TWI602778B - Apparatus for capturing carbon dioxide system and method thereof - Google Patents
Apparatus for capturing carbon dioxide system and method thereof Download PDFInfo
- Publication number
- TWI602778B TWI602778B TW105138658A TW105138658A TWI602778B TW I602778 B TWI602778 B TW I602778B TW 105138658 A TW105138658 A TW 105138658A TW 105138658 A TW105138658 A TW 105138658A TW I602778 B TWI602778 B TW I602778B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon dioxide
- reaction
- open end
- adsorbent particles
- dioxide capture
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
本說明書所揭露的是關於一種二氧化碳捕獲(CO2 capture)裝置及其應用,特別是一種使用鈣循環或是鈣迴路(calcium looping cycle)來捕獲二氧化碳的裝置及其應用。 What is disclosed herein relates to a CO 2 capture device and its use, and more particularly to a device for capturing carbon dioxide using a calcium cycle or a calcium looping cycle and applications thereof.
鈣循環或是鈣迴路二氧化碳捕獲程序是採用產量豐富且價格低廉的石灰石(碳酸鈣,CaCO3)經過煅燒爐(calciner)煅燒後生成氧化鈣(CaO),再置入碳酸化爐(carbonator)作為吸附劑來吸附二氧化碳,氧化鈣與二氧化碳反應之後所生成的碳酸鈣可重複循環再利用。目前已成為廣泛應用於捕獲發電廠、水泥廠或工業所排放的二氧化碳。 Calcium cycle or calcium loop carbon dioxide capture program is the use of high-yield and low-cost limestone (calcium carbonate, CaCO 3 ) calcined calciner to form calcium oxide (CaO), which is then placed in a carbonator. The adsorbent adsorbs carbon dioxide, and the calcium carbonate formed after the reaction of calcium oxide and carbon dioxide can be recycled and reused. It has now become widely used to capture carbon dioxide emissions from power plants, cement plants or industries.
典型的鈣循環或是鈣迴路二氧化碳捕獲技術是將碳酸化爐及煅燒相互連通以進行連續性反應。其中,碳酸化爐一般是採用流體化床(fluidized bed)式的反應爐。然而,習知的流體化 床式碳酸化爐在實務操作時,因為吸附劑的顆粒粒徑分布不易掌握,流體化氣體的動力需求高,且容易發生高壓降和渠道化(Channeling)現象,導致氣/固兩相無法充分混合,甚至會有完全不反應的滯區(Dead Zone)發生的缺點。 A typical calcium cycle or calcium loop carbon dioxide capture technique is to interconnect the carbonator and calcination for a continuous reaction. Among them, the carbonation furnace is generally a fluidized bed type reactor. However, conventional fluidization In the practical operation of the bed type carbonation furnace, because the particle size distribution of the adsorbent is difficult to grasp, the power demand of the fluidized gas is high, and high pressure drop and channeling phenomenon are likely to occur, resulting in insufficient gas/solid phase. Mixing, there may even be a disadvantage of the dead zone that is completely unresponsive.
因此,如何確保吸附劑顆粒在反應槽中受到有效地擾動,使濃度較高的二氧化碳的反應氣體在通過流體化床反應爐時能與懸浮的吸附劑顆粒充份混合,達到高吸附捕獲二氧化碳效率的效果,已成為該技術領域所面臨的重要問題。 Therefore, how to ensure that the adsorbent particles are effectively disturbed in the reaction tank, so that the reaction gas with higher concentration of carbon dioxide can be fully mixed with the suspended adsorbent particles when passing through the fluidized bed reactor to achieve high adsorption and capture carbon dioxide efficiency. The effect has become an important issue in this technical field.
本說明書中的一實施例是在提供一種二氧化碳捕獲裝置,包括具有一管殼部和一反應床面。此管殼部具有一第一開口端和一第二開口端。反應床面位於管殼部之中,係用以容納複數個吸附劑顆粒,並容許含有二氧化碳的反應氣體進入管殼部,使這些吸附劑顆粒懸浮於管殼部中。並藉由這些吸附劑顆粒與反應氣體之反應作用所生成的反應熱激發管殼部發出震盪聲波,並藉由震盪聲波擾動使反應氣體在管殼部中產生局部紊流,延長吸附劑顆粒在管殼結構中懸浮滯留的時間。 One embodiment of the present specification is to provide a carbon dioxide capture device comprising a shell portion and a reaction bed surface. The shell portion has a first open end and a second open end. The reaction bed surface is located in the shell portion for accommodating a plurality of adsorbent particles, and allows the reaction gas containing carbon dioxide to enter the shell portion, so that the adsorbent particles are suspended in the shell portion. And the reaction heat generated by the reaction of the adsorbent particles and the reaction gas excites the shell portion to emit a oscillating sound wave, and the turbulent sound wave disturbs the local turbulent flow of the reaction gas in the shell portion, prolonging the adsorbent particles in The time in which the suspension stays in the shell structure.
本說明書中的另一實施例是在提供一種二氧化碳捕獲系統,包括如前所述的二氧化碳捕獲裝置以及一個煅燒爐。此煅燒爐經與管殼部連通,用來回收並煅燒與反應氣體作用後的吸附劑顆粒。 Another embodiment in the present specification is to provide a carbon dioxide capture system comprising a carbon dioxide capture device as previously described and a calciner. The calciner is connected to the shell portion for recovering and calcining the adsorbent particles after the reaction with the reaction gas.
本說明書中的另一實施例是在提供一種二氧化碳捕獲方法,包括下述步驟:首先,提供一個包括管殼部的反應槽。然後,將複數個吸附劑顆粒置入管殼部中。接著,將含有二氧化碳的反應氣體導入管殼部,使這些吸附劑顆粒懸浮於管殼部中。並藉由這些吸附劑顆粒與反應氣體作用所生成的反應熱激發管殼部發出震盪聲波。 Another embodiment in the present specification is to provide a carbon dioxide capture method comprising the steps of: first, providing a reaction vessel comprising a shell portion. Then, a plurality of adsorbent particles are placed in the envelope portion. Next, a reaction gas containing carbon dioxide is introduced into the envelope portion, and these adsorbent particles are suspended in the envelope portion. And the reaction heat generated by the action of the adsorbent particles and the reaction gas excites the shell portion to emit a oscillating sound wave.
根據上述,本說明書的實施例是揭露一種二氧化碳捕獲裝置以及應用此裝置的二氧化碳捕獲系統及方法。其係採用具有特定管殼結構的反應槽,將複數個吸附劑顆粒置入反應槽的管殼結構中,使吸附劑顆粒與含有二氧化碳的反應氣體發生反應。無須額外加熱裝置,僅藉由二者的反應熱即可激發管殼結構發出震盪聲波,並藉由震盪聲波擾動使反應氣體在管殼部中產生高強度的局部紊流,延長吸附劑顆粒在管殼結構中懸浮滯留的時間。不僅有助於強化吸附劑顆粒與二氧化碳氣/固兩相的均勻混合,防止結塊與堆積現象的發生,有效改善流化床的渠道化和滯區的問題。更可藉由聲波效應促使反應氣體中的二氧化碳更深入吸附劑顆粒的多孔結構內部,提高吸附劑的整體利用率。 In accordance with the above, embodiments of the present specification disclose a carbon dioxide capture device and a carbon dioxide capture system and method using the same. The invention adopts a reaction tank having a specific shell structure, and a plurality of adsorbent particles are placed in the shell structure of the reaction tank to react the adsorbent particles with the reaction gas containing carbon dioxide. Without additional heating means, only the reaction heat of the two can excite the shell structure to emit oscillating sound waves, and by the oscillating sound wave disturbance, the reaction gas generates high-intensity local turbulence in the shell portion, prolonging the adsorbent particles in The time in which the suspension stays in the shell structure. It not only helps to strengthen the uniform mixing of the adsorbent particles and the carbon dioxide gas/solid phase, prevents the occurrence of agglomeration and accumulation, and effectively improves the channelization and stagnation of the fluidized bed. The sonic effect can also promote the carbon dioxide in the reaction gas to penetrate deep into the porous structure of the adsorbent particles, thereby improving the overall utilization rate of the adsorbent.
20‧‧‧二氧化碳捕獲系統 20‧‧‧Carbon dioxide capture system
100‧‧‧二氧化碳捕獲裝置 100‧‧‧Carbon dioxide capture device
101‧‧‧反應槽 101‧‧‧Reaction tank
101a‧‧‧管殼部 101a‧‧‧ Shell Department
101a1‧‧‧第一開口端 101a1‧‧‧first open end
101a2‧‧‧第二開口端 101a2‧‧‧ second open end
101b‧‧‧進氣口 101b‧‧‧air inlet
101c‧‧‧排氣口 101c‧‧‧Exhaust port
101d‧‧‧碳酸化反應室 101d‧‧‧carbonation reaction chamber
102A‧‧‧吸附劑顆粒 102A‧‧‧ adsorbent particles
102B‧‧‧碳酸鈣吸附劑顆粒 102B‧‧‧calcium carbonate sorbent particles
103A‧‧‧濃度較高的二氧化碳的反應氣體 103A‧‧‧Reaction gas with higher concentration of carbon dioxide
103B‧‧‧二氧化碳含較少量的反應氣體 103B‧‧‧Carbon dioxide contains a small amount of reactive gas
104‧‧‧反應床面 104‧‧‧Reaction bed surface
104a‧‧‧通孔 104a‧‧‧through hole
105‧‧‧下方聲波去耦器 105‧‧‧ below the acoustic decoupler
106‧‧‧上方聲波去耦器 106‧‧‧Sound Acoustic Decoupler
106a‧‧‧進料口 106a‧‧‧ Feed inlet
107‧‧‧排料管 107‧‧‧Drainage tube
107a‧‧‧排料口 107a‧‧‧ discharge opening
108‧‧‧冷卻裝置 108‧‧‧Cooling device
108A‧‧‧冷卻水管 108A‧‧‧Cooling water pipes
108B‧‧‧冷卻水 108B‧‧‧Cooling water
200‧‧‧煅燒爐 200‧‧‧calcining furnace
201‧‧‧新料倉 201‧‧‧New silo
202‧‧‧氣送鼓風機 202‧‧‧Air blower
203‧‧‧氣/固分離器 203‧‧‧ gas/solid separator
L‧‧‧管殼長度 L‧‧‧tube length
為了對本說明書之上述實施例及其他自的、特徵和優點能更明顯易懂,特舉數個較佳實施例,並配合所附圖式,作詳細說明如下: 第1圖係根據本說明書的一實施例所繪示的一種二氧化碳捕獲裝置的元件配置圖;以及第2圖係根據本說明書的一實施例所繪示的二氧化碳捕獲系統的元件配置圖。 The above embodiments and other features, advantages and advantages of the present invention will become more apparent and understood. 1 is a component configuration diagram of a carbon dioxide capture device according to an embodiment of the present specification; and FIG. 2 is a component configuration diagram of a carbon dioxide capture system according to an embodiment of the present specification.
本說明書所揭露的實施例是有關於一種二氧化碳捕獲裝置以及應用,可解決習知採用流體化床的二氧化碳捕獲裝置,因為吸附劑顆粒與反應氣體氣相/固相二者無法均勻混合,造成結塊與堆積現象、渠道化和滯區的問題。為讓本說明書之上述目的、特徵和優點能更明顯易懂,特舉數個較佳實施例,並配合所附圖式詳細描述如下。 The embodiments disclosed in the present specification relate to a carbon dioxide capture device and an application thereof, which can solve the conventional carbon dioxide capture device using a fluidized bed, because the adsorbent particles and the reaction gas gas phase/solid phase cannot be uniformly mixed, resulting in a knot. Block and accumulation phenomena, channelization and stagnation issues. The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims.
但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。 However, it must be noted that these specific embodiments and methods are not intended to limit the invention. The invention may be practiced with other features, elements, methods and parameters. The preferred embodiments are merely illustrative of the technical features of the present invention and are not intended to limit the scope of the invention. Equivalent modifications and variations will be made without departing from the spirit and scope of the invention. In the different embodiments and the drawings, the same elements will be denoted by the same reference numerals.
請參照第1圖,第1圖係根據本說明書的一實施例所繪示的一種二氧化碳捕獲裝置100的元件配置圖。其中,二氧化碳捕獲裝置100至少包括一個反應槽101。在本說明書的一實 施例中,反應槽101可以是一種碳酸化爐的反應槽,其包括一個中空的管殼部101a、一個進氣口101b以及一個排氣口101c。 Please refer to FIG. 1 , which is a component configuration diagram of a carbon dioxide capture device 100 according to an embodiment of the present specification. The carbon dioxide capture device 100 includes at least one reaction tank 101. In this manual In the embodiment, the reaction tank 101 may be a reaction tank of a carbonation furnace, which includes a hollow shell portion 101a, an air inlet 101b, and an exhaust port 101c.
其中,管殼部101a可以是一金屬殼體,用來容納吸附劑顆粒102A與濃度較高的二氧化碳的反應氣體103A。進氣口101b位於反應槽101下方,連通管殼部101a,可容許濃度較高的二氧化碳的反應氣體103A進入管殼部101a。排氣口101c位於反應槽101上方,連通管殼部101a,可容許經二氧化碳捕獲之後二氧化碳含較少量的反應氣體103B排出。 The tube portion 101a may be a metal case for accommodating the adsorbent particles 102A and the reaction gas 103A having a higher concentration of carbon dioxide. The intake port 101b is located below the reaction vessel 101 and communicates with the envelope portion 101a to allow the reaction gas 103A of a high concentration of carbon dioxide to enter the envelope portion 101a. The exhaust port 101c is located above the reaction tank 101 and communicates with the envelope portion 101a to allow a smaller amount of the reaction gas 103B to be discharged after the carbon dioxide is captured.
在本實施例中,管殼部101a為直立金屬圓管結構,具有位於反應槽101下方,靠近進氣口101b的一第一開口端101a1以及位於反應槽101上方,靠近排氣口101c的一第二開口端101a2。由第一開口端101a1起算至第二開口端101a2的管殼長度L,約占反應槽101整體高度的。 In the present embodiment, the shell portion 101a is an upright metal round tube structure having a first open end 101a1 located below the reaction tank 101, near the inlet 101b, and a portion located above the reaction tank 101 near the exhaust port 101c. The second open end 101a2. The length L of the envelope from the first open end 101a1 to the second open end 101a2 is about the entire height of the reaction tank 101.
另外,反應槽101還包括一個反應床面104。在本說明書的一些實施例之中,反應床面104係一種金屬平板,放置於由第一開口端101a1向上起算1/4管殼長度(1/4L)的位置,藉以在反應床面104上方具有一個流化床碳酸化反應室101d。尚未將濃度較高的二氧化碳的反應氣體103A導入管殼部101a之前,反應床面104可用來承載靜止的吸附劑顆粒102A。反應床面104具有複數個通孔104a,用來容許濃度較高的二氧化碳的反應氣體103A均勻地通過反應床面104。並藉由濃度較高的二氧化碳之反應氣體103A的氣流動力或風壓,使位於反應床面104上的吸附劑顆 粒102A懸浮於管殼部101a。 In addition, the reaction tank 101 further includes a reaction bed surface 104. In some embodiments of the present specification, the reaction bed surface 104 is a metal plate placed at a position 1/4 of the length (1/4 L) of the casing from the first open end 101a1, thereby above the reaction bed surface 104. There is a fluidized bed carbonation reaction chamber 101d. The reaction bed surface 104 can be used to carry the stationary adsorbent particles 102A before the reaction gas 103A having a higher concentration of carbon dioxide has not been introduced into the envelope portion 101a. The reaction bed surface 104 has a plurality of through holes 104a for allowing the reaction gas 103A of a higher concentration of carbon dioxide to uniformly pass through the reaction bed surface 104. And the adsorbent particles on the reaction bed surface 104 are caused by the gas flow power or wind pressure of the reaction gas 103A having a relatively high concentration of carbon dioxide. The pellet 102A is suspended in the envelope portion 101a.
但值得注意的是,反應床面104的位置並不以上述為限。在本說明書的其他實施例之中,反應床面104可以放置於由第一開口端101a1向上起算該管殼長度1/12至該管殼長度1/2之間的一位置。 However, it is worth noting that the position of the reaction bed surface 104 is not limited to the above. In other embodiments of the present specification, the reaction bed surface 104 may be placed at a position between the first open end 101a1 and the length of the envelope from 1/12 to 1/2 of the length of the envelope.
吸附劑顆粒102A可以包含一種或多種二氧化碳吸附材料。例如,在本說明書的一些實施例之中,二氧化碳吸附材料可以選自於由氧化鈣、活性碳、沸石、矽凝膠(silica xerogel)以及上述材料之任意組合之一族群。在本實施例中,吸附劑顆粒102A係由氧化鈣所構成,可以與濃度較高的二氧化碳的反應氣體103A中的二氧化碳進行碳酸化反應生成碳酸鈣。其化學反應式如下:CaO (s)+CO 2(g)→CaCO 3(s) △H=-180kJ/mole The sorbent particles 102A may comprise one or more carbon dioxide sorbent materials. For example, in some embodiments of the present specification, the carbon dioxide adsorbing material may be selected from the group consisting of calcium oxide, activated carbon, zeolite, silica xerogel, and any combination of the foregoing. In the present embodiment, the adsorbent particles 102A are composed of calcium oxide, and can be carbonated with carbon dioxide in the reaction gas 103A having a relatively high concentration of carbon dioxide to form calcium carbonate. Its chemical reaction formula is as follows: CaO ( s ) + CO 2 ( g ) → CaCO 3 ( s ) △ H = -180kJ / mole
其中,碳酸化反應的反應熱△H約為180千焦耳/莫爾(kJ/mole)。藉由氧化鈣吸附劑顆粒102A與濃度較高的二氧化碳的反應氣體103A反應所生成的反應熱△H,可以激發管殼部101a的側壁發出震盪聲波。 Among them, the reaction heat ΔH of the carbonation reaction is about 180 kJ/mole (kJ/mole). The reaction heat ΔH generated by the reaction of the calcium oxide adsorbent particles 102A with the reaction gas 103A having a relatively high concentration of carbon dioxide can excite the side wall of the envelope portion 101a to emit a oscillating sound wave.
在本說明書的一實施例中,可發出震盪聲波的管殼部101a是一種雷克管(Rijke tube)系統,藉由反應熱△H對兩端具有開口的直立圓管加熱,利用管內流體的熱不穩定現象(thermal instabiLity),當熱量釋放Q’與管內的聲壓擾動P’,具有下列之關 係,並符合下述之條件時,會在管內激發出聲波。P’(x,t)‧Q’(x,t)dxdt>0其中,P’為聲波壓力變化;Q’為熱量釋放之變化;T為聲波週期;L為爐管長度(管殼長度L)。x為沿爐身(管殼部101a)之距離;t為時間。 In an embodiment of the present specification, the envelope portion 101a which can emit the oscillating sound wave is a Rijke tube system, and the vertical tube having the opening at both ends is heated by the reaction heat ΔH, and the fluid in the tube is utilized. The thermal instabi Lity, when the heat release Q' and the sound pressure disturbance P' in the tube have the following relationship and meet the following conditions, the sound wave is excited in the tube. P'(x,t)‧Q'(x,t)dxdt>0 where P' is the change of acoustic pressure; Q' is the change of heat release; T is the period of sound wave; L is the length of the tube (case length L ). x is the distance along the furnace body (the casing portion 101a); t is time.
當反應熱△H的熱量釋放變化與聲波之聲壓變化趨勢同相時,聲波會被激發放大。若反應熱△H的熱量釋放位置,恰好位於管殼部101a下方之第一開口端101a1向上起算1/4管殼長度(1/4L)處時,則可激發最大之基本頻率聲波。在本實施例中,管殼部101a所發出聲音的波長,為總管殼長度的二分之一(L/2)。如管殼長度在3.2公尺時聲波頻率約在70赫茲(Hz)上下,其聲響可達150分貝(dB)以上。該聲波頻率與管殼長度成反比,聲響與能量有關。 When the heat release change of the reaction heat ΔH is in phase with the sound pressure change trend of the sound wave, the sound wave is excited and amplified. If the heat release position of the reaction heat ΔH is just located at the 1/4 case length (1/4L) from the first open end 101a1 below the envelope portion 101a, the maximum fundamental frequency sound wave can be excited. In the present embodiment, the wavelength of the sound emitted by the envelope portion 101a is one-half (L/2) of the total length of the envelope. If the length of the envelope is 3.2 meters, the acoustic frequency is about 70 Hz, and the sound can reach more than 150 decibels (dB). The acoustic frequency is inversely proportional to the length of the envelope, and the sound is related to energy.
當聲波被激發出來時,由於受到強大聲波的振盪,懸浮於反應床面104上方的氧化鈣吸附劑顆粒102A的粉體流體化現象更加劇烈明顯,進而會隨著聲波變化而不斷的上下來回振盪擾動。此種聲脈衝效應不但有助於讓氧化鈣吸附劑顆粒102A粉體與濃度較高的二氧化碳的反應氣體103A進行更充分的混合,且不致發生結塊與堆積的現象發生;同時由於此聲波脈動會促進濃度較高的二氧化碳的反應氣體103A局部高強度紊流效 應,亦將有助於二氧化碳能更加深入氧化鈣吸附劑顆粒102A中的多孔結構內部,進而提升氧化鈣吸附劑顆粒102A的整體利用率與二氧化碳捕獲效率。 When the sound wave is excited, due to the oscillation of the powerful sound wave, the powder fluidization phenomenon of the calcium oxide adsorbent particle 102A suspended above the reaction bed surface 104 is more severe and obvious, and then the upper and lower oscillations are continuously oscillated as the sound wave changes. Disturbed. This acoustic pulse effect not only helps to more fully mix the calcium oxide sorbent particle 102A powder with the higher concentration carbon dioxide reaction gas 103A, but also does not cause agglomeration and accumulation; at the same time, due to the sound wave pulsation Local high-intensity turbulence effect of reaction gas 103A which promotes high concentration of carbon dioxide It should also help carbon dioxide to penetrate deeper into the porous structure of the calcium oxide sorbent particles 102A, thereby increasing the overall utilization of the calcium oxide sorbent particles 102A and the carbon dioxide capture efficiency.
在本說明書的一實施例中,管殼部101a下方之第一開口端101a1和上方的第二開口端101a2可以分別選擇性地(optionally)連接一個下方聲波去耦器(acoustic decoupler)105以及一個上方聲波去耦器106,使管殼部101a與下方聲波去耦器105以及上方聲波去耦器106連通,用以消除管殼部101a所發出的聲波震盪。 In an embodiment of the present specification, the first open end 101a1 and the upper second open end 101a2 below the envelope portion 101a may be selectively connected to a lower acoustic decoupler 105 and one, respectively. The upper acoustic wave decoupler 106 communicates the envelope portion 101a with the lower acoustic wave decoupler 105 and the upper acoustic wave decoupler 106 for eliminating acoustic wave oscillations from the envelope portion 101a.
在本實施例中,下方聲波去耦器105和上方聲波去耦器106二者皆是一種殼體結構,且都具有上寬下窄的兩個開口。其中,下方聲波去耦器105較寬的開口與管殼部101a的第一開口端101a1連接;上方聲波去耦器106較窄的開口與管殼部的第二開口端101a2連接。若要達到消除聲波震盪的效果,下方聲波去耦器105和上方聲波去耦器106的容積,較佳實質為流化床碳酸化反應室101d容積的10倍以上。 In the present embodiment, both the lower acoustic wave decoupler 105 and the upper acoustic wave decoupler 106 are a housing structure, and both have two openings that are wide and narrow. The wider opening of the lower acoustic wave decoupler 105 is connected to the first open end 101a1 of the casing portion 101a; the narrower opening of the upper acoustic wave decoupler 106 is connected to the second open end 101a2 of the casing portion. To achieve the effect of eliminating sonic oscillation, the volume of the lower sonic decoupler 105 and the upper sonic decoupler 106 is preferably substantially more than 10 times the volume of the fluidized bed carbonation reaction chamber 101d.
在本實施例中,氧化鈣吸附劑顆粒102A係通過位於上方聲波去耦室106一側的進料口106a進入管殼部101a中,再下落至反應床面104上。濃度較高的二氧化碳的反應氣體103A則係由進氣口101b穿過下方聲波去耦室105引入管殼部101a中,再往上均勻通過反應床面104,與分布在反應床面104上的氧化鈣吸附劑顆粒102A進行碳酸化反應。而與二氧化碳反應過 後的碳酸鈣吸附劑顆粒102B,可藉由重力作用沉積至反應床面104下方,並穿過下方聲波去耦器105經由排料管107的排料口107a排出反應槽101。經二氧化碳捕獲之後,二氧化碳含量較少的反應氣體103B則通過上方聲波去耦室106和排氣口101c排出,並經氣/固分離器與過濾器(未繪示)之後排到大氣之中。 In the present embodiment, the calcium oxide sorbent particles 102A enter the envelope portion 101a through the feed port 106a located on the side of the upper acoustic wave decoupling chamber 106, and then fall onto the reaction bed surface 104. The reaction gas 103A having a higher concentration of carbon dioxide is introduced into the envelope portion 101a through the lower acoustic wave decoupling chamber 105 through the inlet port 101b, and then uniformly passes through the reaction bed surface 104 and distributed on the reaction bed surface 104. The calcium oxide sorbent particles 102A are subjected to a carbonation reaction. Reacted with carbon dioxide The subsequent calcium carbonate sorbent particles 102B can be deposited by gravity into the reaction bed 104 and exit the reaction vessel 101 through the lower acoustic wave decoupler 105 via the discharge port 107a of the discharge tube 107. After the carbon dioxide capture, the reaction gas 103B having a lower carbon dioxide content is discharged through the upper acoustic wave decoupling chamber 106 and the exhaust port 101c, and is discharged to the atmosphere through a gas/solid separator and a filter (not shown).
由於,碳酸化反應為一放熱反應,故不需要額外設置燃燒裝置對管殼部101a進行加熱,僅需藉由此碳酸化反應所放出的反應熱△H,即可激發管殼部101a的側壁基本頻率聲波,促使已藉由反應氣體103A懸浮於在反應床面104上方的氧化鈣吸附劑顆粒102A更均勻擾動。在本實施例中,碳酸化反應的反應溫度實質介於600℃至700℃之間。 Since the carbonation reaction is an exothermic reaction, it is not necessary to additionally provide a combustion device to heat the shell portion 101a, and only the side wall of the shell portion 101a can be excited by the reaction heat ΔH released by the carbonation reaction. The fundamental frequency sound waves cause a more uniform perturbation of the calcium oxide sorbent particles 102A that have been suspended by the reaction gas 103A above the reaction bed surface 104. In the present embodiment, the reaction temperature of the carbonation reaction is substantially between 600 ° C and 700 ° C.
而為了控制碳酸化反應的反應溫度,在本說明書的一些實施例中,二氧化碳捕獲裝置100可以包括一個冷卻裝置108,設於該管殼部101a的直立圓管內側或外上。在本實施例中,殼部101a的內部設有冷卻水管108A,藉由冷卻水108B移走過多的碳酸化反應熱△H,以便將管殼部101a的爐內溫度控制在約介於600℃至700℃之間。 In order to control the reaction temperature of the carbonation reaction, in some embodiments of the present specification, the carbon dioxide capture device 100 may include a cooling device 108 disposed inside or outside the upright tube of the envelope portion 101a. In the present embodiment, the inside of the casing portion 101a is provided with a cooling water pipe 108A, and the excessive carbonation reaction heat ΔH is removed by the cooling water 108B to control the furnace temperature of the casing portion 101a to be about 600 ° C. Up to 700 ° C.
二氧化碳捕獲裝置100可以和其他裝置組合形成一個二氧化碳捕獲系統20。例如,請參照第2圖,第2圖係根據本說明書的一實施例所繪示的二氧化碳捕獲系統20的元件配置圖。在本實施例中,二氧化碳捕獲系統20係採用第1圖所提供的二氧化碳捕獲裝置100與煅燒爐200結合,將與二氧化碳作用 之後的碳酸鈣吸附劑顆粒102B回收,並送回到煅燒爐200重新煅燒,形成為具有良好活性的氧化鈣吸附劑顆粒102A後重複循環再利用。 The carbon dioxide capture device 100 can be combined with other devices to form a carbon dioxide capture system 20. For example, please refer to FIG. 2, which is a component configuration diagram of a carbon dioxide capture system 20 according to an embodiment of the present specification. In the present embodiment, the carbon dioxide capture system 20 is combined with the calciner 200 using the carbon dioxide capture device 100 provided in FIG. 1 to act on carbon dioxide. The subsequent calcium carbonate sorbent particles 102B are recovered and sent back to the calciner 200 for re-calcination to form calcium oxide sorbent particles 102A having good activity, followed by repeated recycling.
其中,煅燒爐200的煅燒溫度實質介於850℃至950℃之間。煅燒碳酸鈣吸附劑顆粒102B過程中所生成的高濃度二氧化碳,則經過後二氧化碳收集裝置的過濾、冷凝、壓縮等步驟(未繪示)後再行封存。煅燒碳酸鈣的化學反應式如下:CaCO3(s)→CaO(s)+CO2(g) Wherein, the calcination temperature of the calciner 200 is substantially between 850 ° C and 950 ° C. The high concentration of carbon dioxide generated during the calcination of the calcium carbonate adsorbent particles 102B is sealed by a step (not shown) of filtration, condensation, compression, etc. of the carbon dioxide collecting device. The chemical reaction formula of calcined calcium carbonate is as follows: CaCO 3 (s) → CaO (s) + CO 2 (g)
新鮮的碳酸鈣吸附劑顆粒102B也可由新料倉201下料到煅燒爐200,經煅燒成為具有良好活性之氧化鈣吸附劑顆粒102A。這些高溫的氧化鈣吸附劑顆粒102A,可藉由氣送鼓風機202氣通過氣/固分離器203,由上方聲波去耦室106進入管殼部101a中,再下落至反應床面104上,完成一次鈣循環(或是鈣迴路)二氧化碳捕獲程序的循環。 The fresh calcium carbonate sorbent particles 102B can also be discharged from the new silo 201 to the calciner 200 and calcined to form calcium oxide sorbent particles 102A having good activity. The high-temperature calcium oxide adsorbent particles 102A can pass through the gas/solid separator 203 by the gas-steam blower 202, enter the shell portion 101a from the upper acoustic wave decoupling chamber 106, and fall onto the reaction bed surface 104 to complete A cycle of a calcium cycle (or calcium circuit) carbon dioxide capture program.
根據上述,本說明書的實施例是揭露一種二氧化碳捕獲裝置以及應用此裝置的二氧化碳捕獲系統及方法。其係採用具有特定管殼結構的反應槽,將複數個吸附劑顆粒置入反應槽的管殼結構中,使吸附劑顆粒與含有二氧化碳的反應氣體發生反應。無須額外加熱裝置,僅藉由二者的反應熱即可激發管殼結構發出震盪聲波,並藉由聲壓擾動使反應氣體在管殼結構中產生高強度的局部紊流,延長吸附劑顆粒在管殼結構中懸浮滯留的時 間。不僅有助於強化吸附劑顆粒與二氧化碳氣/固兩相的均勻混合,防止結塊與堆積現象的發生,有效改善流化床的渠道化和滯區的問題。更可藉由聲波效應促使反應氣體中的二氧化碳更深入吸附劑顆粒的多孔結構內部,提高吸附劑的整體利用率。 In accordance with the above, embodiments of the present specification disclose a carbon dioxide capture device and a carbon dioxide capture system and method using the same. The invention adopts a reaction tank having a specific shell structure, and a plurality of adsorbent particles are placed in the shell structure of the reaction tank to react the adsorbent particles with the reaction gas containing carbon dioxide. Without additional heating means, only the reaction heat of the two can excite the shell structure to emit oscillating sound waves, and by the sound pressure disturbance, the reaction gas generates high-intensity local turbulence in the shell structure, prolonging the adsorbent particles in When the suspension is retained in the shell structure between. It not only helps to strengthen the uniform mixing of the adsorbent particles and the carbon dioxide gas/solid phase, prevents the occurrence of agglomeration and accumulation, and effectively improves the channelization and stagnation of the fluidized bed. The sonic effect can also promote the carbon dioxide in the reaction gas to penetrate deep into the porous structure of the adsorbent particles, thereby improving the overall utilization rate of the adsorbent.
雖然本說明書已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present specification has been disclosed above in the preferred embodiments, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100‧‧‧二氧化碳捕獲裝置 100‧‧‧Carbon dioxide capture device
101‧‧‧反應槽 101‧‧‧Reaction tank
101a‧‧‧管殼部 101a‧‧‧ Shell Department
101a1‧‧‧第一開口端 101a1‧‧‧first open end
101a2‧‧‧第二開口端 101a2‧‧‧ second open end
101b‧‧‧進氣口 101b‧‧‧air inlet
101c‧‧‧排氣口 101c‧‧‧Exhaust port
101d‧‧‧碳酸化反應室 101d‧‧‧carbonation reaction chamber
102A‧‧‧吸附劑顆粒 102A‧‧‧ adsorbent particles
102B‧‧‧碳酸鈣吸附劑顆粒 102B‧‧‧calcium carbonate sorbent particles
103A‧‧‧濃度較高的二氧化碳的反應氣體 103A‧‧‧Reaction gas with higher concentration of carbon dioxide
103B‧‧‧二氧化碳含較少量的反應氣體 103B‧‧‧Carbon dioxide contains a small amount of reactive gas
104‧‧‧反應床面 104‧‧‧Reaction bed surface
104a‧‧‧通孔 104a‧‧‧through hole
105‧‧‧下方聲波去耦器 105‧‧‧ below the acoustic decoupler
106‧‧‧上方聲波去耦器 106‧‧‧Sound Acoustic Decoupler
106a‧‧‧進料口 106a‧‧‧ Feed inlet
107‧‧‧排料管 107‧‧‧Drainage tube
107a‧‧‧排料口 107a‧‧‧ discharge opening
108‧‧‧冷卻裝置 108‧‧‧Cooling device
108A‧‧‧冷卻水管 108A‧‧‧Cooling water pipes
108B‧‧‧冷卻水 108B‧‧‧Cooling water
L‧‧‧管殼長度 L‧‧‧tube length
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105138658A TWI602778B (en) | 2016-11-24 | 2016-11-24 | Apparatus for capturing carbon dioxide system and method thereof |
CN201611122850.4A CN108101058B (en) | 2016-11-24 | 2016-12-08 | Carbon dioxide capture device and system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105138658A TWI602778B (en) | 2016-11-24 | 2016-11-24 | Apparatus for capturing carbon dioxide system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI602778B true TWI602778B (en) | 2017-10-21 |
TW201819296A TW201819296A (en) | 2018-06-01 |
Family
ID=61011021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105138658A TWI602778B (en) | 2016-11-24 | 2016-11-24 | Apparatus for capturing carbon dioxide system and method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108101058B (en) |
TW (1) | TWI602778B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI706806B (en) * | 2019-11-18 | 2020-10-11 | 財團法人工業技術研究院 | Carbonator and carbon dioxide capture system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI657854B (en) * | 2018-07-02 | 2019-05-01 | 黃有進 | CO2 adsorption system |
CN110801730A (en) * | 2018-08-06 | 2020-02-18 | 黄有进 | Carbon dioxide adsorption system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120132078A1 (en) * | 2010-11-30 | 2012-05-31 | Korea Institute Of Energy Research | Dry Carbon Dioxide Capture Apparatus |
WO2013040094A1 (en) * | 2011-09-12 | 2013-03-21 | E. I. Du Pont De Nemours And Company | Methods and apparatus for carbon dioxide capture |
WO2013144853A1 (en) * | 2012-03-30 | 2013-10-03 | Alstom Technology Ltd | Method and apparatus for efficient carbon dioxide capture |
CN103357373A (en) * | 2012-03-26 | 2013-10-23 | 三星电子株式会社 | Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same |
WO2014026641A1 (en) * | 2012-08-17 | 2014-02-20 | 西安瑞驰节能工程有限责任公司 | Apparatus and process using cao as carrier for cycled-capturing of carbon dioxide |
CN103768904A (en) * | 2012-10-17 | 2014-05-07 | 阿尔斯通技术有限公司 | System for capturing CO2 from process gas |
CN104707471A (en) * | 2013-12-11 | 2015-06-17 | 财团法人工业技术研究院 | Carbon dioxide capture system and method for circulating tower |
CN105521702A (en) * | 2014-10-27 | 2016-04-27 | 财团法人工业技术研究院 | Carbon dioxide capture device and method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01231919A (en) * | 1988-03-11 | 1989-09-18 | Mitsubishi Heavy Ind Ltd | Mixed gas separation method by using absorbent |
CN1251783A (en) * | 1998-10-21 | 2000-05-03 | 普拉塞尔技术有限公司 | Method for enhancing quick piston flow reaction by high strengthened tubular reaction |
CN2589954Y (en) * | 2002-12-26 | 2003-12-03 | 浙江大学 | Low-temperature liquid level indicator |
CN101378992A (en) * | 2005-10-21 | 2009-03-04 | Calix私人有限公司 | A material compound and a method of fabricating the same |
WO2008028238A1 (en) * | 2006-09-07 | 2008-03-13 | Docklands Science Park Pty Limited | The capture and removal of gases from other gases in a gas stream |
CN101337153B (en) * | 2008-08-12 | 2011-08-31 | 东南大学 | Ultrasonic integrated desulfurization denitration demercuration method and device thereof |
CN102614748A (en) * | 2012-04-12 | 2012-08-01 | 天津工业大学 | Ultrasonic reinforced membrane reactor for absorbing and gathering CO2 in flue gas |
WO2016049703A1 (en) * | 2014-10-02 | 2016-04-07 | Siddons Enertec Pty. Ltd. | Thermoacoustic refrigerator |
JP6467284B2 (en) * | 2015-05-13 | 2019-02-13 | 日本碍子株式会社 | Water recovery equipment |
-
2016
- 2016-11-24 TW TW105138658A patent/TWI602778B/en active
- 2016-12-08 CN CN201611122850.4A patent/CN108101058B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120132078A1 (en) * | 2010-11-30 | 2012-05-31 | Korea Institute Of Energy Research | Dry Carbon Dioxide Capture Apparatus |
WO2013040094A1 (en) * | 2011-09-12 | 2013-03-21 | E. I. Du Pont De Nemours And Company | Methods and apparatus for carbon dioxide capture |
CN103357373A (en) * | 2012-03-26 | 2013-10-23 | 三星电子株式会社 | Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same |
WO2013144853A1 (en) * | 2012-03-30 | 2013-10-03 | Alstom Technology Ltd | Method and apparatus for efficient carbon dioxide capture |
WO2014026641A1 (en) * | 2012-08-17 | 2014-02-20 | 西安瑞驰节能工程有限责任公司 | Apparatus and process using cao as carrier for cycled-capturing of carbon dioxide |
CN103768904A (en) * | 2012-10-17 | 2014-05-07 | 阿尔斯通技术有限公司 | System for capturing CO2 from process gas |
CN104707471A (en) * | 2013-12-11 | 2015-06-17 | 财团法人工业技术研究院 | Carbon dioxide capture system and method for circulating tower |
CN105521702A (en) * | 2014-10-27 | 2016-04-27 | 财团法人工业技术研究院 | Carbon dioxide capture device and method |
Non-Patent Citations (1)
Title |
---|
談駿嵩等人,二氧化碳捕獲,科學發展,第510期,2015年6月,第32至37頁 陳鋒等人,二氧化碳捕獲與封存技術,能源研究與信息,第27卷,第4期,2011年,第193至196頁 李雪靜等人,二氧化碳捕獲與封存技術發展及存在的問題分析,中外能源,第13卷,第5期,2008年10月,第104至107頁 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI706806B (en) * | 2019-11-18 | 2020-10-11 | 財團法人工業技術研究院 | Carbonator and carbon dioxide capture system |
Also Published As
Publication number | Publication date |
---|---|
CN108101058B (en) | 2021-03-02 |
TW201819296A (en) | 2018-06-01 |
CN108101058A (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI602778B (en) | Apparatus for capturing carbon dioxide system and method thereof | |
CN105148701B (en) | Gaseous oxidation system, flue gas purifying equipment and its purification method using the system | |
CN102513031A (en) | Deacidification process and equipment thereof | |
JP4211467B2 (en) | Catalytic exhaust gas treatment device and exhaust gas treatment method | |
JP5432809B2 (en) | Carbonation treatment method and apparatus for steel slag powder | |
CN109603519A (en) | A kind of SCR denitration system of boiler smoke | |
JP2015211938A (en) | Wet cleaning device of polluted gas performing gas-liquid contact in granular ceramic porous body packed layer | |
CN111111404A (en) | Flue gas treatment system and method for cement kiln | |
CN105233833B (en) | Magnetic rare earth barium ferrite nanometer cleaning catalyst and preparation method and application | |
CN106219612B (en) | A kind of processing method of waste chlorine | |
KR101791478B1 (en) | Treating system of waste gas | |
CN115569629A (en) | Method for capturing CO by using inorganic adsorbent fixed by porous framework 2 Method (2) | |
CN205550045U (en) | But SCR reactor of deashing | |
CN210045075U (en) | Dust removal and denitration integrated device for sodium silicate processing | |
JP4711831B2 (en) | Exhaust gas treatment agent, exhaust gas treatment method, and exhaust gas treatment apparatus | |
JP2003024741A (en) | Combustion type semiconductor exhaust gas treatment apparatus | |
JP2017094292A (en) | Dry type flue gas moving-bed purifier | |
CN207622028U (en) | Industrial pollutants compatibility burning processing system | |
CN109084593A (en) | A kind of device and method using the dry slag micropowder of sintering flue gas waste heat | |
CN215742707U (en) | Dry-process DSNCR denitration device suitable for carbon calciner | |
KR102724049B1 (en) | Carbon dioxide capture and carbon resource conversion system for cement production plant | |
CN118450933A (en) | Carbon dioxide capturing and carbon recycling system for cement manufacturing equipment | |
CN218107226U (en) | Flue gas treatment system of support plate glass tank furnace | |
CN113877414B (en) | Magnetic activated carbon-based immobilized carbonic anhydrase for capturing CO in flue gas2System and method | |
CN211328557U (en) | Bag-type dust collector |