TWI705572B - Solar cell having silicon oxynitride passivation layer and method for manufacturing the same - Google Patents

Solar cell having silicon oxynitride passivation layer and method for manufacturing the same Download PDF

Info

Publication number
TWI705572B
TWI705572B TW108123470A TW108123470A TWI705572B TW I705572 B TWI705572 B TW I705572B TW 108123470 A TW108123470 A TW 108123470A TW 108123470 A TW108123470 A TW 108123470A TW I705572 B TWI705572 B TW I705572B
Authority
TW
Taiwan
Prior art keywords
passivation layer
layer
silicon oxynitride
conductivity type
silicon substrate
Prior art date
Application number
TW108123470A
Other languages
Chinese (zh)
Other versions
TW202103333A (en
Inventor
楊世豪
洪博耀
Original Assignee
太極能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太極能源科技股份有限公司 filed Critical 太極能源科技股份有限公司
Priority to TW108123470A priority Critical patent/TWI705572B/en
Application granted granted Critical
Publication of TWI705572B publication Critical patent/TWI705572B/en
Publication of TW202103333A publication Critical patent/TW202103333A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a solar cell with a ruthenium oxynitride passivation layer, which includes a first conductive type silicon substrate, a second conductive type electric field layer, a back passivation layer, a back passivation protective layer and a back aluminum metal layer. The first conductive type silicon substrate has an upper surface and a lower surface, the second conductive type electric field layer is disposed on the upper surface of the first conductive type silicon substrate, and the back passivation layer is disposed on the lower surface of the first conductive type silicon substrate, the back passivation protective layer is disposed on the other side of the back passivation layer opposite to the first conductive type silicon substrate, and the back passivation protective layer includes a silicon oxynitride passivation layer. The back aluminum metal layer is disposed on the other side of the back passivation protective layer opposite to the back passivation layer, and includes a plurality of contacts, the back passivation layer and the back passivation protective layer have a plurality of through holes, and the plurality of contacts respectively correspond to Set through the hole.

Description

具有氮氧化矽鈍化層的太陽電池及其製造方法Solar cell with silicon oxynitride passivation layer and manufacturing method thereof

本發明涉及一種太陽電池及其製造方法,特別是涉及一種具有氮氧化矽鈍化層的太陽電池及其製造方法。The invention relates to a solar cell and a manufacturing method thereof, in particular to a solar cell with a silicon oxynitride passivation layer and a manufacturing method thereof.

目前,市場上現有的太陽能電池產品屬於前方接面式太陽能電池(Front junction solar cell),其以矽晶片為基材,並在矽晶片的正面以擴散方式形成射極,而在背面以整面鋁膠進行燒結,使鋁原子在燒結過程中擴散進入p型矽晶片而形成整面背電場。然而,此種太陽能電池前述整面背電場的設計使得鋁矽界面無法進行良好的鈍化,在做為整面背電場的同時也是載子複合中心,進而限制太陽能電池的整體轉換效率。At present, the existing solar cell products on the market belong to the front junction solar cell, which uses a silicon wafer as the base material, and the emitter is formed on the front side of the silicon wafer by diffusion, and the entire surface is formed on the back side. The aluminum paste is sintered, so that aluminum atoms diffuse into the p-type silicon wafer during the sintering process to form a full-surface back electric field. However, the design of the aforementioned full-surface back electric field of this type of solar cell prevents the aluminum-silicon interface from being properly passivated. It serves as a full-surface back electric field and also a carrier recombination center, thereby limiting the overall conversion efficiency of the solar cell.

矽晶太陽能電池目前是市佔率最高的種類,也擁有多種結構,目前研發目標則是提高轉換效率,同時儘量不增加製造成本。近年來業界開始把高效電池注意力放在電池片的背面鈍化層上,因此,近年來,已發展出射極鈍化背電極(Passivated Emitter and Rear Cell,PERC)太陽能電池用以增進太陽能電池的轉換效率。PERC太陽能電池的背面增加氧化鋁或氮氧化矽做為鈍化層,且僅以局部開孔的方式通過鋁膠燒結形成局部背面電場。Silicon crystalline solar cells currently have the highest market share and also have a variety of structures. The current research and development goal is to improve conversion efficiency while minimizing manufacturing costs. In recent years, the industry has begun to focus on high-efficiency cells on the passivation layer on the back of the cell. Therefore, in recent years, Passivated Emitter and Rear Cell (PERC) solar cells have been developed to improve the conversion efficiency of solar cells. . Alumina or silicon oxynitride is added to the back of the PERC solar cell as a passivation layer, and a local back electric field is formed by sintering aluminum paste in a partially open manner.

另一方面,PERC太陽能電池可提高長波長吸收,因此能更好的把電池效率的提升,反應到組件效率的提升。一般而言,太陽能電池的效率受限於光電轉換時的電子電洞對復合的程度,而在PERC太陽能電池中,通過在電池的後側添加電介質鈍化層來提高轉換效率。PERC電池最大化跨越了PN接面的電勢梯度,這使得電子更穩定的流動,減少電子電洞對復合,以達到更高的效率水平。On the other hand, PERC solar cells can improve long-wavelength absorption, so the improvement of cell efficiency can be better reflected in the improvement of module efficiency. Generally speaking, the efficiency of solar cells is limited by the degree of recombination of electron holes during photoelectric conversion. In PERC solar cells, a dielectric passivation layer is added to the back of the cell to improve the conversion efficiency. The PERC battery maximizes the potential gradient across the PN junction, which enables a more stable flow of electrons and reduces the recombination of electron holes to achieve a higher efficiency level.

故,本領域亟需一種能針對鈍化層進行優化來提升電池效率的太陽電池及其製造方法。Therefore, there is an urgent need in the art for a solar cell and its manufacturing method that can be optimized for the passivation layer to improve cell efficiency.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種具有氮氧化矽鈍化層的太陽電池及其製造方法。The technical problem to be solved by the present invention is to provide a solar cell with a silicon oxynitride passivation layer and a manufacturing method thereof in view of the shortcomings of the prior art.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種具有氮氧化矽鈍化層的太陽電池,其包括第一導電型矽基板、第二導電型電場層、背面鈍化層、背面鈍化保護層及背面鋁金屬層。第一導電型矽基板具有一上表面及一下表面,第二導電型電場層,設置在第一導電型矽基板的該上表面上,背面鈍化層設置在第一導電型矽基板的下表面上,背面鈍化保護層設置於背面鈍化層相對第一導電型矽基板的另一側,其中,背面鈍化保護層包括氮氧化矽鈍化層。背面鋁金屬層設置於背面鈍化保護層相對於背面鈍化層的另一側,並包括複數個觸點,其中背面鈍化層及背面鈍化保護層具有複數個貫穿孔,該些觸點分別對應該些貫穿孔而設置。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a solar cell with a silicon oxynitride passivation layer, which includes a first conductivity type silicon substrate, a second conductivity type electric field layer, a back passivation layer, The back passivation protective layer and the back aluminum metal layer. The first conductivity type silicon substrate has an upper surface and a lower surface, the second conductivity type electric field layer is arranged on the upper surface of the first conductivity type silicon substrate, and the back passivation layer is arranged on the lower surface of the first conductivity type silicon substrate The back passivation protection layer is disposed on the other side of the back passivation layer opposite to the first conductivity type silicon substrate, wherein the back passivation protection layer includes a silicon oxynitride passivation layer. The back aluminum metal layer is disposed on the other side of the back passivation protection layer relative to the back passivation layer, and includes a plurality of contacts. The back passivation layer and the back passivation protection layer have a plurality of through holes, and the contacts correspond to some Set through holes.

為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種具有氮氧化矽鈍化層的太陽電池的製造方法,其包括:形成一第一導電型矽基板,該第一導電型矽基板具有一上表面及一下表面;通過一擴散製程於該第一導電型矽基板的該上表面處形成一第二導電型電場層;通過一沈積製程將一背面鈍化層沈積於該第一導電型矽基板的該下表面上;通過一鍍膜製程將一背面保護鈍化層鍍附於該背面鈍化層相對該第一導電型矽基板的另一側,其中該背面保護鈍化層包括一氮氧化矽鈍化層;通過一雷射製程於該背面鈍化層及該背面保護鈍化層中形成多個貫穿孔;以及通過一網印製程將一背面鋁金屬層印製於該背面保護鈍化層相對於該背面鈍化層的另一側,且形成對應於該些貫穿孔的多個觸點。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a method for manufacturing a solar cell with a silicon oxynitride passivation layer, which includes forming a first conductivity type silicon substrate, the first conductivity type The silicon substrate has an upper surface and a lower surface; a second conductivity type electric field layer is formed on the upper surface of the first conductivity type silicon substrate through a diffusion process; a back passivation layer is deposited on the first conductivity type through a deposition process On the lower surface of the conductive silicon substrate; a back passivation layer is plated on the other side of the back passivation layer opposite to the first conductive silicon substrate through a coating process, wherein the back passivation layer includes an oxynitride Silicon passivation layer; forming a plurality of through holes in the back passivation layer and the back protective passivation layer by a laser process; and printing a back aluminum metal layer on the back protective passivation layer relative to the back passivation layer by a screen printing process On the other side of the back passivation layer, a plurality of contacts corresponding to the through holes are formed.

本發明的其中一有益效果在於,本發明所提供的具有氮氧化矽鈍化層的太陽電池及其製造方法,在現有製程上使用了氧化鋁鈍化層搭配氮氧化矽鈍化層,通過提昇背部反射率來提升短路電流並降低串聯電阻,進而使效率較樣本提高了約0.1%。此外,通過保護層製程整合,可減少自動化破片風險。One of the beneficial effects of the present invention is that the solar cell with a silicon oxynitride passivation layer and its manufacturing method provided by the present invention uses an aluminum oxide passivation layer and a silicon oxynitride passivation layer in the existing manufacturing process to improve back reflectivity. To increase the short-circuit current and reduce the series resistance, thereby increasing the efficiency by about 0.1% compared to the sample. In addition, the protection layer process integration can reduce the risk of automated fragmentation.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings about the present invention. However, the provided drawings are only for reference and description, and are not used to limit the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“具有氮氧化矽鈍化層的太陽電池及其製造方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。The following are specific examples to illustrate the implementation of the “solar cell with silicon oxynitride passivation layer and its manufacturing method” disclosed in the present invention. Those skilled in the art can understand the advantages of the present invention from the content disclosed in this specification. And effect. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to actual dimensions, and are stated in advance. The following embodiments will further describe the related technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that although terms such as “first”, “second”, and “third” may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are mainly used to distinguish one element from another, or one signal from another signal. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.

[第一實施例][First Embodiment]

圖1為本發明實施例所提供的n型背面射極型雙面太陽能電池的剖面示意圖。參閱圖1所示,本發明第一實施例提供一種具有氮氧化矽鈍化層的太陽電池10,太陽電池10具體而言為射極鈍化背電極(Passivated Emitter and Rear Cell,PERC)太陽電池,其包括第一導電型矽基板100、第二導電型電場層102、背面鈍化層104、背面鈍化保護層106、背面鋁金屬層108及正面鈍化層110。第一導電型矽基板100可例如為P型矽基板,其具有上表面S1及下表面S2。在本發明實施例中,上表面S1的方向定義為太陽電池10的正面,而下表面S2的方向定義為太陽電池10的背面。在太陽電池10中,第一導電型矽基板100的上表面S1可作為受光面,而下表面S2可作為非受光面。上表面S1具有絨面(textured)結構,以捕捉入射之太陽光,可提升太陽光吸收效率。FIG. 1 is a schematic cross-sectional view of an n-type back emitter bifacial solar cell provided by an embodiment of the present invention. Referring to FIG. 1, the first embodiment of the present invention provides a solar cell 10 with a silicon oxynitride passivation layer. The solar cell 10 is specifically a Passivated Emitter and Rear Cell (PERC) solar cell. It includes a first conductive type silicon substrate 100, a second conductive type electric field layer 102, a back passivation layer 104, a back passivation protection layer 106, a back aluminum metal layer 108, and a front passivation layer 110. The first conductive type silicon substrate 100 can be, for example, a P-type silicon substrate, which has an upper surface S1 and a lower surface S2. In the embodiment of the present invention, the direction of the upper surface S1 is defined as the front surface of the solar cell 10, and the direction of the lower surface S2 is defined as the back surface of the solar cell 10. In the solar cell 10, the upper surface S1 of the first conductivity type silicon substrate 100 can be used as a light-receiving surface, and the lower surface S2 can be used as a non-light-receiving surface. The upper surface S1 has a textured structure to capture incident sunlight, which can improve sunlight absorption efficiency.

進一步,第一導電型矽基板100可以為多晶矽基板、類單晶矽基板或單晶矽基板,本發明不限於此。在第一導電型矽基板100、背面鈍化層104以及背面鋁金屬層108之間會形成多個局部的背面電場114。Further, the first conductive type silicon substrate 100 may be a polycrystalline silicon substrate, a single crystal-like silicon substrate or a single crystal silicon substrate, and the present invention is not limited thereto. A plurality of local back electric fields 114 are formed between the first conductive type silicon substrate 100, the back passivation layer 104 and the back aluminum metal layer 108.

第二導電型電場層102設置在第一導電型矽基板100的上表面S1上,第二導電型電場層102亦可稱為正表面電場(Front surface field,FSF),並且第二導電型電場層102與第一導電型矽基板100之間可形成PN接面,以將光能轉換為電能。相對於P型矽基板的第一導電型矽基板100而言,第二導電型電場層102可為N型射極層。The second conductivity type electric field layer 102 is disposed on the upper surface S1 of the first conductivity type silicon substrate 100. The second conductivity type electric field layer 102 may also be called a front surface field (FSF), and the second conductivity type electric field A PN junction can be formed between the layer 102 and the first conductive silicon substrate 100 to convert light energy into electrical energy. Compared to the first conductivity type silicon substrate 100 which is a P-type silicon substrate, the second conductivity type electric field layer 102 may be an N-type emitter layer.

另一方面,背面鈍化層104設置在第一導電型矽基板100的下表面S2上,背面鈍化層104可具有鈍化的能力。具體而言,矽基板內部及矽基板表面的雜質及缺陷會對太陽電池的性能造成負面影響,鈍化技術是通過降低表面載子的復合來減小缺陷帶來的影響,從而保證電池的效率。背面鈍化層104可包括氧化鋁(Al 2O 3)層,氧化鋁層的厚度可在3nm至15nm的範圍內,較佳為在4nm至10nm的範圍內。在背面鈍化層的材料的選擇上,氧化鋁(Al 2O 3)由於具備較高的電荷密度,可以對P型表面提供良好的鈍化,目前被廣泛應用於PERC電池量產的背面鈍化材料。 On the other hand, the back passivation layer 104 is disposed on the lower surface S2 of the first conductivity type silicon substrate 100, and the back passivation layer 104 may have a passivation ability. Specifically, impurities and defects in the silicon substrate and on the surface of the silicon substrate will negatively affect the performance of the solar cell. Passivation technology reduces the impact of defects by reducing the recombination of surface carriers, thereby ensuring the efficiency of the cell. The back passivation layer 104 may include an aluminum oxide (Al 2 O 3 ) layer, and the thickness of the aluminum oxide layer may be in the range of 3 nm to 15 nm, preferably in the range of 4 nm to 10 nm. In the selection of the material for the back passivation layer, aluminum oxide (Al 2 O 3 ) can provide good passivation to the P-type surface due to its high charge density, and is currently widely used as a back passivation material for mass production of PERC cells.

再者,背面鈍化保護層106設置於背面鈍化層104相對第一導電型矽基板100的另一側,其中,背面鈍化保護層106包括氮氧化矽鈍化層106-1及氮化矽層106-2。為了完全滿足背面鈍化條件,還需要在氧化鋁層表面覆蓋一層氮化矽(SiNx)層,以保護背部鈍化層104,並保證電池背面的光學性能。故現有PERC電池背面鈍化多採用Al 2O 3/SiN雙層結構。 Furthermore, the back passivation protection layer 106 is disposed on the other side of the back passivation layer 104 opposite to the first conductivity type silicon substrate 100, where the back passivation protection layer 106 includes a silicon oxynitride passivation layer 106-1 and a silicon nitride layer 106- 2. In order to fully meet the back passivation conditions, it is also necessary to cover a silicon nitride (SiNx) layer on the surface of the aluminum oxide layer to protect the back passivation layer 104 and ensure the optical performance of the back of the battery. Therefore, the back passivation of existing PERC batteries mostly adopts Al 2 O 3 /SiN double-layer structure.

而在本發明中,採用了Al 2O 3/SiON/SiN三層結構。請進一步參照圖2,其依據本發明的實施例顯示了形成氮氧化矽鈍化層對反射率的影響曲線圖。如圖所示,曲線REF及INX分別代表未採用氮氧化矽鈍化層的參考樣本及採用了氮氧化矽鈍化層的樣本,其顯示通過形成氮氧化矽鈍化層,可使得鍍膜均勻度較佳。並且,氮氧化矽鈍化層106-1可提昇作為背部反射層時的反射率,可提昇太陽電池10的內部反射電流,而使得短路電流增加。此外,更可通過形成氮氧化矽鈍化層106-1,使背面鈍化保護層106獲得較佳的鍍膜均勻度,進而降低了串聯電阻。 In the present invention, the Al 2 O 3 /SiON/SiN three-layer structure is adopted. Please further refer to FIG. 2, which shows a graph of the influence of forming a silicon oxynitride passivation layer on reflectivity according to an embodiment of the present invention. As shown in the figure, the curves REF and INX respectively represent the reference sample without the silicon oxynitride passivation layer and the sample with the silicon oxynitride passivation layer, which shows that the formation of the silicon oxynitride passivation layer can make the coating uniformity better. In addition, the silicon oxynitride passivation layer 106-1 can increase the reflectivity when used as a back reflection layer, can increase the internal reflection current of the solar cell 10, and increase the short-circuit current. In addition, by forming the silicon oxynitride passivation layer 106-1, the back passivation protective layer 106 can obtain better coating uniformity, thereby reducing the series resistance.

其中,氮氧化矽鈍化層106-1的厚度在50nm至200nm的範圍內,較佳的可為100nm至150nm的範圍內,氮化矽層106-2的厚度在50nm至250nm的範圍內,較佳的可為100nm至200nm的範圍內。Among them, the thickness of the silicon oxynitride passivation layer 106-1 is in the range of 50 nm to 200 nm, preferably 100 nm to 150 nm, and the thickness of the silicon nitride layer 106-2 is in the range of 50 nm to 250 nm. Preferably, it may be in the range of 100 nm to 200 nm.

正面鈍化層110設置在第二導電型電場層102上,可以對n型的第二導電型電場層102的材料進行鈍化。正面鈍化層110可由選自於由氮化矽(SiN)、矽氧化物(SiOx)、氮氧化矽(SiON)、氧化鋁(AlOx)、氮化鋁(AlN)及其等的組合所組成之群組的材料所形成。於本發明中,形成正面鈍化層110的方式並未加以限制。The front passivation layer 110 is disposed on the second conductivity type electric field layer 102, and can passivate the material of the n-type second conductivity type electric field layer 102. The front passivation layer 110 may be selected from the group consisting of silicon nitride (SiN), silicon oxide (SiOx), silicon oxynitride (SiON), aluminum oxide (AlOx), aluminum nitride (AlN), and combinations thereof Group of materials formed. In the present invention, the method of forming the front passivation layer 110 is not limited.

此外,背面鋁金屬層108設置於背面鈍化保護層106相對於背面鈍化層104的另一側,並包括複數個觸點C,其中,背面鈍化層104及背面鈍化保護層106具有複數個貫穿孔TH,該些觸點C分別對應該些貫穿孔TH而設置。In addition, the back aluminum metal layer 108 is disposed on the other side of the back passivation protection layer 106 relative to the back passivation layer 104, and includes a plurality of contacts C, wherein the back passivation layer 104 and the back passivation protection layer 106 have a plurality of through holes TH, the contacts C are respectively provided corresponding to the through holes TH.

背面鋁金屬層108係用於形成太陽電池10的背面電極,藉由含鋁之導電觸點C覆蓋住背面鈍化層106上之貫穿孔TH處形成局部背面電場114與導電層(金屬層),且鋁金屬層覆蓋於背面鈍化層104的該些貫穿孔TH以形成背面鋁金屬層108。背面鋁金屬層108可與部分的背面匯流電極(Busbar)重疊,進一步使電荷能收集到背面匯流電極上。The back aluminum metal layer 108 is used to form the back electrode of the solar cell 10, and the through hole TH on the back passivation layer 106 is covered by a conductive contact C containing aluminum to form a local back electric field 114 and a conductive layer (metal layer), And the aluminum metal layer covers the through holes TH of the back passivation layer 104 to form the back aluminum metal layer 108. The back aluminum metal layer 108 may overlap a part of the back busbar to further enable the charge to be collected on the back busbar.

多個正面電極112,其彼此分離地設置於正面鈍化層110的表面上,其中,該些正面電極112通過正面鈍化層110,以與第二導電型電場層102電性連接。例如,正面電極112及背面鋁金屬層108可由金屬膠形成。舉例而言,正面電極112由銀膠所形成,而背面鋁金屬層108由鋁膠所形成,可透過網印、蒸鍍、濺鍍或者電鍍所形成。A plurality of front electrodes 112 are separately disposed on the surface of the front passivation layer 110, wherein the front electrodes 112 pass through the front passivation layer 110 to be electrically connected to the second conductivity type electric field layer 102. For example, the front electrode 112 and the back aluminum metal layer 108 may be formed of metal glue. For example, the front electrode 112 is formed of silver paste, and the back aluminum metal layer 108 is formed of aluminum paste, which can be formed by screen printing, evaporation, sputtering or electroplating.

因此,請參照下表1,採用了Al 2O 3/SiON/SiN三層結構與未採用氮氧化矽鈍化層的樣本相比,本發明所提供的具有氮氧化矽鈍化層的太陽電池,在製程上使用了氧化鋁鈍化層搭配氮氧化矽鈍化層及氮化矽保護層,通過提昇背部反射率來提升短路電流並降低串聯電阻,進而使效率提昇。其中,當採用了厚度在4nm至10nm的範圍內的氧化鋁層作為背面鈍化層104,厚度在100nm至150nm的範圍內的氮氧化矽鈍化層106-1,以及厚度在100nm至200nm的範圍內的氮化矽層106-2,相較於樣本可將效率提高了約0.1%。 Therefore, please refer to Table 1 below. Compared with the sample without the silicon oxynitride passivation layer using the Al 2 O 3 /SiON/SiN three-layer structure, the solar cell with the silicon oxynitride passivation layer provided by the present invention is The aluminum oxide passivation layer combined with the silicon oxynitride passivation layer and the silicon nitride protective layer are used in the process to increase the short-circuit current and reduce the series resistance by increasing the back reflectivity, thereby improving the efficiency. Among them, when an aluminum oxide layer with a thickness in the range of 4nm to 10nm is used as the back passivation layer 104, a silicon oxynitride passivation layer 106-1 with a thickness in the range of 100nm to 150nm, and a thickness in the range of 100nm to 200nm The silicon nitride layer 106-2 can increase the efficiency by about 0.1% compared to the sample.

表1   效率 開路電壓(Voc) 短路電流(Isc) 串聯電阻(Rs) 填充因子(FF) 樣本 20.861% 0.6602 9.8229 0.00297 78.587 Al 2O 3/SiON/SiN 20.951% 0.6599 9.8380 0.00288 78.839 Table 1 effectiveness Open circuit voltage (Voc) Short circuit current (Isc) Series resistance (Rs) Fill factor (FF) sample 20.861% 0.6602 9.8229 0.00297 78.587 Al 2 O 3 /SiON/SiN 20.951% 0.6599 9.8380 0.00288 78.839

參閱圖3,其為本發明實施例的太陽電池的製造方法的流程圖。如圖所示,本發明第一實施例提供一種具有氮氧化矽鈍化層的太陽電池的製造方法,其至少包括下列幾個步驟:Refer to FIG. 3, which is a flowchart of a method for manufacturing a solar cell according to an embodiment of the present invention. As shown in the figure, the first embodiment of the present invention provides a method for manufacturing a solar cell with a silicon oxynitride passivation layer, which at least includes the following steps:

步驟S100:形成第一導電型矽基板。詳細而言,第一導電型矽基板,例如p型矽晶片,具有上表面及下表面,可通過鹼蝕刻後於上表面形成倒金字塔結構,亦即絨面(textured)結構,以捕捉入射之太陽光,可提升太陽光吸收效率。Step S100: forming a first conductivity type silicon substrate. In detail, the first conductive type silicon substrate, such as a p-type silicon wafer, has an upper surface and a lower surface. An inverted pyramid structure, that is, a textured structure, can be formed on the upper surface by alkali etching to capture incident light. Sunlight can improve the efficiency of sunlight absorption.

步驟S101:通過擴散製程於第一導電型矽基板的上表面處形成第二導電型電場層。舉例而言,進行磷擴散形成第二導電型電場層102,其可為N型射極層,進而形成PN接面以將光能轉換成電能。其中,擴散製程可包括使用氣體擴散、離子佈植、氣相沉積法或是其他摻雜方式來形成第二導電型電場層。Step S101: forming a second conductivity type electric field layer on the upper surface of the first conductivity type silicon substrate through a diffusion process. For example, phosphorus diffusion is performed to form the second conductivity type electric field layer 102, which can be an N-type emitter layer, and then forms a PN junction to convert light energy into electrical energy. The diffusion process may include gas diffusion, ion implantation, vapor deposition or other doping methods to form the second conductivity type electric field layer.

步驟S102:通過沈積製程將背面鈍化層沈積於第一導電型矽基板的下表面上。具體而言,背面鈍化層可為氧化鋁層,其可通過例如原子層沈積(atomic layer deposition, ALD)技術的沈積製程沈積於第一導電型矽基板的下表面上以作為背面鈍化層。氧化鋁(Al 2O 3)由於具備較高的電荷密度,可以對P型表面提供良好的鈍化。 Step S102: Depositing the back passivation layer on the lower surface of the first conductivity type silicon substrate through a deposition process. Specifically, the back passivation layer may be an aluminum oxide layer, which may be deposited on the lower surface of the first conductivity type silicon substrate by a deposition process such as atomic layer deposition (ALD) technology as the back passivation layer. Alumina (Al 2 O 3 ) can provide good passivation to the P-type surface due to its high charge density.

步驟S103:通過沈積製程將正面鈍化層沈積於第二導電型電場層上。類似的,正面鈍化層可通過例如原子層沈積(atomic layer deposition, ALD)技術的沈積製程形成,以對n型的第二導電型電場層的材料進行鈍化。正面鈍化層可由選自於由氮化矽(SiN)、矽氧化物(SiOx)、氮氧化矽(SiON)、氧化鋁(AlOx)、氮化鋁(AlN)及其等的組合所組成之群組的材料所形成。於本發明中,形成正面鈍化層的方式並未加以限制。Step S103: Depositing the front passivation layer on the second conductivity type electric field layer through a deposition process. Similarly, the front passivation layer can be formed by a deposition process such as atomic layer deposition (ALD) technology to passivate the material of the n-type second conductivity type electric field layer. The front passivation layer can be selected from the group consisting of silicon nitride (SiN), silicon oxide (SiOx), silicon oxynitride (SiON), aluminum oxide (AlOx), aluminum nitride (AlN), and combinations thereof Group of materials formed. In the present invention, the method of forming the front passivation layer is not limited.

接著,通過鍍膜製程將背面保護鈍化層鍍附於背面鈍化層相對第一導電型矽基板的另一側,例如可包括下列步驟:Then, the back passivation layer is plated on the other side of the back passivation layer opposite to the first conductivity type silicon substrate through a coating process, for example, the following steps may be included:

步驟S104:以鍍膜製程將氮氧化矽鈍化層鍍附於背面鈍化層相對第一導電型矽基板的另一側。Step S104: plating a silicon oxynitride passivation layer on the other side of the back passivation layer opposite to the first conductivity type silicon substrate by a coating process.

步驟S105:以鍍膜製程將氮化矽層鍍附於氮氧化矽鈍化層相對於背面鈍化層的另一側。Step S105: plating the silicon nitride layer on the other side of the silicon oxynitride passivation layer opposite to the back passivation layer by a coating process.

其中,氮氧化矽鈍化層的厚度在50nm至200nm的範圍內,較佳的可為100nm至150nm的範圍內,氮化矽層的厚度在50nm至250nm的範圍內,較佳的可為100nm至200nm的範圍內。Among them, the thickness of the silicon oxynitride passivation layer is in the range of 50 nm to 200 nm, preferably 100 nm to 150 nm, and the thickness of the silicon nitride layer is in the range of 50 nm to 250 nm, preferably 100 nm to Within the range of 200nm.

需要說明的是,氮氧化矽鈍化層及氮化矽層均可使用化學氣相沈積(CVD)製程形成,因此可在形成背面保護鈍化層的站點中合併完成,通過製程整合,可減少自動化破片風險。It should be noted that both the silicon oxynitride passivation layer and the silicon nitride layer can be formed by a chemical vapor deposition (CVD) process, so they can be combined and completed in the site where the backside protective passivation layer is formed. The integration of the process can reduce automation Risk of fragmentation.

步驟S106:通過雷射製程於背面鈍化層及背面保護鈍化層中形成多個貫穿孔。其中,可藉由物理或化學方法貫穿背面鈍化層及背面保護鈍化層以形成多個貫穿孔,該些貫穿孔的形狀可以是各種不同的幾何圖形,且形成的方式不限於雷射製程。Step S106: forming a plurality of through holes in the back passivation layer and the back protection passivation layer through a laser process. Wherein, the back passivation layer and the back protection passivation layer may be penetrated by physical or chemical methods to form a plurality of through holes. The shape of the through holes may be various geometric patterns, and the forming method is not limited to the laser process.

步驟S107:通過網印製程將背面鋁金屬層印製於背面保護鈍化層相對於背面鈍化層的另一側,且形成對應於該些貫穿孔的多個觸點。Step S107: Print the back aluminum metal layer on the other side of the back protective passivation layer relative to the back passivation layer through a screen printing process, and form a plurality of contacts corresponding to the through holes.

步驟S108:通過網印製程將多個正面電極彼此分離地印製於正面鈍化層的表面上。其中,該些正面電極通過正面鈍化層,以與第二導電型電場層電性連接。Step S108: Print a plurality of front electrodes on the surface of the front passivation layer separately from each other through a screen printing process. Wherein, the front electrodes are electrically connected with the second conductivity type electric field layer through the front passivation layer.

例如,正面電極及背面鋁金屬層可由金屬膠形成。舉例而言,正面電極由銀膠所形成,而背面鋁金屬層由鋁膠所形成,除網印製程外,還可通過蒸鍍製程、濺鍍製程或者電鍍製程所形成。For example, the front electrode and the back aluminum metal layer may be formed of metal glue. For example, the front electrode is formed of silver paste, and the back aluminum metal layer is formed of aluminum paste. In addition to the screen printing process, it can also be formed by an evaporation process, a sputtering process, or an electroplating process.

詳細而言,形成該些正面電極及背面鋁金屬層之後,可接著再以燒結等方法,使得背面鋁金屬層通過貫穿孔與第一導電型矽基板反應,形成局部背面電場。In detail, after the front electrodes and the back aluminum metal layer are formed, sintering can be used to make the back aluminum metal layer react with the first conductive silicon substrate through the through holes to form a local back electric field.

[實施例的有益效果][Beneficial effects of the embodiment]

本發明的其中一有益效果在於,本發明所提供的具有氮氧化矽鈍化層的太陽電池及其製造方法,在現有製程上使用了氧化鋁鈍化層搭配氮氧化矽鈍化層,通過提昇背部反射率來提升短路電流並降低串聯電阻,進而使效率較樣本提高了約0.1%。此外,通過保護層製程整合,可減少自動化破片風險。One of the beneficial effects of the present invention is that the solar cell with a silicon oxynitride passivation layer and its manufacturing method provided by the present invention uses an aluminum oxide passivation layer and a silicon oxynitride passivation layer in the existing manufacturing process to improve back reflectivity. To increase the short-circuit current and reduce the series resistance, thereby increasing the efficiency by about 0.1% compared to the sample. In addition, the protection layer process integration can reduce the risk of automated fragmentation.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content disclosed above is only a preferred and feasible embodiment of the present invention, and does not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made using the description and schematic content of the present invention are included in the application of the present invention. Within the scope of the patent.

10:太陽電池 100:第一導電型矽基板 102:第二導電型電場層 104:背面鈍化層 106:背面鈍化保護層 106-1:氮氧化矽鈍化層 106-2:氮化矽層 108:背面鋁金屬層 110:正面鈍化層 112:正面電極 114:背面電場 S1:上表面 S2:下表面 C:觸點 TH:貫穿孔 REF、INX:曲線 10: Solar battery 100: The first conductivity type silicon substrate 102: second conductivity type electric field layer 104: back passivation layer 106: back passivation protective layer 106-1: Silicon oxynitride passivation layer 106-2: Silicon nitride layer 108: Aluminum metal layer on the back 110: Front passivation layer 112: front electrode 114: Backside electric field S1: upper surface S2: lower surface C: Contact TH: Through hole REF, INX: curve

圖1為本發明實施例所提供的n型背面射極型雙面太陽能電池的剖面示意圖。FIG. 1 is a schematic cross-sectional view of an n-type back emitter bifacial solar cell provided by an embodiment of the present invention.

圖2為依據本發明的實施例顯示了使用不同速度下形成氮氧化矽鈍化層對反射率的影響曲線圖。FIG. 2 is a graph showing the influence of forming a silicon oxynitride passivation layer at different speeds on reflectivity according to an embodiment of the present invention.

圖3為本發明實施例的太陽電池的製造方法的流程圖。Fig. 3 is a flowchart of a method for manufacturing a solar cell according to an embodiment of the present invention.

10:太陽電池 10: Solar battery

100:第一導電型矽基板 100: The first conductivity type silicon substrate

102:第二導電型電場層 102: second conductivity type electric field layer

104:背面鈍化層 104: back passivation layer

106:背面鈍化保護層 106: back passivation protective layer

106-1:氮氧化矽鈍化層 106-1: Silicon oxynitride passivation layer

106-2:氮化矽層 106-2: Silicon nitride layer

108:背面鋁金屬層 108: Aluminum metal layer on the back

110:正面鈍化層 110: Front passivation layer

112:正面電極 112: front electrode

114:背面電場 114: Backside electric field

S1:上表面 S1: upper surface

S2:下表面 S2: lower surface

C:觸點 C: Contact

TH:貫穿孔 TH: Through hole

Claims (10)

一種具有氮氧化矽鈍化層的太陽電池,其包括:一第一導電型矽基板,該第一導電型矽基板具有一上表面及一下表面;一第二導電型電場層,設置在該第一導電型矽基板的該上表面上;一背面鈍化層,係設置在該第一導電型矽基板的該下表面上;一背面鈍化保護層,設置於該背面鈍化層相對該第一導電型矽基板的另一側,其中該背面鈍化保護層包括一氮氧化矽鈍化層,該氮氧化矽鈍化層的厚度在100nm至150nm的範圍內;以及一背面鋁金屬層,設置於該背面鈍化保護層相對於該背面鈍化層的另一側,並包括複數個觸點,其中該背面鈍化層及該背面鈍化保護層具有複數個貫穿孔,該些觸點分別對應該些貫穿孔而設置。 A solar cell with a passivation layer of silicon oxynitride, comprising: a first conductivity type silicon substrate, the first conductivity type silicon substrate having an upper surface and a lower surface; a second conductivity type electric field layer disposed on the first On the upper surface of the conductive silicon substrate; a back passivation layer is disposed on the lower surface of the first conductive silicon substrate; a back passivation protection layer is disposed on the back passivation layer opposite to the first conductive silicon On the other side of the substrate, the back passivation protection layer includes a silicon oxynitride passivation layer, the thickness of the silicon oxynitride passivation layer is in the range of 100 nm to 150 nm; and a back aluminum metal layer is disposed on the back passivation protection layer Relative to the other side of the back passivation layer, it includes a plurality of contacts, wherein the back passivation layer and the back passivation protection layer have a plurality of through holes, and the contacts are respectively arranged corresponding to the through holes. 如申請專利範圍第1項所述的具有氮氧化矽鈍化層的太陽電池,其中該背面鈍化層更包括一氧化鋁層,設置在該氮氧化矽鈍化層及該矽基板的中間。 The solar cell with a silicon oxynitride passivation layer as described in the first item of the patent application, wherein the back passivation layer further comprises an aluminum oxide layer disposed between the silicon oxynitride passivation layer and the silicon substrate. 如申請專利範圍第1項所述的具有氮氧化矽鈍化層的太陽電池,其中該背面鈍化保護層更包括一氮化矽層。 The solar cell with a silicon oxynitride passivation layer as described in the first item of the patent application, wherein the back passivation protection layer further includes a silicon nitride layer. 如申請專利範圍第3項所述的具有氮氧化矽鈍化層的太陽電池,其中該氧化鋁層的厚度係在5nm至15nm的範圍內。 The solar cell with a silicon oxynitride passivation layer as described in item 3 of the scope of patent application, wherein the thickness of the aluminum oxide layer is in the range of 5 nm to 15 nm. 如申請專利範圍第1項所述的具有氮氧化矽鈍化層的太陽電池,更包括:一正面鈍化層,設置在該第二導電型電場層上;多個正面電極,其彼此分離地設置於該正面鈍化層的表面上,其中該些正面電極通過該正面鈍化層,以與該第二導電型電場 層電性連接。 The solar cell with a silicon oxynitride passivation layer as described in item 1 of the scope of the patent application further includes: a front passivation layer disposed on the second conductivity type electric field layer; and a plurality of front electrodes disposed separately from each other On the surface of the front passivation layer, wherein the front electrodes pass through the front passivation layer to interact with the second conductivity type electric field Layer electrical connection. 一種具有氮氧化矽鈍化層的太陽電池的製造方法,其包括:形成一第一導電型矽基板,該第一導電型矽基板具有一上表面及一下表面;通過一擴散製程於該第一導電型矽基板的該上表面處形成一第二導電型電場層;通過一沈積製程將一背面鈍化層沈積於該第一導電型矽基板的該下表面上;通過一鍍膜製程將一背面保護鈍化層鍍附於該背面鈍化層相對該第一導電型矽基板的另一側,其中該背面保護鈍化層包括一氮氧化矽鈍化層,該氮氧化矽鈍化層的厚度在100nm至150nm的範圍內;通過一雷射製程於該背面鈍化層及該背面保護鈍化層中形成多個貫穿孔;以及通過一網印製程將一背面鋁金屬層印製於該背面保護鈍化層相對於該背面鈍化層的另一側,且形成對應於該些貫穿孔的多個觸點。 A method for manufacturing a solar cell with a silicon oxynitride passivation layer includes: forming a first conductivity type silicon substrate, the first conductivity type silicon substrate having an upper surface and a lower surface; and performing a diffusion process on the first conductive silicon substrate. A second conductivity type electric field layer is formed on the upper surface of the type silicon substrate; a back passivation layer is deposited on the lower surface of the first conductivity type silicon substrate through a deposition process; a back protection passivation is performed through a coating process A layer is plated on the other side of the back passivation layer opposite to the first conductivity type silicon substrate, wherein the back protection passivation layer includes a silicon oxynitride passivation layer, and the thickness of the silicon oxynitride passivation layer is in the range of 100nm to 150nm A plurality of through holes are formed in the back passivation layer and the back passivation layer through a laser process; and a back aluminum metal layer is printed on the back passivation layer relative to the back passivation layer through a screen printing process On the other side of the hole, a plurality of contacts corresponding to the through holes are formed. 如申請專利範圍第6項所述的具有氮氧化矽鈍化層的太陽電池的製造方法,更包括以該沈積製程將一氧化鋁層沈積於該第一導電型矽基板的該下表面上以作為該背面鈍化層。 The method for manufacturing a solar cell with a silicon oxynitride passivation layer as described in item 6 of the scope of patent application further includes depositing an aluminum oxide layer on the lower surface of the first conductive silicon substrate by the deposition process. The back passivation layer. 如申請專利範圍第7項所述的具有氮氧化矽鈍化層的太陽電池的製造方法,其中該氧化鋁層的厚度係在4nm至15nm的範圍內。 According to the method for manufacturing a solar cell with a silicon oxynitride passivation layer described in item 7 of the scope of patent application, the thickness of the aluminum oxide layer is in the range of 4 nm to 15 nm. 如申請專利範圍第6項所述的具有氮氧化矽鈍化層的太陽電池的製造方法,其中在通過該鍍膜製程形成該背面保護鈍化層的步驟中更包括:以該鍍膜製程將該氮氧化矽鈍化層鍍附於該背面鈍化層相對該 第一導電型矽基板的另一側;以及以該鍍膜製程將一氮化矽層鍍附於該氮氧化矽鈍化層相對於該背面鈍化層的另一側。 The method for manufacturing a solar cell with a silicon oxynitride passivation layer as described in item 6 of the scope of the patent application, wherein the step of forming the backside protective passivation layer by the coating process further includes: using the coating process to the silicon oxynitride The passivation layer is plated on the back passivation layer relative to the The other side of the first conductivity type silicon substrate; and a silicon nitride layer is plated on the other side of the silicon oxynitride passivation layer opposite to the back passivation layer by the coating process. 如申請專利範圍第6項所述的具有氮氧化矽鈍化層的太陽電池的製造方法,更包括:通過另一沈積製程將一正面鈍化層沈積於該第二導電型電場層上;通過一網印製程將多個正面電極彼此分離地印製於該正面鈍化層的表面上,其中該些正面電極通過該正面鈍化層,以與該第二導電型電場層電性連接。 The method for manufacturing a solar cell with a silicon oxynitride passivation layer as described in item 6 of the scope of the patent application further includes: depositing a front passivation layer on the second conductivity type electric field layer through another deposition process; The printing process separates and prints a plurality of front electrodes on the surface of the front passivation layer, wherein the front electrodes pass through the front passivation layer to be electrically connected to the second conductivity type electric field layer.
TW108123470A 2019-07-03 2019-07-03 Solar cell having silicon oxynitride passivation layer and method for manufacturing the same TWI705572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123470A TWI705572B (en) 2019-07-03 2019-07-03 Solar cell having silicon oxynitride passivation layer and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123470A TWI705572B (en) 2019-07-03 2019-07-03 Solar cell having silicon oxynitride passivation layer and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI705572B true TWI705572B (en) 2020-09-21
TW202103333A TW202103333A (en) 2021-01-16

Family

ID=74091506

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123470A TWI705572B (en) 2019-07-03 2019-07-03 Solar cell having silicon oxynitride passivation layer and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI705572B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240997A1 (en) * 2010-04-06 2011-10-06 Joerg Rockenberger Epitaxial Structures, Methods of Forming the Same, and Devices Including the Same
CN105845747A (en) * 2016-04-14 2016-08-10 董友强 Solar cell structure
TW201721887A (en) * 2015-12-01 2017-06-16 英穩達科技股份有限公司 Passivated emitter and rear contact solar cell and manufacturing method of the same reduce covering area of rear aluminum metal layer to reduce its usage and retain co-firing profile
WO2017164099A1 (en) * 2016-03-23 2017-09-28 シャープ株式会社 Photoelectric conversion device, photoelectric conversion module and solar photovoltaic power generation system
TW201801334A (en) * 2016-06-22 2018-01-01 英穩達科技股份有限公司 N-type rear emitter bifacial solar cell
WO2018087201A1 (en) * 2016-11-09 2018-05-17 Meyer Burger (Germany) Ag Crystalline solar cell comprising a transparent, conductive layer between the front-side contacts and method for producing such a solar cell
CN109585578A (en) * 2019-01-15 2019-04-05 晶澳(扬州)太阳能科技有限公司 A kind of back junction solar battery and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110240997A1 (en) * 2010-04-06 2011-10-06 Joerg Rockenberger Epitaxial Structures, Methods of Forming the Same, and Devices Including the Same
TW201721887A (en) * 2015-12-01 2017-06-16 英穩達科技股份有限公司 Passivated emitter and rear contact solar cell and manufacturing method of the same reduce covering area of rear aluminum metal layer to reduce its usage and retain co-firing profile
WO2017164099A1 (en) * 2016-03-23 2017-09-28 シャープ株式会社 Photoelectric conversion device, photoelectric conversion module and solar photovoltaic power generation system
CN105845747A (en) * 2016-04-14 2016-08-10 董友强 Solar cell structure
TW201801334A (en) * 2016-06-22 2018-01-01 英穩達科技股份有限公司 N-type rear emitter bifacial solar cell
WO2018087201A1 (en) * 2016-11-09 2018-05-17 Meyer Burger (Germany) Ag Crystalline solar cell comprising a transparent, conductive layer between the front-side contacts and method for producing such a solar cell
CN109585578A (en) * 2019-01-15 2019-04-05 晶澳(扬州)太阳能科技有限公司 A kind of back junction solar battery and preparation method thereof

Also Published As

Publication number Publication date
TW202103333A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
US10991834B1 (en) Photovoltaic module, solar cell, and method for producing solar cell
CN109728103B (en) Solar cell
US9773928B2 (en) Solar cell with electroplated metal grid
AU2013326971B2 (en) Photovoltaic devices with electroplated metal grids
KR100877817B1 (en) Solar Cell of High Efficiency and Process for Preparation of the Same
JP5424800B2 (en) Heterojunction photovoltaic cell with dual doping and method of manufacturing the same
CN118099245A (en) Back contact solar cell, preparation method thereof and photovoltaic module
US20170162725A1 (en) Solar cell
NL2034302B1 (en) Solar cell and photovoltaic module
TWI639241B (en) Photovoltaic element and method of producing the same
EP3163632A1 (en) Photovoltaic device and method for manufacturing the same
CN115176345A (en) Solar cell laminated passivation structure and preparation method thereof
CN218160390U (en) HJT battery structure with passivation medium oxide film
TWI705572B (en) Solar cell having silicon oxynitride passivation layer and method for manufacturing the same
CN115985992A (en) N-type monocrystalline silicon HBC solar cell structure and preparation method thereof
JP5645734B2 (en) Solar cell element
CN117321776A (en) Multi-junction solar cell
CN115360247A (en) Heterojunction photovoltaic cell with embedded wires and preparation method thereof
CN108389928B (en) Solar cell and preparation method thereof
TWI705573B (en) Solar cell having rear stacked back passivation layer and method for manufacturing the same
CN218498078U (en) Solar cell lamination passivation structure
EP4404278A2 (en) Solar cell, preparation method thereof and photovoltaic module
US20240355941A1 (en) Solar cell, preparation method thereof and photovoltaic module
Weeber et al. Status of n-type solar cells for low-cost industrial production
CN115863456A (en) perovskite/TOPCon tandem solar cell