TWI704387B - Lens assembly - Google Patents

Lens assembly Download PDF

Info

Publication number
TWI704387B
TWI704387B TW109107271A TW109107271A TWI704387B TW I704387 B TWI704387 B TW I704387B TW 109107271 A TW109107271 A TW 109107271A TW 109107271 A TW109107271 A TW 109107271A TW I704387 B TWI704387 B TW I704387B
Authority
TW
Taiwan
Prior art keywords
lens
object side
imaging
imaging lens
image side
Prior art date
Application number
TW109107271A
Other languages
Chinese (zh)
Other versions
TW202134721A (en
Inventor
吳國揚
陳柏言
張錫齡
姚淳颺
陳建宏
Original Assignee
信泰光學(深圳)有限公司
亞洲光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信泰光學(深圳)有限公司, 亞洲光學股份有限公司 filed Critical 信泰光學(深圳)有限公司
Priority to TW109107271A priority Critical patent/TWI704387B/en
Priority to CN202010296803.1A priority patent/CN112748518B/en
Priority to US17/004,255 priority patent/US11668902B2/en
Application granted granted Critical
Publication of TWI704387B publication Critical patent/TWI704387B/en
Priority to US17/186,124 priority patent/US20210278633A1/en
Publication of TW202134721A publication Critical patent/TW202134721A/en

Links

Images

Abstract

A lens assembly includes a first lens, a second lens, a third lens, a fourth lens, and a reflective element. The first lens is with positive refractive power and includes a concave surface facing an object side and a convex surface facing an image side. The second lens is with negative refractive power and includes a concave surface facing the object side. The third lens is with positive refractive power. The fourth lens is with refractive power and includes a concave surface facing the image side. The reflective element includes a reflective surface. The first lens, the second lens, the third lens, and the fourth lens are arranged in order from the object side to the image side along an optical axis. The reflective element is disposed between the first lens and the fourth lens. The lens assembly satisfies the following condition: TTL/f > 1.2; wherein TTL is a total track length of the lens assembly and f is an effective focal length of the lens assembly.

Description

成像鏡頭(四十四) Imaging lens (44)

本發明係有關於一種成像鏡頭。 The invention relates to an imaging lens.

現今手機的成像鏡頭之發展趨勢不斷朝向高解析度發展,其中成像鏡頭所使用的透鏡數目愈來愈多,使得成像鏡頭之鏡頭總長度愈來愈長,已經無法滿足手機輕薄的需求,所以需要有另一種新架構的成像鏡頭,才能同時滿足高解析度及小型化的需求。 Nowadays, the development trend of mobile phone imaging lenses is constantly moving toward high resolution. The number of lenses used in imaging lenses is increasing, making the total length of imaging lenses longer and longer, which can no longer meet the needs of thin and light mobile phones. There is another imaging lens with a new architecture that can simultaneously meet the needs of high resolution and miniaturization.

有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其鏡頭總長度較短、解析度較高,但是仍具有良好的光學性能。 In view of this, the main purpose of the present invention is to provide an imaging lens that has a shorter overall lens length and higher resolution, but still has good optical performance.

本發明之成像鏡頭包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡及一反射元件。第一透鏡具有正屈光力,此第一透鏡包括一凹面朝向一物側及一凸面朝向一像側。第二透鏡具有負屈光力,此第二透鏡包括一凹面朝向物側。第三透鏡具有正屈光力。第四透鏡具屈光力,此第四透鏡包括一凹面朝向像側。反射元件包括一反射面。第一透鏡、第二透鏡、第三透鏡及第四透鏡沿著一光軸從物側至像側依序排列。反射元件設置於第一透鏡與第四透鏡之間。成像鏡頭滿足以下條件:TTL/f>1.2;其中,TTL為成像鏡頭之一光學系統總長度,f為成像鏡頭之一有效焦距。 The imaging lens of the present invention includes a first lens, a second lens, a third lens, a fourth lens and a reflective element. The first lens has positive refractive power. The first lens includes a concave surface facing an object side and a convex surface facing an image side. The second lens has negative refractive power, and the second lens includes a concave surface facing the object side. The third lens has positive refractive power. The fourth lens has refractive power, and the fourth lens includes a concave surface facing the image side. The reflective element includes a reflective surface. The first lens, the second lens, the third lens and the fourth lens are arranged in order from the object side to the image side along an optical axis. The reflective element is arranged between the first lens and the fourth lens. The imaging lens satisfies the following conditions: TTL/f>1.2; where TTL is the total length of the optical system of one of the imaging lenses, and f is the effective focal length of one of the imaging lenses.

本發明之另一成像鏡頭包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡及一反射元件。第一透鏡具有正屈光力,此第一透鏡包括一凸面朝向一像側。第二透鏡具有負屈光力,此第二透鏡包括一凹面朝向一物側。第三透鏡具有正屈光力。第四透鏡具屈光力,此第四透鏡包括一凹面朝向像側。反射元件包括一反射面。第一透鏡、第二透鏡、第三透鏡及第四透鏡沿著一光軸從物側至像側依序排列。反射元件設置於第一透鏡與第四透鏡之間。成像鏡頭滿足以下條件:2mm<L<6mm;其中,L為最靠近該物側之透鏡之一物側面至該反射面於該光軸上之一間距。 Another imaging lens of the present invention includes a first lens, a second lens, a third lens, a fourth lens, and a reflective element. The first lens has positive refractive power, and the first lens includes a convex surface facing an image side. The second lens has negative refractive power, and the second lens includes a concave surface facing an object side. The third lens has positive refractive power. The fourth lens has refractive power, and the fourth lens includes a concave surface facing the image side. The reflective element includes a reflective surface. The first lens, the second lens, the third lens and the fourth lens are arranged in order from the object side to the image side along an optical axis. The reflective element is arranged between the first lens and the fourth lens. The imaging lens satisfies the following conditions: 2mm<L<6mm; where L is the distance from an object side of the lens closest to the object side to the reflecting surface on the optical axis.

其中第二透鏡可更包括另一凹面朝向像側。 The second lens may further include another concave surface facing the image side.

其中第三透鏡包括一凸面朝向物側及另一凸面朝向像側;第四透鏡可更包括一凸面朝向物側。 The third lens includes a convex surface facing the object side and another convex surface facing the image side; the fourth lens may further include a convex surface facing the object side.

其中可更包括一第五透鏡設置於第三透鏡與第四透鏡之間,第四透鏡具有正屈光力,第五透鏡具有正屈光力,第五透鏡包括一凸面朝向像側。 It may further include a fifth lens disposed between the third lens and the fourth lens, the fourth lens having positive refractive power, the fifth lens having positive refractive power, and the fifth lens including a convex surface facing the image side.

其中可更包括一第六透鏡設置於第三透鏡與第五透鏡之間,第六透鏡具有負屈光力,第六透鏡包括一凹面朝向物側及一凸面朝向像側。 It may further include a sixth lens arranged between the third lens and the fifth lens. The sixth lens has a negative refractive power. The sixth lens includes a concave surface facing the object side and a convex surface facing the image side.

其中成像鏡頭滿足以下條件:5mm<ALOD<14mm;0<TTL/ALOD<2;其中,ALOD為成像鏡頭之各透鏡之物側面的光學有效直徑總合,TTL為成像鏡頭之一光學系統總長度。 The imaging lens satisfies the following conditions: 5mm<ALOD<14mm; 0<TTL/ALOD<2; Among them, ALOD is the sum of the optical effective diameters of the object side of each lens of the imaging lens, and TTL is the total length of the optical system of one of the imaging lenses .

其中成像鏡頭滿足以下條件:1<(TTL+f)/fobj1<5;-1<fobj3/fobj4<2;1<fobj1/L1T<4;其中,TTL為成像鏡頭之一光學系統總長 度,f為成像鏡頭之一有效焦距,fobj1為最靠近物側之透鏡之一有效焦距,fobj3為第三靠近物側之透鏡之一有效焦距,fobj4為第四靠近物側之透鏡之一有效焦距,L1T為第一透鏡沿著光軸之一厚度。 The imaging lens meets the following conditions: 1<(TTL+f)/f obj1 <5;-1<f obj3 /f obj4 <2;1<f obj1 /L1T<4; among them, TTL is one of the optical systems of the imaging lens Total length, f is an effective focal length of the imaging lens, f obj1 is an effective focal length of the lens closest to the object side, f obj3 is an effective focal length of the third lens closest to the object side, f obj4 is the fourth lens closest to the object side One of the effective focal lengths of the lens, L1T is a thickness of the first lens along the optical axis.

其中成像鏡頭滿足以下條件:0.2mm2<L1T×L1SD<2.2mm2;-4mm2<L1T×R11<0mm2;其中,L1T為第一透鏡沿著光軸之一厚度,L1SD為第一透鏡之一像側面之一光學有效半徑,R11為第一透鏡之一物側面之一曲率半徑。 The imaging lens satisfies the following conditions: 0.2mm 2 <L1T×L1SD<2.2mm 2 ; -4mm 2 <L1T×R 11 <0mm 2 ; where L1T is the thickness of the first lens along the optical axis, and L1SD is the first An optical effective radius of an image side surface of the lens, and R 11 is a curvature radius of an object side surface of the first lens.

其中成像鏡頭滿足以下條件:0.5<M1T/L1T<4;1<TTL/L<5;0<L/f<2.5;其中,M1T為第一透鏡之一像側面至反射面於光軸上之一間距,L1T為第一透鏡沿著光軸之一厚度,TTL為成像鏡頭之一光學系統總長度,L為最靠近物側之透鏡之一物側面至反射面於光軸上之一間距,f為成像鏡頭之一有效焦距。 The imaging lens satisfies the following conditions: 0.5<M1T/L1T<4; 1<TTL/L<5; 0<L/f<2.5; among them, M1T is the distance from the image side of the first lens to the reflecting surface on the optical axis A distance, L1T is the thickness of the first lens along the optical axis, TTL is the total length of an optical system of the imaging lens, L is the distance from the object side of the lens closest to the object side to the reflecting surface on the optical axis, f is one of the effective focal lengths of the imaging lens.

其中成像鏡頭滿足以下條件:-2mm<8×M1T-(OD2+OD3+OD4+OD5)<1mm;其中,M1T為第一透鏡之一像側面至反射面於光軸上之一間距,OD2為第二靠近物側之透鏡之一物側面之一光學有效直徑,OD3為第三靠近物側之透鏡之一物側面之一光學有效直徑,OD4為第四靠近物側之透鏡之一物側面之一光學有效直徑,OD5為第五靠近物側之透鏡之一物側面之一光學有效直徑。 The imaging lens meets the following conditions: -2mm<8×M1T-(OD 2 +OD 3 +OD 4 +OD 5 )<1mm; among them, M1T is one of the image side of the first lens to one of the reflecting surface on the optical axis Pitch, OD 2 is the optical effective diameter of the second lens near the object side, OD 3 is the optical effective diameter of the third lens near the object side, OD 4 is the fourth lens near the object side An optical effective diameter of an object side of the lens, OD 5 is an optical effective diameter of an object side of the fifth lens close to the object side.

為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 In order to make the above-mentioned objects, features, and advantages of the present invention more obvious and understandable, the following specifically describes preferred embodiments in conjunction with the accompanying drawings.

1、2、3、4、5、6、7、8、9:成像鏡頭 1, 2, 3, 4, 5, 6, 7, 8, 9: imaging lens

ST1、ST2、ST3、ST4、ST5、ST6、ST7、ST8、ST9:光圈 ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9: aperture

L11、L21、L31、L41、L51、L61、L71、L81、L91:第一透鏡 L11, L21, L31, L41, L51, L61, L71, L81, L91: the first lens

L12、L22、L32、L42、L52、L62、L72、L82、L92:第二透鏡 L12, L22, L32, L42, L52, L62, L72, L82, L92: second lens

L13、L23、L33、L43、L53、L63、L73、L83、L93:第三透鏡 L13, L23, L33, L43, L53, L63, L73, L83, L93: third lens

P1、P2、P3、P4、P5、P6、P7、P8、P9:反射元件 P1, P2, P3, P4, P5, P6, P7, P8, P9: reflective elements

L14、L24、L34、L44、L54、L64、L74、L84、L94:第四透鏡 L14, L24, L34, L44, L54, L64, L74, L84, L94: fourth lens

L15、L45、L55、L85、L95:第五透鏡 L15, L45, L55, L85, L95: fifth lens

L96:第六透鏡 L96: sixth lens

OF1、OF2、OF3、OF4、OF5、OF6、OF7、OF8、OF9:濾光片 OF1, OF2, OF3, OF4, OF5, OF6, OF7, OF8, OF9: filter

IMA1、IMA2、IMA3、IMA4、IMA5、IMA6、IMA7、IMA8、IMA9:成像面 IMA1, IMA2, IMA3, IMA4, IMA5, IMA6, IMA7, IMA8, IMA9: imaging surface

OA1、OA2、OA3、OA4、OA5、OA6、OA7、OA8、OA9:光軸 OA1, OA2, OA3, OA4, OA5, OA6, OA7, OA8, OA9: Optical axis

S11、S21、S31、S41、S51、S61、S71、S81、S91:光圈面 S11, S21, S31, S41, S51, S61, S71, S81, S91: aperture surface

S14、S22、S32、S42、S52、S62、S72、S82、S92:第一透鏡物側面 S14, S22, S32, S42, S52, S62, S72, S82, S92: the first lens object side

S15、S23、S33、S43、S53、S63、S73、S83、S93:第一透鏡像側面 S15, S23, S33, S43, S53, S63, S73, S83, S93: the side of the first lens image

S16、S24、S34、S44、S54、S67、S77、S87、S97:第二透鏡物側面 S16, S24, S34, S44, S54, S67, S77, S87, S97: second lens object side

S17、S25、S35、S45、S55、S68、S78、S88、S98:第二透鏡像側面 S17, S25, S35, S45, S55, S68, S78, S88, S98: second lens image side

S18、S26、S36、S46、S56、S69、S79、S89、S99:第三透鏡物側面 S18, S26, S36, S46, S56, S69, S79, S89, S99: third lens object side

S19、S27、S37、S47、S57、S610、S710、S810、S910:第三透鏡像側面 S19, S27, S37, S47, S57, S610, S710, S810, S910: third lens image side

S110、S28、S38、S48、S58、S64、S74、S84、S94:入射面 S110, S28, S38, S48, S58, S64, S74, S84, S94: incident surface

S111、S29、S39、S49、S59、S65、S75、S85、S95:反射面 S111, S29, S39, S49, S59, S65, S75, S85, S95: reflective surface

S112、S210、S310、S410、S510、S66、S76、S86、S96:出射面 S112, S210, S310, S410, S510, S66, S76, S86, S96: exit surface

S113、S211、S311、S411、S513、S611、S711、S813、S915:第四透鏡物側面 S113, S211, S311, S411, S513, S611, S711, S813, S915: fourth lens object side

S114、S212、S312、S412、S514、S612、S712、S814、S916:第四透鏡像側面 S114, S212, S312, S412, S514, S612, S712, S814, S916: Fourth lens image side

S12、S413、S511、S811、S913:第五透鏡物側面 S12, S413, S511, S811, S913: fifth lens object side

S13、S414、S512、S812、S914:第五透鏡像側面 S13, S414, S512, S812, S914: fifth lens image side

S911:第六透鏡物側面 S911: sixth lens object side

S912:第六透鏡像側面 S912: Sixth lens image side

S115、S213、S313、S415、S515、S613、S713、S815、S917:濾光片物側面 S115, S213, S313, S415, S515, S613, S713, S815, S917: side of the filter object

S116、S214、S314、S416、S516、S614、S714、S816、S918:濾光片像側面 S116, S214, S314, S416, S516, S614, S714, S816, S918: Filter image side

第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。 FIG. 1 is a schematic diagram of the lens configuration and optical path of the first embodiment of the imaging lens according to the present invention.

第2A圖係依據本發明之成像鏡頭之第一實施例的場曲(Field Curvature)圖。 FIG. 2A is a field curve diagram of the first embodiment of the imaging lens according to the present invention.

第2B圖係依據本發明之成像鏡頭之第一實施例的畸變(Distortion)圖。 FIG. 2B is a distortion diagram of the first embodiment of the imaging lens according to the present invention.

第2C圖係依據本發明之成像鏡頭之第一實施例的調變轉換函數(Modulation Transfer Function)圖。 Figure 2C is a diagram of Modulation Transfer Function of the first embodiment of the imaging lens according to the present invention.

第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。 FIG. 3 is a schematic diagram of the lens configuration and optical path of the second embodiment of the imaging lens according to the present invention.

第4A圖係依據本發明之成像鏡頭之第二實施例的場曲圖。 Fig. 4A is a field curvature diagram of the second embodiment of the imaging lens according to the present invention.

第4B圖係依據本發明之成像鏡頭之第二實施例的畸變圖。 Figure 4B is a distortion diagram of the second embodiment of the imaging lens according to the present invention.

第4C圖係依據本發明之成像鏡頭之第二實施例的調變轉換函數圖。 Figure 4C is a diagram of the modulation transfer function of the second embodiment of the imaging lens according to the present invention.

第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。 FIG. 5 is a schematic diagram of the lens configuration and optical path of the third embodiment of the imaging lens according to the present invention.

第6A圖係依據本發明之成像鏡頭之第三實施例的場曲圖。 Fig. 6A is a field curvature diagram of the third embodiment of the imaging lens according to the present invention.

第6B圖係依據本發明之成像鏡頭之第三實施例的畸變圖。 FIG. 6B is a distortion diagram of the third embodiment of the imaging lens according to the present invention.

第6C圖係依據本發明之成像鏡頭之第三實施例的調變轉換函數圖。 Figure 6C is a diagram of the modulation transfer function of the third embodiment of the imaging lens according to the present invention.

第7圖係依據本發明之成像鏡頭之第四實施例的透鏡配置與光路示意圖。 FIG. 7 is a schematic diagram of the lens configuration and optical path of the fourth embodiment of the imaging lens according to the present invention.

第8A圖係依據本發明之成像鏡頭之第四實施例的場曲圖。 Fig. 8A is a field curvature diagram of the fourth embodiment of the imaging lens according to the present invention.

第8B圖係依據本發明之成像鏡頭之第四實施例的畸變圖。 Fig. 8B is a distortion diagram of the fourth embodiment of the imaging lens according to the present invention.

第8C圖係依據本發明之成像鏡頭之第四實施例的調變轉換函數圖。 Fig. 8C is a diagram of the modulation transfer function of the fourth embodiment of the imaging lens according to the present invention.

第9圖係依據本發明之成像鏡頭之第五實施例的透鏡配置與光路示意圖。 FIG. 9 is a schematic diagram of the lens configuration and optical path of the fifth embodiment of the imaging lens according to the present invention.

第10A圖係依據本發明之成像鏡頭之第五實施例的場曲圖。 FIG. 10A is a field curvature diagram of the fifth embodiment of the imaging lens according to the present invention.

第10B圖係依據本發明之成像鏡頭之第五實施例的畸變圖。 Fig. 10B is a distortion diagram of the fifth embodiment of the imaging lens according to the present invention.

第10C圖係依據本發明之成像鏡頭之第五實施例的調變轉換函數圖。 Figure 10C is a diagram of the modulation transfer function of the fifth embodiment of the imaging lens according to the present invention.

第11圖係依據本發明之成像鏡頭之第六實施例的透鏡配置示意圖。 FIG. 11 is a schematic diagram of the lens configuration of the sixth embodiment of the imaging lens according to the present invention.

第12A圖係依據本發明之成像鏡頭之第六實施例的場曲圖。 Figure 12A is a field curvature diagram of the sixth embodiment of the imaging lens according to the present invention.

第12B圖係依據本發明之成像鏡頭之第六實施例的畸變圖。 Figure 12B is a distortion diagram of the sixth embodiment of the imaging lens according to the present invention.

第12C圖係依據本發明之成像鏡頭之第六實施例的調變轉換函數圖。 Figure 12C is a diagram of the modulation transfer function of the sixth embodiment of the imaging lens according to the present invention.

第13圖係依據本發明之成像鏡頭之第七實施例的透鏡配置示意圖。 FIG. 13 is a schematic diagram of the lens configuration of the seventh embodiment of the imaging lens according to the present invention.

第14A圖係依據本發明之成像鏡頭之第七實施例的場曲圖。 Fig. 14A is a field curvature diagram of the seventh embodiment of the imaging lens according to the present invention.

第14B圖係依據本發明之成像鏡頭之第七實施例的畸變圖。 Fig. 14B is a distortion diagram of the seventh embodiment of the imaging lens according to the present invention.

第14C圖係依據本發明之成像鏡頭之第七實施例的調變轉換函數圖。 Figure 14C is a diagram of the modulation transfer function of the seventh embodiment of the imaging lens according to the present invention.

第15圖係依據本發明之成像鏡頭之第八實施例的透鏡配置與光路示意圖。 FIG. 15 is a schematic diagram of the lens arrangement and optical path of the eighth embodiment of the imaging lens according to the present invention.

第16A圖係依據本發明之成像鏡頭之第八實施例的場曲圖。 Fig. 16A is a field curvature diagram of the eighth embodiment of the imaging lens according to the present invention.

第16B圖係依據本發明之成像鏡頭之第八實施例的畸變圖。 Figure 16B is a distortion diagram of the eighth embodiment of the imaging lens according to the present invention.

第16C圖係依據本發明之成像鏡頭之第八實施例的調變轉換函數圖。 Figure 16C is a diagram of the modulation transfer function of the eighth embodiment of the imaging lens according to the present invention.

第17圖係依據本發明之成像鏡頭之第九實施例的透鏡配置與光路示意圖。 FIG. 17 is a schematic diagram of the lens configuration and optical path of the ninth embodiment of the imaging lens according to the present invention.

第18A圖係依據本發明之成像鏡頭之第九實施例的場曲圖。 Fig. 18A is a field curvature diagram of the ninth embodiment of the imaging lens according to the present invention.

第18B圖係依據本發明之成像鏡頭之第九實施例的畸變圖。 Figure 18B is a distortion diagram of the ninth embodiment of the imaging lens according to the present invention.

第18C圖係依據本發明之成像鏡頭之第九實施例的調變轉換函數圖。 Figure 18C is a diagram of the modulation transfer function of the ninth embodiment of the imaging lens according to the present invention.

本發明提供一種成像鏡頭,包括:一第一透鏡具有正屈光力,此第一透鏡包括一凹面朝向一物側及一凸面朝向一像側;一第二透鏡具有負屈光力,此第二透鏡包括一凹面朝向物側;一第三透鏡具有正屈光力;一第四透鏡具有屈光力,此第四透鏡包括一凹面朝向像側;及一反射元件,此反射元件包括一反射面;其中第一透鏡、第二透鏡、第三透鏡及第四透鏡沿著一光軸從物側至像側依序排列;反射元件設置於第一透鏡與第四透鏡之間;成像鏡頭滿足以下條件:TTL/f>1.2;其中,TTL為成像鏡頭之一光學系統總長度,f為成像鏡頭之一有效焦距。 The present invention provides an imaging lens, including: a first lens having positive refractive power, the first lens including a concave surface facing an object side and a convex surface facing an image side; a second lens having a negative refractive power, the second lens including a The concave surface faces the object side; a third lens has positive refractive power; a fourth lens has refractive power, the fourth lens includes a concave surface facing the image side; and a reflective element, the reflective element includes a reflective surface; wherein the first lens and the second lens The two lenses, the third lens and the fourth lens are arranged in order from the object side to the image side along an optical axis; the reflective element is arranged between the first lens and the fourth lens; the imaging lens meets the following conditions: TTL/f>1.2 ; Among them, TTL is the total length of the optical system of one of the imaging lenses, and f is the effective focal length of one of the imaging lenses.

本發明提供另一種成像鏡頭,包括:一第一透鏡具有正屈光力,此第一透鏡包括一凸面朝向一像側;一第二透鏡具有負屈光力,此第二透鏡包括一凹面朝向一物側;一第三透鏡具有正屈光力;一第四透鏡具有屈光力,此第四透鏡包括一凹面朝向像側;及一反射元件,此反射元件包括一反射面;其中第一透鏡、第二透鏡、第三透鏡及第四透鏡沿著一光軸從物側至像側依序排列;反射元件設置於第一透鏡與第四透鏡之間;成像鏡頭滿足以下條件:2mm<L<6mm;其中,L為最靠近物側之透鏡之一物側面至反射面於光軸上之一間距。 The present invention provides another imaging lens, including: a first lens having a positive refractive power, the first lens including a convex surface facing an image side; a second lens having a negative refractive power, the second lens including a concave surface facing an object side; A third lens has positive refractive power; a fourth lens has refractive power, the fourth lens includes a concave surface facing the image side; and a reflective element, the reflective element includes a reflective surface; wherein the first lens, the second lens, and the third lens The lens and the fourth lens are arranged in sequence from the object side to the image side along an optical axis; the reflective element is arranged between the first lens and the fourth lens; the imaging lens meets the following conditions: 2mm<L<6mm; where L is A distance from the object side of the lens closest to the object side to the reflecting surface on the optical axis.

請參閱底下表一、表二、表四、表五、表七、表八、表十、表十一、表十三、表十四、表十六、表十七、表十九、表二十、表二十二、表二十三、表二十五及表二十六,其中表一、表四、表七、表十、表十三、表十六、表十九、表二十二及表二十五分别為依據本發明之成像鏡頭之第 一實施例至第九實施例的各透鏡之相關參數表,表二、表五、表八、表十一、表十四、表十七、表二十、表二十三及表二十六分别為表一、表四、表七、表十、表十三、表十六、表十九、表二十二及表二十五中非球面透鏡之非球面表面之相關參數表。 Please refer to Table 1, Table 2, Table 4, Table 5, Table 7, Table 8, Table 10, Table 11, Table 13, Table 14, Table 16, Table 17, Table 19, Table 2 10. Table 22, Table 23, Table 25 and Table 26, of which Table 1, Table 4, Table 7, Table 10, Table 13, Table 16, Table 19, Table 20 The second and the twenty-fifth table are respectively the first imaging lens according to the present invention The related parameter table of each lens of the first to the ninth embodiments, Table 2, Table 5, Table 8, Table 11, Table 14, Table 17, Table 20, Table 23 and Table 26 Table 1, Table 4, Table 7, Table 10, Table 13, Table 16, Table 19, Table 22, and Table 25 are the relevant parameters of the aspheric surface of the aspheric lens.

第1、3、5、7、9、11、13、15、17圖分別為本發明之成像鏡頭之第一、二、三、四、五、六、七、八、九實施例的透鏡配置與光路示意圖,其中第一透鏡L11、L21、L31、L41、L51、L61、L71、L81、L91具有正屈光力,由玻璃或塑膠材質製成,其像側面S15、S23、S33、S43、S53、S63、S73、S83、S93為凸面,物側面S14、S22、S32、S42、S52、S62、S72、S82、S92與像側面S15、S23、S33、S43、S53、S63、S73、S83、S93皆為非球面表面。 Figures 1, 3, 5, 7, 9, 11, 13, 15, and 17 are the lens configurations of the first, second, third, fourth, fifth, sixth, seventh, eighth, and ninth embodiments of the imaging lens of the present invention, respectively And a schematic diagram of the optical path, where the first lens L11, L21, L31, L41, L51, L61, L71, L81, L91 has positive refractive power and is made of glass or plastic material, like the side surface S15, S23, S33, S43, S53, S63, S73, S83, and S93 are convex surfaces, the object side surface S14, S22, S32, S42, S52, S62, S72, S82, S92 and the image side surface S15, S23, S33, S43, S53, S63, S73, S83, S93 are all It is an aspheric surface.

第二透鏡L12、L22、L32、L42、L52、L62、L72、L82、L92具有負屈光力,由玻璃或塑膠材質製成,其物側面S16、S24、S34、S44、S54、S67、S77、S87、S97為凹面,物側面S16、S24、S34、S44、S54、S67、S77、S87、S97與像側面S17、S25、S35、S45、S55、S68、S78、S88、S98皆為非球面表面。 The second lens L12, L22, L32, L42, L52, L62, L72, L82, L92 has negative refractive power and is made of glass or plastic material. Its object sides are S16, S24, S34, S44, S54, S67, S77, S87 , S97 is a concave surface, the object side surface S16, S24, S34, S44, S54, S67, S77, S87, S97 and the image side surface S17, S25, S35, S45, S55, S68, S78, S88, S98 are all aspherical surfaces.

第三透鏡L13、L23、L33、L43、L53、L63、L73、L83、L93具有正屈光力,由玻璃或塑膠材質製成,其物側面S18、S26、S36、S46、S56、S69、S79、S89、S99為凸面,物側面S18、S26、S36、S46、S56、S69、S79、S89、S99為非球面表面。 The third lens L13, L23, L33, L43, L53, L63, L73, L83, L93 has positive refractive power and is made of glass or plastic material. Its object sides are S18, S26, S36, S46, S56, S69, S79, S89 , S99 is a convex surface, and the object side surface S18, S26, S36, S46, S56, S69, S79, S89, S99 are aspherical surfaces.

第四透鏡L14、L24、L34、L44、L54、L64、L74、L84、L94具有屈光力,由玻璃或塑膠材質製成,其像側面S114、S212、S312、S412、 S514、S612、S712、S814、S916為凹面,像側面S114、S212、S312、S412、S514、S612、S712、S814、S916為非球面表面。 The fourth lens L14, L24, L34, L44, L54, L64, L74, L84, L94 has refractive power and is made of glass or plastic material, like the sides S114, S212, S312, S412, S514, S612, S712, S814, and S916 are concave surfaces, and the side surfaces S114, S212, S312, S412, S514, S612, S712, S814, and S916 are aspherical surfaces.

反射元件P1、P2、P3、P4、P5、P6、P7、P8、P9由玻璃或塑膠材質製成,其入射面S110、S28、S38、S48、S58、S64、S74、S84、S94為平面,反射面S111、S29、S39、S49、S59、S65、S75、S85、S95為平面,出射面S112、S210、S310、S410、S510、S66、S76、S86、S96為平面。反射元件可以是稜鏡或反射鏡。 The reflective elements P1, P2, P3, P4, P5, P6, P7, P8, P9 are made of glass or plastic materials, and the incident surfaces S110, S28, S38, S48, S58, S64, S74, S84, and S94 are planes. The reflecting surfaces S111, S29, S39, S49, S59, S65, S75, S85, and S95 are flat surfaces, and the exit surfaces S112, S210, S310, S410, S510, S66, S76, S86, and S96 are flat surfaces. The reflective element can be a mirror or a mirror.

另外,成像鏡頭1、2、3、4、5、6、7、8、9至少滿足底下其中一條件:TTL/f>1.2 (1) In addition, imaging lenses 1, 2, 3, 4, 5, 6, 7, 8, and 9 meet at least one of the following conditions: TTL/f>1.2 (1)

2mm<L<6mm (2) 2mm<L<6mm (2)

5<TTL/OD1<14 (3) 5<TTL/OD 1 <14 (3)

0.5<ID1/OD1<1.5 (4) 0.5<ID 1 /OD 1 <1.5 (4)

5mm<ALOD<14mm (5) 5mm<ALOD<14mm (5)

0<TTL/ALOD<2 (6) 0<TTL/ALOD<2 (6)

1<ALOD/f<4 (7) 1<ALOD/f<4 (7)

1<(TTL+f)/fobj1<5 (8) 1<(TTL+f)/f obj1 <5 (8)

|fobj1|+|fobj2|<|fobj4| (9) |f obj1 |+|f obj2 |<|f obj4 | (9)

-3mm<fobj3<0mm (10) -3mm<f obj3 <0mm (10)

|fobj4|<|fobj5| (11) |f obj4 |<|f obj5 | (11)

FPDmax<4mm (12) FPD max <4mm (12)

-1<fobj3/fobj4<2 (13) -1<f obj3 /f obj4 <2 (13)

1<fobj1/L1T<4 (14) 1<f obj1 /L1T<4 (14)

0.2mm2<L1T×L1SD<2.2mm2 (15) 0.2mm 2 <L1T×L1SD<2.2mm 2 (15)

-4mm2<L1T×R11<0mm2 (16) -4mm 2 <L1T×R 11 <0mm 2 (16)

0.5<M1T/L1T<4 (17) 0.5<M1T/L1T<4 (17)

1<TTL/L<5 (18) 1<TTL/L<5 (18)

0<L/f<2.5 (19) 0<L/f<2.5 (19)

-2mm<8×M1T-(OD2+OD3+OD4+OD5)<1mm (20) -2mm<8×M1T-(OD 2 +OD 3 +OD 4 +OD 5 )<1mm (20)

其中,TTL為第一實施例至第九實施例中,成像鏡頭1、2、3、4、5、6、7、8、9之一光學系統總長度,即光圈ST1、ST2、ST3、ST4、ST5、ST6、ST7、ST8、ST9至成像面IMA1、IMA2、IMA3、IMA4、IMA5、IMA6、IMA7、IMA8、IMA9於光軸OA1、OA2、OA3、OA4、OA5、OA6、OA7、OA8、OA9上之一間距,f為第一實施例至第九實施例中,成像鏡頭1、2、3、4、5、6、7、8、9之一有效焦距,L為第一實施例至第九實施例中,最靠近物側之透鏡L15、L21、L31、L41、L51、L61、L71、L81、L91之一物側面S12、S22、S32、S42、S52、S62、S72、S82、S92至反射面S111、S29、S39、S49、S59、S65、S75、S85、S95於光軸OA1、OA2、OA3、OA4、OA5、OA6、OA7、OA8、OA9上之一間距,OD1為第一實施例至第五實施例中,最靠近物側之透鏡L15、L21、L31、L41、L51之一物側面S12、S22、S32、S42、S52之一光學有效直徑,OD2為第八實施例至第九實施例中,第二靠近物側之透鏡L82、L92之一物側面S87、S97之一光學有效直徑,OD3為第八實施例至第九實施例中,第三靠近物側之透鏡L83、L93之一物側面S89、S99之一光學有效直徑,OD4為第八實施例至第九實施例中,第四靠近 物側之透鏡L85、L96之一物側面S811、S911之一光學有效直徑,OD5為第八實施例至第九實施例中,第五靠近物側之透鏡L84、L95之一物側面S813、S913之一光學有效直徑,ID1為第一實施例至第五實施例中,最靠近物側之透鏡L15、L21、L31、L41、L51之一像側面S13、S23、S33、S43、S53之一光學有效直徑,ALOD分別為第一實施例至第九實施例中,各透鏡之物側面的光學有效直徑總合,fobj1為第一實施例至第九實施例中,最靠近物側之透鏡L15、L21、L31、L41、L51、L61、L71、L81、L91之一有效焦距,即從物側沿光軸依序排列為第一個透鏡之一有效焦距,fobj2為第一實施例至第五實施例中,第二靠近物側之透鏡L11、L22、L32、L42、L52之一有效焦距,即從物側沿光軸依序排列為第二個透鏡之一有效焦距,fobj3為第一實施例、第六實施例至第九實施例中,第三靠近物側之透鏡L12、L63、L73、L83、L93之一有效焦距,即從物側沿光軸依序排列為第三個透鏡之一有效焦距,fobj4為第一實施例至第九實施例中,第四靠近物側之透鏡L13、L24、L34、L44、L55、L64、L74、L85、L96之一有效焦距,即從物側沿光軸依序排列為第四個透鏡之一有效焦距,fobj5為第一實施例中,第五靠近物側之透鏡L14之一有效焦距,即從物側沿光軸依序排列為第五個透鏡之一有效焦距,FPDmax為反射元件P1、P2、P3、P4、P5朝向物側之透鏡之一最大光學有效直徑,L1T為第六實施例至第九實施例中,第一透鏡L61、L71、L81、L91分別沿著光軸OA6、OA7、OA8、OA9之一厚度,M1T為第六實施例至第九實施例中,第一透鏡L61、L71、L81、L91之像側面S63、S73、S83、S93分別至反射面S65、S75、S85、S95沿著光軸OA6、OA7、OA8、OA9之一間距,L1SD為第六實施例至第九實施例中,第一透鏡L61、L71、L81、L91 之像側面S63、S73、S83、S93之一光學有效半徑(Effective Optical Semi-Diameter),R11為第六實施例至第九實施例中,第一透鏡L61、L71、L81、L91之物側面S62、S72、S82、S92之一曲率半徑。使得成像鏡頭1、2、3、4、5、6、7、8、9能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Among them, TTL is the total length of the optical system of one of the imaging lenses 1, 2, 3, 4, 5, 6, 7, 8, 9 in the first embodiment to the ninth embodiment, that is, the apertures ST1, ST2, ST3, ST4 , ST5, ST6, ST7, ST8, ST9 to imaging surface IMA1, IMA2, IMA3, IMA4, IMA5, IMA6, IMA7, IMA8, IMA9 on optical axis OA1, OA2, OA3, OA4, OA5, OA6, OA7, OA8, OA9 The first pitch, f is the effective focal length of one of the imaging lenses 1, 2, 3, 4, 5, 6, 7, 8, and 9 in the first embodiment to the ninth embodiment, and L is the first embodiment to the first embodiment In the nine embodiments, the lens L15, L21, L31, L41, L51, L61, L71, L81, L91 is one of the object sides S12, S22, S32, S42, S52, S62, S72, S82, S92 to Reflecting surfaces S111, S29, S39, S49, S59, S65, S75, S85, S95 are at a pitch on the optical axis OA1, OA2, OA3, OA4, OA5, OA6, OA7, OA8, OA9, OD 1 is the first implementation In the example to the fifth embodiment, the lens L15, L21, L31, L41, L51 and one of the object sides S12, S22, S32, S42, S52 closest to the object side have an optical effective diameter, and OD 2 is the eighth embodiment to In the ninth embodiment, one of the object sides S87, S97 of the second lens L82, L92 close to the object side is an optical effective diameter, and OD 3 is the third lens close to the object side in the eighth embodiment to the ninth embodiment One of the object sides of L83, L93, S89, S99, and one of the optical effective diameters, OD 4 is one of the lens L85, L96 and one of the object sides S811, S911 in the eighth embodiment to the ninth embodiment. Effective diameter, OD 5 is the optical effective diameter of one of the object sides S813, S913 of the fifth lens L84, L95 near the object side in the eighth embodiment to the ninth embodiment, and ID 1 is the first embodiment to the fifth embodiment In the embodiment, one of the lenses L15, L21, L31, L41, and L51 closest to the object side has an optical effective diameter of one of the side surfaces S13, S23, S33, S43, S53, and ALOD is the first embodiment to the ninth embodiment, respectively In, the total optical effective diameter of the object side of each lens, f obj1 is the lens L15, L21, L31, L41, L51, L61, L71, L81, the lens closest to the object side in the first to the ninth embodiments The effective focal length of L91, that is, the effective focal length of the first lens is arranged in order from the object side along the optical axis, f obj2 is the second lens L11, L22 near the object side in the first embodiment to the fifth embodiment , L32, L42, L52, one of the effective focal lengths, that is, one of the effective focal lengths of the second lens arranged in order from the object side along the optical axis, f ob j3 is the effective focal length of one of the lenses L12, L63, L73, L83, and L93 on the third object side in the first, sixth to ninth embodiments, that is, they are arranged in order from the object side along the optical axis. One of the effective focal lengths of the third lens, f obj4 is one of the fourth lenses L13, L24, L34, L44, L55, L64, L74, L85, L96 in the first embodiment to the ninth embodiment. Focal length, that is, one of the effective focal lengths of the fourth lens arranged in order from the object side along the optical axis, f obj5 is one of the effective focal lengths of the fifth lens L14 near the object side in the first embodiment, that is, from the object side along the light The axes are arranged in order as one of the effective focal lengths of the fifth lens. FPD max is the maximum optical effective diameter of one of the lenses with the reflective elements P1, P2, P3, P4, and P5 facing the object side. L1T is the sixth embodiment to the ninth embodiment. In the example, the first lenses L61, L71, L81, and L91 are respectively along the optical axis OA6, OA7, OA8, OA9. M1T is the sixth embodiment to the ninth embodiment, the first lens L61, L71, L81 , L91 image side S63, S73, S83, S93 to the reflecting surface S65, S75, S85, S95 along the optical axis OA6, OA7, OA8, OA9 one of the distances, L1SD is the sixth embodiment to the ninth embodiment , The first lens L61, L71, L81, L91 is one of the image side surfaces S63, S73, S83, S93 (Effective Optical Semi-Diameter), R 11 is the sixth embodiment to the ninth embodiment, the first One of the radius of curvature of the object side surfaces S62, S72, S82, S92 of the lenses L61, L71, L81, and L91. The imaging lens 1, 2, 3, 4, 5, 6, 7, 8, 9 can effectively reduce the total length of the lens, effectively improve the resolution, effectively correct aberrations, and effectively correct chromatic aberration.

現詳細說明本發明之成像鏡頭之第一實施例。請參閱第1圖,成像鏡頭1沿著一光軸OA1從一物側至一像側依序包括一光圈ST1、一第五透鏡L15、一第一透鏡L11、一第二透鏡L12、一第三透鏡L13、一反射元件P1、一第四透鏡L14及一濾光片OF1。反射元件P1包括一入射面S110、一反射面S111及一出射面S112,入射面S110與出射面S112互相垂直。成像時,來自物側之光線經反射面S111反射改變行進方向,最後成像於一成像面IMA1上,成像面IMA1與出射面S112互相平行。第一實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第五透鏡L15為彎月型透鏡,具有正屈光力,其物側面S12為凸面,像側面S13為凹面,物側面S12與像側面S13皆為非球面表面;第一透鏡L11為彎月型透鏡,其物側面S14為凹面,物側面S14為非球面表面;第二透鏡L12為彎月型透鏡,其像側面S17為凸面;第三透鏡L13為平凸透鏡,其像側面S19為平面;第四透鏡L14為平凹透鏡,具有負屈光力,其物側面S113為平面; 濾光片OF1其物側面S115與像側面S116皆為平面;利用上述透鏡、反射元件P1、光圈ST1及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭1能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 The first embodiment of the imaging lens of the present invention will now be described in detail. Please refer to FIG. 1, the imaging lens 1 includes an aperture ST1, a fifth lens L15, a first lens L11, a second lens L12, and a second lens L12 in sequence from an object side to an image side along an optical axis OA1. Three lenses L13, a reflective element P1, a fourth lens L14 and a filter OF1. The reflective element P1 includes an incident surface S110, a reflective surface S111 and an exit surface S112, and the incident surface S110 and the exit surface S112 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S111 to change the traveling direction, and finally is imaged on an imaging surface IMA1, and the imaging surface IMA1 and the exit surface S112 are parallel to each other. In the first embodiment, the reflective element is an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to paragraphs 1 to 8 of the embodiment, the fifth lens L15 is a meniscus lens with positive refractive power, its object side surface S12 is convex, the image side surface S13 is concave, and both the object side surface S12 and the image side surface S13 are non Spherical surface; the first lens L11 is a meniscus lens, the object side S14 is concave, the object side S14 is an aspheric surface; the second lens L12 is a meniscus lens, the image side S17 is convex; the third lens L13 is Plano-convex lens, the image side surface S19 is a plane; the fourth lens L14 is a plano-concave lens with negative refractive power, and its object side S113 is a plane; The object side S115 and the image side S116 of the filter OF1 are both flat surfaces; the above-mentioned lens, the reflective element P1, the aperture ST1 and the design satisfying at least one of the conditions (1) to (20) are used to make the imaging lens 1 effective Reduce the total length of the lens, effectively improve the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表一為第1圖中成像鏡頭1之各透鏡之相關參數表。 Table 1 is a table of related parameters of each lens of the imaging lens 1 in Figure 1.

Figure 109107271-A0305-02-0014-1
Figure 109107271-A0305-02-0014-1

表一中非球面透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The concavity z of the aspheric surface of the aspheric lens in Table 1 is obtained by the following formula: z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 +Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Among them: c: curvature; h: the vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspherical coefficient.

表二為表一中非球面透鏡之非球面表面之相關參數表,其 中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 2 is the related parameter table of the aspheric surface of the aspheric lens in Table 1. Where k is the Conic Constant, and A~G are the aspheric coefficients.

Figure 109107271-A0305-02-0015-2
Figure 109107271-A0305-02-0015-2

表三為第一實施例之成像鏡頭1之相關參數值及其對應條件(1)至條件(12)、條件(18)至條件(19)之計算值,由表三可知,第一實施例之成像鏡頭1皆能滿足條件(1)至條件(12)、條件(18)至條件(19)之要求。 Table 3 shows the relevant parameter values of the imaging lens 1 of the first embodiment and the calculated values corresponding to conditions (1) to (12), and conditions (18) to (19). From Table 3, it can be seen that the first embodiment The imaging lens 1 can meet the requirements of condition (1) to condition (12), and condition (18) to condition (19).

Figure 109107271-A0305-02-0015-4
Figure 109107271-A0305-02-0015-4

另外,第一實施例之成像鏡頭1的光學性能也可達到要求。 由第2A圖可看出,第一實施例之成像鏡頭1其場曲介於-1.2mm至0.04mm之間。由第2B圖可看出,第一實施例之成像鏡頭1其畸變介於-2%至0%之間。由第2C圖可看出,第一實施例之成像鏡頭1其調變轉換函數值介於0.36至1.0之間。顯見第一實施例之成像鏡頭1之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also meet the requirements. It can be seen from FIG. 2A that the curvature of field of the imaging lens 1 of the first embodiment is between -1.2 mm and 0.04 mm. It can be seen from FIG. 2B that the distortion of the imaging lens 1 of the first embodiment is between -2% and 0%. It can be seen from FIG. 2C that the value of the modulation transfer function of the imaging lens 1 of the first embodiment is between 0.36 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 1 of the first embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。成像鏡頭2沿著一光軸OA2從一物側至一像側依序包括一光圈ST2、一第一透鏡L21、一第二透鏡L22、一第三透鏡L23、一反射元件P2、一第四透鏡L24及一濾光片OF2。反射元件P2包括一入射面S28、一反射面S29及一出射面S210,入射面S28與出射面S210互相垂直。成像時,來自物側之光線經反射面S29反射改變行進方向,最後成像於一成像面IMA2上,成像面IMA2與出射面S210互相平行。第二實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L21為雙凸透鏡,其物側面S22為凸面,物側面S22為非球面表面;第二透鏡L22為彎月型透鏡,其像側面S25為凸面;第三透鏡L23為平凸透鏡,其像側面S27為平面;第四透鏡L24為平凹透鏡,具有負屈光力,其物側面S211為平面;濾光片OF2其物側面S213與像側面S214皆為平面;利用上述透鏡、反射元件P2、光圈ST2及至少滿足條件(1) 至條件(20)其中一條件之設計,使得成像鏡頭2能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 3, which is a schematic diagram of the lens configuration and optical path of the second embodiment of the imaging lens according to the present invention. The imaging lens 2 includes an aperture ST2, a first lens L21, a second lens L22, a third lens L23, a reflective element P2, a fourth lens, and a second lens L22 from an object side to an image side in order along an optical axis OA2. Lens L24 and a filter OF2. The reflective element P2 includes an incident surface S28, a reflective surface S29, and an exit surface S210, and the incident surface S28 and the exit surface S210 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S29 to change the traveling direction, and finally imaged on an imaging surface IMA2, the imaging surface IMA2 and the exit surface S210 are parallel to each other. In the second embodiment, the reflective element is an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to [Embodiment] paragraphs 1 to 8, wherein: the first lens L21 is a biconvex lens, the object side surface S22 is a convex surface, and the object side surface S22 is an aspheric surface; the second lens L22 is a meniscus lens with an image side surface S25 Convex; the third lens L23 is a plano-convex lens, and its image side S27 is a plane; the fourth lens L24 is a plano-concave lens with negative refractive power, and its object side S211 is a plane; the filter OF2 has its object side S213 and image side S214 both Is a plane; using the above-mentioned lens, reflective element P2, aperture ST2 and at least satisfying condition (1) The design of one of the conditions to condition (20) enables the imaging lens 2 to effectively reduce the total length of the lens, effectively increase the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表四為第3圖中成像鏡頭2之各透鏡之相關參數表。 Table 4 is a table of related parameters of each lens of the imaging lens 2 in Figure 3.

Figure 109107271-A0305-02-0017-5
Figure 109107271-A0305-02-0017-5

表四中非球面透鏡之非球面表面凹陷度z之定義,與第一實施例中表一之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 4 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 1 in the first embodiment, and will not be repeated here.

表五為表四中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 5 is a table of related parameters of the aspheric surface of the aspheric lens in Table 4, where k is the Conic Constant and A~G are the aspheric coefficients.

Figure 109107271-A0305-02-0017-6
Figure 109107271-A0305-02-0017-6
Figure 109107271-A0305-02-0018-7
Figure 109107271-A0305-02-0018-7

表六為第二實施例之成像鏡頭2之相關參數值及其對應條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之計算值,由表六可知,第二實施例之成像鏡頭2皆能滿足條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之要求。 Table 6 shows the relevant parameter values of the imaging lens 2 of the second embodiment and the calculated values of corresponding conditions (1) to (9), condition (12), and conditions (18) to (19). Table 6 shows , The imaging lens 2 of the second embodiment can all meet the requirements of condition (1) to condition (9), condition (12), and condition (18) to condition (19).

Figure 109107271-A0305-02-0018-8
Figure 109107271-A0305-02-0018-8

另外,第二實施例之成像鏡頭2的光學性能也可達到要求。由第4A圖可看出,第二實施例之成像鏡頭2其場曲介於-0.09mm至0.04mm之間。由第4B圖可看出,第二實施例之成像鏡頭2其畸變介於0%至2%之間。由第4C圖可看出,第二實施例之成像鏡頭2其調變轉換函數值介於0.23至1.0之間。顯見第二實施例之成像鏡頭2之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also meet the requirements. It can be seen from FIG. 4A that the curvature of field of the imaging lens 2 of the second embodiment is between -0.09mm and 0.04mm. It can be seen from FIG. 4B that the distortion of the imaging lens 2 of the second embodiment is between 0% and 2%. It can be seen from FIG. 4C that the value of the modulation transfer function of the imaging lens 2 of the second embodiment is between 0.23 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 2 of the second embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第5圖,第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。成像鏡頭3沿著一光軸OA3從一物側至一像側依序包括一光圈ST3、一第一透鏡L31、一第二透鏡L32、一第三透鏡L33、一反射元件P3、一第四透鏡L34及一濾光片OF3。反射元件P3包括一入射面S38、一反射面S39及一出射面S310,入射面S38與出射面S310互相垂直。成像時,來自物側之光線經反射面S39反射改變行進方向,最後成像於一成像面IMA3上,成像面IMA3與出射面S310互相平行。第三實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L31為彎月型透鏡,其物側面S32為凹面,物側面S32為非球面表面;第二透鏡L32為彎月型透鏡,其像側面S35為凸面;第三透鏡L33為彎月型透鏡,其像側面S37為凹面,像側面S37為非球面表面;第四透鏡L34為彎月型透鏡,具有負屈光力,其物側面S311為凸面,物側面S311為非球面表面;濾光片OF3其物側面S313與像側面S314皆為平面;利用上述透鏡、反射元件P3、光圈ST3及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭3能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 5, which is a schematic diagram of the lens configuration and optical path of the third embodiment of the imaging lens according to the present invention. The imaging lens 3 includes an aperture ST3, a first lens L31, a second lens L32, a third lens L33, a reflective element P3, and a fourth lens in order from an object side to an image side along an optical axis OA3. Lens L34 and a filter OF3. The reflective element P3 includes an incident surface S38, a reflective surface S39, and an exit surface S310. The incident surface S38 and the exit surface S310 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S39 to change the traveling direction, and finally is imaged on an imaging surface IMA3, and the imaging surface IMA3 and the exit surface S310 are parallel to each other. In the third embodiment, the reflective element is taken as an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to [Embodiment] paragraphs 1 to 8, wherein: the first lens L31 is a meniscus lens, the object side surface S32 is a concave surface, and the object side surface S32 is an aspheric surface; the second lens L32 is a meniscus lens with an image The side surface S35 is convex; the third lens L33 is a meniscus lens, the image side S37 is concave, and the image side S37 is an aspheric surface; the fourth lens L34 is a meniscus lens with negative refractive power, and its object side S311 is convex , The object side surface S311 is an aspherical surface; the object side surface S313 and the image side surface S314 of the filter OF3 are both flat surfaces; the lens, the reflective element P3, the aperture ST3 and at least one of the conditions (1) to (20) are satisfied Its design enables the imaging lens 3 to effectively reduce the total length of the lens, effectively improve the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表七為第5圖中成像鏡頭3之各透鏡之相關參數表。 Table 7 is a table of related parameters of each lens of the imaging lens 3 in Figure 5.

Figure 109107271-A0305-02-0019-9
Figure 109107271-A0305-02-0019-9
Figure 109107271-A0305-02-0020-10
Figure 109107271-A0305-02-0020-10

表七中非球面透鏡之非球面表面凹陷度z之定義,與第一實施例中表一之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 7 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 1 in the first embodiment, and will not be repeated here.

表八為表七中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 8 is the relevant parameter table of the aspheric surface of the aspheric lens in Table 7, where k is the Conic Constant and A~G are the aspheric coefficients.

Figure 109107271-A0305-02-0020-11
Figure 109107271-A0305-02-0020-11
Figure 109107271-A0305-02-0021-12
Figure 109107271-A0305-02-0021-12

表九為第三實施例之成像鏡頭3之相關參數值及其對應條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之計算值,由表九可知,第三實施例之成像鏡頭3皆能滿足條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之要求。 Table 9 shows the relevant parameter values of the imaging lens 3 of the third embodiment and the calculated values of corresponding conditions (1) to (9), condition (12), and conditions (18) to (19), as shown in Table 9 , The imaging lens 3 of the third embodiment can all meet the requirements of condition (1) to condition (9), condition (12), and condition (18) to condition (19).

Figure 109107271-A0305-02-0021-13
Figure 109107271-A0305-02-0021-13

另外,第三實施例之成像鏡頭3的光學性能也可達到要求。由第6A圖可看出,第三實施例之成像鏡頭3其場曲介於-0.12mm至0.02mm之間。由第6B圖可看出,第三實施例之成像鏡頭3其畸變介於0%至2%之間。由第6C圖可看出,第三實施例之成像鏡頭3其調變轉換函數值介於0.35至1.0之間。顯見第三實施例之成像鏡頭3之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 3 of the third embodiment can also meet the requirements. It can be seen from FIG. 6A that the field curvature of the imaging lens 3 of the third embodiment is between -0.12 mm and 0.02 mm. It can be seen from FIG. 6B that the distortion of the imaging lens 3 of the third embodiment is between 0% and 2%. It can be seen from FIG. 6C that the value of the modulation transfer function of the imaging lens 3 of the third embodiment is between 0.35 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 3 of the third embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第7圖,第7圖係依據本發明之成像鏡頭之第四實施例的透鏡配置與光路示意圖。成像鏡頭4沿著一光軸OA4從一物側至一 像側依序包括一光圈ST4、一第一透鏡L41、一第二透鏡L42、一第三透鏡L43、一反射元件P4、一第四透鏡L44、一第五透鏡L45及一濾光片OF4。反射元件P4包括一入射面S48、一反射面S49及一出射面S410,入射面S48與出射面S410互相垂直。成像時,來自物側之光線經反射面S49反射改變行進方向,最後成像於一成像面IMA4上,成像面IMA4與出射面S410互相平行。第四實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L41為彎月型透鏡,其物側面S42為凹面,物側面S42為非球面表面;第二透鏡L42為彎月型透鏡,其像側面S45為凸面;第三透鏡L43為彎月型透鏡,其像側面S47為凹面,像側面S47為非球面表面;第四透鏡L44為彎月型透鏡,具有負屈光力,其物側面S411為凸面,物側面S411為非球面表面;第五透鏡L45為雙凸透鏡,具有正屈光力,其物側面S413為凸面,像側面S414為凸面,物側面S413與像側面S414為非球面表面;濾光片OF4其物側面S415與像側面S416皆為平面;利用上述透鏡、反射元件P4、光圈ST4及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭4能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 7, which is a schematic diagram of the lens configuration and optical path of the fourth embodiment of the imaging lens according to the present invention. The imaging lens 4 extends from one object side to one along an optical axis OA4 The image side sequentially includes an aperture ST4, a first lens L41, a second lens L42, a third lens L43, a reflective element P4, a fourth lens L44, a fifth lens L45 and a filter OF4. The reflective element P4 includes an incident surface S48, a reflective surface S49, and an exit surface S410, and the incident surface S48 and the exit surface S410 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S49 to change the traveling direction, and finally is imaged on an imaging surface IMA4, and the imaging surface IMA4 and the exit surface S410 are parallel to each other. In the fourth embodiment, the reflective element is taken as an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to [Embodiment] paragraphs 1 to 8, wherein: the first lens L41 is a meniscus lens, the object side surface S42 is a concave surface, and the object side surface S42 is an aspheric surface; the second lens L42 is a meniscus lens with an image The side surface S45 is convex; the third lens L43 is a meniscus lens, the image side S47 is concave, and the image side S47 is an aspheric surface; the fourth lens L44 is a meniscus lens with negative refractive power, and its object side S411 is convex , The object side S411 is an aspheric surface; the fifth lens L45 is a biconvex lens with positive refractive power, the object side S413 is convex, the image side S414 is convex, the object side S413 and the image side S414 are aspheric surfaces; filter OF4 The object side S415 and the image side S416 are both planes; the above-mentioned lens, reflecting element P4, aperture ST4, and a design that meets at least one of the conditions (1) to (20) enable the imaging lens 4 to effectively reduce the total lens length It can effectively improve the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表十為第7圖中成像鏡頭4之各透鏡之相關參數表。 Table 10 is a table of related parameters of each lens of the imaging lens 4 in Figure 7.

Figure 109107271-A0305-02-0022-14
Figure 109107271-A0305-02-0022-14
Figure 109107271-A0305-02-0023-15
Figure 109107271-A0305-02-0023-15

表十中非球面透鏡之非球面表面凹陷度z之定義,與第一實施例中表一之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 10 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 1 in the first embodiment, and will not be repeated here.

表十一為表十中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 11 is a table of related parameters of the aspheric surface of the aspheric lens in Table 10, where k is the Conic Constant and A~G are the aspheric coefficients.

Figure 109107271-A0305-02-0023-16
Figure 109107271-A0305-02-0023-16
Figure 109107271-A0305-02-0024-17
Figure 109107271-A0305-02-0024-17

表十二為第四實施例之成像鏡頭4之相關參數值及其對應條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之計算值,由表十二可知,第四實施例之成像鏡頭4皆能滿足條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之要求。 Table 12 shows the relevant parameter values of the imaging lens 4 of the fourth embodiment and the calculated values of the corresponding conditions (1) to (9), (12), and (18) to (19). Second, it can be seen that the imaging lens 4 of the fourth embodiment can all meet the requirements of conditions (1) to (9), conditions (12), and conditions (18) to (19).

Figure 109107271-A0305-02-0024-18
Figure 109107271-A0305-02-0024-18

另外,第四實施例之成像鏡頭4的光學性能也可達到要求。由第8A圖可看出,第四實施例之成像鏡頭4其場曲介於-0.12mm至0.02mm之間。由第8B圖可看出,第四實施例之成像鏡頭4其畸變介於-0.15%至0.3%之間。由第8C圖可看出,第四實施例之成像鏡頭4其調變轉換函數值介於0.41至1.0之間。顯見第四實施例之成像鏡頭4之場曲、畸變都能被有效修 正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 4 of the fourth embodiment can also meet the requirements. It can be seen from FIG. 8A that the curvature of field of the imaging lens 4 of the fourth embodiment is between -0.12 mm and 0.02 mm. It can be seen from FIG. 8B that the distortion of the imaging lens 4 of the fourth embodiment is between -0.15% and 0.3%. It can be seen from FIG. 8C that the value of the modulation transfer function of the imaging lens 4 of the fourth embodiment is between 0.41 and 1.0. Obviously the field curvature and distortion of the imaging lens 4 of the fourth embodiment can be effectively repaired Positive, the lens resolution can also meet the requirements, so as to obtain better optical performance.

請參閱第9圖,第9圖係依據本發明之成像鏡頭之第五實施例的透鏡配置與光路示意圖。成像鏡頭5沿著一光軸OA5從一物側至一像側依序包括一光圈ST5、一第一透鏡L51、一第二透鏡L52、一第三透鏡L53、一反射元件P5、一第五透鏡L55、一第四透鏡L54及一濾光片OF5。反射元件P5包括一入射面S58、一反射面S59及一出射面S510,入射面S58與出射面S510互相垂直。成像時,來自物側之光線經反射面S59反射改變行進方向,最後成像於一成像面IMA5上,成像面IMA5與出射面S510互相平行。第五實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L51為彎月型透鏡,其物側面S52為凹面,物側面S52為非球面表面;第二透鏡L52為彎月型透鏡,其像側面S55為凸面;第三透鏡L53為彎月型透鏡,其像側面S57為凹面,像側面S57為非球面表面;第五透鏡L55為雙凸透鏡,具有正屈光力,由玻璃或塑膠材質製成,其物側面S511為凸面,像側面S512為凸面,物側面S511與像側面S512為非球面表面;第四透鏡L54為彎月型透鏡,具有負屈光力,其物側面S513為凸面,物側面S513為非球面表面;濾光片OF5其物側面S515與像側面S516皆為平面;利用上述透鏡、反射元件P5、光圈ST5及至少滿足條件(1) 至條件(20)其中一條件之設計,使得成像鏡頭5能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 9, which is a schematic diagram of the lens configuration and optical path of the fifth embodiment of the imaging lens according to the present invention. The imaging lens 5 includes an aperture ST5, a first lens L51, a second lens L52, a third lens L53, a reflective element P5, and a fifth lens in order from an object side to an image side along an optical axis OA5. Lens L55, a fourth lens L54 and a filter OF5. The reflective element P5 includes an incident surface S58, a reflective surface S59, and an exit surface S510. The incident surface S58 and the exit surface S510 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S59 to change the traveling direction, and finally imaged on an imaging surface IMA5, and the imaging surface IMA5 and the exit surface S510 are parallel to each other. In the fifth embodiment, the reflective element is taken as an example but not limited to this. For example, the reflective element may be a reflective mirror, which only includes a reflective surface. According to [Embodiment] paragraphs 1 to 8, wherein: the first lens L51 is a meniscus lens, the object side surface S52 is a concave surface, and the object side surface S52 is an aspheric surface; the second lens L52 is a meniscus lens with an image The side surface S55 is convex; the third lens L53 is a meniscus lens, the image side S57 is concave, and the image side S57 is an aspheric surface; the fifth lens L55 is a biconvex lens with positive refractive power and is made of glass or plastic. The object side S511 is convex, the image side S512 is convex, the object side S511 and the image side S512 are aspherical surfaces; the fourth lens L54 is a meniscus lens with negative refractive power, the object side S513 is convex, and the object side S513 is Aspherical surface; the object side S515 and the image side S516 of the filter OF5 are both flat surfaces; the above lens, reflective element P5, aperture ST5 and at least the condition (1) are used The design of one of the conditions to condition (20) enables the imaging lens 5 to effectively reduce the total length of the lens, effectively improve the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表十三為第9圖中成像鏡頭5之各透鏡之相關參數表。 Table 13 is a table of related parameters of each lens of the imaging lens 5 in Figure 9.

Figure 109107271-A0305-02-0026-19
Figure 109107271-A0305-02-0026-19

表十三中非球面透鏡之非球面表面凹陷度z之定義,與第一實施例中表一之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 13 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 1 in the first embodiment, and will not be repeated here.

表十四為表十三中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 14 is a table of related parameters of the aspheric surface of the aspheric lens in Table 13, where k is the Conic Constant and A~G are the aspheric coefficients.

Figure 109107271-A0305-02-0026-20
Figure 109107271-A0305-02-0026-20
Figure 109107271-A0305-02-0027-21
Figure 109107271-A0305-02-0027-21

表十五為第五實施例之成像鏡頭5之相關參數值及其對應條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之計算值,由表十五可知,第五實施例之成像鏡頭5皆能滿足條件(1)至條件(9)、條件(12)、條件(18)至條件(19)之要求。 Table 15 shows the relevant parameter values of the imaging lens 5 of the fifth embodiment and the calculated values of the corresponding conditions (1) to (9), (12), and (18) to (19), as shown in Table 10 It can be seen that the imaging lens 5 of the fifth embodiment can all satisfy the requirements of the conditions (1) to (9), the conditions (12), and the conditions (18) to (19).

Figure 109107271-A0305-02-0027-22
Figure 109107271-A0305-02-0027-22

另外,第五實施例之成像鏡頭5的光學性能也可達到要求。由第10A圖可看出,第五實施例之成像鏡頭5其場曲介於-0.10mm至0.025mm之間。由第10B圖可看出,第五實施例之成像鏡頭5其畸變介於0%至2%之間。由第10C圖可看出,第五實施例之成像鏡頭5其調變轉換函數值介於0.40至1.0之間。顯見第五實施例之成像鏡頭5之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 5 of the fifth embodiment can also meet the requirements. It can be seen from FIG. 10A that the curvature of field of the imaging lens 5 of the fifth embodiment is between -0.10 mm and 0.025 mm. It can be seen from FIG. 10B that the distortion of the imaging lens 5 of the fifth embodiment is between 0% and 2%. It can be seen from FIG. 10C that the value of the modulation transfer function of the imaging lens 5 of the fifth embodiment is between 0.40 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 5 of the fifth embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第11圖,第11圖係依據本發明之成像鏡頭之第六實施例的透鏡配置示意圖。成像鏡頭6沿著一光軸OA6從一物側至一像側依序包括一光圈ST6、一第一透鏡L61、一反射元件P6、一第二透鏡L62、一第三透鏡L63、一第四透鏡L64及一濾光片OF6。反射元件P6包括一入射面S64、一反射面S65及一出射面S66,入射面S64與出射面S66互相垂直。成像時,來自物側之光線經反射面S65反射改變行進方向,最後成像於一成像面IMA6上,成像面IMA6與出射面S66互相平行。第六實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L61為彎月型透鏡,其物側面S62為凹面;第二透鏡L62為雙凹透鏡,其像側面S68為凹面;第三透鏡L63為雙凸透鏡,其像側面S610為凸面,像側面S610為非球面表面;第四透鏡L64為彎月型透鏡具有負屈光力,其物側面S611為凸面,物側面S611為非球面表面;濾光片OF6其物側面S613與像側面S614皆為平面; 利用上述透鏡、反射元件P6、光圈ST6及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭6能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 11, which is a schematic diagram of the lens configuration of the sixth embodiment of the imaging lens according to the present invention. The imaging lens 6 includes an aperture ST6, a first lens L61, a reflective element P6, a second lens L62, a third lens L63, and a fourth lens in order from an object side to an image side along an optical axis OA6. Lens L64 and a filter OF6. The reflective element P6 includes an incident surface S64, a reflective surface S65, and an exit surface S66. The incident surface S64 and the exit surface S66 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S65 to change the traveling direction, and finally is imaged on an imaging surface IMA6, and the imaging surface IMA6 and the exit surface S66 are parallel to each other. In the sixth embodiment, the reflective element is taken as an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to [Embodiment] paragraphs 1 to 8, wherein: the first lens L61 is a meniscus lens with a concave object side surface S62; the second lens L62 is a biconcave lens with a concave image side surface S68; and the third lens L63 is Double convex lens, the image side surface S610 is convex, the image side surface S610 is an aspheric surface; the fourth lens L64 is a meniscus lens with negative refractive power, its object side S611 is convex, and the object side S611 is an aspheric surface; the filter OF6 The object side S613 and the image side S614 are both flat surfaces; Using the above-mentioned lens, reflective element P6, aperture ST6, and a design that meets at least one of conditions (1) to (20), the imaging lens 6 can effectively reduce the total length of the lens, effectively improve the resolution, and effectively correct the image. Poor and effective correction of chromatic aberration.

表十六為第11圖中成像鏡頭6之各透鏡之相關參數表。 Table 16 is a table of related parameters of each lens of the imaging lens 6 in Figure 11.

Figure 109107271-A0305-02-0029-23
Figure 109107271-A0305-02-0029-23

表十六中非球面透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16+Hh18+Ih20 The aspheric surface concavity z of the aspheric lens in Table 16 is obtained by the following formula: z=ch2/{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 +Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16 +Hh 18 +Ih 20

其中:h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~I:非球面係數。 Among them: h: the vertical distance from any point on the lens surface to the optical axis; k: the conic coefficient; A~I: the aspheric coefficient.

表十七為表十六中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~I為非球面係數。 Table 17 is a table of related parameters of the aspheric surface of the aspheric lens in Table 16, where k is the Conic Constant, and A~I are the aspheric coefficients.

Figure 109107271-A0305-02-0029-24
Figure 109107271-A0305-02-0029-24
Figure 109107271-A0305-02-0030-25
Figure 109107271-A0305-02-0030-25

表十八為第六實施例之成像鏡頭6之相關參數值及其對應條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(19)之計算值,由表十八可知,第六實施例之成像鏡頭6皆能滿足條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(19)之要求。 Table 18 shows the relevant parameter values of the imaging lens 6 of the sixth embodiment and their corresponding conditions (1) to condition (2), condition (5) to condition (6), condition (8), and condition (13) to condition For the calculated value of (19), it can be seen from Table 18 that the imaging lens 6 of the sixth embodiment can all meet the conditions (1) to (2), conditions (5) to (6), and conditions (8). (13) to the requirements of condition (19).

Figure 109107271-A0305-02-0030-27
Figure 109107271-A0305-02-0030-27

另外,第六實施例之成像鏡頭6的光學性能也可達到要 求。由第12A圖可看出,第六實施例之成像鏡頭6其場曲介於-0.1mm至0.3mm之間。由第12B圖可看出,第六實施例之成像鏡頭6其畸變介於0%至2%之間。由第12C圖可看出,第六實施例之成像鏡頭6其調變轉換函數值介於0.49至1.0之間。顯見第六實施例之成像鏡頭6之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 6 of the sixth embodiment can also meet the requirements. begging. It can be seen from FIG. 12A that the curvature of field of the imaging lens 6 of the sixth embodiment is between -0.1mm and 0.3mm. It can be seen from FIG. 12B that the distortion of the imaging lens 6 of the sixth embodiment is between 0% and 2%. It can be seen from FIG. 12C that the value of the modulation transfer function of the imaging lens 6 of the sixth embodiment is between 0.49 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 6 of the sixth embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第13圖,第13圖係依據本發明之成像鏡頭之第七實施例的透鏡配置示意圖。成像鏡頭7沿著一光軸OA7從一物側至一像側依序包括一光圈ST7、一第一透鏡L71、一反射元件P7、一第二透鏡L72、一第三透鏡L73、一第四透鏡L74及一濾光片OF7。反射元件P7包括一入射面S74、一反射面S75及一出射面S76,入射面S74與出射面S76互相垂直。成像時,來自物側之光線經反射面S75反射改變行進方向,最後成像於一成像面IMA7上,成像面IMA7與出射面S76互相平行。第七實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L71為彎月型透鏡,其物側面S72為凹面;第二透鏡L72為雙凹透鏡,其像側面S78為凹面;第三透鏡L73為雙凸透鏡,其像側面S710為凸面,像側面S710為非球面表面;第四透鏡L74為彎月型透鏡具有負屈光力,其物側面S711為凸面,物側面S711為非球面表面;濾光片OF7其物側面S713與像側面S714皆為平面; 利用上述透鏡、反射元件P7、光圈ST7及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭7能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 13, which is a schematic diagram of the lens configuration of the seventh embodiment of the imaging lens according to the present invention. The imaging lens 7 includes an aperture ST7, a first lens L71, a reflective element P7, a second lens L72, a third lens L73, and a fourth lens in order from an object side to an image side along an optical axis OA7. Lens L74 and a filter OF7. The reflective element P7 includes an incident surface S74, a reflective surface S75, and an exit surface S76. The incident surface S74 and the exit surface S76 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S75 to change the traveling direction, and finally imaged on an imaging surface IMA7, the imaging surface IMA7 and the exit surface S76 are parallel to each other. In the seventh embodiment, the reflective element is taken as an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to paragraphs 1 to 8 of the [Embodiment], the first lens L71 is a meniscus lens with a concave object side surface S72; the second lens L72 is a biconcave lens with a concave image side surface S78; and the third lens L73 is Double convex lens, the image side surface S710 is convex, the image side surface S710 is an aspheric surface; the fourth lens L74 is a meniscus lens with negative refractive power, the object side S711 is convex, and the object side S711 is an aspheric surface; the filter OF7 The object side S713 and the image side S714 are both flat surfaces; Using the above-mentioned lens, reflective element P7, aperture ST7, and a design that meets at least one of conditions (1) to (20), the imaging lens 7 can effectively reduce the total length of the lens, effectively improve the resolution, and effectively correct the image. Poor and effective correction of chromatic aberration.

表十九為第13圖中成像鏡頭7之各透鏡之相關參數表。 Table 19 is a table of related parameters of each lens of the imaging lens 7 in Figure 13.

Figure 109107271-A0305-02-0032-29
Figure 109107271-A0305-02-0032-29

表十九中非球面透鏡之非球面表面凹陷度z之定義,與第六實施例中表十六之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 19 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 16 in the sixth embodiment, and will not be repeated here.

表二十為表十九中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~I為非球面係數。 Table 20 is a table of related parameters of the aspheric surface of the aspheric lens in Table 19, where k is the Conic Constant and A~I are the aspheric coefficients.

Figure 109107271-A0305-02-0032-30
Figure 109107271-A0305-02-0032-30
Figure 109107271-A0305-02-0033-31
Figure 109107271-A0305-02-0033-31

表二十一為第七實施例之成像鏡頭7之相關參數值及其對應條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(19)之計算值,由表二十一可知,第七實施例之成像鏡頭7皆能滿足條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(19)之要求。 Table 21 shows the relevant parameter values of the imaging lens 7 of the seventh embodiment and their corresponding conditions (1) to condition (2), condition (5) to condition (6), condition (8), and condition (13) to The calculated value of condition (19), as shown in Table 21, the imaging lens 7 of the seventh embodiment can all satisfy the conditions (1) to (2), (5) to (6), and (8) , Conditions (13) to (19) requirements.

Figure 109107271-A0305-02-0033-32
Figure 109107271-A0305-02-0033-32

另外,第七實施例之成像鏡頭7的光學性能也可達到要求。由第14A圖可看出,第七實施例之成像鏡頭7其場曲介於-0.05mm 至0.03mm之間。由第14B圖可看出,第七實施例之成像鏡頭7其畸變介於0%至2%之間。由第14C圖可看出,第七實施例之成像鏡頭7其調變轉換函數值介於0.42至1.0之間。顯見第七實施例之成像鏡頭7之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 7 of the seventh embodiment can also meet the requirements. It can be seen from Fig. 14A that the curvature of field of the imaging lens 7 of the seventh embodiment is between -0.05mm To 0.03mm. It can be seen from FIG. 14B that the distortion of the imaging lens 7 of the seventh embodiment is between 0% and 2%. It can be seen from FIG. 14C that the value of the modulation transfer function of the imaging lens 7 of the seventh embodiment is between 0.42 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 7 of the seventh embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第15圖,第15圖係依據本發明之成像鏡頭之第八實施例的透鏡配置與光路示意圖。成像鏡頭8沿著一光軸OA8從一物側至一像側依序包括一光圈ST8、一第一透鏡L81、一反射元件P8、一第二透鏡L82、一第三透鏡L83、一第五透鏡L85、一第四透鏡L84及一濾光片OF8。反射元件P8包括一入射面S84、一反射面S85及一出射面S86,入射面S84與出射面S86互相垂直。成像時,來自物側之光線經反射面S85反射改變行進方向,最後成像於一成像面IMA8上,成像面IMA8與出射面S86互相平行。第八實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中:第一透鏡L81為彎月型透鏡,其物側面S82為凹面;第二透鏡L82為雙凹透鏡,其像側面S88為凹面;第三透鏡L83為雙凸透鏡,其像側面S810為凸面,像側面S810為非球面表面;第五透鏡L85為雙凸透鏡具有正屈光力,由玻璃或塑膠材質製成,其物側面S811為凸面,像側面S812為凸面,物側面S811與像側面S812為非球面表面;第四透鏡L84為彎月型透鏡具有正屈光力,其物側面S813 為凸面,物側面S813為非球面表面;濾光片OF8其物側面S815與像側面S816皆為平面;利用上述透鏡、反射元件P8、光圈ST8及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭8能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 15. FIG. 15 is a schematic diagram of the lens configuration and optical path of the eighth embodiment of the imaging lens according to the present invention. The imaging lens 8 includes an aperture ST8, a first lens L81, a reflective element P8, a second lens L82, a third lens L83, and a fifth lens in order from an object side to an image side along an optical axis OA8. Lens L85, a fourth lens L84 and a filter OF8. The reflective element P8 includes an incident surface S84, a reflective surface S85, and an exit surface S86. The incident surface S84 and the exit surface S86 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S85 to change the traveling direction, and finally is imaged on an imaging surface IMA8, and the imaging surface IMA8 and the exit surface S86 are parallel to each other. In the eighth embodiment, the reflection element is taken as an example but not limited to this. For example, the reflection element may be a reflection mirror and only includes a reflection surface. According to [Embodiment] paragraphs 1 to 8, wherein: the first lens L81 is a meniscus lens with a concave object side surface S82; the second lens L82 is a biconcave lens with a concave image side surface S88; and the third lens L83 is The image side surface S810 of the biconvex lens is convex, and the image side surface S810 is an aspheric surface; the fifth lens L85 is a biconvex lens with positive refractive power and is made of glass or plastic material. Its object side S811 is convex, and the image side S812 is convex. The object side S811 and the image side S812 are aspherical surfaces; the fourth lens L84 is a meniscus lens with positive refractive power, and its object side S813 It is a convex surface, and the object side surface S813 is an aspheric surface; the object side surface S815 and the image side surface S816 of the filter OF8 are both flat surfaces; the above lens, reflective element P8, aperture ST8 and at least conditions (1) to (20) are used. A conditional design enables the imaging lens 8 to effectively reduce the total length of the lens, effectively improve the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表二十二為第15圖中成像鏡頭8之各透鏡之相關參數表。 Table 22 is a table of related parameters of each lens of the imaging lens 8 in Figure 15.

Figure 109107271-A0305-02-0035-33
Figure 109107271-A0305-02-0035-33

表二十二中非球面透鏡之非球面表面凹陷度z之定義,與第六實施例中表十六之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 22 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 16 of the sixth embodiment, and will not be repeated here.

表二十三為表二十二中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~I為非球面係數。 Table 23 is the relevant parameter table of the aspheric surface of the aspheric lens in Table 22, where k is the Conic Constant and A~I are the aspheric coefficients.

Figure 109107271-A0305-02-0036-34
Figure 109107271-A0305-02-0036-34

表二十四為第八實施例之成像鏡頭8之相關參數值及其對應條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(20)之計算值,由表二十四可知,第八實施例之成像鏡頭8皆能滿足條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(20)之要求。 Table 24 shows the relevant parameter values of the imaging lens 8 of the eighth embodiment and their corresponding conditions (1) to condition (2), condition (5) to condition (6), condition (8), and condition (13) to The calculated value of condition (20), as shown in Table 24, the imaging lens 8 of the eighth embodiment can all satisfy the conditions (1) to (2), (5) to (6), and (8) , Conditions (13) to (20) requirements.

Figure 109107271-A0305-02-0036-35
Figure 109107271-A0305-02-0036-35
Figure 109107271-A0305-02-0037-36
Figure 109107271-A0305-02-0037-36

另外,第八實施例之成像鏡頭8的光學性能也可達到要求。由第16A圖可看出,第八實施例之成像鏡頭8其場曲介於-0.4mm至0.15mm之間。由第16B圖可看出,第八實施例之成像鏡頭8其畸變介於0%至2.75%之間。由第16C圖可看出,第八實施例之成像鏡頭8其調變轉換函數值介於0.33至1.0之間。顯見第八實施例之成像鏡頭8之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 8 of the eighth embodiment can also meet the requirements. It can be seen from FIG. 16A that the curvature of field of the imaging lens 8 of the eighth embodiment is between -0.4 mm and 0.15 mm. It can be seen from FIG. 16B that the distortion of the imaging lens 8 of the eighth embodiment is between 0% and 2.75%. It can be seen from FIG. 16C that the value of the modulation transfer function of the imaging lens 8 of the eighth embodiment is between 0.33 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 8 of the eighth embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

請參閱第17圖,第17圖係依據本發明之成像鏡頭之第九實施例的透鏡配置與光路示意圖。成像鏡頭9沿著一光軸OA9從一物側至一像側依序包括一光圈ST9、一第一透鏡L91、一反射元件P9、一第二透鏡L92、一第三透鏡L93、一第六透鏡L96、一第五透鏡L95、一第四透鏡L94及一濾光片OF9。反射元件P9包括一入射面S94、一反射面S95及一出射面S96,入射面S94與出射面S96互相垂直。成像時,來自物側之光線經反射面S95反射改變行進方向,最後成像於一成像面IMA9上,成像面IMA9與出射面S96互相平行。第九實施中反射元件以稜鏡為例但不以此為限,例如反射元件可以是反射鏡,僅包括一反射面。根據【實施方式】第一至八段落,其中: 第一透鏡L91為彎月型透鏡,其物側面S92為凹面;第二透鏡L92為雙凹透鏡,其像側面S98為凹面;第三透鏡L93為雙凸透鏡,其像側面S910為凸面,像側面S910為非球面表面;第六透鏡L96為彎月型透鏡具有負屈光力,由玻璃或塑膠材質製成,其物側面S911為凹面,像側面S912為凸面,物側面S911與像側面S912為非球面表面;第五透鏡L95為彎月型透鏡具有正屈光力,由玻璃或塑膠材質製成,其物側面S913為凹面,像側面S914為凸面,物側面S913與像側面S914為非球面表面;第四透鏡L94為彎月型透鏡具有正屈光力,其物側面S915為凸面,物側面S915為非球面表面;濾光片OF9其物側面S917與像側面S918皆為平面;利用上述透鏡、反射元件P9、光圈ST9及至少滿足條件(1)至條件(20)其中一條件之設計,使得成像鏡頭9能有效的縮小鏡頭總長度、有效的提升解析度、有效的修正像差、有效的修正色差。 Please refer to FIG. 17, which is a schematic diagram of the lens configuration and optical path of the ninth embodiment of the imaging lens according to the present invention. The imaging lens 9 includes an aperture ST9, a first lens L91, a reflective element P9, a second lens L92, a third lens L93, and a sixth lens in order from an object side to an image side along an optical axis OA9. Lens L96, a fifth lens L95, a fourth lens L94 and a filter OF9. The reflective element P9 includes an incident surface S94, a reflective surface S95, and an exit surface S96. The incident surface S94 and the exit surface S96 are perpendicular to each other. During imaging, the light from the object side is reflected by the reflecting surface S95 to change the traveling direction, and finally imaged on an imaging surface IMA9, the imaging surface IMA9 and the exit surface S96 are parallel to each other. In the ninth embodiment, the reflective element is an example but not limited to this. For example, the reflective element may be a reflective mirror and only includes a reflective surface. According to [Implementation Mode] paragraphs 1 to 8, in which: The first lens L91 is a meniscus lens whose object side surface S92 is concave; the second lens L92 is a biconcave lens whose image side surface S98 is concave; the third lens L93 is a biconvex lens whose image side surface S910 is convex and the image side surface S910 It is an aspheric surface; the sixth lens L96 is a meniscus lens with negative refractive power and is made of glass or plastic material. The object side S911 is concave, the image side S912 is convex, the object side S911 and the image side S912 are aspherical surfaces ; The fifth lens L95 is a meniscus lens with positive refractive power, made of glass or plastic material, the object side S913 is concave, the image side S914 is convex, the object side S913 and the image side S914 are aspherical surfaces; the fourth lens L94 is a meniscus lens with positive refractive power, its object side S915 is convex, and object side S915 is an aspheric surface; the object side S917 and image side S918 of the filter OF9 are both flat surfaces; using the above lens, reflective element P9, and aperture ST9 and the design satisfying at least one of the conditions (1) to (20) enable the imaging lens 9 to effectively reduce the total length of the lens, effectively increase the resolution, effectively correct aberrations, and effectively correct chromatic aberrations.

表二十五為第17圖中成像鏡頭9之各透鏡之相關參數表。 Table 25 is a table of related parameters of each lens of the imaging lens 9 in Figure 17.

Figure 109107271-A0305-02-0038-37
Figure 109107271-A0305-02-0038-37
Figure 109107271-A0305-02-0039-38
Figure 109107271-A0305-02-0039-38

表二十五中非球面透鏡之非球面表面凹陷度z之定義,與第六實施例中表十六之非球面透鏡之非球面表面凹陷度z之定義相同,在此皆不加以贅述。 The definition of the aspheric surface concavity z of the aspheric lens in Table 25 is the same as the definition of the aspheric surface concavity z of the aspheric lens in Table 16 of the sixth embodiment, and will not be repeated here.

表二十六為表二十五中非球面透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~I為非球面係數。 Table 26 is the relevant parameter table of the aspheric surface of the aspheric lens in Table 25, where k is the Conic Constant and A~I are the aspheric coefficients.

Figure 109107271-A0305-02-0039-39
Figure 109107271-A0305-02-0039-39
Figure 109107271-A0305-02-0040-40
Figure 109107271-A0305-02-0040-40

表二十七為第九實施例之成像鏡頭9之相關參數值及其對應條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(20)之計算值,由表二十七可知,第九實施例之成像鏡頭9皆能滿足條件(1)至條件(2)、條件(5)至條件(6)、條件(8)、條件(13)至條件(20)之要求。 Table 27 shows the relevant parameter values of the imaging lens 9 of the ninth embodiment and their corresponding conditions (1) to condition (2), condition (5) to condition (6), condition (8), and condition (13) to The calculated value of condition (20), as shown in Table 27, the imaging lens 9 of the ninth embodiment can all satisfy the conditions (1) to (2), (5) to (6), and (8) , Conditions (13) to (20) requirements.

Figure 109107271-A0305-02-0040-42
Figure 109107271-A0305-02-0040-42

另外,第九實施例之成像鏡頭9的光學性能也可達到要求。由第18A圖可看出,第九實施例之成像鏡頭9其場曲介於-0.06mm至0.09mm之間。由第18B圖可看出,第九實施例之成像鏡頭9其畸變 介於0%至4%之間。由第18C圖可看出,第九實施例之成像鏡頭9其調變轉換函數值介於0.33至1.0之間。顯見第九實施例之成像鏡頭9之場曲、畸變都能被有效修正,鏡頭解析度也能滿足要求,從而得到較佳的光學性能。 In addition, the optical performance of the imaging lens 9 of the ninth embodiment can also meet the requirements. It can be seen from FIG. 18A that the curvature of field of the imaging lens 9 of the ninth embodiment is between -0.06 mm and 0.09 mm. It can be seen from Figure 18B that the distortion of the imaging lens 9 of the ninth embodiment Between 0% and 4%. It can be seen from FIG. 18C that the value of the modulation transfer function of the imaging lens 9 of the ninth embodiment is between 0.33 and 1.0. It is obvious that the field curvature and distortion of the imaging lens 9 of the ninth embodiment can be effectively corrected, and the lens resolution can also meet the requirements, thereby obtaining better optical performance.

本發明之成像鏡頭之第一、二、三、四、五、六、七、八、九實施例,其中第一實施例成像鏡頭1的第五透鏡L15,可為在第二、三實施例成像鏡頭2、3的物側與第一透鏡L21、L31之間加以設置一第五透鏡;第四實施例成像鏡頭4的第五透鏡L45,可為在第二、三實施例成像鏡頭2、3的第四透鏡L24、L34與像側之間加以設置一第五透鏡;第五實施例成像鏡頭5的第五透鏡L55,可為在第二、三實施例成像鏡頭2、3的反射元件P2、P3與第四透鏡L24、L34之間加以設置一第五透鏡;第八、九實施例成像鏡頭8、9的第五透鏡L85、L95,可為在第六、七實施例成像鏡頭6、7的第三透鏡L63、L73與第四透鏡L64、L74之間加以設置一第五透鏡;第九實施例成像鏡頭9的第六透鏡L96,可為在第八實施例成像鏡頭8的第三透鏡L83與第五透鏡L85之間加以設置一第六透鏡。換言之,可根據第二、三實施例成像鏡頭2、3光學架構於物側與第一透鏡之間、第四透鏡與像側之間或反射元件與第四透鏡之間更包括設置一第五透鏡,其具有正屈光力;可根據第六、七實施例成像鏡頭6、7光學架構於第三透鏡與第四透鏡之間更包括設置一第五透鏡,其具有正屈光力;可根據第八實施例成像鏡頭8光學架構於第三透鏡與第五透鏡之間更包括設置一第六透鏡,其具有負屈光力。值得注意的是,反射元件可設置在第一透鏡與第四透鏡之間,可根據第一至五實施例成像鏡頭1、2、3、4、5光學架構於第三透鏡與第四 透鏡之間更包括設置一反射元件;可根據第六至九實施例成像鏡頭6、7、8、9光學架構於第一透鏡與第二透鏡之間更包括設置一反射元件。藉由在第一透鏡與第四透鏡之間設置反射元件,如此一來使得光學系統能夠獲得較長的後焦距,達成高倍率的光學變焦,並同時維持鏡頭模組的尺寸、厚度、體積能不增加過多,使得鏡頭模組能夠高倍光學變焦兼具小型化的功效。 The first, second, third, fourth, fifth, sixth, seventh, eighth, ninth embodiments of the imaging lens of the present invention, wherein the fifth lens L15 of the imaging lens 1 of the first embodiment can be in the second and third embodiments A fifth lens is provided between the object side of the imaging lenses 2, 3 and the first lenses L21, L31; the fifth lens L45 of the imaging lens 4 of the fourth embodiment can be the imaging lens 2 of the second and third embodiments. A fifth lens is provided between the fourth lens L24 and L34 of 3 and the image side; the fifth lens L55 of the imaging lens 5 of the fifth embodiment can be the reflective element of the imaging lenses 2 and 3 of the second and third embodiments. A fifth lens is provided between P2, P3 and the fourth lens L24, L34; the fifth lens L85, L95 of the imaging lens 8 and 9 of the eighth and ninth embodiments can be the imaging lens 6 of the sixth and seventh embodiments. 7. A fifth lens is provided between the third lens L63, L73 and the fourth lens L64, L74 of the seventh embodiment; the sixth lens L96 of the imaging lens 9 of the ninth embodiment may be the fourth lens of the imaging lens 8 of the eighth embodiment A sixth lens is provided between the three lens L83 and the fifth lens L85. In other words, the optical architectures of the imaging lenses 2 and 3 of the second and third embodiments can be arranged between the object side and the first lens, between the fourth lens and the image side, or between the reflective element and the fourth lens, including providing a fifth lens. A lens with positive refractive power; according to the sixth and seventh embodiments of the imaging lens 6, 7 optical architecture between the third lens and the fourth lens further includes a fifth lens, which has positive refractive power; can be implemented according to the eighth Example The optical structure of the imaging lens 8 further includes a sixth lens arranged between the third lens and the fifth lens, which has negative refractive power. It is worth noting that the reflective element can be arranged between the first lens and the fourth lens, and the imaging lenses 1, 2, 3, 4, and 5 can be optically constructed on the third lens and the fourth lens according to the first to fifth embodiments. The lens further includes a reflective element; the optical architecture of the imaging lenses 6, 7, 8, 9 according to the sixth to ninth embodiments may further include a reflective element between the first lens and the second lens. By arranging a reflective element between the first lens and the fourth lens, the optical system can obtain a longer back focal length, achieve high-magnification optical zoom, and maintain the size, thickness, and volume of the lens module. Do not increase too much, so that the lens module can be high-power optical zoom with the effect of miniaturization.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟悉此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be subject to the scope of the attached patent application.

6:成像鏡頭 6: Imaging lens

ST6:光圈 ST6: Aperture

L61:第一透鏡 L61: The first lens

P6:反射元件 P6: reflective element

L62:第二透鏡 L62: second lens

L63:第三透鏡 L63: third lens

L64:第四透鏡 L64: Fourth lens

OF6:濾光片 OF6: filter

IMA6:成像面 IMA6: imaging surface

OA6:光軸 OA6: Optical axis

S61:光圈面 S61: Aperture surface

S62:第一透鏡物側面 S62: Object side of the first lens

S63:第一透鏡像側面 S63: The side of the first lens image

S64:入射面 S64: incident surface

S65:反射面 S65: reflective surface

S66:出射面 S66: Exit surface

S67:第二透鏡物側面 S67: Second lens object side

S68:第二透鏡像側面 S68: Second lens image side

S69:第三透鏡物側面 S69: Third lens object side

S610:第三透鏡像側面 S610: Third lens image side

S611:第四透鏡物側面 S611: Object side of the fourth lens

S612:第四透鏡像側面 S612: Fourth lens image side

S613:濾光片物側面 S613: Side of the filter object

S614:濾光片像側面 S614: Filter image side

Claims (10)

一種成像鏡頭,包括:一第一透鏡具有正屈光力,該第一透鏡包括一凹面朝向一物側以及一凸面朝向一像側;一第二透鏡具有負屈光力,該第二透鏡包括一凹面朝向該物側;一第三透鏡具有正屈光力;一第四透鏡具有屈光力,該第四透鏡包括一凹面朝向該像側;以及一反射元件,該反射元件包括一反射面;其中該第一透鏡、該第二透鏡、該第三透鏡以及該第四透鏡沿著一光軸從該物側至該像側依序排列;其中該反射元件設置於該第一透鏡與該第四透鏡之間;該成像鏡頭滿足以下條件:TTL/f>1.2;其中,TTL為該成像鏡頭之一光學系統總長度,f為該成像鏡頭之一有效焦距。 An imaging lens includes: a first lens with positive refractive power, the first lens including a concave surface facing an object side and a convex surface facing an image side; a second lens with negative refractive power, the second lens including a concave surface facing the The object side; a third lens has positive refractive power; a fourth lens has refractive power, the fourth lens includes a concave surface facing the image side; and a reflective element, the reflective element includes a reflective surface; wherein the first lens, the The second lens, the third lens, and the fourth lens are arranged in order from the object side to the image side along an optical axis; wherein the reflective element is disposed between the first lens and the fourth lens; the imaging The lens satisfies the following conditions: TTL/f>1.2; among them, TTL is the total length of an optical system of the imaging lens, and f is an effective focal length of the imaging lens. 如申請專利範圍第1項所述之成像鏡頭,其中該第二透鏡更包括另一凹面朝向該像側。 According to the imaging lens described in claim 1, wherein the second lens further includes another concave surface facing the image side. 如申請專利範圍第2項所述之成像鏡頭,其中該第三透鏡包括一凸面朝向該物側以及另一凸面朝向該像側;該第四透鏡更包括一凸面朝向該物側。 According to the imaging lens of claim 2, wherein the third lens includes a convex surface facing the object side and another convex surface facing the image side; the fourth lens further includes a convex surface facing the object side. 如申請專利範圍第3項所述之成像鏡頭,其更包括一第五透鏡設置於該第三透鏡與該第四透鏡之間,該第四透鏡具有正屈光力,該第五透鏡具有正屈光力,該第五透鏡包括一凸面朝向該像側。 The imaging lens described in item 3 of the scope of patent application further includes a fifth lens disposed between the third lens and the fourth lens, the fourth lens having positive refractive power, and the fifth lens having positive refractive power, The fifth lens includes a convex surface facing the image side. 如申請專利範圍第4項所述之成像鏡頭,其更包括一第六透鏡設置於該第三透鏡與該第五透鏡之間,該第六透鏡具有負屈光力,該第六透鏡包括一凹面朝向該物側以及一凸面朝向該像側。 The imaging lens described in item 4 of the scope of patent application further includes a sixth lens arranged between the third lens and the fifth lens, the sixth lens has a negative refractive power, and the sixth lens includes a concave surface facing The object side and a convex surface face the image side. 如申請專利範圍第4項至第5項中任一請求項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:-2mm<8×M1T-(OD2+OD3+OD4+OD5)<1mm;其中,M1T為該第一透鏡之一像側面至該反射面於該光軸上之一間距,OD2為第二靠近該物側之透鏡之一物側面之一光學有效直徑,OD3為第三靠近該物側之透鏡之一物側面之一光學有效直徑,OD4為第四靠近該物側之透鏡之一物側面之一光學有效直徑,OD5為第五靠近該物側之透鏡之一物側面之一光學有效直徑。 The imaging lens described in any one of claims 4 to 5 of the scope of the patent application, wherein the imaging lens meets the following conditions: -2mm<8×M1T-(OD 2 +OD 3 +OD 4 +OD 5 ) <1mm; where M1T is a distance from an image side of the first lens to the reflecting surface on the optical axis, OD 2 is an optical effective diameter of an object side of the second lens close to the object side, OD 3 is an optical effective diameter of an object side of the third lens close to the object side, OD 4 is an optical effective diameter of an object side of the fourth lens close to the object side, and OD 5 is the fifth lens close to the object side One of the lens is one of the effective diameter of the object side. 一種成像鏡頭,包括:一第一透鏡具有正屈光力,該第一透鏡包括一凸面朝向一像側;一第二透鏡具有負屈光力,該第二透鏡包括一凹面朝向一物側;一第三透鏡具有正屈光力;一第四透鏡具有屈光力,該第四透鏡包括一凹面朝向該像側;以及一反射元件,該反射元件包括一反射面;其中該第一透鏡、該第二透鏡、該第三透鏡以及該第四透鏡沿著一光軸從該物側至該像側依序排列; 其中該反射元件設置於該第一透鏡與該第四透鏡之間;該成像鏡頭滿足以下條件:2mm<L<6mm;其中,L為最靠近該物側之透鏡之一物側面至該反射面於該光軸上之一間距。 An imaging lens comprising: a first lens having positive refractive power, the first lens including a convex surface facing an image side; a second lens having a negative refractive power, the second lens including a concave surface facing an object side; a third lens Has positive refractive power; a fourth lens has refractive power, the fourth lens includes a concave surface facing the image side; and a reflective element, the reflective element includes a reflective surface; wherein the first lens, the second lens, the third lens The lens and the fourth lens are arranged in order from the object side to the image side along an optical axis; The reflecting element is arranged between the first lens and the fourth lens; the imaging lens satisfies the following conditions: 2mm<L<6mm; where L is the object side of the lens closest to the object side to the reflecting surface A pitch on the optical axis. 如申請專利範圍第1項至第5項或第7項中任一請求項所述之成像鏡頭,其中該成像鏡頭滿足以下至少其中一項條件:5mm<ALOD<14mm;0<TTL/ALOD<2;其中,ALOD為該成像鏡頭之各透鏡之物側面的光學有效直徑總合,TTL為該成像鏡頭之一光學系統總長度。 Such as the imaging lens described in any one of claims 1 to 5 or 7 of the scope of patent application, wherein the imaging lens meets at least one of the following conditions: 5mm<ALOD<14mm; 0<TTL/ALOD< 2; Among them, ALOD is the sum of the optical effective diameters of the object side of each lens of the imaging lens, and TTL is the total length of an optical system of the imaging lens. 如申請專利範圍第1項至第5項或第7項中任一請求項所述之成像鏡頭,其中該成像鏡頭滿足以下至少其中一項條件:1<(TTL+f)/fobj1<5;1<fobj1/L1T<4;0.2mm2<L1T×L1SD<2.2mm2;-4mm2<L1T×R11<0mm2;其中,TTL為該成像鏡頭之一光學系統總長度,f為該成像鏡頭之一有效焦距,fobj1為最靠近該物側之透鏡之一有效焦距,L1T為該第一透鏡沿著該光軸之一厚度,L1SD為該第一透鏡之一像側面之一光學有效半徑,R11為該第一透鏡之一物側面之一曲率半徑。 The imaging lens described in any one of claims 1 to 5 or 7 of the scope of the patent application, wherein the imaging lens meets at least one of the following conditions: 1<(TTL+f)/f obj1 <5 ;1<f obj1 /L1T<4; 0.2mm 2 <L1T×L1SD<2.2mm 2 ; -4mm 2 <L1T×R 11 <0mm 2 ; Among them, TTL is the total length of the optical system of one of the imaging lenses, f is An effective focal length of the imaging lens, f obj1 is an effective focal length of the lens closest to the object side, L1T is a thickness of the first lens along the optical axis, and L1SD is one of the image sides of the first lens Optical effective radius, R 11 is a curvature radius of an object side surface of the first lens. 如申請專利範圍第9項所述之成像鏡頭,其中該成像鏡頭滿足以下至少其中一項條件:0.5<M1T/L1T<4;1<TTL/L<5;0<L/f<2.5;-1<fobj3/fobj4<2;其中,M1T為該第一透鏡之一像側面至該反射面於該光軸上之一間距,L1T為該第一透鏡沿著該光軸之一厚度,TTL為該成像鏡頭之一光學系統總長度,L為最靠近該物側之透鏡之一物側面至該反射面於該光軸上之一間距,f為該成像鏡頭之一有效焦距,fobj3為第三靠近該物側之透鏡之一有效焦距,fobj4為第四靠近該物側之透鏡之一有效焦距。 The imaging lens described in item 9 of the scope of patent application, wherein the imaging lens meets at least one of the following conditions: 0.5<M1T/L1T<4;1<TTL/L<5;0<L/f<2.5;-1<f obj3 /f obj4 <2; where, M1T is a distance from an image side surface of the first lens to the reflecting surface on the optical axis, L1T is a thickness of the first lens along the optical axis, TTL is the total length of an optical system of the imaging lens, L is the distance from the object side of the lens closest to the object side to the reflecting surface on the optical axis, f is an effective focal length of the imaging lens, f obj3 Is an effective focal length of the third lens close to the object side, and f obj4 is an effective focal length of the fourth lens close to the object side.
TW109107271A 2019-09-27 2020-03-05 Lens assembly TWI704387B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW109107271A TWI704387B (en) 2020-03-05 2020-03-05 Lens assembly
CN202010296803.1A CN112748518B (en) 2019-10-31 2020-04-15 Imaging lens
US17/004,255 US11668902B2 (en) 2019-09-27 2020-08-27 Lens assembly
US17/186,124 US20210278633A1 (en) 2020-03-05 2021-02-26 Optical camera lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109107271A TWI704387B (en) 2020-03-05 2020-03-05 Lens assembly

Publications (2)

Publication Number Publication Date
TWI704387B true TWI704387B (en) 2020-09-11
TW202134721A TW202134721A (en) 2021-09-16

Family

ID=73644174

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109107271A TWI704387B (en) 2019-09-27 2020-03-05 Lens assembly

Country Status (1)

Country Link
TW (1) TWI704387B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771127B (en) * 2021-07-27 2022-07-11 大陸商信泰光學(深圳)有限公司 Lens assembly
TWI786560B (en) * 2021-03-03 2022-12-11 大陸商信泰光學(深圳)有限公司 Lens assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145194A1 (en) * 2006-06-14 2007-12-21 Konica Minolta Opto, Inc. Imaging optical system, imaging lens device, and digital apparatus
US7423810B2 (en) * 2006-02-03 2008-09-09 Matsushita Electric Industrial Co., Ltd. Zoom lens system, lens barrel, imaging device and camera
TW201539028A (en) * 2014-03-07 2015-10-16 Apple Inc Folded telephoto camera lens system
TW201539026A (en) * 2014-03-07 2015-10-16 Apple Inc Folded camera lens systems
TW201723562A (en) * 2016-08-25 2017-07-01 玉晶光電股份有限公司 Optical imaging lens
TW201723577A (en) * 2016-08-25 2017-07-01 玉晶光電股份有限公司 Optical imaging lens
WO2017172794A1 (en) * 2016-03-28 2017-10-05 Apple Inc. Folded lens system with four refractive lenses
US10302906B2 (en) * 2016-04-20 2019-05-28 Shenzhen Ned Optics Co., Ltd. Eyepiece optical system for near-eye display, and head-mounted display device
TW202001324A (en) * 2018-06-08 2020-01-01 大陸商玉晶光電(廈門)有限公司 Optical imaging lens
US10539766B2 (en) * 2016-12-09 2020-01-21 Seiko Epson Corporation Projection optical system and projection image display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423810B2 (en) * 2006-02-03 2008-09-09 Matsushita Electric Industrial Co., Ltd. Zoom lens system, lens barrel, imaging device and camera
WO2007145194A1 (en) * 2006-06-14 2007-12-21 Konica Minolta Opto, Inc. Imaging optical system, imaging lens device, and digital apparatus
TW201539028A (en) * 2014-03-07 2015-10-16 Apple Inc Folded telephoto camera lens system
TW201539026A (en) * 2014-03-07 2015-10-16 Apple Inc Folded camera lens systems
WO2017172794A1 (en) * 2016-03-28 2017-10-05 Apple Inc. Folded lens system with four refractive lenses
US10302906B2 (en) * 2016-04-20 2019-05-28 Shenzhen Ned Optics Co., Ltd. Eyepiece optical system for near-eye display, and head-mounted display device
TW201723562A (en) * 2016-08-25 2017-07-01 玉晶光電股份有限公司 Optical imaging lens
TW201723577A (en) * 2016-08-25 2017-07-01 玉晶光電股份有限公司 Optical imaging lens
US10539766B2 (en) * 2016-12-09 2020-01-21 Seiko Epson Corporation Projection optical system and projection image display device
TW202001324A (en) * 2018-06-08 2020-01-01 大陸商玉晶光電(廈門)有限公司 Optical imaging lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786560B (en) * 2021-03-03 2022-12-11 大陸商信泰光學(深圳)有限公司 Lens assembly
TWI771127B (en) * 2021-07-27 2022-07-11 大陸商信泰光學(深圳)有限公司 Lens assembly

Also Published As

Publication number Publication date
TW202134721A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10133034B2 (en) Projection lens assembly
CN111487746B (en) Imaging lens
CN106324810B (en) Imaging lens
TWI704387B (en) Lens assembly
TWI766956B (en) Lens assembly
TWI683149B (en) Lens assembly
TWI690742B (en) Lens assembly
US20150241661A1 (en) Lens Assembly
US11314043B2 (en) Lens assembly including six lenses of −−++−+ refractive powers
TWI668480B (en) Lens assembly
TWI743117B (en) Lens assembly
TWI699552B (en) Wide-angle lens assembly
TWI771127B (en) Lens assembly
TWI687730B (en) Lens assembly
US11668902B2 (en) Lens assembly
TWI709783B (en) Wide-angle lens assembly
TWI745371B (en) Wide-angle lens assembly
TW201725414A (en) Lens assembly
TWI808056B (en) Wide-angle lens assembly
TWI559030B (en) Lens assembly
CN112748518B (en) Imaging lens
TWI801909B (en) Lens assembly and optical apparatus thereof
TWI704373B (en) Lens assembly
CN113933959B (en) Imaging lens
US20220252841A1 (en) Lens Assembly