TWI706466B - Method of manufacturing thin film element - Google Patents

Method of manufacturing thin film element Download PDF

Info

Publication number
TWI706466B
TWI706466B TW108119783A TW108119783A TWI706466B TW I706466 B TWI706466 B TW I706466B TW 108119783 A TW108119783 A TW 108119783A TW 108119783 A TW108119783 A TW 108119783A TW I706466 B TWI706466 B TW I706466B
Authority
TW
Taiwan
Prior art keywords
layer
silicon
containing layer
thin film
manufacturing
Prior art date
Application number
TW108119783A
Other languages
Chinese (zh)
Other versions
TW202017053A (en
Inventor
劉振宇
林熙乾
林建宏
劉正平
柯山文
Original Assignee
宸鴻光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鴻光電科技股份有限公司 filed Critical 宸鴻光電科技股份有限公司
Publication of TW202017053A publication Critical patent/TW202017053A/en
Application granted granted Critical
Publication of TWI706466B publication Critical patent/TWI706466B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation

Abstract

A method of manufacturing thin film element includes forming a metal gate active layer on a substrate, and a first gate insulation layer is formed on the metal gate active layer. Next, an etch stop layer is formed on the first gate insulation layer. Then, the metal gate active layer and the etch stop layer is treated by flash lamp annealing. A metal source and drain layer is formed on the etch stop layer.

Description

一種薄膜元件的製造方法 Method for manufacturing thin film element

本發明係關於一種薄膜元件的製造方法,尤其是一種背通道蝕刻半導體薄膜元件的製造方法。 The invention relates to a method for manufacturing a thin film element, in particular to a method for manufacturing a back channel etching semiconductor thin film element.

為了簡化薄膜電晶體的製作,背通道蝕刻〈back channel etch,BCE〉的結構是目前相當普遍的製程方法。在製造多矽電晶體時,首先形成非晶〈非晶形〉矽〈a-Si〉薄膜,然後藉由雷射退火轉變成多晶,雷射光照非晶矽可達成轉變為結晶狀態。目前廣泛使用準分子雷射退火〈ecimer laser annealing,ELA〉作為雷射退火之雷射光,準分子雷射為波長在308奈米或更短之紫外線波長範圍的脈衝振盪雷射,產生粒度小之粒狀結晶。 In order to simplify the fabrication of thin film transistors, the structure of back channel etch <back channel etch, BCE> is currently a fairly common process method. In the manufacture of polysilicon transistors, an amorphous silicon (a-Si) film is first formed, and then converted into polycrystalline by laser annealing. The amorphous silicon can be transformed into a crystalline state by laser irradiation. Excimer laser annealing <ecimer laser annealing, ELA> is widely used as the laser for laser annealing. Excimer laser is a pulsed oscillating laser with a wavelength in the ultraviolet wavelength range of 308 nm or less, which produces a small particle size. Granular crystals.

然而,準分子雷射退火結晶技術係皆受限於線束的長度。例如,準分子雷射退火線束在大面積薄膜的整個寬度或長度上無法提供一致的光束性質。因此,準分子雷射退火掃瞄只能在小區塊的膜面積中執行,其必須使基板移動於x和y兩者方向,才得以成功地處理該薄膜。相較於掃瞄較小的膜,掃瞄於x和y兩者方向不僅增加了製程時間,並 且其也產生了具有束邊緣之更低品質的膜與多個結晶掃瞄間之不一致性。 However, the excimer laser annealing crystallization technology is limited by the length of the wire beam. For example, the excimer laser annealing beam cannot provide consistent beam properties over the entire width or length of a large-area film. Therefore, the excimer laser annealing scan can only be performed in a small area of the film, and it must move the substrate in both the x and y directions to successfully process the film. Compared with scanning smaller films, scanning in both the x and y directions not only increases the process time, but also And it also creates inconsistencies between lower quality films with beam edges and multiple crystal scans.

背通道蝕刻的製程因為先製作閘極金屬層,電晶體表面多起伏,當進行準分子雷射退火,加熱深度受限且鍍膜均勻性不佳,因此不適合以準分子雷射退火在非晶半導體層形成結晶。而且雷射源不僅售價昂貴,尤其雷射管需定期更換,機具等使用費用不貲。 The back-channel etching process is because the gate metal layer is first produced, and the surface of the transistor is undulating. When performing excimer laser annealing, the heating depth is limited and the coating uniformity is poor. Therefore, it is not suitable for excimer laser annealing in amorphous semiconductors. The layer forms crystals. Moreover, the laser source is not only expensive, especially the laser tube needs to be replaced regularly, and the cost of using equipment is not expensive.

有鑑於上述課題,本領域急需一種不受電晶體表面起伏,可以均勻退火並結晶的方法。本發明提供一種薄膜元件的製造方法包含形成一閘極金屬層於一基板,再形成一閘極絕緣層於該閘極金屬層上。接著,形成至少一含矽層於該閘極絕緣層上,之後閃光燈退火該閘極金屬層以及該含矽層,並形成一源極金屬層以及一汲極金屬層於該含矽層上。 In view of the above-mentioned problems, there is an urgent need in the art for a method that can be uniformly annealed and crystallized without the surface fluctuation of the transistor. The present invention provides a method for manufacturing a thin film element including forming a gate metal layer on a substrate, and then forming a gate insulating layer on the gate metal layer. Then, at least one silicon-containing layer is formed on the gate insulating layer, and then the flash lamp anneals the gate metal layer and the silicon-containing layer, and a source metal layer and a drain metal layer are formed on the silicon-containing layer.

根據本發明部分實施例,在閃光燈退火含矽層之步驟後,還包含:形成一源極-汲極絕緣層於含矽層上,並位於含矽層和源極-汲極金屬層之間。 According to some embodiments of the present invention, after the step of annealing the silicon-containing layer of the flash lamp, the method further includes: forming a source-drain insulating layer on the silicon-containing layer and located between the silicon-containing layer and the source-drain metal layer .

根據本發明部分實施例,形成含矽層於閘極絕緣層上之步驟還包含:形成至少一摻雜層於含矽層。 According to some embodiments of the present invention, the step of forming a silicon-containing layer on the gate insulating layer further includes: forming at least one doped layer on the silicon-containing layer.

根據本發明部分實施例,形成含矽層於閘極絕緣層上之步驟還包含圖案化該含矽層,其中圖案化含矽層之步驟包括:形成一光阻層於含矽層上;微影蝕刻含矽層;以 及移除光阻層。 According to some embodiments of the present invention, the step of forming a silicon-containing layer on the gate insulating layer further includes patterning the silicon-containing layer, wherein the step of patterning the silicon-containing layer includes: forming a photoresist layer on the silicon-containing layer; Shadow etching silicon-containing layer; And remove the photoresist layer.

根據本發明部分實施例,薄膜元件的製造方法還包含形成一源極-汲極絕緣層於源極-汲極金屬層上。 According to some embodiments of the present invention, the method of manufacturing the thin film device further includes forming a source-drain insulating layer on the source-drain metal layer.

根據本發明部分實施例,閃光燈退火之升溫速度介於700-1300℃/秒。 According to some embodiments of the present invention, the heating rate of the flash lamp annealing is between 700-1300°C/sec.

根據本發明部分實施例,閃光燈退火之一波長範圍介於400-800奈米。 According to some embodiments of the present invention, a wavelength range of the flash lamp annealing is 400-800 nm.

根據本發明部分實施例,閃光燈退火含矽層是藉由化學氣相沉積形成於閘極絕緣層上。 According to some embodiments of the present invention, the flash lamp annealing silicon-containing layer is formed on the gate insulating layer by chemical vapor deposition.

根據本發明部分實施例,閘極金屬層係選自由銦鎵鋅氧化物、銦鎵鋅氮氧化物、氧化鋅、氮氧化鋅、鋅錫氧化物、鎘錫氧化物、鎵錫氧化物、鈦錫氧化物、銅鋁氧化物、鍶銅氧化物、鑭銅硫氧化物、氮化鎵、銦鎵氮化物、鋁鎵氮化物及銦鎵鋁氮化物所組成之群組的材料。 According to some embodiments of the present invention, the gate metal layer is selected from indium gallium zinc oxide, indium gallium zinc oxynitride, zinc oxide, zinc oxynitride, zinc tin oxide, cadmium tin oxide, gallium tin oxide, titanium Materials of the group consisting of tin oxide, copper aluminum oxide, strontium copper oxide, lanthanum copper oxysulfide, gallium nitride, indium gallium nitride, aluminum gallium nitride, and indium gallium aluminum nitride.

根據本發明部分實施例,源極-汲極金屬層之材料係選自銅、金、銀、鋁、鎢、鉬、鉻、鉭、鈦、及其合金或組合所組成之群組的材料。 According to some embodiments of the present invention, the material of the source-drain metal layer is selected from the group consisting of copper, gold, silver, aluminum, tungsten, molybdenum, chromium, tantalum, titanium, and alloys or combinations thereof.

經由閃光燈退火含矽層,原本為非晶矽之含矽層可得到較佳的活化,可使含矽層結晶,且閃光燈退火可大面積、一次性完成結晶程序,相較於雷射退火製程更有效率。 Through flash lamp annealing the silicon-containing layer, the silicon-containing layer originally amorphous silicon can be better activated, and the silicon-containing layer can be crystallized, and the flash lamp annealing can complete the crystallization process in a large area at one time, compared with the laser annealing process more efficient.

S110-S150:步驟 S110-S150: steps

210、310、410:基板 210, 310, 410: substrate

220、320、420:閘極金屬層 220, 320, 420: gate metal layer

230、330、430:閘極絕緣層 230, 330, 430: gate insulation layer

240、240’、340、440:含矽層 240, 240’, 340, 440: Silicon-containing layer

250、350、450:源極-汲極金屬層 250, 350, 450: source-drain metal layer

260:源極-汲極絕緣層 260: source-drain insulating layer

290:閃光燈退火 290: Flash annealing

本發明之上述和其他態樣以及特徵請參照說明書內容並配合附加圖式得到更清楚的了解,其中: 第1圖係根據本發明部分實施例之一薄膜元件製造方法流程圖。 The above and other aspects and features of the present invention can be understood more clearly by referring to the contents of the manual and with the additional drawings. Among them: Figure 1 is a flow chart of a thin film element manufacturing method according to some embodiments of the present invention.

第2A-2G圖係根據本發明部分實施例之薄膜元件製造方法剖面示意圖。 Figures 2A-2G are schematic cross-sectional views of a thin film device manufacturing method according to some embodiments of the present invention.

第3圖係根據本發明部分實施例之一薄膜元件剖面示意圖。 Figure 3 is a schematic cross-sectional view of a thin film element according to some embodiments of the present invention.

第4圖係根據本發明部分實施例之一薄膜元件剖面示意圖。 Figure 4 is a schematic cross-sectional view of a thin film element according to some embodiments of the present invention.

第5圖係根據本發明部分實施例之一薄膜元件剖面示意圖。 Figure 5 is a schematic cross-sectional view of a thin film element according to some embodiments of the present invention.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。在以下描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本發明之實施例。 In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description for the implementation aspects and specific embodiments of the present invention; but this is not the only way to implement or use the specific embodiments of the present invention. The embodiments disclosed below can be combined or substituted with each other under beneficial circumstances, and other embodiments can also be added to an embodiment without further description or description. In the following description, many specific details will be described in detail so that the reader can fully understand the following embodiments. However, the embodiments of the present invention may be practiced without these specific details.

本發明為為背通道蝕刻製造之薄膜電晶體,藉由閃光退火使非晶半導體層結晶的方法。請參考第1圖。第1圖係根據本發明部分實施例繪示之一薄膜元件製造方法流程圖。步驟S110為形成一閘極金屬主動層於一基板。請同時參考第2A 圖。第2A圖係根據本發明部分實施例之一薄膜元件製造方法剖面示意圖。首先,提供一基板210,基板210可為玻璃、塑膠或金屬。請參考第2B圖。第2B圖係根據本發明部分實施例之一薄膜元件製造方法剖面示意圖。閘極金屬層220形成在基板210之上表面。金屬層通常藉由物理氣相沉積程序〈例如:濺鍍〉形成在基板210上,且經圖案化以形成閘極金屬層220。 The present invention is a method of crystallizing an amorphous semiconductor layer by flash annealing for a thin film transistor manufactured for back channel etching. Please refer to Figure 1. FIG. 1 is a flowchart of a method for manufacturing a thin film element according to some embodiments of the present invention. Step S110 is to form a gate metal active layer on a substrate. Please also refer to Section 2A Figure. FIG. 2A is a schematic cross-sectional view of a thin film device manufacturing method according to some embodiments of the present invention. First, a substrate 210 is provided. The substrate 210 can be glass, plastic or metal. Please refer to Figure 2B. FIG. 2B is a schematic cross-sectional view of a thin film device manufacturing method according to some embodiments of the present invention. The gate metal layer 220 is formed on the upper surface of the substrate 210. The metal layer is usually formed on the substrate 210 by a physical vapor deposition process such as sputtering, and is patterned to form the gate metal layer 220.

閘極金屬層220之材料可以為銦鎵鋅氧化物(InGaZnO)、銦鎵鋅氮氧化物(InGaZnON)、氧化鋅(ZnO)、氮氧化鋅(ZnON)、鋅錫氧化物(ZnSnO)、鎘錫氧化物(CdSnO)、鎵錫氧化物(GaSnO)、鈦錫氧化物(TiSnO)、銅鋁氧化物(CuAlO)、鍶銅氧化物(SrCuO)、鑭銅硫氧化物(LaCuOS)、氮化鎵(GaN)、銦鎵氮化物(InGaN)、鋁鎵氮化物(AlGaN)及銦鎵鋁氮化物(InGaAlN)所組成之群組的材料製造而成。 The material of the gate metal layer 220 can be indium gallium zinc oxide (InGaZnO), indium gallium zinc oxynitride (InGaZnON), zinc oxide (ZnO), zinc oxynitride (ZnON), zinc tin oxide (ZnSnO), cadmium Tin oxide (CdSnO), gallium tin oxide (GaSnO), titanium tin oxide (TiSnO), copper aluminum oxide (CuAlO), strontium copper oxide (SrCuO), lanthanum copper oxysulfide (LaCuOS), nitride It is made of gallium (GaN), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), and indium gallium aluminum nitride (InGaAlN).

根據閘極電極之位置,電晶體之元件結構可以是反向交錯式〈inversely-staggered,亦稱為底閘極〈bottom-gate〉〉或交錯式〈亦稱為頂閘極〈top-gate〉〉。在頂閘極結構中,閘極電極位於閘極絕緣層之上方,且主動層形成於閘極絕緣層之下方。在底閘極結構中,閘極電極位於閘極絕緣層之下方,且主動層形成於閘極絕緣層之上方。本發明不以此為限。 According to the position of the gate electrode, the element structure of the transistor can be inversely-staggered, also known as bottom-gate, or staggered, also known as top-gate 〉. In the top gate structure, the gate electrode is located above the gate insulating layer, and the active layer is formed below the gate insulating layer. In the bottom gate structure, the gate electrode is located under the gate insulating layer, and the active layer is formed above the gate insulating layer. The present invention is not limited to this.

請複參考第1圖之步驟S120,形成一閘極絕緣層於該閘極金屬層上。請參考第2C圖。閘極金屬層220上完全覆蓋一閘極絕緣層230。更詳細地說,閘極絕緣層230順應閘極 金屬層220之外形塗覆在閘極金屬層220上,且覆蓋基板210暴露的上表面區域。以可藉由塗覆閘極絕緣層230時,將具有圖案化閘極金屬層220之基板210平坦化,使得基板210表面不因圖案化的閘極金屬層而有隆起部分。 Please refer to step S120 in FIG. 1 again to form a gate insulating layer on the gate metal layer. Please refer to Figure 2C. A gate insulating layer 230 is completely covered on the gate metal layer 220. In more detail, the gate insulating layer 230 conforms to the gate The metal layer 220 is externally coated on the gate metal layer 220 and covers the exposed upper surface area of the substrate 210. Therefore, the substrate 210 with the patterned gate metal layer 220 can be flattened by coating the gate insulating layer 230, so that the surface of the substrate 210 does not have a bulge due to the patterned gate metal layer.

請複參考第1圖之步驟S130,形成一含矽層於該閘極絕緣層上。請參考第2D圖。含矽層240包含一非晶矽層〈a-Si〉,含矽層240透過例如化學氣相沉積〈chemical vapor deposition,CVD〉沉積在閘極絕緣層230頂部,非晶矽層經過n+摻雜形成非晶矽層中的一摻雜層,並成為源極及汲極〈S/D〉接觸點。 Please refer to step S130 in FIG. 1 again to form a silicon-containing layer on the gate insulating layer. Please refer to Figure 2D. The silicon-containing layer 240 includes an amorphous silicon layer <a-Si>. The silicon-containing layer 240 is deposited on top of the gate insulating layer 230 by, for example, chemical vapor deposition (CVD). The amorphous silicon layer is n+ doped A doped layer in the amorphous silicon layer is formed and becomes the source and drain <S/D> contact points.

請複參考第1圖之步驟S140,閃光燈退火含矽層。在含矽層240尚未圖案化形成特定形狀之區塊前,進行閃光燈退火290結晶。閃光雷射退火290使用閃光燈產生寬波長範圍〈例如400-800奈米〉的白光。閃光燈是氣體填充的放電燈,例如氙氣,可產生非常短暫且強烈的非同調全光譜白光。閃光燈退火為使用白光能量在目標物表面產生輻射,還可將光透過反射鏡設置,將光能量聚焦引導到目標物表面。閃光燈功率是由一系列的電容器和電感器供應,放電光能量密度可高達1-20毫秒〈ms〉放電之高達40焦耳/平方公分〈J/cm2〉。閃光燈退火290允許單一閃光快速加熱含矽層240固態表面。 Please refer to step S140 in Figure 1 again, the flash lamp anneals the silicon-containing layer. Before the silicon-containing layer 240 is patterned to form regions of a specific shape, flash lamp annealing 290 is performed for crystallization. Flash laser annealing 290 uses a flash lamp to generate white light in a wide wavelength range (for example, 400-800 nm). The flash lamp is a gas-filled discharge lamp, such as xenon, which can produce very short and intense non-coherent full-spectrum white light. Flashlight annealing is to use white light energy to generate radiation on the surface of the target, and it can also set the light through a reflector to focus and guide the light energy to the surface of the target. The power of the flash lamp is supplied by a series of capacitors and inductors, and the discharge light energy density can be as high as 1-20 milliseconds (ms) and the discharge can be as high as 40 joules/cm²<J/cm 2 >. The flash lamp annealing 290 allows a single flash to rapidly heat the solid surface of the silicon-containing layer 240.

影響含矽層240結晶品質之閃光燈的變數可能包含入射光的能量密度以及持續期間和光形狀。由於閃光燈輻射是一泛輻射製程,閃光燈能夠以單一脈衝來輻射大面積的基材表面,可一次性處理覆蓋在基材上之非晶矽膜。因此,不需要 使用如準分子雷射退火掃瞄方式的多脈衝操作。以閃光燈退火之成本相較於雷射退火也更為低廉。根據本發明部分實施例,閃光燈退火之升溫速度介於700-1300℃/秒。 The variables that affect the crystalline quality of the silicon-containing layer 240 may include the energy density, duration, and light shape of the incident light. Since the flash lamp radiation is a pan-radiation process, the flash lamp can irradiate a large area of the substrate surface with a single pulse, and the amorphous silicon film covering the substrate can be processed at one time. Therefore, no Use multi-pulse operation like excimer laser annealing scanning method. The cost of flash annealing is also lower than that of laser annealing. According to some embodiments of the present invention, the heating rate of the flash lamp annealing is between 700-1300°C/sec.

經過閃光燈退火290之後,含矽層240之結晶結構之橫向生長開始於含矽層240表面,並沿著與閃光燈退火290箭頭垂直方向擴增,以產生一結晶材料。矽結晶粒傾向於從垂直於液態相與固態相矽之間的界面橫向地生長。因此,當含矽層240的某些區塊被輻射且熔化而含矽層240的其他區塊維持固態時,結晶生長從含矽層240的固態/液態界面開始,並且沿著含矽層240橫向行進。此種結晶生長的形式稱為橫向生長,可以產生大的矽結晶粒,利於元件製造。因此,元件可以形成在含矽層240的橫向生長區域中。 After the flash lamp annealing 290, the lateral growth of the crystalline structure of the silicon-containing layer 240 starts on the surface of the silicon-containing layer 240 and is amplified along the direction perpendicular to the arrow of the flash lamp annealing 290 to produce a crystalline material. Silicon crystal grains tend to grow laterally perpendicular to the interface between the liquid phase and the solid phase silicon. Therefore, when certain areas of the silicon-containing layer 240 are irradiated and melted while other areas of the silicon-containing layer 240 remain solid, crystal growth starts from the solid/liquid interface of the silicon-containing layer 240 and runs along the silicon-containing layer 240 Travel horizontally. This form of crystal growth is called lateral growth, which can produce large silicon crystal grains, which is conducive to device manufacturing. Therefore, the element can be formed in the lateral growth region of the silicon-containing layer 240.

請參考第2F圖。含矽層240先圖案化,圖案化製程包含形成一光阻層於含矽層240,用以對含矽層240的非晶矽層與摻雜層進行黃光微影蝕刻,以形成特定形狀之含矽層240’,僅保留一預定形狀之區塊〈island〉在閘極絕緣層230上,再將光阻層移除。光阻層移除之後,進行閃光燈退火290。根據本發明部分實施例,閃光燈退火290可於含矽層240圖案化之前或之後進行。第2E圖中,閃光燈退火290在含矽層240圖案化之前進行,第2F圖中閃光燈退火290在含矽層240’圖案化之後進行。在含矽層240’圖案化之後進行閃光燈退火,由於含矽層240’表面平坦化,閘極絕緣層230塗覆在閘極金屬層220的型態〈上下起伏〉對於含矽層240’結晶特性的影響更小。 Please refer to Figure 2F. The silicon-containing layer 240 is first patterned. The patterning process includes forming a photoresist layer on the silicon-containing layer 240 to perform yellow photolithography etching on the amorphous silicon layer and the doped layer of the silicon-containing layer 240 to form a specific shape of the In the silicon layer 240', only a region of a predetermined shape <island> remains on the gate insulating layer 230, and then the photoresist layer is removed. After the photoresist layer is removed, flash lamp annealing 290 is performed. According to some embodiments of the present invention, the flash lamp annealing 290 may be performed before or after the silicon-containing layer 240 is patterned. In Figure 2E, the flash lamp annealing 290 is performed before the patterning of the silicon-containing layer 240, and in Figure 2F, the flash lamp annealing 290 is performed after the silicon-containing layer 240' is patterned. After the silicon-containing layer 240' is patterned, flash lamp annealing is performed. Because the surface of the silicon-containing layer 240' is flattened, the gate insulating layer 230 is coated on the gate metal layer 220. The shape of the silicon-containing layer 240' is crystallized. The impact of characteristics is even smaller.

請複參考第1圖之步驟S150,形成一源極金屬層 以及一汲極金屬層。請參考第2G圖。圖案化含矽層240’後,利用之前在含矽層240’中形成的摻雜層當作源極及汲極〈S/D〉接觸點,形成第二金屬層,也就是源極-汲極金屬層250。源極-汲極金屬層250的材料可以選自由銅(Cu)、金(Au)、銀(Ag)、鋁(Al)、鎢(W)、鉬(Mo)、鉻(Cr)、鉭(Ta)、鈦(Ti)、其合金或組合所組成之群組的材料製造而成。源極-汲極金屬層250之上還塗覆一源極-汲極絕緣層〈圖未示〉,完成此電晶體薄膜元件製造程序。 Please refer to step S150 in Figure 1 again to form a source metal layer And a drain metal layer. Please refer to Figure 2G. After the silicon-containing layer 240' is patterned, the doped layer previously formed in the silicon-containing layer 240' is used as source and drain <S/D> contacts to form a second metal layer, which is the source-drain极metal layer 250. The material of the source-drain metal layer 250 can be selected from copper (Cu), gold (Au), silver (Ag), aluminum (Al), tungsten (W), molybdenum (Mo), chromium (Cr), tantalum ( It is made of materials of the group consisting of Ta), titanium (Ti), their alloys or combinations. The source-drain metal layer 250 is also coated with a source-drain insulating layer (not shown) to complete the manufacturing process of the transistor thin film device.

請參考第3圖。第3圖係根據本發明部分實施例之一薄膜元件剖面示意圖。在背通道蝕刻製程中,利用上述方法製作電晶體薄膜,首先在基板310上形成閘極金屬層320,在閘極金屬層320上塗覆閘極絕緣層330,在本實施例中,閘極絕緣層330僅平坦覆蓋閘極金屬層320的範圍,並未因閘極金屬層310之型態而形成如第2C圖起伏之外貌,閘極絕緣層330也不與基板310接觸。接著,於閘極絕緣層330上形成含矽層340,含矽層340包含非晶矽層以及摻雜層,含矽層340可在圖案化前或圖案或之後進行閃光燈退火。之後,形成源極-汲極金屬層於經過閃光燈退火結晶的含矽層340。在本實施例中,含矽層340經過圖案化之後,並不完全遮蓋其下的閘極絕緣層330。也就是說,含矽層340與閘極絕緣層330外形並不相同,使得部分閘極絕緣層330暴露於含矽層340外。第二金屬層,即源極-汲極金屬層350再形成於含矽層340上。於本實施例,含矽層340僅部分覆蓋在源極-汲極金屬層350之下。源極-汲極金屬層350於本發明部分實施例中也可完全省略。即,含矽層 340上方沒有覆蓋源極-汲極金屬層350。根據本發明部分實施例,此製作流程允許含矽層與閘極金屬層、源極-汲極金屬層形貌不一致。 Please refer to Figure 3. Figure 3 is a schematic cross-sectional view of a thin film element according to some embodiments of the present invention. In the back channel etching process, the above-mentioned method is used to fabricate a transistor film. First, a gate metal layer 320 is formed on the substrate 310, and a gate insulating layer 330 is coated on the gate metal layer 320. In this embodiment, the gate is insulated The layer 330 only flatly covers the area of the gate metal layer 320, and does not form an undulating appearance as shown in FIG. 2C due to the shape of the gate metal layer 310, and the gate insulating layer 330 does not contact the substrate 310 either. Next, a silicon-containing layer 340 is formed on the gate insulating layer 330. The silicon-containing layer 340 includes an amorphous silicon layer and a doped layer. The silicon-containing layer 340 can be subjected to flash lamp annealing before or after patterning. After that, a source-drain metal layer is formed on the silicon-containing layer 340 crystallized by flash lamp annealing. In this embodiment, after the silicon-containing layer 340 is patterned, it does not completely cover the gate insulating layer 330 thereunder. In other words, the shape of the silicon-containing layer 340 and the gate insulating layer 330 are different, so that a part of the gate insulating layer 330 is exposed outside the silicon-containing layer 340. The second metal layer, that is, the source-drain metal layer 350 is then formed on the silicon-containing layer 340. In this embodiment, the silicon-containing layer 340 only partially covers the source-drain metal layer 350. The source-drain metal layer 350 can also be completely omitted in some embodiments of the present invention. That is, the silicon-containing layer The source-drain metal layer 350 is not covered above 340. According to some embodiments of the present invention, this manufacturing process allows the silicon-containing layer to be inconsistent with the gate metal layer and the source-drain metal layer.

請參考第4圖。第4圖係根據本發明部分實施例之一薄膜元件剖面示意圖。第4圖之薄膜電晶體製作方法與上述實施例類似。惟,其閘極金屬層420與閘極絕緣層430不完全覆蓋基板410,含矽層440與閘極絕緣層430之形貌也不等,部分閘極絕緣層430未被含矽層440覆蓋。又,源極-汲極金屬層450僅覆蓋部分含矽層440,且與未被含矽層440覆蓋之閘極絕緣層430相接觸。源極-汲極金屬層450之頂部可平坦化,或依據其下之元件之圖案化方式,例如含矽層440及閘極絕緣層450之態貌而呈現相關之起伏。 Please refer to Figure 4. Figure 4 is a schematic cross-sectional view of a thin film element according to some embodiments of the present invention. The manufacturing method of the thin film transistor in Fig. 4 is similar to the above-mentioned embodiment. However, the gate metal layer 420 and the gate insulating layer 430 do not completely cover the substrate 410, and the topography of the silicon-containing layer 440 and the gate insulating layer 430 are different, and part of the gate insulating layer 430 is not covered by the silicon-containing layer 440 . In addition, the source-drain metal layer 450 only covers a part of the silicon-containing layer 440 and is in contact with the gate insulating layer 430 that is not covered by the silicon-containing layer 440. The top of the source-drain metal layer 450 can be flattened, or show related fluctuations according to the patterning method of the underlying device, such as the state of the silicon-containing layer 440 and the gate insulating layer 450.

請參考第5圖。第5圖係根據本發明部分實施例之一薄膜元件剖面示意圖。第5圖之薄膜電晶體製作方法與上述實施例類似。含矽層240’之閃光燈退火結晶可在圖案化前或圖案化後進行。惟,形成圖案化含矽層240’之後,再塗覆一源極-汲極絕緣層260於含矽層240’之上。源極-汲極絕緣層260覆蓋含矽層240’,之後再形成源極-汲極金屬層250,使得源極-汲極絕緣層260是位於含矽層240’和源極-汲極金屬層250之間。經過背通道蝕刻程序形成源極-汲極金屬層250與含矽層240’之摻雜層的接觸。 Please refer to Figure 5. Figure 5 is a schematic cross-sectional view of a thin film element according to some embodiments of the present invention. The manufacturing method of the thin film transistor in Fig. 5 is similar to the above-mentioned embodiment. The flash lamp annealing crystallization of the silicon-containing layer 240' can be performed before or after patterning. However, after the patterned silicon-containing layer 240' is formed, a source-drain insulating layer 260 is coated on the silicon-containing layer 240'. The source-drain insulating layer 260 covers the silicon-containing layer 240', and then the source-drain metal layer 250 is formed, so that the source-drain insulating layer 260 is located on the silicon-containing layer 240' and the source-drain metal Between layers 250. After a back channel etching process, the contact between the source-drain metal layer 250 and the doped layer of the silicon-containing layer 240' is formed.

本發明提供一種薄膜電晶體的製作方法,含矽層包含非晶矽層及摻雜層,在含矽層圖案化前或圖案化後,透過閃光燈退火以在非晶矽層形成結晶,閃光燈退火結晶可 一次性、大面積對於薄膜發射高能量閃光,非晶矽層受到足夠光能量即發生結晶。含矽層之摻雜層與源極-汲極金屬層相接,擁有較佳之歐姆接觸〈ohmic contact〉特性。 The present invention provides a method for manufacturing a thin film transistor. The silicon-containing layer includes an amorphous silicon layer and a doped layer. Before or after the patterning of the silicon-containing layer, a flash lamp annealing is used to form crystals on the amorphous silicon layer. The flash lamp annealing Crystal can One-time, large area emits high-energy flashes to the thin film, and the amorphous silicon layer undergoes crystallization after receiving sufficient light energy. The doped layer containing the silicon layer is connected to the source-drain metal layer, and has better ohmic contact characteristics.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be subject to those defined in the attached patent scope.

210:基材 210: Substrate

220:閘極金屬層 220: gate metal layer

230:閘極絕緣層 230: gate insulation layer

240’:含矽層 240’: Silicon-containing layer

290:閃光燈退火 290: Flash annealing

Claims (9)

一種薄膜元件的製造方法,其步驟包含:形成一閘極金屬層於一基板;形成一閘極絕緣層於該閘極金屬層上;形成一含矽層於該閘極絕緣層上;閃光燈退火該含矽層;以及形成一源極-汲極金屬層於該含矽層上;其中形成該含矽層於該閘極絕緣層上之步驟還包含形成至少一摻雜層於該含矽層。 A method for manufacturing a thin film element, the steps include: forming a gate metal layer on a substrate; forming a gate insulating layer on the gate metal layer; forming a silicon-containing layer on the gate insulating layer; flash lamp annealing The silicon-containing layer; and forming a source-drain metal layer on the silicon-containing layer; wherein the step of forming the silicon-containing layer on the gate insulating layer further includes forming at least one doped layer on the silicon-containing layer . 如請求項1所述之薄膜元件的製造方法,其中在閃光燈退火該含矽層之步驟後,還包含:形成一源極-汲極絕緣層於該含矽層上,並位於該含矽層和該源極-汲極金屬層之間。 The method for manufacturing a thin film device according to claim 1, wherein after the step of annealing the silicon-containing layer by the flash lamp, the method further comprises: forming a source-drain insulating layer on the silicon-containing layer and located on the silicon-containing layer And the source-drain metal layer. 如請求項1所述之薄膜元件的製造方法,其中形成該含矽層於該閘極絕緣層上之步驟還包含圖案化該含矽層,其中圖案化該含矽層之步驟包括:形成一光阻層於該含矽層上;微影蝕刻該含矽層;以及移除該光阻層。 The method of manufacturing a thin film device according to claim 1, wherein the step of forming the silicon-containing layer on the gate insulating layer further includes patterning the silicon-containing layer, and the step of patterning the silicon-containing layer includes: forming a A photoresist layer is on the silicon-containing layer; the silicon-containing layer is lithographically etched; and the photoresist layer is removed. 如請求項1所述之薄膜元件的製造方法還包含:形成一源極-汲極絕緣層於該源極-汲極金 屬層上。 The method of manufacturing a thin film device according to claim 1 further comprising: forming a source-drain insulating layer on the source-drain gold Belonging to the layer. 如請求項1所述之薄膜元件的製造方法,其中該閃光燈退火之升溫速度介於700-1300℃/秒。 The method for manufacturing a thin film element according to claim 1, wherein the temperature increase rate of the flash lamp annealing is 700-1300° C./sec. 如請求項1所述之薄膜元件的製造方法,其中該閃光燈退火之一波長範圍介於400-800奈米。 The method for manufacturing a thin film element according to claim 1, wherein a wavelength range of the flash lamp annealing is 400-800 nm. 如請求項1所述之薄膜元件的製造方法,其中該閃光燈退火該含矽層是藉由化學氣相沉積形成於該閘極絕緣層上。 The method for manufacturing a thin film device according to claim 1, wherein the flash lamp annealing the silicon-containing layer is formed on the gate insulating layer by chemical vapor deposition. 如請求項1所述之薄膜元件的製造方法,其中該閘極金屬層係選自由銦鎵鋅氧化物、銦鎵鋅氮氧化物、氧化鋅、氮氧化鋅、鋅錫氧化物、鎘錫氧化物、鎵錫氧化物、鈦錫氧化物、銅鋁氧化物、鍶銅氧化物、鑭銅硫氧化物、氮化鎵、銦鎵氮化物、鋁鎵氮化物及銦鎵鋁氮化物所組成之群組的材料。 The method of manufacturing a thin film element according to claim 1, wherein the gate metal layer is selected from indium gallium zinc oxide, indium gallium zinc oxynitride, zinc oxide, zinc oxynitride, zinc tin oxide, cadmium tin oxide Compound, gallium tin oxide, titanium tin oxide, copper aluminum oxide, strontium copper oxide, lanthanum copper oxysulfide, gallium nitride, indium gallium nitride, aluminum gallium nitride, and indium gallium aluminum nitride The material of the group. 如請求項1所述之薄膜元件的製造方法,其中該源極-汲極金屬層之材料係選自銅、金、銀、鋁、鎢、鉬、鉻、鉭、鈦、及其合金或組合所組成之群組的材料。 The method for manufacturing a thin film element according to claim 1, wherein the material of the source-drain metal layer is selected from copper, gold, silver, aluminum, tungsten, molybdenum, chromium, tantalum, titanium, and alloys or combinations thereof The materials of the group that it forms.
TW108119783A 2018-10-23 2019-06-06 Method of manufacturing thin film element TWI706466B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811234230.9 2018-10-23
CN201811234230.9A CN111092017A (en) 2018-10-23 2018-10-23 Method for manufacturing thin film element

Publications (2)

Publication Number Publication Date
TW202017053A TW202017053A (en) 2020-05-01
TWI706466B true TWI706466B (en) 2020-10-01

Family

ID=70391406

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119783A TWI706466B (en) 2018-10-23 2019-06-06 Method of manufacturing thin film element

Country Status (2)

Country Link
CN (1) CN111092017A (en)
TW (1) TWI706466B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001556A (en) * 2008-02-29 2010-01-01 Univ Columbia Flash lamp annealing crystallization for large area thin films
US20100117090A1 (en) * 2008-11-07 2010-05-13 Hyung-Gu Roh Array substrate including thin film transistor and method of fabricating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929099A (en) * 2005-09-08 2007-03-14 中华映管股份有限公司 Thin film transistor and method for manufacturing polycrystalline silicon layer of low-temperature polycrystalline silicon thin film transistor
CN101620991B (en) * 2008-07-02 2011-08-17 中芯国际集成电路制造(上海)有限公司 Growth of atomic layer deposition epitaxial silicon of TFT flash memory cell
US20100075499A1 (en) * 2008-09-19 2010-03-25 Olsen Christopher S Method and apparatus for metal silicide formation
WO2011004624A1 (en) * 2009-07-09 2011-01-13 シャープ株式会社 Thin-film transistor producing method
KR20130122032A (en) * 2011-02-23 2013-11-07 파나소닉 주식회사 Method for manufacturing thin film transistor device, thin film transistor device and display device
TWI593024B (en) * 2015-07-24 2017-07-21 友達光電股份有限公司 Method of fabricating thin film transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001556A (en) * 2008-02-29 2010-01-01 Univ Columbia Flash lamp annealing crystallization for large area thin films
US20100117090A1 (en) * 2008-11-07 2010-05-13 Hyung-Gu Roh Array substrate including thin film transistor and method of fabricating the same

Also Published As

Publication number Publication date
TW202017053A (en) 2020-05-01
CN111092017A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
US5605846A (en) Method for manufacturing semiconductor device
US7749819B2 (en) Method for manufacturing semiconductor device
US6337229B1 (en) Method of making crystal silicon semiconductor and thin film transistor
JPH07249779A (en) Fabrication of semiconductor device
US5894137A (en) Semiconductor device with an active layer having a plurality of columnar crystals
KR20040029423A (en) Method for semiconductor gate doping
JPS60245124A (en) Manufacture of semiconductor device
US20070284581A1 (en) Method of fabricating pmos thin film transistor
JP2006237270A (en) Thin-film semiconductor device and its manufacturing method, and indicating device
JP5291055B2 (en) Thin film transistor, organic light emitting display, method for manufacturing thin film transistor, and method for manufacturing organic light emitting display
KR101117643B1 (en) Crystallization method of amorphous silicon layer, and thin film transistor and method for the same
JP2001053020A (en) Crystallization of semiconductor thin film and manufacture of thin film semiconductor device
JP4084039B2 (en) Thin film semiconductor device and manufacturing method thereof
KR100615502B1 (en) Semiconductor device manufacturing method
TWI352391B (en)
TWI706466B (en) Method of manufacturing thin film element
WO2011078005A1 (en) Semiconductor device and process for production thereof, and display device
TWI305055B (en) Semiconductor device and method of manufacturing the same
TW200805669A (en) Thin-film semiconductor device and manufacturing method thereof
KR100504538B1 (en) Method For Crystallizing Amorphous Layer And Method For Fabricating Liquid Crystal Display Device By Using Said Method
JP2009246235A (en) Method of manufacturing semiconductor substrate, semiconductor substrate, and display device
KR101054798B1 (en) Polycrystalline Silicon Thin Film Transistor and Manufacturing Method Thereof
JP2794071B2 (en) Field effect type semiconductor device
JP3227392B2 (en) Semiconductor device and method of manufacturing the same
JP2791420B2 (en) Method for manufacturing field-effect semiconductor device