TWI706806B - Carbonator and carbon dioxide capture system - Google Patents

Carbonator and carbon dioxide capture system Download PDF

Info

Publication number
TWI706806B
TWI706806B TW108141764A TW108141764A TWI706806B TW I706806 B TWI706806 B TW I706806B TW 108141764 A TW108141764 A TW 108141764A TW 108141764 A TW108141764 A TW 108141764A TW I706806 B TWI706806 B TW I706806B
Authority
TW
Taiwan
Prior art keywords
dust collection
cyclone dust
carbon dioxide
flue gas
collection unit
Prior art date
Application number
TW108141764A
Other languages
Chinese (zh)
Other versions
TW202120176A (en
Inventor
周揚震
徐恆文
萬皓鵬
Original Assignee
財團法人工業技術研究院
台灣水泥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院, 台灣水泥股份有限公司 filed Critical 財團法人工業技術研究院
Priority to TW108141764A priority Critical patent/TWI706806B/en
Priority to CN201911273656.XA priority patent/CN112811455B/en
Application granted granted Critical
Publication of TWI706806B publication Critical patent/TWI706806B/en
Publication of TW202120176A publication Critical patent/TW202120176A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A carbon dioxide capture system is provided, which includes a carbonator, a calcinator connected to the carbonator, and a hydrator connected to the calcinator and the carbonator. Metal hydroxide of high temperature is introduced to the carbonator from top, flue gas of low temperature is introduced into the carbonator from bottom, and the metal hydroxide and the flue gas are heat exchanged in the carbonator containing cyclone dust collectors. As such, a heater for heating the flue gas and a cooler for controlling the carbonator temperature can be omitted.

Description

碳酸化反應器與二氧化碳捕獲系統Carbonation reactor and carbon dioxide capture system

本揭露關於二氧化碳捕獲系統,更特別關於其採用的碳酸化反應器。This disclosure relates to the carbon dioxide capture system, and more particularly to the carbonation reactor it uses.

全球能源需求持續成長,預估未來仍需仰賴化石能源的供應,國際能源署於「能源技術展望 2010」 (International Energy Agency, 2010)中強調,為了維持能源安全、促進經濟發展、以及降低與能源相關的二氧化碳排放量,應致力提昇發電效率、能源使用效率、以及發展碳捕獲及封存技術。順應世界潮流,台灣已於永續能源政策綱領中訂定二氧化碳排放的減量政策目標: 2016-2020 年間回到 2005 年的二氧化碳排放量, 2025 年回到 2000 年之排放量(2.15 億噸),為了達到此目標,以能源面向來看,除了提高能源效率、發展潔淨能源以及確保能源供應穩定外,在仍無法避免繼續使用化石燃料的情況下,必須搭配二氧化碳的捕獲、封存與再利用技術,以有效減緩溫室效應的惡化。Global energy demand continues to grow, and it is estimated that the future will still need to rely on the supply of fossil energy. The International Energy Agency emphasized in the "Energy Technology Outlook 2010" (International Energy Agency, 2010) that in order to maintain energy security, promote economic development, and reduce energy Related to carbon dioxide emissions, efforts should be made to improve power generation efficiency, energy use efficiency, and develop carbon capture and storage technologies. Following the trend of the world, Taiwan has set CO2 emissions reduction policy goals in the Sustainable Energy Policy Program: From 2016 to 2020, return to 2005’s CO2 emissions, and in 2025, return to 2000 emissions (215 million tons). In order to achieve this goal, from an energy perspective, in addition to improving energy efficiency, developing clean energy, and ensuring stable energy supply, in the case where the continued use of fossil fuels is still unavoidable, carbon dioxide capture, storage and reuse technologies must be used. In order to effectively slow down the deterioration of the greenhouse effect.

目前大部份鈣迴路二氧化碳捕獲程序均採用碳酸化反應器與煅燒爐的兩段循環系統,以捕獲二氧化碳及再生吸附劑。然而,兩段循環系統的反應雖然單純,但CaO與CO 2的反應速率慢,在處理大量廢氣的效率較差。 At present, most of the calcium loop carbon dioxide capture procedures use a two-stage cycle system of carbonation reactor and calciner to capture carbon dioxide and regenerate adsorbent. However, although the reaction of the two-stage circulation system is simple, the reaction rate of CaO and CO 2 is slow, and the efficiency of treating a large amount of waste gas is poor.

為解決上述問題,有文獻提出包含碳酸化反應器、煅燒爐、與水合反應器的三段循環系統之二氧化碳捕獲系統。此二氧化碳捕獲系統雖然較複雜,但氫氧化鈣與二氧化碳的反應速率較快,可大幅提升二氧化碳的捕獲效率。然而此系統在放大至工業級規模時面臨新的問題。舉例來說,碳酸化反應器中的反應屬於放熱反應,因此需要冷卻器控溫以避免碳酸化反應器過熱而造成工安問題。另一方面,一開始導入碳酸化反應器的含二氧化碳煙氣的溫度過低,無法與氫氧化鈣有效反應而需額外加熱高二氧化碳。簡言之,碳酸化反應器需要加熱含二氧化碳煙氣,並冷卻碳酸化反應後的煙氣及吸附劑,這些必要裝置與操作都會耗能。另一方面,水合反應器需採用過熱蒸汽與氧化鈣反應。產生過熱蒸汽的步驟係先加熱水產生飽合蒸汽,再加熱飽合蒸汽以形成過熱蒸汽。這些加熱步驟需要額外加熱設備,即進一步耗能並增加二氧化碳排放。In order to solve the above problems, some documents propose a carbon dioxide capture system with a three-stage cycle system including a carbonation reactor, a calciner, and a hydration reactor. Although this carbon dioxide capture system is more complicated, the reaction rate of calcium hydroxide and carbon dioxide is faster, which can greatly improve the efficiency of carbon dioxide capture. However, this system faces new problems when it is scaled up to an industrial scale. For example, the reaction in the carbonation reactor is an exothermic reaction, so a cooler is required to control the temperature to avoid overheating the carbonation reactor and cause work safety problems. On the other hand, the temperature of the carbon dioxide-containing flue gas introduced into the carbonation reactor at the beginning is too low to effectively react with calcium hydroxide and requires additional heating of high carbon dioxide. In short, the carbonation reactor needs to heat the flue gas containing carbon dioxide and cool the flue gas and adsorbent after the carbonation reaction. These necessary devices and operations will consume energy. On the other hand, the hydration reactor needs to use superheated steam to react with calcium oxide. The step of generating superheated steam is to first heat water to generate saturated steam, and then heat the saturated steam to form superheated steam. These heating steps require additional heating equipment, which further consumes energy and increases carbon dioxide emissions.

綜上所述,目前亟需新的系統設計,以克服前述三段循環系統產生的問題。In summary, there is an urgent need for a new system design to overcome the problems caused by the aforementioned three-stage circulation system.

本揭露一實施例提供之碳酸化反應器,包括:相連且直立的多個旋風集塵單元及多個上升管,其中每一旋風集塵單元包括側部的進料口、頂部的排氣口、與底部的一排料口,兩個相鄰的旋風集塵單元中,上側的旋風集塵單元的排料口連接至下方的上升管,並由上升管連接至下側的旋風集塵單元的進料口,且上側的旋風集塵單元的進料口亦藉由次上側的上升管連接至下側的旋風集塵單元的排氣口,其中連接至次上側的旋風集塵單元的進料口藉由次上側的上升管接收金屬氫氧化物,最下側的旋風集塵單元的進料口經由最下側的上升管接收煙氣,且金屬氫氧化物的溫度大於煙氣的溫度,其中旋風集塵單元的每一者中的金屬氫氧化物自進料口朝排料口落下,並與逆向的煙氣熱交換並反應形成金屬碳酸化物之粉體,由排氣口排出較低二氧化碳濃度的煙氣,並由排料口排出金屬碳酸化物與未反應的金屬氫氧化物。The carbonation reactor provided by an embodiment of the present disclosure includes a plurality of connected and upright cyclone dust collection units and a plurality of rising pipes, wherein each cyclone dust collection unit includes a side inlet and a top exhaust port , With a discharge port at the bottom, among the two adjacent cyclone dust collection units, the discharge port of the cyclone dust collection unit on the upper side is connected to the lower riser pipe, and the riser pipe is connected to the lower cyclone dust collection unit The feed port of the cyclone dust collection unit on the upper side is also connected to the exhaust port of the cyclone dust collection unit on the lower side by the rising pipe on the next upper side, which is connected to the inlet of the cyclone dust collection unit on the next upper side. The feed port receives the metal hydroxide through the upper side ascending pipe, and the feed port of the cyclone dust collection unit on the lower side receives the flue gas through the lowermost ascending pipe, and the temperature of the metal hydroxide is greater than the temperature of the flue gas , Wherein the metal hydroxide in each of the cyclone dust collection unit falls from the feed port toward the discharge port, and exchanges heat with the reverse flue gas and reacts to form metal carbonate powder, which is discharged from the exhaust port. Low carbon dioxide concentration flue gas, and discharge metal carbonate and unreacted metal hydroxide from the discharge port.

在一實施例中,最下側上升管接受的煙氣的溫度介於50℃至200℃之間並提供至最下側的旋風集塵單元的進料口,且次上側上升管的進料口接收的金屬氫氧化物的溫度介於200℃至500℃之間並提供至次上側的旋風集塵單元的進料口。In an embodiment, the temperature of the flue gas received by the lowermost riser is between 50°C and 200°C and is supplied to the feed inlet of the lowermost cyclone dust collection unit, and the feed of the next upper riser The temperature of the metal hydroxide received at the port is between 200°C and 500°C and is provided to the feed port of the cyclone dust collection unit on the next upper side.

在一實施例中,碳酸化反應器中的金屬氫氧化物與逆向的煙氣反應及熱交換後的溫度介於350℃至650℃之間。 本揭露一實施例提供之二氧化碳捕獲系統,包括:碳酸化反應器,包括:相連且直立的多個旋風集塵單元及多個上升管,其中每一旋風集塵單元包括側部的進料口、頂部的排氣口、與底部的一排料口,兩個相鄰的旋風集塵單元中,上側的旋風集塵單元的排料口連接至下方的上升管,並由上升管連接至下側的旋風集塵單元的進料口,且上側的旋風集塵單元的進料口亦藉由次上側的上升管連接至下側的旋風集塵單元的排氣口,其中連接至次上側的旋風集塵單元的進料口藉由次上側的上升管接收金屬氫氧化物,最下側的旋風集塵單元的進料口經由最下側的上升管接收煙氣,且金屬氫氧化物的溫度大於煙氣的溫度,其中旋風集塵單元的每一者中的金屬氫氧化物自進料口朝排料口落下,並與逆向的煙氣熱交換並反應形成金屬碳酸化物之粉體,由排氣口排出較低二氧化碳濃度的煙氣,並由排料口排出金屬碳酸化物與未反應的金屬氫氧化物;煅燒爐,連接至碳酸化反應器之最下側的旋風集塵單元之排料口,以接收金屬碳酸化物之粉體,並煅燒金屬碳酸化物以形成金屬氧化物與高溫且高濃度的二氧化碳;水合反應器,連接至煅燒爐以接收金屬氧化物,並使金屬氧化物與過熱蒸汽反應形成金屬氫氧化物,其中碳酸化反應器的次上側的旋風集塵單元之進料口連接至水合反應器,以自水合反應器接收金屬氫氧化物。 In one embodiment, the temperature after the metal hydroxide in the carbonation reactor reacts with the reverse flue gas and heat exchange is between 350°C and 650°C. The carbon dioxide capture system provided by an embodiment of the present disclosure includes: a carbonation reactor, including: a plurality of connected and upright cyclone dust collection units and a plurality of risers, wherein each cyclone dust collection unit includes a side feed inlet , The exhaust port on the top, and a discharge port on the bottom. Among the two adjacent cyclone dust collection units, the discharge port of the cyclone dust collection unit on the upper side is connected to the lower riser pipe, and the riser pipe is connected to the lower The feed port of the cyclone dust collection unit on the side, and the feed port of the cyclone dust collection unit on the upper side is also connected to the exhaust port of the cyclone dust collection unit on the lower side by a rising pipe on the next upper side, which is connected to the The feed inlet of the cyclone dust collection unit receives the metal hydroxide through the upper side ascending pipe, and the feed inlet of the lowermost cyclone dust collection unit receives the flue gas through the lowermost ascending pipe, and the metal hydroxide The temperature is greater than the temperature of the flue gas, where the metal hydroxide in each of the cyclone dust collection units falls from the feed port toward the discharge port, and exchanges heat with the reverse flue gas and reacts to form metal carbonate powder, The flue gas with lower carbon dioxide concentration is discharged from the exhaust port, and the metal carbonate and unreacted metal hydroxide are discharged from the discharge port; the calciner is connected to one of the cyclone dust collection units on the lower side of the carbonation reactor The discharge port is used to receive the powder of metal carbonate and calcinate the metal carbonate to form metal oxides and high-temperature and high-concentration carbon dioxide; a hydration reactor is connected to the calcining furnace to receive metal oxides and make metal oxides It reacts with superheated steam to form metal hydroxide, wherein the feed port of the cyclone dust collection unit on the next upper side of the carbonation reactor is connected to the hydration reactor to receive the metal hydroxide from the hydration reactor.

在一實施例中,最下側上升管接受的煙氣的溫度介於50℃至200℃之間並提供至最下側的旋風集塵單元的進料口,且次上側上升管的進料口接收的金屬氫氧化物的溫度介於200℃至500℃之間並提供至次上側的旋風集塵單元的進料口。In an embodiment, the temperature of the flue gas received by the lowermost riser is between 50°C and 200°C and is supplied to the feed inlet of the lowermost cyclone dust collection unit, and the feed of the next upper riser The temperature of the metal hydroxide received at the port is between 200°C and 500°C and is provided to the feed port of the cyclone dust collection unit on the next upper side.

在一實施例中,碳酸化反應器中的金屬氫氧化物與逆向的煙氣反應及熱交換後的溫度介於350℃至650℃之間。In one embodiment, the temperature after the metal hydroxide in the carbonation reactor reacts with the reverse flue gas and heat exchange is between 350°C and 650°C.

在一實施例中,煅燒爐中煅燒金屬碳酸化物的溫度介於850℃至1200℃之間。In one embodiment, the temperature at which the metal carbonate is calcined in the calciner is between 850°C and 1200°C.

在一實施例中,煅燒爐產生的二氧化碳,用於與飽和蒸汽熱交換以形成水合反應器所用的過熱蒸汽。In one embodiment, the carbon dioxide produced by the calciner is used for heat exchange with saturated steam to form superheated steam for the hydration reactor.

在一實施例中,煅燒爐產生的高溫且高濃度的二氧化碳,用於間接加熱通入碳酸化反應器的含二氧化碳煙氣。In one embodiment, the high-temperature and high-concentration carbon dioxide produced by the calciner is used to indirectly heat the carbon dioxide-containing flue gas passing into the carbonation reactor.

在一實施例中,水合反應器中金屬氧化物與過熱蒸汽反應的溫度介於200℃至500℃之間。In one embodiment, the temperature at which the metal oxide reacts with the superheated steam in the hydration reactor is between 200°C and 500°C.

圖1係本揭露一實施例中,二氧化碳捕獲系統100的示意圖。其具有相連的碳酸化反應器110、煅燒爐120、與水合反應器130。在此設計中,碳酸化反應器110的反應溫度(350℃至650℃)高於處理前的煙氣且含二氧化碳之煙氣101的溫度。因此需額外設置加熱器140加熱煙氣101,再將煙氣101通入碳酸化反應器110,使煙氣101中的二氧化碳與金屬氫氧化物(如氫氧化鈣)反應,接著於碳酸化反應器101排出處理後的煙氣101’。處理後的煙氣101’其二氧化碳濃度低於處理前的煙氣之二氧化碳濃度,但其溫度高於加熱前的煙氣101。然而,金屬氫氧化物與二氧化碳反應形成金屬碳酸化物(如碳酸鈣)與水的反應屬放熱反應。為了避免碳酸化反應器110的溫度過高,又需額外設置冷卻器150以避免碳酸化反應器110過熱。可以理解的是,加熱器140產生熱能的方式係以燃料燃燒,不但耗能還會產生額外的二氧化碳。換言之,為了處理煙氣101中的二氧化碳所採用的加熱器140,將額外產生需處理的二氧化碳。此外,不管冷卻器150的模式為何(比如氣冷式或水冷式),循環冷卻介質亦需額外能量。簡言之,加熱器140與冷卻器150會額外耗能、產生二氧化碳、並增加設備成本。FIG. 1 is a schematic diagram of a carbon dioxide capture system 100 in an embodiment of the present disclosure. It has a carbonation reactor 110, a calciner 120, and a hydration reactor 130 connected to it. In this design, the reaction temperature (350°C to 650°C) of the carbonation reactor 110 is higher than the temperature of the flue gas before treatment and the flue gas 101 containing carbon dioxide. Therefore, an additional heater 140 is needed to heat the flue gas 101, and then the flue gas 101 is passed into the carbonation reactor 110, so that the carbon dioxide in the flue gas 101 reacts with the metal hydroxide (such as calcium hydroxide), and then the carbonation reaction The device 101 discharges the treated flue gas 101'. The carbon dioxide concentration of the flue gas 101' after treatment is lower than that of the flue gas before treatment, but its temperature is higher than that of the flue gas 101 before heating. However, the reaction of metal hydroxides with carbon dioxide to form metal carbonates (such as calcium carbonate) and water is an exothermic reaction. In order to prevent the temperature of the carbonation reactor 110 from being too high, a cooler 150 needs to be additionally provided to prevent the carbonation reactor 110 from overheating. It can be understood that the heating method of the heater 140 is to burn fuel, which not only consumes energy but also generates additional carbon dioxide. In other words, the heater 140 used to treat the carbon dioxide in the flue gas 101 will additionally generate carbon dioxide to be treated. In addition, regardless of the mode of the cooler 150 (such as air-cooled or water-cooled), the circulating cooling medium also requires additional energy. In short, the heater 140 and the cooler 150 consume additional energy, generate carbon dioxide, and increase equipment costs.

接著,將碳酸化反應器110產生的金屬碳酸化物(如碳酸鈣)導入煅燒爐120,使金屬碳酸化物(如碳酸鈣)熱分解成金屬氧化物(如氧化鈣)與高濃度二氧化碳105 (二氧化碳濃度>80%)。然而煅燒爐120中金屬碳酸化物熱分解成金屬氧化物與高濃度二氧化碳105的反應溫度高(850℃至1200℃),因此需額外燃燒爐160加熱煅燒爐120。另一方面,煅燒爐120所產生的高濃度二氧化碳105的溫度極高,需冷卻後再進一步處理。若是採用額外冷卻器(未圖示)冷卻高濃度二氧化碳105,則需額外冷卻器的成本並額外耗能。若是讓高溫的高濃度二氧化碳105自然冷卻,則耗時且需大體積的儲放設備。Next, the metal carbonate (such as calcium carbonate) produced by the carbonation reactor 110 is introduced into the calciner 120 to thermally decompose the metal carbonate (such as calcium carbonate) into metal oxides (such as calcium oxide) and high-concentration carbon dioxide 105 (carbon dioxide). Concentration>80%). However, in the calcining furnace 120, the reaction temperature of thermal decomposition of metal carbonates into metal oxides and high-concentration carbon dioxide 105 is high (850°C to 1200°C), so an additional combustion furnace 160 is required to heat the calcining furnace 120. On the other hand, the high-concentration carbon dioxide 105 produced by the calcining furnace 120 has a very high temperature and needs to be cooled before further processing. If an additional cooler (not shown) is used to cool the high-concentration carbon dioxide 105, the cost of the additional cooler and additional energy consumption are required. If the high-temperature and high-concentration carbon dioxide 105 is allowed to cool naturally, time-consuming and large-volume storage equipment is required.

接著,將煅燒爐120產生的金屬氧化物(如氧化鈣)導入水合反應器130,使金屬氧化物(如氧化鈣)與水/水蒸汽反應形成金屬氫氧化物(如氫氧化鈣)。水合反應器130可採用溶液式的水合反應器或蒸汽式水合反應器。溶液式的水合反應器(未圖示)所產生的金屬氫氧化物(如氫氧化鈣)若是溶於水中,則需額外除水以得金屬氫氧化物乾粉,此將額外耗能。蒸汽式的水合反應器130所用的過熱蒸汽135的形成方法如下:以鍋爐170加熱水131成飽和蒸汽133,再以過熱器180加熱飽和蒸汽133成過熱蒸汽135,再將過熱蒸汽135導入水合反應器130以與金屬氧化物反應形成金屬氫氧化物。鍋爐170與過熱器180都屬產生過熱蒸汽135的必要耗能設備。由於金屬氧化物與水反應形成金屬氫氧化物的反應為放熱反應,因此需要排出較高溫的過熱蒸汽137 (溫度高於過熱蒸汽135)使水合反應器130的溫度維持在適當的反應溫度(200℃至500℃)。接著將水合反應器130產生的金屬氫氧化物以及少量未反應的金屬氧化物導入碳酸化反應器110。在碳酸化反應器110中,金屬氧化物(如氧化鈣)亦可與二氧化碳反應形成金屬碳酸化物(如碳酸鈣),不過其所需的反應溫度更高(比如高於550℃)。Next, the metal oxide (such as calcium oxide) produced by the calciner 120 is introduced into the hydration reactor 130, and the metal oxide (such as calcium oxide) reacts with water/steam to form a metal hydroxide (such as calcium hydroxide). The hydration reactor 130 may adopt a solution type hydration reactor or a steam type hydration reactor. If the metal hydroxide (such as calcium hydroxide) produced by the solution-type hydration reactor (not shown) is soluble in water, additional water needs to be removed to obtain the metal hydroxide dry powder, which will consume additional energy. The superheated steam 135 used in the steam-type hydration reactor 130 is formed as follows: the boiler 170 heats water 131 into saturated steam 133, then the superheater 180 heats the saturated steam 133 into superheated steam 135, and then introduces the superheated steam 135 into the hydration reaction The reactor 130 reacts with the metal oxide to form a metal hydroxide. Both the boiler 170 and the superheater 180 are necessary energy-consuming equipment for generating superheated steam 135. Since the reaction of metal oxides and water to form metal hydroxides is exothermic, it is necessary to discharge higher-temperature superheated steam 137 (temperature higher than superheated steam 135) to maintain the temperature of the hydration reactor 130 at an appropriate reaction temperature (200 ℃ to 500 ℃). Then, the metal hydroxide produced by the hydration reactor 130 and a small amount of unreacted metal oxide are introduced into the carbonation reactor 110. In the carbonation reactor 110, metal oxides (such as calcium oxide) can also react with carbon dioxide to form metal carbonates (such as calcium carbonate), but the required reaction temperature is higher (for example, higher than 550°C).

綜上所述,上述系統在放大至工業級應用時,碳酸化反應器110、煅燒爐120、與水合反應器130都需額外的加熱器及/或冷卻器(如加熱器140、冷卻器150、燃燒爐160、鍋爐170、與過熱器180)以達所需的反應溫度或反應物,均會增加設備成本與能耗並增加額外的二氧化碳。In summary, when the above system is scaled up to industrial applications, the carbonation reactor 110, the calciner 120, and the hydration reactor 130 all require additional heaters and/or coolers (such as heater 140, cooler 150). , The combustion furnace 160, the boiler 170, and the superheater 180) to achieve the required reaction temperature or reactants, will increase equipment costs and energy consumption and increase additional carbon dioxide.

本揭露之另一實施例提供另一二氧化碳捕獲系統200,如圖2所示。在碳酸化反應器110中,自頂部置入高溫的金屬氫氧化物粉體(約200℃至500℃),並自底部通入低溫且含二氧化碳之煙氣101 (約50℃至200℃),使低溫且含二氧化碳之煙氣101與高溫的金屬氫氧化物粉體(可能含少量的金屬氧化物)產生熱交換與反應形成金屬碳酸化物。舉例來說,碳酸化反應器110的上側部份屬反應區,即金屬氫氧化物粉體(可能含少量的金屬氧化物)與煙氣101中的二氧化碳反應以形成金屬碳酸化物。碳酸化反應器110的下側部份屬熱交換區,即高溫的金屬碳酸化物與低溫且含二氧化碳之煙氣101產生熱交換。進一步說明如下,金屬碳酸化物因重力而落至碳酸化反應器110的底部,並接觸上升的煙氣101而產生熱交換,即金屬碳酸化物的溫度降低,而煙氣101的溫度升高。最後,處理後的煙氣101’之二氧化碳濃度降低(可降低至無二氧化碳)並自碳酸化反應器110的頂部排出。經由上述設計可省略圖1中加熱煙氣101的加熱器140,以及冷卻碳酸化反應器110的冷卻器150。Another embodiment of the present disclosure provides another carbon dioxide capture system 200, as shown in FIG. 2. In the carbonation reactor 110, a high-temperature metal hydroxide powder (about 200°C to 500°C) is introduced from the top, and a low-temperature and carbon dioxide-containing flue gas 101 (about 50°C to 200°C) is introduced from the bottom. , The low-temperature and carbon dioxide-containing flue gas 101 and the high-temperature metal hydroxide powder (may contain a small amount of metal oxide) heat exchange and react to form metal carbonate. For example, the upper part of the carbonation reactor 110 belongs to the reaction zone, that is, the metal hydroxide powder (which may contain a small amount of metal oxide) reacts with carbon dioxide in the flue gas 101 to form metal carbonates. The lower part of the carbonation reactor 110 is a heat exchange zone, that is, high temperature metal carbonate and low temperature and carbon dioxide-containing flue gas 101 generate heat exchange. It is further explained as follows that the metal carbonate falls to the bottom of the carbonation reactor 110 due to gravity and contacts the rising flue gas 101 to generate heat exchange, that is, the temperature of the metal carbonate decreases while the temperature of the flue gas 101 increases. Finally, the carbon dioxide concentration of the treated flue gas 101' is reduced (can be reduced to no carbon dioxide) and is discharged from the top of the carbonation reactor 110. Through the above design, the heater 140 for heating the flue gas 101 and the cooler 150 for cooling the carbonation reactor 110 in FIG. 1 can be omitted.

在一實施例中,碳酸化反應器110包括相連且直立的多個旋風集塵單元及多個上升管,如圖3所示。值得注意的是,圖3中的碳酸化反應器110具有五個旋風集塵單元(如旋風集塵單元C0至C4)及上升管(如上升管L0至L4),但碳酸化反應器110可具有更多或更少的旋風集塵單元及上升管,例如3至10個旋風集塵單元及3至10個上升管,端視實際需求而定。每一旋風集塵單元包括側部的進料口410、頂部的排氣口420、與底部的排料口430,如圖4所示。In one embodiment, the carbonation reactor 110 includes a plurality of connected and upright cyclone dust collection units and a plurality of risers, as shown in FIG. 3. It is worth noting that the carbonation reactor 110 in FIG. 3 has five cyclone dust collection units (such as cyclone dust collection units C0 to C4) and risers (such as risers L0 to L4), but the carbonation reactor 110 can There are more or fewer cyclone dust collection units and risers, such as 3 to 10 cyclone dust collection units and 3 to 10 risers, depending on actual needs. Each cyclone dust collection unit includes a side feed port 410, a top exhaust port 420, and a bottom discharge port 430, as shown in FIG. 4.

在圖3與圖4中,相鄰的兩個旋風集塵單元(如旋風集塵單元C1與C2)中,較上側的旋風集塵單元(如C1)之排料口430連接至下方的上升管(如L2),並藉由上升管連接至較下側的旋風集塵單元(如C2)之進料口410,詳細而言,此為固體行進方向,如圖3虛線所示。此外,較上側的旋風集塵單元(如C1)之進料口410連接至較下側的旋風集塵單元(如C2)排氣口420的上升管(如L1)。詳細而言,此為氣體行進方向,如圖3實線所示。進一步而言,虛線為固體的行進方向,而實線為氣體的行進方向,且固體與氣體在同一上升管中行進。以圖3為例,先將含二氧化碳煙氣101經上升管L4提供至最下側的旋風集塵單元C4的進料口410,其於旋風集塵單元C4中的行進方向如圖4所示,先迴旋向下後,再往上吹出旋風集塵單元C4的排氣口420,再經上升管L3進入旋風集塵單元C3的進料口410。與前述類似,煙氣101依序吹經旋風集塵單元C3、上升管L2、旋風集塵單元C2、上升管L1、旋風集塵單元C1、上升管L0、與旋風集塵單元C0,最後處理後的煙氣101’由旋風集塵單元之排氣口排出。在含二氧化碳煙氣101離開旋風集塵單元C2的排氣口420時,可經由上升管L1將高溫的金屬氫氧化物粉體(如Ca(OH) 2,比如來自水合反應器130的金屬氫氧化物粉體,其可能含少量的金屬氧化物如氧化鈣)與來自旋風集塵單元C0的排料口430的粉體(如下述),一同吹入旋風集塵單元C1,使旋風集塵單元C1中的金屬氫氧化物自進料口410朝排料口430落下,並與先迴旋向下再向上吸出(即逆向)的含二氧化碳煙氣101反應形成金屬碳酸化物。如此一來,可由旋風集塵單元C1的排氣口420排出經處理後煙氣101’。處理後的煙氣101’其二氧化碳濃度相較於進入碳酸化反應器的處理前之煙氣101的二氧化碳濃度較低,並由旋風集塵單元C1的排料口430排出金屬碳酸化物與未反應的金屬氫氧化物。 In Figures 3 and 4, in two adjacent cyclone dust collection units (such as cyclone dust collection units C1 and C2), the upper side of the cyclone dust collection unit (such as C1) has the discharge port 430 connected to the lower riser The pipe (such as L2) is connected to the feed inlet 410 of the cyclone dust collection unit (such as C2) on the lower side by a rising pipe. In detail, this is the direction of solid travel, as shown by the dotted line in FIG. 3. In addition, the feed inlet 410 of the upper cyclone dust collection unit (such as C1) is connected to the rising pipe (such as L1) of the exhaust port 420 of the lower cyclone dust collection unit (such as C2). In detail, this is the gas traveling direction, as shown by the solid line in FIG. 3. Furthermore, the dashed line is the traveling direction of the solid, and the solid line is the traveling direction of the gas, and the solid and the gas travel in the same riser. Taking Figure 3 as an example, first, the carbon dioxide-containing flue gas 101 is supplied to the feed inlet 410 of the cyclone dust collection unit C4 through the riser L4, and its traveling direction in the cyclone dust collection unit C4 is shown in Figure 4 , After turning downwards, blow up the exhaust port 420 of the cyclone dust collection unit C4, and then enter the feed port 410 of the cyclone dust collection unit C3 through the rising pipe L3. Similar to the foregoing, the flue gas 101 is sequentially blown through the cyclone dust collection unit C3, the riser tube L2, the cyclone dust collection unit C2, the riser tube L1, the cyclone dust collection unit C1, the riser tube L0, and the cyclone dust collection unit C0 for final treatment. The subsequent smoke 101' is discharged from the exhaust port of the cyclone dust collection unit. When the carbon dioxide-containing flue gas 101 leaves the exhaust port 420 of the cyclone dust collection unit C2, the high temperature metal hydroxide powder (such as Ca(OH) 2 , such as the metal hydrogen from the hydration reactor 130) can be removed through the riser L1. Oxide powder, which may contain a small amount of metal oxides such as calcium oxide, and the powder from the discharge port 430 of the cyclone dust collection unit C0 (as described below) are blown into the cyclone dust collection unit C1 together to make the cyclone dust collection The metal hydroxide in the unit C1 falls from the feed port 410 toward the discharge port 430, and reacts with the carbon dioxide-containing flue gas 101 that first swirls downwards and then sucks upwards (ie, reverse) to form metal carbonates. In this way, the treated flue gas 101' can be discharged from the exhaust port 420 of the cyclone dust collection unit C1. The carbon dioxide concentration of the treated flue gas 101' is lower than that of the flue gas 101 before treatment entering the carbonation reactor, and the metal carbonate and unreacted metal carbonate are discharged from the discharge port 430 of the cyclone dust collection unit C1 Metal hydroxide.

旋風集塵單元C1排出的煙氣101’可能含有少量粉體,因此進入旋風集塵單元C0的進料口410,使少量粉體自旋風集塵單元C0的排料口430排出。如圖3與4所示,旋風集塵單元C0的排料口430所排出的粉體,可與旋風集塵單元C2的排氣口420排出的含二氧化碳煙氣101經由上升管L1送入旋風集塵單元C1。旋風集塵單元C1之排料口430排出的粉體,將被自旋風集塵單元C3排出的煙氣101經由上升管L2送進旋風集塵單元C2,並進行反應同前述。隨著金屬氫氧化物粉體自上升管L1→旋風集塵單元C1→上升管L2→旋風集塵單元C2→上升管L3→旋風集塵單元C3→上升管L4→旋風集塵單元C4的順序,最後自旋風集塵單元C4的底部排料口430所排出的固體組成主要為金屬碳酸化物。另一方面,含二氧化碳之煙氣101自上升管L4→旋風集塵單元C4→上升管L3→旋風集塵單元C3→上升管L2→旋風集塵單元C2→上升管L1→旋風集塵單元C1→上升管L0→旋風集塵單元C0的順序,最後自旋風集塵單元C0頂部的排氣口420排出低二氧化碳濃度的處理後煙氣101’,即達二氧化碳捕獲的目的。值得注意的是,在較上方的旋風集塵單元(如C1與C2)中,粉體主要組成為金屬氫氧化物,因此主要進行金屬氫氧化物與二氧化碳反應形成金屬碳酸化物的反應。在較下方的旋風集塵單元(如C3與C4)中,粉體主要組成為金屬碳酸化物,因此主要進行粉體與含二氧化碳煙氣101的熱交換,即增加含二氧化碳煙氣101的溫度與降低粉體的溫度。不過可以理解的是,在較上方的旋風集塵單元仍可能有熱交換的現象,比如放熱反應產生的金屬碳酸化物溫度高於煙氣101的溫度時,煙氣101會與金屬碳酸化物產生熱交換而增加煙氣101的溫度並降低碳酸鈣的溫度。另一方面,較下方的旋風集塵單元中的粉體若含金屬氫氧化物,亦可能與煙氣101中的二氧化碳產生反應形成金屬碳酸化物。此外,較下方的上升管(如L4與L3)的長度,比較上方的上升管(如L0與L1)的長度長,以達較上方的旋風集塵單元(如C1與C2)主要進行金屬氫氧化物與二氧化碳反應形成金屬碳酸化物的反應,而較下方的旋風集塵單元(如C3與C4)主要進行煙氣101與粉體的熱交換的設計。The flue gas 101' discharged from the cyclone dust collection unit C1 may contain a small amount of powder, so it enters the inlet 410 of the cyclone dust collection unit C0, and a small amount of powder is discharged from the discharge port 430 of the cyclone dust collection unit C0. As shown in Figures 3 and 4, the powder discharged from the discharge port 430 of the cyclone dust collection unit C0 can be fed into the cyclone through the riser L1 with the carbon dioxide-containing flue gas 101 discharged from the exhaust port 420 of the cyclone dust collection unit C2 Dust collection unit C1. The powder discharged from the discharge port 430 of the cyclone dust collecting unit C1 sends the flue gas 101 discharged from the spinning dust collecting unit C3 to the cyclone dust collecting unit C2 through the rising pipe L2, and the reaction is the same as described above. With the sequence of metal hydroxide powder self-rising tube L1 → cyclone dust collection unit C1 → rising tube L2 → cyclone dust collection unit C2 → rising tube L3 → cyclone dust collection unit C3 → rising tube L4 → cyclone dust collection unit C4 Finally, the solid composition discharged from the bottom discharge port 430 of the spin-cyclone dust collection unit C4 is mainly metal carbonate. On the other hand, the flue gas containing carbon dioxide 101 from the rising pipe L4 → cyclone dust collection unit C4 → rising pipe L3 → cyclone dust collecting unit C3 → rising pipe L2 → cyclone dust collecting unit C2 → rising pipe L1 → cyclone dust collecting unit C1 The sequence of → rising pipe L0 → cyclone dust collection unit C0, and finally the exhaust port 420 at the top of the spin wind dust collection unit C0 discharges treated flue gas 101' with low carbon dioxide concentration, that is, the purpose of carbon dioxide capture is achieved. It is worth noting that in the upper cyclone dust collection unit (such as C1 and C2), the powder is mainly composed of metal hydroxides, so the metal hydroxides and carbon dioxide react to form metal carbonates. In the lower cyclone dust collection unit (such as C3 and C4), the powder is mainly composed of metal carbonate, so the heat exchange between the powder and the carbon dioxide-containing flue gas 101 is mainly carried out, that is, the temperature and the temperature of the carbon dioxide-containing flue gas 101 are increased. Lower the temperature of the powder. However, it is understandable that the upper cyclone dust collection unit may still have heat exchange. For example, when the temperature of the metal carbonate produced by the exothermic reaction is higher than the temperature of the flue gas 101, the flue gas 101 will generate heat with the metal carbonate. Exchange to increase the temperature of the flue gas 101 and decrease the temperature of calcium carbonate. On the other hand, if the powder in the lower cyclone dust collection unit contains metal hydroxides, it may also react with the carbon dioxide in the flue gas 101 to form metal carbonates. In addition, the length of the lower riser pipe (such as L4 and L3) is longer than the length of the upper riser pipe (such as L0 and L1), so that the upper cyclone dust collection unit (such as C1 and C2) mainly conducts metal hydrogen Oxides react with carbon dioxide to form metal carbonates, and the lower cyclone dust collection unit (such as C3 and C4) is mainly designed for heat exchange between flue gas 101 and powder.

圖3中旋風集塵單元C0、C1、C2、C3、與C4的位置僅為舉例,本技術領域中具有通常知識者自可依實際需求調整上述旋風集塵單元的相對位置。另一方面,圖3中旋風集塵單元C0、C1、C2、C3、與C4具有類似尺寸,但實際上不同的旋風集塵單元C0、C1、C2、C3、與C4亦可具有不同尺寸,端視設計需求而定。The positions of the cyclone dust collection units C0, C1, C2, C3, and C4 in FIG. 3 are only examples. Those skilled in the art can adjust the relative positions of the cyclone dust collection units according to actual needs. On the other hand, the cyclone dust collection units C0, C1, C2, C3, and C4 in Figure 3 have similar sizes, but in fact, different cyclone dust collection units C0, C1, C2, C3, and C4 can also have different sizes. It depends on the design requirements.

在一實施例中,來自水合反應器130的金屬氫氧化物(此處為氫氧化鈣)的質量流率為2.15 ton/h,用於捕獲0.16 ton/h的二氧化碳。設定含二氧化碳煙氣101的溫度為100℃、150℃、與200℃,計算旋風集塵單元與上升管的溫度如表1。由表1可知,當通入煙氣101的溫度越高,則越多上升管與越多旋風集塵單元的溫度可達氫氧化鈣碳酸化的溫度(比如高於300℃)與氧化鈣碳酸化的溫度(比如高於550℃)。In one embodiment, the mass flow rate of the metal hydroxide (calcium hydroxide here) from the hydration reactor 130 is 2.15 ton/h, which is used to capture 0.16 ton/h of carbon dioxide. Set the temperature of the carbon dioxide-containing flue gas 101 to 100°C, 150°C, and 200°C, and calculate the temperature of the cyclone dust collection unit and the rising pipe as shown in Table 1. It can be seen from Table 1 that when the temperature of the flue gas 101 is higher, the temperature of the more risers and the more cyclone dust collection units can reach the temperature of calcium hydroxide carbonation (for example, higher than 300℃) and calcium oxide carbonic acid. Temperature (for example, higher than 550°C).

表1 煙氣溫度(℃) 熱交換 效率(%) 溫度(℃) L4 C4 L3 C3 L2 C2 L1 C1 100 50 193 209 243 259 292 308 407 423 70 229 252 302 324 370 392 527 548 100 283 315 381 412 476 506 693 722 150 50 241 257 291 307 340 356 454 469 70 277 299 234 371 417 439 573 594 100 330 361 426 457 521 551 737 766 200 50 290 306 339 355 388 404 501 516 70 326 348 394 416 461 482 614 635 100 378 409 473 503 566 596 780 809 Table 1 Flue gas temperature (℃) Heat exchange efficiency (%) Temperature(℃) L4 C4 L3 C3 L2 C2 L1 C1 100 50 193 209 243 259 292 308 407 423 70 229 252 302 324 370 392 527 548 100 283 315 381 412 476 506 693 722 150 50 241 257 291 307 340 356 454 469 70 277 299 234 371 417 439 573 594 100 330 361 426 457 521 551 737 766 200 50 290 306 339 355 388 404 501 516 70 326 348 394 416 461 482 614 635 100 378 409 473 503 566 596 780 809

回到圖2,上述形成之金屬碳酸化物送至煅燒爐120進行高溫煅燒,使金屬碳酸化物分解成金屬氧化物與高溫的高濃度二氧化碳105,並將高溫的高濃度二氧化碳105導入熱交換器190,以與飽和蒸汽133進行熱交換以使其形成過熱蒸氣,如下述。另一方面,高溫的高濃度二氧化碳105可導入高溫的燃燒爐160,以提升高溫煙氣質量流率,以利純氧煅燒爐120之操作,及提升煅燒爐120之粉體輸送效率。Returning to Figure 2, the metal carbonate formed above is sent to the calcining furnace 120 for high-temperature calcination to decompose the metal carbonate into metal oxides and high-temperature high-concentration carbon dioxide 105, and the high-temperature high-concentration carbon dioxide 105 is introduced into the heat exchanger 190 , To exchange heat with saturated steam 133 to form superheated steam, as follows. On the other hand, the high-temperature high-concentration carbon dioxide 105 can be introduced into the high-temperature combustion furnace 160 to increase the mass flow rate of the high-temperature flue gas, so as to facilitate the operation of the pure oxygen calciner 120 and improve the powder transportation efficiency of the calciner 120.

接著將煅燒爐120產生的金屬氧化物導入蒸汽式的水合反應器130,使金屬氧化物與水反應形成金屬氫氧化物。蒸汽式的水合反應器130所用的過熱蒸汽135的形成方法如下:以鍋爐170加熱水131成飽和蒸汽133,再以熱交換器190使飽和蒸汽133與高溫的高濃度二氧化碳105產生熱交換,降低高溫的高濃度二氧化碳105的溫度,並增加飽和蒸汽133的溫度以形成過熱蒸汽135。熱交換器190可節省加熱飽和蒸汽133的能耗與額外產生的二氧化碳,並節省冷卻煅燒爐120產生的高溫高濃度二氧化碳105所需的設備、時間、能耗、與額外產生的二氧化碳。Next, the metal oxide produced by the calcining furnace 120 is introduced into the steam-type hydration reactor 130 to react the metal oxide with water to form a metal hydroxide. The superheated steam 135 used in the steam-type hydration reactor 130 is formed as follows: the boiler 170 heats the water 131 into saturated steam 133, and then the heat exchanger 190 makes the saturated steam 133 and the high-concentration carbon dioxide 105 produce heat exchange, reducing The temperature of high-temperature high-concentration carbon dioxide 105 is increased, and the temperature of saturated steam 133 is increased to form superheated steam 135. The heat exchanger 190 can save the energy consumption of heating the saturated steam 133 and the extra carbon dioxide produced, and save the equipment, time, energy consumption, and extra carbon dioxide required to cool the high temperature and high concentration carbon dioxide 105 produced by the calciner 120.

接著將過熱蒸汽135導入水合反應器130以與金屬氧化物反應形成金屬氫氧化物。由於金屬氧化物與水反應形成金屬氫氧化物的反應屬放熱反應,因此需要排出較高溫的過熱蒸汽137 (溫度高於過熱蒸汽135)使水合反應器130的溫度維持在適當的反應溫度(200℃至500℃)。在此實施例中,可將過熱蒸汽137送回熱交換器190中,以減少鍋爐170所需形成的飽和蒸汽133,亦減少熱交換器190中自飽和蒸汽133形成過熱蒸汽135所需的熱能。接著將水合反應器130產生的金屬氫氧化物導入碳酸化反應器110。The superheated steam 135 is then introduced into the hydration reactor 130 to react with the metal oxide to form a metal hydroxide. Since the reaction of metal oxides and water to form metal hydroxides is exothermic, it is necessary to discharge higher temperature superheated steam 137 (temperature higher than superheated steam 135) to maintain the temperature of the hydration reactor 130 at an appropriate reaction temperature (200 ℃ to 500 ℃). In this embodiment, the superheated steam 137 can be sent back to the heat exchanger 190 to reduce the saturated steam 133 required by the boiler 170 and also reduce the heat energy required to form the superheated steam 135 from the saturated steam 133 in the heat exchanger 190 . Next, the metal hydroxide produced in the hydration reactor 130 is introduced into the carbonation reactor 110.

如圖5所示,亦可取煅燒爐120產生的高溫的高濃度二氧化碳105加熱(非混合)通入碳酸化反應器110的煙氣101,以減少碳酸化反應器110為使煙氣與金屬氫氧化物熱交換所需的熱交換旋風集塵單元的數目。As shown in Figure 5, the high-temperature and high-concentration carbon dioxide 105 generated by the calciner 120 can also be used to heat (unmix) the flue gas 101 passing into the carbonation reactor 110 to reduce the carbonation reactor 110 to make the flue gas and metal hydrogen The number of heat exchange cyclone dust collection units required for oxide heat exchange.

在上述實施例中,一開始可將金屬碳酸化物置入煅燒爐120、將金屬氧化物置入水合反應器130、或將金屬氫氧化物置入碳酸化反應器110的頂部。在一些實施例中,可在過程中補充金屬碳酸化物至煅燒爐120中、補充金屬氧化物至水合反應器130中、並補充金屬氫氧化物至碳酸化反應器110的頂部。在上述實施例中,金屬碳酸化物、金屬氫氧化物、金屬氧化物的金屬可為鈣。在其他實施例中,金屬碳酸化物、金屬氫氧化物、金屬氧化物的金屬可為鎂或其他合適金屬。In the above embodiment, the metal carbonate can be placed in the calciner 120, the metal oxide can be placed in the hydration reactor 130, or the metal hydroxide can be placed on the top of the carbonation reactor 110 at the beginning. In some embodiments, metal carbonate can be added to the calciner 120, metal oxides can be added to the hydration reactor 130, and metal hydroxide can be added to the top of the carbonation reactor 110 during the process. In the above embodiments, the metal of the metal carbonate, metal hydroxide, and metal oxide may be calcium. In other embodiments, the metal of the metal carbonate, metal hydroxide, and metal oxide may be magnesium or other suitable metals.

Ca(OH) 2與CaO在不同溫度下轉換不同比例的CO2的效果如表2所示。如表2所示,Ca(OH) 2在350°C下的碳酸化轉化率即有60%,而CaO在反應溫度高於500°C時,碳酸化轉化率才大幅提升。此外,Ca(OH) 2之碳酸化轉化率較高,可操作之溫度範圍較廣,在整體反應程序設計之彈性亦較大,且二氧化碳濃度不會影響其結果。簡言之,Ca(OH) 2比CaO適於捕獲二氧化碳。 Table 2 shows the effect of Ca(OH) 2 and CaO converting different ratios of CO2 at different temperatures. As shown in Table 2, the carbonation conversion rate of Ca(OH) 2 at 350°C is 60%, and when the reaction temperature of CaO is higher than 500°C, the carbonation conversion rate is greatly increased. In addition, Ca(OH) 2 has a higher carbonation conversion rate, a wider operating temperature range, and greater flexibility in the overall reaction program design, and the carbon dioxide concentration will not affect the results. In short, Ca(OH) 2 is more suitable for capturing carbon dioxide than CaO.

表2 溫度(℃) 氧化鈣碳酸化轉化率(%) 氫氧化鈣碳酸化轉化率(%) 100%CO 2 30% CO 2 15% CO 2 100%CO 2 30% CO 2 15% CO 2 350 12.61 8.16 8.15 60.69 60.29 59.57 400 16.99 12.50 11.29 69.18 69.84 63.00 450 20.99 17.05 14.92 71.45 72.36 72.02 500 26.64 24.15 21.24 73.07 74.21 74.00 550 38.07 38.90 37.23 74.87 75.95 74.79 600 54.81 57.44 57.77 77.07 77.46 75.79 650 59.82 61.61 62.07 79.76 78.67 76.69 Table 2 Temperature(℃) Calcium oxide carbonation conversion rate (%) Calcium hydroxide carbonation conversion rate (%) 100%CO 2 30% CO 2 15% CO 2 100%CO 2 30% CO 2 15% CO 2 350 12.61 8.16 8.15 60.69 60.29 59.57 400 16.99 12.50 11.29 69.18 69.84 63.00 450 20.99 17.05 14.92 71.45 72.36 72.02 500 26.64 24.15 21.24 73.07 74.21 74.00 550 38.07 38.90 37.23 74.87 75.95 74.79 600 54.81 57.44 57.77 77.07 77.46 75.79 650 59.82 61.61 62.07 79.76 78.67 76.69

綜上所述,本申請案提供新穎的二氧化碳捕獲系統,可有效減少能耗及額外產生的二氧化碳。In summary, this application provides a novel carbon dioxide capture system that can effectively reduce energy consumption and additional carbon dioxide generated.

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in several embodiments as above, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field can make any changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of this disclosure shall be subject to those defined by the attached patent application scope.

C0、C1、C2、C3、C4:旋風集塵單元 L0、L1、L2、L3、L4:上升管 100、200:二氧化碳捕獲系統 101、101’:煙氣 105:高濃度二氧化碳 110:碳酸化反應器 120:煅燒爐 130:水合反應器 131:水 133:飽和蒸汽 135、137:過熱蒸汽 140:加熱器 150:冷卻器 160:燃燒爐 170:鍋爐 180:過熱器 190:熱交換器 410:進料口 420:排氣口 430:排料口C0, C1, C2, C3, C4: cyclone dust collection unit L0, L1, L2, L3, L4: rising tube 100, 200: carbon dioxide capture system 101, 101’: Smoke 105: high concentration of carbon dioxide 110: Carbonation reactor 120: Calciner 130: Hydration reactor 131: Water 133: saturated steam 135, 137: Superheated steam 140: heater 150: cooler 160: Burning furnace 170: boiler 180: Superheater 190: Heat Exchanger 410: Inlet 420: exhaust port 430: Discharge opening

圖1係本揭露一實施例中,二氧化碳捕獲系統的示意圖。 圖2係本揭露一實施例中,二氧化碳捕獲系統的示意圖。 圖3係本揭露一實施例中,碳酸化反應器的示意圖。 圖4係本揭露一實施例中,旋風集塵單元的示意圖。 圖5係本揭露一實施例中,二氧化碳捕獲系統的示意圖。 Fig. 1 is a schematic diagram of a carbon dioxide capture system in an embodiment of the present disclosure. FIG. 2 is a schematic diagram of the carbon dioxide capture system in an embodiment of the present disclosure. Figure 3 is a schematic diagram of a carbonation reactor in an embodiment of the present disclosure. 4 is a schematic diagram of the cyclone dust collection unit in an embodiment of the present disclosure. FIG. 5 is a schematic diagram of the carbon dioxide capture system in an embodiment of the present disclosure.

101、101’:煙氣 101, 101’: Smoke

105:高濃度二氧化碳 105: high concentration of carbon dioxide

110:碳酸化反應器 110: Carbonation reactor

120:煅燒爐 120: Calciner

130:水合反應器 130: Hydration reactor

131:水 131: Water

133:飽和蒸汽 133: saturated steam

135、137:過熱蒸汽 135, 137: Superheated steam

160:燃燒爐 160: Burning furnace

170:鍋爐 170: boiler

190:熱交換器 190: Heat Exchanger

200:二氧化碳捕獲系統 200: Carbon dioxide capture system

Claims (12)

一種碳酸化反應器,包括: 相連且直立的多個旋風集塵單元及多個上升管, 其中每一該些旋風集塵單元包括一側部的一進料口、一頂部的一排氣口、與一底部的一排料口, 兩個相鄰的該些旋風集塵單元中,上側的該旋風集塵單元的該排料口連接至下方的一上升管,並由該上升管連接至下側的該旋風集塵單元的該進料口,且上側的該旋風集塵單元的該進料口亦藉由一次上側的上升管連接至下側的該旋風集塵單元的該排氣口, 其中連接至次上側的該旋風集塵單元的該進料口藉由次上側的一上升管接收一金屬氫氧化物,最下側的該旋風集塵單元的該進料口經由最下側的一上升管接收一煙氣,且該金屬氫氧化物的溫度大於該煙氣的溫度, 其中該些旋風集塵單元的每一者中的該金屬氫氧化物自該進料口朝該排料口落下,並與逆向的該煙氣熱交換並反應形成金屬碳酸化物之粉體,由該排氣口排出較低二氧化碳濃度的該煙氣,並由該排料口排出金屬碳酸化物與未反應的金屬氫氧化物。 A carbonation reactor includes: Connected and upright multiple cyclone dust collection units and multiple risers, Each of these cyclone dust collection units includes an inlet at one side, an exhaust at the top, and a discharge at the bottom, In the two adjacent cyclone dust collection units, the discharge port of the cyclone dust collection unit on the upper side is connected to a rising pipe below, and the ascending pipe is connected to the cyclone dust collection unit on the lower side. The feed port, and the feed port of the cyclone dust collection unit on the upper side is also connected to the exhaust port of the cyclone dust collection unit on the lower side by a riser pipe on the upper side, The feed inlet of the cyclone dust collection unit connected to the secondary upper side receives a metal hydroxide through a riser pipe on the secondary upper side, and the feed inlet of the cyclone dust collection unit on the lowermost side passes through the lowermost A riser tube receives a flue gas, and the temperature of the metal hydroxide is greater than the temperature of the flue gas, The metal hydroxide in each of the cyclone dust collection units falls from the feed port toward the discharge port, and exchanges heat with the flue gas in the reverse direction and reacts to form metal carbonate powder. The exhaust port discharges the flue gas with a lower carbon dioxide concentration, and the metal carbonate and unreacted metal hydroxide are discharged from the discharge port. 如申請專利範圍第1項所述之碳酸化反應器,其中該最下側的上升管接收的該煙氣的溫度介於50℃至200℃之間並提供至該最下側的該旋風集塵單元之該進料口,且該次上側的上升管接收的該金屬氫氧化物的溫度介於200℃至500℃之間並提供至該至次上側的該旋風集塵單元的該進料口。The carbonation reactor as described in item 1 of the scope of patent application, wherein the temperature of the flue gas received by the lowermost riser is between 50°C and 200°C and is supplied to the lowermost cyclone collection The feed port of the dust unit, and the temperature of the metal hydroxide received by the rising pipe on the secondary upper side is between 200°C and 500°C and is supplied to the feed of the cyclone dust collection unit on the secondary upper side mouth. 如申請專利範圍第1項所述之碳酸化反應器,其中該碳酸化反應器中該金屬氫氧化物與逆向的煙氣反應的溫度介於350℃至650℃之間。According to the carbonation reactor described in item 1 of the scope of the patent application, the temperature of the reaction between the metal hydroxide and the reverse flue gas in the carbonation reactor is between 350°C and 650°C. 一種二氧化碳捕獲系統,包括: 一碳酸化反應器,包括: 相連且直立的多個旋風集塵單元及多個上升管, 其中每一該些旋風集塵單元包括一側部的一進料口、一頂部的一排氣口、與一底部的一排料口, 兩個相鄰的該些旋風集塵單元中,上側的該旋風集塵單元的該排料口連接至下方的一上升管,並由該上升管連接至下側的該旋風集塵單元的該進料口,且上側的該旋風集塵單元的該進料口亦藉由一次上側的上升管連接至下側的該旋風集塵單元的該排氣口, 其中連接至次上側的該旋風集塵單元的該進料口藉由次上側的一上升管接收一金屬氫氧化物,最下側的該旋風集塵單元的該進料口經由最下側的一上升管接收一煙氣,且該金屬氫氧化物的溫度大於該煙氣的溫度, 其中該些旋風集塵單元的每一者中的該金屬氫氧化物自該進料口朝該排料口落下,並與逆向的該煙氣熱交換並反應形成金屬碳酸化物之粉體,由該排氣口排出較低二氧化碳濃度的該煙氣,並由該排料口排出金屬碳酸化物與未反應的金屬氫氧化物; 一煅燒爐,連接至該碳酸化反應器之最下側的該旋風集塵單元之該排料口,以接收金屬碳酸化物之粉體,並煅燒該金屬碳酸化物以形成一金屬氧化物與高溫且高濃度的二氧化碳, 一水合反應器,連接至該煅燒爐以接收該金屬氧化物,並使該金屬氧化物與一過熱蒸汽反應形成一金屬氫氧化物, 其中該碳酸化反應器的次上側的該旋風集塵單元之進料口連接至該水合反應器,以自該水合反應器接收該金屬氫氧化物。 A carbon dioxide capture system, including: Monocarbonation reactor, including: Connected and upright multiple cyclone dust collection units and multiple risers, Each of these cyclone dust collection units includes an inlet at one side, an exhaust at the top, and a discharge at the bottom, In the two adjacent cyclone dust collection units, the discharge port of the cyclone dust collection unit on the upper side is connected to a rising pipe below, and the ascending pipe is connected to the cyclone dust collection unit on the lower side. The feed port, and the feed port of the cyclone dust collection unit on the upper side is also connected to the exhaust port of the cyclone dust collection unit on the lower side by a riser pipe on the upper side, The feed inlet of the cyclone dust collection unit connected to the secondary upper side receives a metal hydroxide through a riser pipe on the secondary upper side, and the feed inlet of the cyclone dust collection unit on the lowermost side passes through the lowermost A riser tube receives a flue gas, and the temperature of the metal hydroxide is greater than the temperature of the flue gas, The metal hydroxide in each of the cyclone dust collection units falls from the feed port toward the discharge port, and exchanges heat with the flue gas in the reverse direction and reacts to form metal carbonate powder. The exhaust port discharges the flue gas with a lower carbon dioxide concentration, and the metal carbonate and unreacted metal hydroxide are discharged from the discharge port; A calcining furnace is connected to the discharge port of the cyclone dust collection unit on the lowermost side of the carbonation reactor to receive metal carbonate powder and calcinate the metal carbonate to form a metal oxide and high temperature And high concentration of carbon dioxide, A hydration reactor connected to the calciner to receive the metal oxide, and react the metal oxide with a superheated steam to form a metal hydroxide, Wherein, the feed port of the cyclone dust collection unit on the next upper side of the carbonation reactor is connected to the hydration reactor to receive the metal hydroxide from the hydration reactor. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該最下側上升管接收的該煙氣的溫度介於50℃至200℃之間並提供至該最下側的該旋風集塵單元之該進料口,且該次上側的上升管接收的該金屬氫氧化物的溫度介於200℃至500℃之間並提供至該次上側的該旋風集塵單元的該進料口。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the temperature of the flue gas received by the lowermost riser pipe is between 50°C and 200°C and is supplied to the lowermost cyclone dust collection unit The feed port and the temperature of the metal hydroxide received by the rising pipe on the secondary upper side is between 200° C. and 500° C. and is provided to the feed port of the cyclone dust collection unit on the secondary upper side. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該碳酸化反應器中該金屬氫氧化物與逆向的煙氣反應的溫度介於350℃至650℃之間。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the reaction temperature of the metal hydroxide and the reverse flue gas in the carbonation reactor is between 350°C and 650°C. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該煅燒爐中煅燒該金屬碳酸化物的溫度介於850℃至1200℃之間。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the temperature at which the metal carbonate is calcined in the calcining furnace is between 850°C and 1200°C. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該煅燒爐產生的二氧化碳,用於與飽和蒸汽熱交換以形成該水合反應器所用的該過熱蒸汽。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the carbon dioxide produced by the calciner is used for heat exchange with saturated steam to form the superheated steam used in the hydration reactor. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該煅燒爐產生的二氧化碳,提供至熱交換器用於與飽和蒸汽熱交換以形成該水合反應器所用的該過熱蒸汽。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the carbon dioxide produced by the calciner is supplied to a heat exchanger for heat exchange with saturated steam to form the superheated steam used in the hydration reactor. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該煅燒爐產生的二氧化碳,用於加熱通入該碳酸化反應器的煙氣。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the carbon dioxide generated by the calciner is used to heat the flue gas passing into the carbonation reactor. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該煅燒爐產生的二氧化碳,提供至該碳酸化反應氣用於加熱通入該碳酸化反應器的煙氣。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the carbon dioxide generated by the calciner is provided to the carbonation reaction gas for heating the flue gas passed into the carbonation reactor. 如申請專利範圍第4項所述之二氧化碳捕獲系統,其中該水合反應器中該金屬氧化物與該過熱蒸汽反應的溫度介於200℃至500℃之間。The carbon dioxide capture system described in item 4 of the scope of patent application, wherein the reaction temperature of the metal oxide and the superheated steam in the hydration reactor is between 200°C and 500°C.
TW108141764A 2019-11-18 2019-11-18 Carbonator and carbon dioxide capture system TWI706806B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108141764A TWI706806B (en) 2019-11-18 2019-11-18 Carbonator and carbon dioxide capture system
CN201911273656.XA CN112811455B (en) 2019-11-18 2019-12-12 Carbonation reactor and carbon dioxide capture system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108141764A TWI706806B (en) 2019-11-18 2019-11-18 Carbonator and carbon dioxide capture system

Publications (2)

Publication Number Publication Date
TWI706806B true TWI706806B (en) 2020-10-11
TW202120176A TW202120176A (en) 2021-06-01

Family

ID=74091674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141764A TWI706806B (en) 2019-11-18 2019-11-18 Carbonator and carbon dioxide capture system

Country Status (2)

Country Link
CN (1) CN112811455B (en)
TW (1) TWI706806B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432853B (en) * 2022-01-27 2023-03-24 南方电网电力科技股份有限公司 Energy storage, desulfurization and carbon capture integrated device and method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201141598A (en) * 2010-05-25 2011-12-01 Ind Tech Res Inst Carbon oxide capturing system
TW201521857A (en) * 2013-12-11 2015-06-16 Ind Tech Res Inst Loop tower CO2 capture system, carbonator, calciner and operating method thereof
TWI602778B (en) * 2016-11-24 2017-10-21 財團法人工業技術研究院 Apparatus for capturing carbon dioxide system and method thereof
TW201836702A (en) * 2017-04-14 2018-10-16 蔣本基 A method of capturing carbon dioxide in flue gas via high gravity carbonation equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499449B (en) * 2014-10-27 2015-09-11 Ind Tech Res Inst Device and method for capturing carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201141598A (en) * 2010-05-25 2011-12-01 Ind Tech Res Inst Carbon oxide capturing system
TW201521857A (en) * 2013-12-11 2015-06-16 Ind Tech Res Inst Loop tower CO2 capture system, carbonator, calciner and operating method thereof
TWI602778B (en) * 2016-11-24 2017-10-21 財團法人工業技術研究院 Apparatus for capturing carbon dioxide system and method thereof
TW201836702A (en) * 2017-04-14 2018-10-16 蔣本基 A method of capturing carbon dioxide in flue gas via high gravity carbonation equipment

Also Published As

Publication number Publication date
CN112811455B (en) 2023-04-07
CN112811455A (en) 2021-05-18
TW202120176A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN106984169B (en) Denitration system and method directly utilizing heat of sinter
WO2020070717A1 (en) Direct gas capture systems and methods of use thereof
EP2431579B1 (en) Multipurpose thermal power plant system
CN204198421U (en) A kind of molten sulfur pond gas recovery system
CN107014217A (en) Coke-oven plant's coke-stove gas is utilized and smoke processing system and its processing method
CN108729965B (en) Power generation system combining partial oxygen-enriched combustion of calcium-based chain and CO 2 Trapping method
TWI484125B (en) Recirculated-suspension pre-calciner system and fabrications thereof
CN103552992A (en) System and method for preparing acid by using sulfur-containing wastewater through dry method
WO2022130730A1 (en) Cement clinker production system and cement clinker production method
CN106823774A (en) A kind of utilization blast furnace slag fixes carbon dioxide and the apparatus and method for reclaiming sensible heat
WO2023202139A1 (en) System and method for hydrogen and power cogeneration of coal-fired boiler
TWI706806B (en) Carbonator and carbon dioxide capture system
CN105485701B (en) With the coal generating system of calcium-base absorbing agent order decarbonization desulfurization system Deep integrating
WO2013144853A1 (en) Method and apparatus for efficient carbon dioxide capture
CN206583315U (en) A kind of sintering flue gas desulfurization denitration and residual neat recovering system
CN215048660U (en) Solar heat supply chemical chain air separation oxygen generation system and comprehensive energy utilization system thereof
RU2470856C2 (en) Method of producing nitric acid (versions) and plant to this end
CN109059035A (en) A kind of flue gas recirculation carbon dioxide recovery system, in accordance
CN106194283B (en) A kind of method that the carbon emission of Gas Generator Set heating-cooling-power cogeneration zero is realized in low energy consumption
Smadi et al. Steam calcination of lime for CO2 capture
CN208845240U (en) A kind of coal generating system of the part oxygen-enriched combusting of Combined with Calcium base chemical chain
CN107419048A (en) It is a kind of to use nuclear reaction system to produce the system and method for sponge iron technique heat supply
CN113697776A (en) Production method of high-concentration sulfur dioxide gas
CN220083708U (en) Cement kiln waste heat power generation system for removing CO2 by utilizing solid absorbent
CN206875996U (en) Coke-oven plant's coke-stove gas utilizes and smoke processing system