arcs The two ends of the channel component are respectively connected to the drain columnar structure and the source columnar structure. 如申請專利範圍第1項所述之製造方法,其中在形成該第一開口和該第二開口之該步驟中,該電荷捕捉結構被該第一開口和該第二開口分開為兩個弧形電荷捕捉部件。The manufacturing method described in claim 1, wherein in the step of forming the first opening and the second opening, the charge trapping structure is divided into two arcs by the first opening and the second opening Charge trapping components. 一種記憶裝置,包括: 一汲極柱狀結構,形成於一第一開口中; 一源極柱狀結構,形成於一第二開口中; 一電荷捕捉結構; 一垂直通道結構,該垂直通道結構與該電荷捕捉結構形成於一孔洞中,該孔洞部分重疊於該第一開口和該第二開口,其中該垂直通道結構被該汲極柱狀結構和該源極柱狀結構分開為兩個弧形通道部件;以及 一閘極結構,圍繞該汲極柱狀結構、該源極柱狀結構和該垂直通道結構。 A memory device includes: A drain columnar structure formed in a first opening; A source columnar structure formed in a second opening; A charge trapping structure; A vertical channel structure, the vertical channel structure and the charge trapping structure are formed in a hole, the hole partially overlaps the first opening and the second opening, wherein the vertical channel structure is formed by the drain column structure and the source The pole-shaped structure is divided into two arc-shaped channel parts; and A gate structure surrounds the drain columnar structure, the source columnar structure and the vertical channel structure. 如申請專利範圍第5項所述之記憶裝置,其中該汲極柱狀結構或該源極柱狀結構係部分位於該孔洞內,且該汲極柱狀結構或該源極柱狀結構係部分位於該孔洞外。The memory device according to claim 5, wherein the drain columnar structure or the source columnar structure is partly located in the hole, and the drain columnar structure or the source columnar structure is partly Located outside the hole. 如申請專利範圍第5項所述之記憶裝置,其中在一平面上,該汲極柱狀結構的一邊緣與該孔洞的一中心點之間的一最大距離大於該孔洞的一半徑。In the memory device described in claim 5, in a plane, a maximum distance between an edge of the drain columnar structure and a center point of the hole is greater than a radius of the hole. 如申請專利範圍第5項所述之記憶裝置,其中各該弧形通道部件中之兩端點分別連接該汲極柱狀結構和該源極柱狀結構。As for the memory device described in item 5 of the scope of patent application, the two ends of each arc-shaped channel member are respectively connected to the drain columnar structure and the source columnar structure. 如申請專利範圍第5項所述之記憶裝置,更包括一介電部,該介電部形成於該汲極柱狀結構與該閘極結構之間。The memory device described in item 5 of the scope of patent application further includes a dielectric portion formed between the drain columnar structure and the gate structure. 如申請專利範圍第5項所述之記憶裝置,其中該電荷捕捉結構被該汲極柱狀結構和該源極柱狀結構分開為兩個弧形電荷捕捉部件。In the memory device described in item 5 of the scope of patent application, the charge trapping structure is divided into two arc-shaped charge trapping components by the drain columnar structure and the source columnar structure.
TW108141008A 2019-11-12 2019-11-12 Memory device and method for manufacturing the same TWI707451B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108141008A TWI707451B (en) 2019-11-12 2019-11-12 Memory device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108141008A TWI707451B (en) 2019-11-12 2019-11-12 Memory device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI707451B true TWI707451B (en) 2020-10-11
TW202119592A TW202119592A (en) 2021-05-16

Family

ID=74091733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141008A TWI707451B (en) 2019-11-12 2019-11-12 Memory device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI707451B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI599021B (en) * 2014-08-08 2017-09-11 旺宏電子股份有限公司 Memory device and method for fabricating the same
TWI668846B (en) * 2019-01-14 2019-08-11 旺宏電子股份有限公司 Crenellated charge storage structures for 3d nand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI599021B (en) * 2014-08-08 2017-09-11 旺宏電子股份有限公司 Memory device and method for fabricating the same
TWI668846B (en) * 2019-01-14 2019-08-11 旺宏電子股份有限公司 Crenellated charge storage structures for 3d nand

Also Published As

Publication number Publication date
TW202119592A (en) 2021-05-16

Similar Documents

Publication Publication Date Title
US9929179B2 (en) Nonvolatile semiconductor devices including non-circular shaped channel patterns and methods of manufacturing the same
US9530729B2 (en) Semiconductor devices including insulating extension patterns between adjacent landing pads and methods of fabricating the same
CN106816430B (en) Semiconductor device including air spacer
CN109768014B (en) Memory device and method of manufacturing the same
US11943917B2 (en) Stacked-type semiconductor memory device
CN109524417A (en) 3D nand memory and forming method thereof
US20140061736A1 (en) Semiconductor device and method of manufacturing the same
US10008505B2 (en) Semiconductor device including capacitor and method of manufacturing the same
CN109256370B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
US11043498B1 (en) Semiconductor memory device
KR20140036447A (en) Semiconductor device and method of manufacturing the same
TW202230630A (en) Semiconductor memory device
US7078292B2 (en) Storage node contact forming method and structure for use in semiconductor memory
US9269720B1 (en) Methods of fabricating semiconductor devices
TW202309892A (en) Semiconductor memory device
US10658480B2 (en) Memory device
TW202205626A (en) Memory device and method for making same
TWI707451B (en) Memory device and method for manufacturing the same
TW202218055A (en) Flash memory
US7074670B2 (en) Method of forming storage node of capacitor in semiconductor memory, and structure therefore
US11069708B2 (en) Memory device and method for manufacturing the same
TWI753670B (en) Semiconductor device
US20230397430A1 (en) Semiconductor memory device
TWI789295B (en) Memory device
US20220399340A1 (en) Semiconductor memory device