TWI706806B - Carbonator and carbon dioxide capture system - Google Patents
Carbonator and carbon dioxide capture system Download PDFInfo
- Publication number
- TWI706806B TWI706806B TW108141764A TW108141764A TWI706806B TW I706806 B TWI706806 B TW I706806B TW 108141764 A TW108141764 A TW 108141764A TW 108141764 A TW108141764 A TW 108141764A TW I706806 B TWI706806 B TW I706806B
- Authority
- TW
- Taiwan
- Prior art keywords
- dust collection
- cyclone dust
- carbon dioxide
- flue gas
- collection unit
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Treating Waste Gases (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本揭露關於二氧化碳捕獲系統,更特別關於其採用的碳酸化反應器。This disclosure relates to the carbon dioxide capture system, and more particularly to the carbonation reactor it uses.
全球能源需求持續成長,預估未來仍需仰賴化石能源的供應,國際能源署於「能源技術展望 2010」 (International Energy Agency, 2010)中強調,為了維持能源安全、促進經濟發展、以及降低與能源相關的二氧化碳排放量,應致力提昇發電效率、能源使用效率、以及發展碳捕獲及封存技術。順應世界潮流,台灣已於永續能源政策綱領中訂定二氧化碳排放的減量政策目標: 2016-2020 年間回到 2005 年的二氧化碳排放量, 2025 年回到 2000 年之排放量(2.15 億噸),為了達到此目標,以能源面向來看,除了提高能源效率、發展潔淨能源以及確保能源供應穩定外,在仍無法避免繼續使用化石燃料的情況下,必須搭配二氧化碳的捕獲、封存與再利用技術,以有效減緩溫室效應的惡化。Global energy demand continues to grow, and it is estimated that the future will still need to rely on the supply of fossil energy. The International Energy Agency emphasized in the "Energy Technology Outlook 2010" (International Energy Agency, 2010) that in order to maintain energy security, promote economic development, and reduce energy Related to carbon dioxide emissions, efforts should be made to improve power generation efficiency, energy use efficiency, and develop carbon capture and storage technologies. Following the trend of the world, Taiwan has set CO2 emissions reduction policy goals in the Sustainable Energy Policy Program: From 2016 to 2020, return to 2005’s CO2 emissions, and in 2025, return to 2000 emissions (215 million tons). In order to achieve this goal, from an energy perspective, in addition to improving energy efficiency, developing clean energy, and ensuring stable energy supply, in the case where the continued use of fossil fuels is still unavoidable, carbon dioxide capture, storage and reuse technologies must be used. In order to effectively slow down the deterioration of the greenhouse effect.
目前大部份鈣迴路二氧化碳捕獲程序均採用碳酸化反應器與煅燒爐的兩段循環系統,以捕獲二氧化碳及再生吸附劑。然而,兩段循環系統的反應雖然單純,但CaO與CO 2的反應速率慢,在處理大量廢氣的效率較差。 At present, most of the calcium loop carbon dioxide capture procedures use a two-stage cycle system of carbonation reactor and calciner to capture carbon dioxide and regenerate adsorbent. However, although the reaction of the two-stage circulation system is simple, the reaction rate of CaO and CO 2 is slow, and the efficiency of treating a large amount of waste gas is poor.
為解決上述問題,有文獻提出包含碳酸化反應器、煅燒爐、與水合反應器的三段循環系統之二氧化碳捕獲系統。此二氧化碳捕獲系統雖然較複雜,但氫氧化鈣與二氧化碳的反應速率較快,可大幅提升二氧化碳的捕獲效率。然而此系統在放大至工業級規模時面臨新的問題。舉例來說,碳酸化反應器中的反應屬於放熱反應,因此需要冷卻器控溫以避免碳酸化反應器過熱而造成工安問題。另一方面,一開始導入碳酸化反應器的含二氧化碳煙氣的溫度過低,無法與氫氧化鈣有效反應而需額外加熱高二氧化碳。簡言之,碳酸化反應器需要加熱含二氧化碳煙氣,並冷卻碳酸化反應後的煙氣及吸附劑,這些必要裝置與操作都會耗能。另一方面,水合反應器需採用過熱蒸汽與氧化鈣反應。產生過熱蒸汽的步驟係先加熱水產生飽合蒸汽,再加熱飽合蒸汽以形成過熱蒸汽。這些加熱步驟需要額外加熱設備,即進一步耗能並增加二氧化碳排放。In order to solve the above problems, some documents propose a carbon dioxide capture system with a three-stage cycle system including a carbonation reactor, a calciner, and a hydration reactor. Although this carbon dioxide capture system is more complicated, the reaction rate of calcium hydroxide and carbon dioxide is faster, which can greatly improve the efficiency of carbon dioxide capture. However, this system faces new problems when it is scaled up to an industrial scale. For example, the reaction in the carbonation reactor is an exothermic reaction, so a cooler is required to control the temperature to avoid overheating the carbonation reactor and cause work safety problems. On the other hand, the temperature of the carbon dioxide-containing flue gas introduced into the carbonation reactor at the beginning is too low to effectively react with calcium hydroxide and requires additional heating of high carbon dioxide. In short, the carbonation reactor needs to heat the flue gas containing carbon dioxide and cool the flue gas and adsorbent after the carbonation reaction. These necessary devices and operations will consume energy. On the other hand, the hydration reactor needs to use superheated steam to react with calcium oxide. The step of generating superheated steam is to first heat water to generate saturated steam, and then heat the saturated steam to form superheated steam. These heating steps require additional heating equipment, which further consumes energy and increases carbon dioxide emissions.
綜上所述,目前亟需新的系統設計,以克服前述三段循環系統產生的問題。In summary, there is an urgent need for a new system design to overcome the problems caused by the aforementioned three-stage circulation system.
本揭露一實施例提供之碳酸化反應器,包括:相連且直立的多個旋風集塵單元及多個上升管,其中每一旋風集塵單元包括側部的進料口、頂部的排氣口、與底部的一排料口,兩個相鄰的旋風集塵單元中,上側的旋風集塵單元的排料口連接至下方的上升管,並由上升管連接至下側的旋風集塵單元的進料口,且上側的旋風集塵單元的進料口亦藉由次上側的上升管連接至下側的旋風集塵單元的排氣口,其中連接至次上側的旋風集塵單元的進料口藉由次上側的上升管接收金屬氫氧化物,最下側的旋風集塵單元的進料口經由最下側的上升管接收煙氣,且金屬氫氧化物的溫度大於煙氣的溫度,其中旋風集塵單元的每一者中的金屬氫氧化物自進料口朝排料口落下,並與逆向的煙氣熱交換並反應形成金屬碳酸化物之粉體,由排氣口排出較低二氧化碳濃度的煙氣,並由排料口排出金屬碳酸化物與未反應的金屬氫氧化物。The carbonation reactor provided by an embodiment of the present disclosure includes a plurality of connected and upright cyclone dust collection units and a plurality of rising pipes, wherein each cyclone dust collection unit includes a side inlet and a top exhaust port , With a discharge port at the bottom, among the two adjacent cyclone dust collection units, the discharge port of the cyclone dust collection unit on the upper side is connected to the lower riser pipe, and the riser pipe is connected to the lower cyclone dust collection unit The feed port of the cyclone dust collection unit on the upper side is also connected to the exhaust port of the cyclone dust collection unit on the lower side by the rising pipe on the next upper side, which is connected to the inlet of the cyclone dust collection unit on the next upper side. The feed port receives the metal hydroxide through the upper side ascending pipe, and the feed port of the cyclone dust collection unit on the lower side receives the flue gas through the lowermost ascending pipe, and the temperature of the metal hydroxide is greater than the temperature of the flue gas , Wherein the metal hydroxide in each of the cyclone dust collection unit falls from the feed port toward the discharge port, and exchanges heat with the reverse flue gas and reacts to form metal carbonate powder, which is discharged from the exhaust port. Low carbon dioxide concentration flue gas, and discharge metal carbonate and unreacted metal hydroxide from the discharge port.
在一實施例中,最下側上升管接受的煙氣的溫度介於50℃至200℃之間並提供至最下側的旋風集塵單元的進料口,且次上側上升管的進料口接收的金屬氫氧化物的溫度介於200℃至500℃之間並提供至次上側的旋風集塵單元的進料口。In an embodiment, the temperature of the flue gas received by the lowermost riser is between 50°C and 200°C and is supplied to the feed inlet of the lowermost cyclone dust collection unit, and the feed of the next upper riser The temperature of the metal hydroxide received at the port is between 200°C and 500°C and is provided to the feed port of the cyclone dust collection unit on the next upper side.
在一實施例中,碳酸化反應器中的金屬氫氧化物與逆向的煙氣反應及熱交換後的溫度介於350℃至650℃之間。 本揭露一實施例提供之二氧化碳捕獲系統,包括:碳酸化反應器,包括:相連且直立的多個旋風集塵單元及多個上升管,其中每一旋風集塵單元包括側部的進料口、頂部的排氣口、與底部的一排料口,兩個相鄰的旋風集塵單元中,上側的旋風集塵單元的排料口連接至下方的上升管,並由上升管連接至下側的旋風集塵單元的進料口,且上側的旋風集塵單元的進料口亦藉由次上側的上升管連接至下側的旋風集塵單元的排氣口,其中連接至次上側的旋風集塵單元的進料口藉由次上側的上升管接收金屬氫氧化物,最下側的旋風集塵單元的進料口經由最下側的上升管接收煙氣,且金屬氫氧化物的溫度大於煙氣的溫度,其中旋風集塵單元的每一者中的金屬氫氧化物自進料口朝排料口落下,並與逆向的煙氣熱交換並反應形成金屬碳酸化物之粉體,由排氣口排出較低二氧化碳濃度的煙氣,並由排料口排出金屬碳酸化物與未反應的金屬氫氧化物;煅燒爐,連接至碳酸化反應器之最下側的旋風集塵單元之排料口,以接收金屬碳酸化物之粉體,並煅燒金屬碳酸化物以形成金屬氧化物與高溫且高濃度的二氧化碳;水合反應器,連接至煅燒爐以接收金屬氧化物,並使金屬氧化物與過熱蒸汽反應形成金屬氫氧化物,其中碳酸化反應器的次上側的旋風集塵單元之進料口連接至水合反應器,以自水合反應器接收金屬氫氧化物。 In one embodiment, the temperature after the metal hydroxide in the carbonation reactor reacts with the reverse flue gas and heat exchange is between 350°C and 650°C. The carbon dioxide capture system provided by an embodiment of the present disclosure includes: a carbonation reactor, including: a plurality of connected and upright cyclone dust collection units and a plurality of risers, wherein each cyclone dust collection unit includes a side feed inlet , The exhaust port on the top, and a discharge port on the bottom. Among the two adjacent cyclone dust collection units, the discharge port of the cyclone dust collection unit on the upper side is connected to the lower riser pipe, and the riser pipe is connected to the lower The feed port of the cyclone dust collection unit on the side, and the feed port of the cyclone dust collection unit on the upper side is also connected to the exhaust port of the cyclone dust collection unit on the lower side by a rising pipe on the next upper side, which is connected to the The feed inlet of the cyclone dust collection unit receives the metal hydroxide through the upper side ascending pipe, and the feed inlet of the lowermost cyclone dust collection unit receives the flue gas through the lowermost ascending pipe, and the metal hydroxide The temperature is greater than the temperature of the flue gas, where the metal hydroxide in each of the cyclone dust collection units falls from the feed port toward the discharge port, and exchanges heat with the reverse flue gas and reacts to form metal carbonate powder, The flue gas with lower carbon dioxide concentration is discharged from the exhaust port, and the metal carbonate and unreacted metal hydroxide are discharged from the discharge port; the calciner is connected to one of the cyclone dust collection units on the lower side of the carbonation reactor The discharge port is used to receive the powder of metal carbonate and calcinate the metal carbonate to form metal oxides and high-temperature and high-concentration carbon dioxide; a hydration reactor is connected to the calcining furnace to receive metal oxides and make metal oxides It reacts with superheated steam to form metal hydroxide, wherein the feed port of the cyclone dust collection unit on the next upper side of the carbonation reactor is connected to the hydration reactor to receive the metal hydroxide from the hydration reactor.
在一實施例中,最下側上升管接受的煙氣的溫度介於50℃至200℃之間並提供至最下側的旋風集塵單元的進料口,且次上側上升管的進料口接收的金屬氫氧化物的溫度介於200℃至500℃之間並提供至次上側的旋風集塵單元的進料口。In an embodiment, the temperature of the flue gas received by the lowermost riser is between 50°C and 200°C and is supplied to the feed inlet of the lowermost cyclone dust collection unit, and the feed of the next upper riser The temperature of the metal hydroxide received at the port is between 200°C and 500°C and is provided to the feed port of the cyclone dust collection unit on the next upper side.
在一實施例中,碳酸化反應器中的金屬氫氧化物與逆向的煙氣反應及熱交換後的溫度介於350℃至650℃之間。In one embodiment, the temperature after the metal hydroxide in the carbonation reactor reacts with the reverse flue gas and heat exchange is between 350°C and 650°C.
在一實施例中,煅燒爐中煅燒金屬碳酸化物的溫度介於850℃至1200℃之間。In one embodiment, the temperature at which the metal carbonate is calcined in the calciner is between 850°C and 1200°C.
在一實施例中,煅燒爐產生的二氧化碳,用於與飽和蒸汽熱交換以形成水合反應器所用的過熱蒸汽。In one embodiment, the carbon dioxide produced by the calciner is used for heat exchange with saturated steam to form superheated steam for the hydration reactor.
在一實施例中,煅燒爐產生的高溫且高濃度的二氧化碳,用於間接加熱通入碳酸化反應器的含二氧化碳煙氣。In one embodiment, the high-temperature and high-concentration carbon dioxide produced by the calciner is used to indirectly heat the carbon dioxide-containing flue gas passing into the carbonation reactor.
在一實施例中,水合反應器中金屬氧化物與過熱蒸汽反應的溫度介於200℃至500℃之間。In one embodiment, the temperature at which the metal oxide reacts with the superheated steam in the hydration reactor is between 200°C and 500°C.
圖1係本揭露一實施例中,二氧化碳捕獲系統100的示意圖。其具有相連的碳酸化反應器110、煅燒爐120、與水合反應器130。在此設計中,碳酸化反應器110的反應溫度(350℃至650℃)高於處理前的煙氣且含二氧化碳之煙氣101的溫度。因此需額外設置加熱器140加熱煙氣101,再將煙氣101通入碳酸化反應器110,使煙氣101中的二氧化碳與金屬氫氧化物(如氫氧化鈣)反應,接著於碳酸化反應器101排出處理後的煙氣101’。處理後的煙氣101’其二氧化碳濃度低於處理前的煙氣之二氧化碳濃度,但其溫度高於加熱前的煙氣101。然而,金屬氫氧化物與二氧化碳反應形成金屬碳酸化物(如碳酸鈣)與水的反應屬放熱反應。為了避免碳酸化反應器110的溫度過高,又需額外設置冷卻器150以避免碳酸化反應器110過熱。可以理解的是,加熱器140產生熱能的方式係以燃料燃燒,不但耗能還會產生額外的二氧化碳。換言之,為了處理煙氣101中的二氧化碳所採用的加熱器140,將額外產生需處理的二氧化碳。此外,不管冷卻器150的模式為何(比如氣冷式或水冷式),循環冷卻介質亦需額外能量。簡言之,加熱器140與冷卻器150會額外耗能、產生二氧化碳、並增加設備成本。FIG. 1 is a schematic diagram of a carbon
接著,將碳酸化反應器110產生的金屬碳酸化物(如碳酸鈣)導入煅燒爐120,使金屬碳酸化物(如碳酸鈣)熱分解成金屬氧化物(如氧化鈣)與高濃度二氧化碳105 (二氧化碳濃度>80%)。然而煅燒爐120中金屬碳酸化物熱分解成金屬氧化物與高濃度二氧化碳105的反應溫度高(850℃至1200℃),因此需額外燃燒爐160加熱煅燒爐120。另一方面,煅燒爐120所產生的高濃度二氧化碳105的溫度極高,需冷卻後再進一步處理。若是採用額外冷卻器(未圖示)冷卻高濃度二氧化碳105,則需額外冷卻器的成本並額外耗能。若是讓高溫的高濃度二氧化碳105自然冷卻,則耗時且需大體積的儲放設備。Next, the metal carbonate (such as calcium carbonate) produced by the
接著,將煅燒爐120產生的金屬氧化物(如氧化鈣)導入水合反應器130,使金屬氧化物(如氧化鈣)與水/水蒸汽反應形成金屬氫氧化物(如氫氧化鈣)。水合反應器130可採用溶液式的水合反應器或蒸汽式水合反應器。溶液式的水合反應器(未圖示)所產生的金屬氫氧化物(如氫氧化鈣)若是溶於水中,則需額外除水以得金屬氫氧化物乾粉,此將額外耗能。蒸汽式的水合反應器130所用的過熱蒸汽135的形成方法如下:以鍋爐170加熱水131成飽和蒸汽133,再以過熱器180加熱飽和蒸汽133成過熱蒸汽135,再將過熱蒸汽135導入水合反應器130以與金屬氧化物反應形成金屬氫氧化物。鍋爐170與過熱器180都屬產生過熱蒸汽135的必要耗能設備。由於金屬氧化物與水反應形成金屬氫氧化物的反應為放熱反應,因此需要排出較高溫的過熱蒸汽137 (溫度高於過熱蒸汽135)使水合反應器130的溫度維持在適當的反應溫度(200℃至500℃)。接著將水合反應器130產生的金屬氫氧化物以及少量未反應的金屬氧化物導入碳酸化反應器110。在碳酸化反應器110中,金屬氧化物(如氧化鈣)亦可與二氧化碳反應形成金屬碳酸化物(如碳酸鈣),不過其所需的反應溫度更高(比如高於550℃)。Next, the metal oxide (such as calcium oxide) produced by the
綜上所述,上述系統在放大至工業級應用時,碳酸化反應器110、煅燒爐120、與水合反應器130都需額外的加熱器及/或冷卻器(如加熱器140、冷卻器150、燃燒爐160、鍋爐170、與過熱器180)以達所需的反應溫度或反應物,均會增加設備成本與能耗並增加額外的二氧化碳。In summary, when the above system is scaled up to industrial applications, the
本揭露之另一實施例提供另一二氧化碳捕獲系統200,如圖2所示。在碳酸化反應器110中,自頂部置入高溫的金屬氫氧化物粉體(約200℃至500℃),並自底部通入低溫且含二氧化碳之煙氣101 (約50℃至200℃),使低溫且含二氧化碳之煙氣101與高溫的金屬氫氧化物粉體(可能含少量的金屬氧化物)產生熱交換與反應形成金屬碳酸化物。舉例來說,碳酸化反應器110的上側部份屬反應區,即金屬氫氧化物粉體(可能含少量的金屬氧化物)與煙氣101中的二氧化碳反應以形成金屬碳酸化物。碳酸化反應器110的下側部份屬熱交換區,即高溫的金屬碳酸化物與低溫且含二氧化碳之煙氣101產生熱交換。進一步說明如下,金屬碳酸化物因重力而落至碳酸化反應器110的底部,並接觸上升的煙氣101而產生熱交換,即金屬碳酸化物的溫度降低,而煙氣101的溫度升高。最後,處理後的煙氣101’之二氧化碳濃度降低(可降低至無二氧化碳)並自碳酸化反應器110的頂部排出。經由上述設計可省略圖1中加熱煙氣101的加熱器140,以及冷卻碳酸化反應器110的冷卻器150。Another embodiment of the present disclosure provides another carbon
在一實施例中,碳酸化反應器110包括相連且直立的多個旋風集塵單元及多個上升管,如圖3所示。值得注意的是,圖3中的碳酸化反應器110具有五個旋風集塵單元(如旋風集塵單元C0至C4)及上升管(如上升管L0至L4),但碳酸化反應器110可具有更多或更少的旋風集塵單元及上升管,例如3至10個旋風集塵單元及3至10個上升管,端視實際需求而定。每一旋風集塵單元包括側部的進料口410、頂部的排氣口420、與底部的排料口430,如圖4所示。In one embodiment, the
在圖3與圖4中,相鄰的兩個旋風集塵單元(如旋風集塵單元C1與C2)中,較上側的旋風集塵單元(如C1)之排料口430連接至下方的上升管(如L2),並藉由上升管連接至較下側的旋風集塵單元(如C2)之進料口410,詳細而言,此為固體行進方向,如圖3虛線所示。此外,較上側的旋風集塵單元(如C1)之進料口410連接至較下側的旋風集塵單元(如C2)排氣口420的上升管(如L1)。詳細而言,此為氣體行進方向,如圖3實線所示。進一步而言,虛線為固體的行進方向,而實線為氣體的行進方向,且固體與氣體在同一上升管中行進。以圖3為例,先將含二氧化碳煙氣101經上升管L4提供至最下側的旋風集塵單元C4的進料口410,其於旋風集塵單元C4中的行進方向如圖4所示,先迴旋向下後,再往上吹出旋風集塵單元C4的排氣口420,再經上升管L3進入旋風集塵單元C3的進料口410。與前述類似,煙氣101依序吹經旋風集塵單元C3、上升管L2、旋風集塵單元C2、上升管L1、旋風集塵單元C1、上升管L0、與旋風集塵單元C0,最後處理後的煙氣101’由旋風集塵單元之排氣口排出。在含二氧化碳煙氣101離開旋風集塵單元C2的排氣口420時,可經由上升管L1將高溫的金屬氫氧化物粉體(如Ca(OH)
2,比如來自水合反應器130的金屬氫氧化物粉體,其可能含少量的金屬氧化物如氧化鈣)與來自旋風集塵單元C0的排料口430的粉體(如下述),一同吹入旋風集塵單元C1,使旋風集塵單元C1中的金屬氫氧化物自進料口410朝排料口430落下,並與先迴旋向下再向上吸出(即逆向)的含二氧化碳煙氣101反應形成金屬碳酸化物。如此一來,可由旋風集塵單元C1的排氣口420排出經處理後煙氣101’。處理後的煙氣101’其二氧化碳濃度相較於進入碳酸化反應器的處理前之煙氣101的二氧化碳濃度較低,並由旋風集塵單元C1的排料口430排出金屬碳酸化物與未反應的金屬氫氧化物。
In Figures 3 and 4, in two adjacent cyclone dust collection units (such as cyclone dust collection units C1 and C2), the upper side of the cyclone dust collection unit (such as C1) has the
旋風集塵單元C1排出的煙氣101’可能含有少量粉體,因此進入旋風集塵單元C0的進料口410,使少量粉體自旋風集塵單元C0的排料口430排出。如圖3與4所示,旋風集塵單元C0的排料口430所排出的粉體,可與旋風集塵單元C2的排氣口420排出的含二氧化碳煙氣101經由上升管L1送入旋風集塵單元C1。旋風集塵單元C1之排料口430排出的粉體,將被自旋風集塵單元C3排出的煙氣101經由上升管L2送進旋風集塵單元C2,並進行反應同前述。隨著金屬氫氧化物粉體自上升管L1→旋風集塵單元C1→上升管L2→旋風集塵單元C2→上升管L3→旋風集塵單元C3→上升管L4→旋風集塵單元C4的順序,最後自旋風集塵單元C4的底部排料口430所排出的固體組成主要為金屬碳酸化物。另一方面,含二氧化碳之煙氣101自上升管L4→旋風集塵單元C4→上升管L3→旋風集塵單元C3→上升管L2→旋風集塵單元C2→上升管L1→旋風集塵單元C1→上升管L0→旋風集塵單元C0的順序,最後自旋風集塵單元C0頂部的排氣口420排出低二氧化碳濃度的處理後煙氣101’,即達二氧化碳捕獲的目的。值得注意的是,在較上方的旋風集塵單元(如C1與C2)中,粉體主要組成為金屬氫氧化物,因此主要進行金屬氫氧化物與二氧化碳反應形成金屬碳酸化物的反應。在較下方的旋風集塵單元(如C3與C4)中,粉體主要組成為金屬碳酸化物,因此主要進行粉體與含二氧化碳煙氣101的熱交換,即增加含二氧化碳煙氣101的溫度與降低粉體的溫度。不過可以理解的是,在較上方的旋風集塵單元仍可能有熱交換的現象,比如放熱反應產生的金屬碳酸化物溫度高於煙氣101的溫度時,煙氣101會與金屬碳酸化物產生熱交換而增加煙氣101的溫度並降低碳酸鈣的溫度。另一方面,較下方的旋風集塵單元中的粉體若含金屬氫氧化物,亦可能與煙氣101中的二氧化碳產生反應形成金屬碳酸化物。此外,較下方的上升管(如L4與L3)的長度,比較上方的上升管(如L0與L1)的長度長,以達較上方的旋風集塵單元(如C1與C2)主要進行金屬氫氧化物與二氧化碳反應形成金屬碳酸化物的反應,而較下方的旋風集塵單元(如C3與C4)主要進行煙氣101與粉體的熱交換的設計。The flue gas 101' discharged from the cyclone dust collection unit C1 may contain a small amount of powder, so it enters the
圖3中旋風集塵單元C0、C1、C2、C3、與C4的位置僅為舉例,本技術領域中具有通常知識者自可依實際需求調整上述旋風集塵單元的相對位置。另一方面,圖3中旋風集塵單元C0、C1、C2、C3、與C4具有類似尺寸,但實際上不同的旋風集塵單元C0、C1、C2、C3、與C4亦可具有不同尺寸,端視設計需求而定。The positions of the cyclone dust collection units C0, C1, C2, C3, and C4 in FIG. 3 are only examples. Those skilled in the art can adjust the relative positions of the cyclone dust collection units according to actual needs. On the other hand, the cyclone dust collection units C0, C1, C2, C3, and C4 in Figure 3 have similar sizes, but in fact, different cyclone dust collection units C0, C1, C2, C3, and C4 can also have different sizes. It depends on the design requirements.
在一實施例中,來自水合反應器130的金屬氫氧化物(此處為氫氧化鈣)的質量流率為2.15 ton/h,用於捕獲0.16 ton/h的二氧化碳。設定含二氧化碳煙氣101的溫度為100℃、150℃、與200℃,計算旋風集塵單元與上升管的溫度如表1。由表1可知,當通入煙氣101的溫度越高,則越多上升管與越多旋風集塵單元的溫度可達氫氧化鈣碳酸化的溫度(比如高於300℃)與氧化鈣碳酸化的溫度(比如高於550℃)。In one embodiment, the mass flow rate of the metal hydroxide (calcium hydroxide here) from the
表1
回到圖2,上述形成之金屬碳酸化物送至煅燒爐120進行高溫煅燒,使金屬碳酸化物分解成金屬氧化物與高溫的高濃度二氧化碳105,並將高溫的高濃度二氧化碳105導入熱交換器190,以與飽和蒸汽133進行熱交換以使其形成過熱蒸氣,如下述。另一方面,高溫的高濃度二氧化碳105可導入高溫的燃燒爐160,以提升高溫煙氣質量流率,以利純氧煅燒爐120之操作,及提升煅燒爐120之粉體輸送效率。Returning to Figure 2, the metal carbonate formed above is sent to the
接著將煅燒爐120產生的金屬氧化物導入蒸汽式的水合反應器130,使金屬氧化物與水反應形成金屬氫氧化物。蒸汽式的水合反應器130所用的過熱蒸汽135的形成方法如下:以鍋爐170加熱水131成飽和蒸汽133,再以熱交換器190使飽和蒸汽133與高溫的高濃度二氧化碳105產生熱交換,降低高溫的高濃度二氧化碳105的溫度,並增加飽和蒸汽133的溫度以形成過熱蒸汽135。熱交換器190可節省加熱飽和蒸汽133的能耗與額外產生的二氧化碳,並節省冷卻煅燒爐120產生的高溫高濃度二氧化碳105所需的設備、時間、能耗、與額外產生的二氧化碳。Next, the metal oxide produced by the
接著將過熱蒸汽135導入水合反應器130以與金屬氧化物反應形成金屬氫氧化物。由於金屬氧化物與水反應形成金屬氫氧化物的反應屬放熱反應,因此需要排出較高溫的過熱蒸汽137 (溫度高於過熱蒸汽135)使水合反應器130的溫度維持在適當的反應溫度(200℃至500℃)。在此實施例中,可將過熱蒸汽137送回熱交換器190中,以減少鍋爐170所需形成的飽和蒸汽133,亦減少熱交換器190中自飽和蒸汽133形成過熱蒸汽135所需的熱能。接著將水合反應器130產生的金屬氫氧化物導入碳酸化反應器110。The
如圖5所示,亦可取煅燒爐120產生的高溫的高濃度二氧化碳105加熱(非混合)通入碳酸化反應器110的煙氣101,以減少碳酸化反應器110為使煙氣與金屬氫氧化物熱交換所需的熱交換旋風集塵單元的數目。As shown in Figure 5, the high-temperature and high-
在上述實施例中,一開始可將金屬碳酸化物置入煅燒爐120、將金屬氧化物置入水合反應器130、或將金屬氫氧化物置入碳酸化反應器110的頂部。在一些實施例中,可在過程中補充金屬碳酸化物至煅燒爐120中、補充金屬氧化物至水合反應器130中、並補充金屬氫氧化物至碳酸化反應器110的頂部。在上述實施例中,金屬碳酸化物、金屬氫氧化物、金屬氧化物的金屬可為鈣。在其他實施例中,金屬碳酸化物、金屬氫氧化物、金屬氧化物的金屬可為鎂或其他合適金屬。In the above embodiment, the metal carbonate can be placed in the
Ca(OH) 2與CaO在不同溫度下轉換不同比例的CO2的效果如表2所示。如表2所示,Ca(OH) 2在350°C下的碳酸化轉化率即有60%,而CaO在反應溫度高於500°C時,碳酸化轉化率才大幅提升。此外,Ca(OH) 2之碳酸化轉化率較高,可操作之溫度範圍較廣,在整體反應程序設計之彈性亦較大,且二氧化碳濃度不會影響其結果。簡言之,Ca(OH) 2比CaO適於捕獲二氧化碳。 Table 2 shows the effect of Ca(OH) 2 and CaO converting different ratios of CO2 at different temperatures. As shown in Table 2, the carbonation conversion rate of Ca(OH) 2 at 350°C is 60%, and when the reaction temperature of CaO is higher than 500°C, the carbonation conversion rate is greatly increased. In addition, Ca(OH) 2 has a higher carbonation conversion rate, a wider operating temperature range, and greater flexibility in the overall reaction program design, and the carbon dioxide concentration will not affect the results. In short, Ca(OH) 2 is more suitable for capturing carbon dioxide than CaO.
表2
綜上所述,本申請案提供新穎的二氧化碳捕獲系統,可有效減少能耗及額外產生的二氧化碳。In summary, this application provides a novel carbon dioxide capture system that can effectively reduce energy consumption and additional carbon dioxide generated.
雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in several embodiments as above, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the technical field can make any changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of this disclosure shall be subject to those defined by the attached patent application scope.
C0、C1、C2、C3、C4:旋風集塵單元
L0、L1、L2、L3、L4:上升管
100、200:二氧化碳捕獲系統
101、101’:煙氣
105:高濃度二氧化碳
110:碳酸化反應器
120:煅燒爐
130:水合反應器
131:水
133:飽和蒸汽
135、137:過熱蒸汽
140:加熱器
150:冷卻器
160:燃燒爐
170:鍋爐
180:過熱器
190:熱交換器
410:進料口
420:排氣口
430:排料口C0, C1, C2, C3, C4: cyclone dust collection unit
L0, L1, L2, L3, L4: rising
圖1係本揭露一實施例中,二氧化碳捕獲系統的示意圖。 圖2係本揭露一實施例中,二氧化碳捕獲系統的示意圖。 圖3係本揭露一實施例中,碳酸化反應器的示意圖。 圖4係本揭露一實施例中,旋風集塵單元的示意圖。 圖5係本揭露一實施例中,二氧化碳捕獲系統的示意圖。 Fig. 1 is a schematic diagram of a carbon dioxide capture system in an embodiment of the present disclosure. FIG. 2 is a schematic diagram of the carbon dioxide capture system in an embodiment of the present disclosure. Figure 3 is a schematic diagram of a carbonation reactor in an embodiment of the present disclosure. 4 is a schematic diagram of the cyclone dust collection unit in an embodiment of the present disclosure. FIG. 5 is a schematic diagram of the carbon dioxide capture system in an embodiment of the present disclosure.
101、101’:煙氣 101, 101’: Smoke
105:高濃度二氧化碳 105: high concentration of carbon dioxide
110:碳酸化反應器 110: Carbonation reactor
120:煅燒爐 120: Calciner
130:水合反應器 130: Hydration reactor
131:水 131: Water
133:飽和蒸汽 133: saturated steam
135、137:過熱蒸汽 135, 137: Superheated steam
160:燃燒爐 160: Burning furnace
170:鍋爐 170: boiler
190:熱交換器 190: Heat Exchanger
200:二氧化碳捕獲系統 200: Carbon dioxide capture system
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108141764A TWI706806B (en) | 2019-11-18 | 2019-11-18 | Carbonator and carbon dioxide capture system |
CN201911273656.XA CN112811455B (en) | 2019-11-18 | 2019-12-12 | Carbonation reactor and carbon dioxide capture system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108141764A TWI706806B (en) | 2019-11-18 | 2019-11-18 | Carbonator and carbon dioxide capture system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI706806B true TWI706806B (en) | 2020-10-11 |
TW202120176A TW202120176A (en) | 2021-06-01 |
Family
ID=74091674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108141764A TWI706806B (en) | 2019-11-18 | 2019-11-18 | Carbonator and carbon dioxide capture system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112811455B (en) |
TW (1) | TWI706806B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114432853B (en) * | 2022-01-27 | 2023-03-24 | 南方电网电力科技股份有限公司 | Energy storage, desulfurization and carbon capture integrated device and method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201141598A (en) * | 2010-05-25 | 2011-12-01 | Ind Tech Res Inst | Carbon oxide capturing system |
TW201521857A (en) * | 2013-12-11 | 2015-06-16 | Ind Tech Res Inst | Loop tower CO2 capture system, carbonator, calciner and operating method thereof |
TWI602778B (en) * | 2016-11-24 | 2017-10-21 | 財團法人工業技術研究院 | Apparatus for capturing carbon dioxide system and method thereof |
TW201836702A (en) * | 2017-04-14 | 2018-10-16 | 蔣本基 | A method of capturing carbon dioxide in flue gas via high gravity carbonation equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI499449B (en) * | 2014-10-27 | 2015-09-11 | Ind Tech Res Inst | Device and method for capturing carbon dioxide |
-
2019
- 2019-11-18 TW TW108141764A patent/TWI706806B/en active
- 2019-12-12 CN CN201911273656.XA patent/CN112811455B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201141598A (en) * | 2010-05-25 | 2011-12-01 | Ind Tech Res Inst | Carbon oxide capturing system |
TW201521857A (en) * | 2013-12-11 | 2015-06-16 | Ind Tech Res Inst | Loop tower CO2 capture system, carbonator, calciner and operating method thereof |
TWI602778B (en) * | 2016-11-24 | 2017-10-21 | 財團法人工業技術研究院 | Apparatus for capturing carbon dioxide system and method thereof |
TW201836702A (en) * | 2017-04-14 | 2018-10-16 | 蔣本基 | A method of capturing carbon dioxide in flue gas via high gravity carbonation equipment |
Also Published As
Publication number | Publication date |
---|---|
CN112811455B (en) | 2023-04-07 |
CN112811455A (en) | 2021-05-18 |
TW202120176A (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106984169B (en) | Denitration system and method directly utilizing heat of sinter | |
WO2020070717A1 (en) | Direct gas capture systems and methods of use thereof | |
EP2431579B1 (en) | Multipurpose thermal power plant system | |
CN204198421U (en) | A kind of molten sulfur pond gas recovery system | |
CN107014217A (en) | Coke-oven plant's coke-stove gas is utilized and smoke processing system and its processing method | |
CN108729965B (en) | Power generation system combining partial oxygen-enriched combustion of calcium-based chain and CO 2 Trapping method | |
TWI484125B (en) | Recirculated-suspension pre-calciner system and fabrications thereof | |
CN103552992A (en) | System and method for preparing acid by using sulfur-containing wastewater through dry method | |
WO2022130730A1 (en) | Cement clinker production system and cement clinker production method | |
CN106823774A (en) | A kind of utilization blast furnace slag fixes carbon dioxide and the apparatus and method for reclaiming sensible heat | |
WO2023202139A1 (en) | System and method for hydrogen and power cogeneration of coal-fired boiler | |
TWI706806B (en) | Carbonator and carbon dioxide capture system | |
CN105485701B (en) | With the coal generating system of calcium-base absorbing agent order decarbonization desulfurization system Deep integrating | |
WO2013144853A1 (en) | Method and apparatus for efficient carbon dioxide capture | |
CN206583315U (en) | A kind of sintering flue gas desulfurization denitration and residual neat recovering system | |
CN215048660U (en) | Solar heat supply chemical chain air separation oxygen generation system and comprehensive energy utilization system thereof | |
RU2470856C2 (en) | Method of producing nitric acid (versions) and plant to this end | |
CN109059035A (en) | A kind of flue gas recirculation carbon dioxide recovery system, in accordance | |
CN106194283B (en) | A kind of method that the carbon emission of Gas Generator Set heating-cooling-power cogeneration zero is realized in low energy consumption | |
Smadi et al. | Steam calcination of lime for CO2 capture | |
CN208845240U (en) | A kind of coal generating system of the part oxygen-enriched combusting of Combined with Calcium base chemical chain | |
CN107419048A (en) | It is a kind of to use nuclear reaction system to produce the system and method for sponge iron technique heat supply | |
CN113697776A (en) | Production method of high-concentration sulfur dioxide gas | |
CN220083708U (en) | Cement kiln waste heat power generation system for removing CO2 by utilizing solid absorbent | |
CN206875996U (en) | Coke-oven plant's coke-stove gas utilizes and smoke processing system |