TWI559030B - Lens assembly - Google Patents
Lens assembly Download PDFInfo
- Publication number
- TWI559030B TWI559030B TW104120892A TW104120892A TWI559030B TW I559030 B TWI559030 B TW I559030B TW 104120892 A TW104120892 A TW 104120892A TW 104120892 A TW104120892 A TW 104120892A TW I559030 B TWI559030 B TW I559030B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- imaging
- object side
- image side
- imaging lens
- Prior art date
Links
Landscapes
- Lenses (AREA)
Description
本發明係有關於一種成像鏡頭。 The present invention relates to an imaging lens.
數位相機與手幾不斷的往高畫素與輕量化發展,使得小型化與具有高解析度的鏡頭模組需求大增。習知的五片透鏡組成的鏡頭模組已無法滿足現今的需求,需要有另一種新架構的鏡頭模組,才能同時滿足小型化與高解析度的需求。 The continuous development of digital cameras and hands to high-definition and lightweight, so that the demand for miniaturization and high-resolution lens modules has increased. The lens module composed of the conventional five-lens lens can not meet the needs of today, and another lens module with a new architecture is needed to meet the requirements of miniaturization and high resolution at the same time.
有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其鏡頭總長度短小、視角較大,但是仍具有良好的光學性能,鏡頭解析度也能滿足要求。 In view of this, the main object of the present invention is to provide an imaging lens which has a short total lens length and a large viewing angle, but still has good optical performance, and the lens resolution can also meet the requirements.
本發明之成像鏡頭沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡。第一透鏡具有正屈光力且包括一凸面,此凸面朝向物側。第二透鏡具有屈光力。第三透鏡具有屈光力。第四透鏡具有屈光力。第五透鏡具有正屈光力。第六透鏡具有正屈光力。成像鏡頭滿足以下條件:0.69f/TTL0.85,其中,f為成像鏡頭之有效焦距,TTL為第一透鏡之物側面至一成像面於光軸上之距離。 The imaging lens of the present invention sequentially includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens from the object side to the image side along the optical axis. The first lens has a positive refractive power and includes a convex surface that faces the object side. The second lens has a refractive power. The third lens has a refractive power. The fourth lens has a refractive power. The fifth lens has a positive refractive power. The sixth lens has a positive refractive power. The imaging lens satisfies the following conditions: 0.69 f/TTL 0.85, where f is the effective focal length of the imaging lens, and TTL is the distance from the object side of the first lens to an imaging surface on the optical axis.
其中第四透鏡為凹凸透鏡具有負屈光力,第四透鏡之凹面朝向物側凸面朝向像側。 The fourth lens has a negative refractive power of the meniscus lens, and the concave surface of the fourth lens faces the image side convex surface toward the image side.
其中成像鏡頭滿足以下條件:-1.8f4/f-1.3;其中,f4 為第四透鏡之有效焦距,f為成像鏡頭之有效焦距。 The imaging lens satisfies the following conditions: -1.8 f 4 /f -1.3; wherein f 4 is the effective focal length of the fourth lens, and f is the effective focal length of the imaging lens.
其中第六透鏡滿足以下條件:3f6/f5;其中,f6為第六透鏡之有效焦距,f為成像鏡頭之有效焦距。 The sixth lens satisfies the following conditions: 3 f 6 /f 5; wherein f 6 is the effective focal length of the sixth lens, and f is the effective focal length of the imaging lens.
其中第一透鏡滿足以下條件:-1.5(R11-R12)/(R11+R12)-0.5;其中,R11為第一透鏡之物側面之曲率半徑,R12為第一透鏡之像側面之曲率半徑。 The first lens satisfies the following conditions: -1.5 (R 11 -R 12 )/(R 11 +R 12 ) -0.5; wherein R 11 is the radius of curvature of the object side surface of the first lens, and R 12 is the radius of curvature of the image side surface of the first lens.
其中第二透鏡滿足以下條件:0.2(R21-R22)/(R21+R22)0.4;其中,R21為第二透鏡之物側面之曲率半徑,R22為第二透鏡之像側面之曲率半徑。 Wherein the second lens satisfies the following condition: 0.2 (R 21 -R 22 )/(R 21 +R 22 ) 0.4; wherein R 21 is a radius of curvature of an object side surface of the second lens, and R 22 is a curvature radius of an image side surface of the second lens.
其中成像鏡頭滿足以下條件:5f5/f100;其中,f5為第五透鏡之有效焦距,f為成像鏡頭之有效焦距。 The imaging lens satisfies the following conditions: 5 f 5 /f 100; wherein f 5 is the effective focal length of the fifth lens, and f is the effective focal length of the imaging lens.
其中第三透鏡滿足以下條件:-100(R31-R32)/(R31+R32)2;其中,R31為第三透鏡之物側面之曲率半徑,R32為第三透鏡之像側面之曲率半徑。 Wherein the third lens satisfies the following condition: -100 (R 31 -R 32 )/(R 31 +R 32 ) 2; wherein R 31 is a radius of curvature of an object side surface of the third lens, and R 32 is a curvature radius of an image side surface of the third lens.
其中第二透鏡為凸凹透鏡具有負屈光力,第二透鏡之凸面朝向物側凹面朝向像側。 The second lens has a convex-concave lens having a negative refractive power, and the convex surface of the second lens faces the object-side concave surface toward the image side.
其中第三透鏡具有正屈光力且包括一凸面,此凸面朝向像側。 The third lens has a positive refractive power and includes a convex surface that faces the image side.
其中第六透鏡為凸凹透鏡,第六透鏡之凸面朝向物側凹面朝向像側。 The sixth lens is a convex-concave lens, and the convex surface of the sixth lens faces the object side concave surface toward the image side.
其中第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡及第六透鏡之物側面及像側面中至少有一面為非球面表面。 At least one of the object side surface and the image side surface of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens is an aspherical surface.
本發明之成像鏡頭可更包括一光圈,設置於物側與第一透鏡之間。 The imaging lens of the present invention may further include an aperture disposed between the object side and the first lens.
其中第四透鏡為凹凸透鏡具有正屈光力,第四透鏡之凹面朝向物側凸面朝向像側。 The fourth lens has a positive refractive power of the meniscus lens, and the concave surface of the fourth lens faces the image side convex surface toward the image side.
其中成像鏡頭滿足以下條件:5f4/f30;其中,f4為第四透鏡之有效焦距,f為成像鏡頭之有效焦距。 The imaging lens satisfies the following conditions: 5 f 4 /f 30; wherein f 4 is the effective focal length of the fourth lens, and f is the effective focal length of the imaging lens.
本發明之成像鏡頭沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡及一第六透鏡。第一透鏡具有正屈光力且包括一凸面,此凸面朝向物側。第二透鏡為凸凹透鏡具有負屈光力,第二透鏡之凸面朝向物側凹面朝向像側。第三透鏡具有正屈光力且包括一凸面,此凸面朝向像側。第四透鏡為凹凸透鏡,第四透鏡之凹面朝向物側凸面朝向像側。第五透鏡為凹凸透鏡具有正屈光力,第五透鏡之凹面朝向物側凸面朝向像側。第六透鏡為凸凹透鏡具有正屈光力,第六透鏡之凸面朝向物側凹面朝向像側。成像鏡頭滿足以下條件:0.69f/TTL0.85,11.5f5/f26.5,0(R31-R32)/(R31+R32)1,其中,f為成像鏡頭之有效焦距,TTL為第一透鏡之物側面至一成像面於光軸上之距離,f5為第五透鏡之有效焦距,R31為第三透鏡之物側面之曲率半徑,R32為第三透鏡之像側面之曲率半徑。 The imaging lens of the present invention sequentially includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens from the object side to the image side along the optical axis. The first lens has a positive refractive power and includes a convex surface that faces the object side. The second lens has a convex-concave lens having a negative refractive power, and the convex surface of the second lens faces the object side concave surface toward the image side. The third lens has a positive refractive power and includes a convex surface that faces the image side. The fourth lens is a meniscus lens, and the concave surface of the fourth lens faces the image side convex surface toward the image side. The fifth lens has a positive refractive power of the meniscus lens, and the concave surface of the fifth lens faces the image side convex surface toward the image side. The sixth lens has a positive refractive power, and the convex surface of the sixth lens faces the object side concave surface toward the image side. The imaging lens satisfies the following conditions: 0.69 f/TTL 0.85, 11.5 f 5 /f 26.5,0 (R 31 -R 32 )/(R 31 +R 32 ) 1, where f is the effective focal length of the imaging lens, TTL is the distance from the object side of the first lens to an imaging surface on the optical axis, f 5 is the effective focal length of the fifth lens, and R 31 is the object side of the third lens The radius of curvature, R 32 is the radius of curvature of the image side of the third lens.
為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 The above described objects, features, and advantages of the invention will be apparent from the description and appended claims
1、2、3、4、5、6、7‧‧‧成像鏡頭 1, 2, 3, 4, 5, 6, 7‧ ‧ imaging lenses
L11、L21、L31、L41‧‧‧第一透鏡 L11, L21, L31, L41‧‧‧ first lens
L51、L61、L71‧‧‧第一透鏡 L51, L61, L71‧‧‧ first lens
L12、L22、L32、L42‧‧‧第二透鏡 L12, L22, L32, L42‧‧‧ second lens
L52、L62、L72‧‧‧第二透鏡 L52, L62, L72‧‧‧ second lens
L13、L23、L33、L43‧‧‧第三透鏡 L13, L23, L33, L43‧‧‧ third lens
L53、L63、L73‧‧‧第三透鏡 L53, L63, L73‧‧‧ third lens
L14、L24、L34、L44‧‧‧第四透鏡 L14, L24, L34, L44‧‧‧ fourth lens
L54、L64、L74‧‧‧第四透鏡 L54, L64, L74‧‧‧ fourth lens
L15、L25、L35、L45‧‧‧第五透鏡 L15, L25, L35, L45‧‧‧ fifth lens
L55、L65、L75‧‧‧第五透鏡 L55, L65, L75‧‧‧ fifth lens
L16、L26、L36、L46‧‧‧第六透鏡 L16, L26, L36, L46‧‧‧ sixth lens
L56、L66、L76‧‧‧第六透鏡 L56, L66, L76‧‧‧ sixth lens
ST1、ST2、ST3、ST4‧‧‧光圈 ST1, ST2, ST3, ST4‧‧ ‧ aperture
ST5、ST6、ST7‧‧‧光圈 ST5, ST6, ST7‧‧ ‧ aperture
OF1、OF2、OF3、OF4‧‧‧濾光片 OF1, OF2, OF3, OF4‧‧‧ Filters
OF5、OF6、OF7‧‧‧濾光片 OF5, OF6, OF7‧‧‧ Filters
IMA1、IMA2、IMA3、IMA4‧‧‧成像面 IMA1, IMA2, IMA3, IMA4‧‧‧ imaging surface
IMA5、IMA6、IMA7‧‧‧成像面 IMA5, IMA6, IMA7‧‧‧ imaging surface
OA1、OA2、OA3、OA4‧‧‧光軸 OA1, OA2, OA3, OA4‧‧‧ optical axis
OA5、OA6、OA7‧‧‧光軸 OA5, OA6, OA7‧‧‧ optical axis
S11、S12、S13、S14、S15、S16、S17‧‧‧面 S11, S12, S13, S14, S15, S16, S17‧‧
S18、S19、S110、S111、S112、S113‧‧‧面 S18, S19, S110, S111, S112, S113‧‧‧
S114、S115‧‧‧面 S114, S115‧‧‧ face
S21、S22、S23、S24、S25、S26、S27‧‧‧面 S21, S22, S23, S24, S25, S26, S27‧‧
S28、S29、S210、S211、S212、S213‧‧‧面 S28, S29, S210, S211, S212, S213‧‧‧
S214、S215‧‧‧面 S214, S215‧‧‧
S31、S32、S33、S34、S35、S36、S37‧‧‧面 S31, S32, S33, S34, S35, S36, S37‧‧
S38、S39、S310、S311、S312、S313‧‧‧面 S38, S39, S310, S311, S312, S313‧‧
S314、S315‧‧‧面 S314, S315‧‧‧
S41、S42、S43、S44、S45、S46、S47‧‧‧面 S41, S42, S43, S44, S45, S46, S47‧‧
S48、S49、S410、S411、S412、S413‧‧‧面 S48, S49, S410, S411, S412, S413‧‧
S414、S415‧‧‧面 S414, S415‧‧‧
S51、S52、S53、S54、S55、S56、S57‧‧‧面 S51, S52, S53, S54, S55, S56, S57‧‧
S58、S59、S510、S511、S512、S513‧‧‧面 S58, S59, S510, S511, S512, S513‧‧‧
S514、S515‧‧‧面 S514, S515‧‧‧
S61、S62、S63、S64、S65、S66、S67‧‧‧面 S61, S62, S63, S64, S65, S66, S67‧‧
S68、S69、S610、S611、S612、S613‧‧‧面 S68, S69, S610, S611, S612, S613‧‧
S614、S615‧‧‧面 S614, S615‧‧‧
S71、S72、S73、S74、S75、S76、S77‧‧‧面 S71, S72, S73, S74, S75, S76, S77‧‧
S78、S79、S710、S711、S712、S713‧‧‧面 S78, S79, S710, S711, S712, S713‧‧‧
S714、S715‧‧‧面 S714, S715‧‧‧
第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention.
第2A圖係第1圖之成像鏡頭之縱向球差圖。 Fig. 2A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 1.
第2B圖係第1圖之成像鏡頭之像散場曲圖。 Fig. 2B is an astigmatic field curvature diagram of the imaging lens of Fig. 1.
第2C圖係第1圖之成像鏡頭之畸變圖。 Fig. 2C is a distortion diagram of the imaging lens of Fig. 1.
第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。 Fig. 3 is a schematic view showing a lens configuration and an optical path of a second embodiment of the imaging lens according to the present invention.
第4A圖係第3圖之成像鏡頭之縱向球差圖。 Fig. 4A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 3.
第4B圖係第3圖之成像鏡頭之像散場曲圖。 Fig. 4B is an astigmatic field curvature diagram of the imaging lens of Fig. 3.
第4C圖係第3圖之成像鏡頭之畸變圖。 Fig. 4C is a distortion diagram of the imaging lens of Fig. 3.
第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。 Fig. 5 is a view showing a lens configuration and an optical path of a third embodiment of the imaging lens according to the present invention.
第6A圖係第5圖之成像鏡頭之縱向球差圖。 Fig. 6A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 5.
第6B圖係第5圖之成像鏡頭之像散場曲圖。 Fig. 6B is an astigmatic field curvature diagram of the imaging lens of Fig. 5.
第6C圖係第5圖之成像鏡頭之畸變圖。 Fig. 6C is a distortion diagram of the imaging lens of Fig. 5.
第7圖係依據本發明之成像鏡頭之第四實施例的透鏡配置與光路示意圖。 Fig. 7 is a view showing a lens configuration and an optical path of a fourth embodiment of the imaging lens according to the present invention.
第8A圖係第7圖之成像鏡頭之縱向球差圖。 Fig. 8A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 7.
第8B圖係第7圖之成像鏡頭之像散場曲圖。 Fig. 8B is an astigmatic field curvature diagram of the imaging lens of Fig. 7.
第8C圖係第7圖之成像鏡頭之畸變圖。 Fig. 8C is a distortion diagram of the imaging lens of Fig. 7.
第9圖係依據本發明之成像鏡頭之第五實施例的透鏡配置與光路示意圖。 Fig. 9 is a view showing a lens configuration and an optical path of a fifth embodiment of the imaging lens according to the present invention.
第10A圖係第9圖之成像鏡頭之縱向球差圖。 Fig. 10A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 9.
第10B圖係第9圖之成像鏡頭之像散場曲圖。 Fig. 10B is an astigmatic field curvature diagram of the imaging lens of Fig. 9.
第10C圖係第9圖之成像鏡頭之畸變圖。 Fig. 10C is a distortion diagram of the imaging lens of Fig. 9.
第11圖係依據本發明之成像鏡頭之第六實施例的透鏡配置與光路示意圖。 Fig. 11 is a view showing a lens configuration and an optical path of a sixth embodiment of the imaging lens according to the present invention.
第12A圖係第11圖之成像鏡頭之縱向球差圖。 Fig. 12A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 11.
第12B圖係第11圖之成像鏡頭之像散場曲圖。 Fig. 12B is an astigmatic field curvature diagram of the imaging lens of Fig. 11.
第12C圖係第11圖之成像鏡頭之畸變圖。 Fig. 12C is a distortion diagram of the imaging lens of Fig. 11.
第13圖係依據本發明之成像鏡頭之第七實施例的透鏡配置與光路示意圖。 Figure 13 is a schematic view showing a lens configuration and an optical path of a seventh embodiment of the imaging lens according to the present invention.
第14A圖係第13圖之成像鏡頭之縱向球差圖。 Fig. 14A is a longitudinal spherical aberration diagram of the imaging lens of Fig. 13.
第14B圖係第13圖之成像鏡頭之像散場曲圖。 Fig. 14B is an astigmatic field curvature diagram of the imaging lens of Fig. 13.
第14C圖係第13圖之成像鏡頭之畸變圖。 Fig. 14C is a distortion diagram of the imaging lens of Fig. 13.
請參閱第1圖,第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置與光路示意圖。成像鏡頭1沿著光軸OA1從物側至像側依序包括一光圈ST1、一第一透鏡L11、一第二透鏡L12、一第三透鏡L13、一第四透鏡L14、一第五透鏡L15、一第六透鏡L16及一濾光片OF1。成像時,來自物側之光線最後成像於一成像面IMA1上。第一透鏡L11具有正屈光力由塑膠材質製成,其物側面S12為凸面像側面S13為凸面,物側面S12與像側面S13皆為非球面表面。第二透鏡L12具有負屈光力由塑膠材質製成,其物側面S14為凸面像側面S15為凹面,物側面S14與像側面S15皆為非球面表面。第三透鏡L13具有正屈光力由塑膠材質製成,其物側面S16為凸面像側面S17為凸面,物側面S16與像側面S17皆為非球面表面。第四透鏡L14具有負屈光力由塑膠材質製成,其物側面S18為凹面像側面S19為凸面,物側面S18與像側面S19皆為非球面表面。第五透鏡L15具有正屈光力由塑膠材質製成,其物側面S110為凹面像側面S111為凸面,物側面S110與像側面S111皆為非球面表面。第六透鏡L16具有正屈光力由塑膠材質製成,其物側面S112為凸面像側面S113為凹面,物側面S112與像側面S113皆為非球面表面。濾光片OF1其物側面S114與像側面S115皆為平面。 Please refer to FIG. 1. FIG. 1 is a schematic view showing a lens configuration and an optical path of a first embodiment of an imaging lens according to the present invention. The imaging lens 1 sequentially includes an aperture ST1, a first lens L11, a second lens L12, a third lens L13, a fourth lens L14, and a fifth lens L15 from the object side to the image side along the optical axis OA1. a sixth lens L16 and a filter OF1. At the time of imaging, the light from the object side is finally imaged on an image plane IMA1. The first lens L11 has a positive refractive power made of a plastic material, and the object side surface S12 has a convex image side surface S13 as a convex surface, and the object side surface S12 and the image side surface S13 are aspherical surfaces. The second lens L12 has a negative refractive power made of a plastic material, and the object side surface S14 has a convex image side surface S15 which is a concave surface, and the object side surface S14 and the image side surface S15 are aspherical surfaces. The third lens L13 has a positive refractive power made of a plastic material, and the object side surface S16 has a convex image side surface S17 as a convex surface, and the object side surface S16 and the image side surface S17 are aspherical surfaces. The fourth lens L14 has a negative refractive power made of a plastic material, and the object side surface S18 has a concave image side surface S19 as a convex surface, and the object side surface S18 and the image side surface S19 are aspherical surfaces. The fifth lens L15 has a positive refractive power made of a plastic material, and the object side surface S110 has a concave image side surface S111 as a convex surface, and the object side surface S110 and the image side surface S111 are aspherical surfaces. The sixth lens L16 has a positive refractive power made of a plastic material, and the object side surface S112 has a convex surface side surface S113 which is a concave surface, and the object side surface S112 and the image side surface S113 are aspherical surfaces. The filter OF1 has a flat surface S114 and an image side surface S115.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第一實施例中的成像鏡頭1需滿足底下七條件:
其中,f14為第四透鏡L14之有效焦距,f1為成像鏡頭1之有效焦距,f15為第五透鏡L15之有效焦距,TTL1為第一透鏡L11之物側面S12至成像面IMA1於光軸OA1上之距離,R111為第一透鏡L11之物側面S12之曲率半徑,R112為第一透鏡L11之像側面S13之曲率半徑,R121為第二透鏡L12之物側面S14之曲率半徑,R122為第二透鏡L12之像側面S15之曲率半徑,R131為第三透鏡L13之物側面S16之曲率半徑,R132為第三透鏡L13之像側面S17之曲率半徑,f16為第六透鏡L16之有效焦距。 Wherein f1 4 is the effective focal length of the fourth lens L14, f1 is the effective focal length of the imaging lens 1, f1 5 is the effective focal length of the fifth lens L15, and TTL1 is the object side S12 of the first lens L11 to the imaging plane IMA1 on the optical axis The distance on the OA1, R1 11 is the radius of curvature of the object side surface S12 of the first lens L11, R1 12 is the radius of curvature of the image side surface S13 of the first lens L11, and R1 21 is the radius of curvature of the object side surface S14 of the second lens L12. R1 22 is the second curvature radius of the lens L12 of the side surface S15, R1 31 to the object side of the third lens L13 S16 of radius of curvature, R1 32 to the third lens L13 of the radius of curvature of the image side surface of S17, f1 6 sixth The effective focal length of lens L16.
利用上述透鏡與光圈ST1之設計,使得成像鏡頭1能有效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 The design of the lens and the aperture ST1 described above enables the imaging lens 1 to effectively shorten the total length of the lens, improve the viewing angle, effectively correct aberrations, and improve lens resolution.
表一為第1圖中成像鏡頭1之各透鏡之相關參數表,表一資料顯示本實施例之成像鏡頭1之有效焦距等於4.2304mm、光圈值等於2.2、視角等於68.5°、鏡頭總長度等於5.074mm。 Table 1 is a table of related parameters of the lenses of the imaging lens 1 in Fig. 1. Table 1 shows that the effective focal length of the imaging lens 1 of the present embodiment is equal to 4.2304 mm, the aperture value is equal to 2.2, the viewing angle is equal to 68.5°, and the total length of the lens is equal to 5.074mm.
表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 1 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16
其中: c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 among them: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 2 is a table of related parameters of the aspherical surface of each lens in Table 1, where k is a conical coefficient (Conic Constant) and A~G is an aspherical coefficient.
第一實施例之成像鏡頭1,其第四透鏡L14之有效焦距f14=-7.2589mm,成像鏡頭1之有效焦距f1=4.2304mm,第五透鏡L15之有效焦距f15=51.08960mm,第一透鏡L11之物側面S12至成像面IMA1於光軸OA1上之距離TTL1=5.074mm,第一透鏡L11之物側面S12之曲率半徑R111=1.60893mm,第一透鏡L11之像側面S13之曲率半徑R112=-23.11372mm,第二透鏡L12之物側面S14之曲率半徑R121=2.92011mm,第二透鏡L12之像側面S15之曲率半徑R122=1.35420mm,第三透鏡L13之物側面S16之曲率半徑R131=20.57349mm,第三透鏡L13之像側面S17之曲率半徑R132=-4.65176mm,第六透鏡L16之有效焦距f16=19.54329mm,由上述資料可得到f14/f1=-1.7159、f15/f1=12.0768、f1/TTL1=0.8337、(R111-R112)/(R111+R112)=-1.1496、(R121-R122)/(R121+R122)=0.3664、(R131-R132)/(R131+R132)=1.5843、f16/f1=4.6197,皆能滿足上述條件(1)至條件(7)之要求。 In the imaging lens 1 of the first embodiment, the effective focal length f1 4 of the fourth lens L14 is -7.2589 mm, the effective focal length of the imaging lens 1 is f1 = 4.2304 mm, and the effective focal length of the fifth lens L15 is f1 5 = 51.08960 mm, the first The distance from the object side surface S12 of the lens L11 to the imaging surface IMA1 on the optical axis OA1 is TTL1=5.074 mm, the radius of curvature R1 11 of the object side surface S12 of the first lens L11 is 1.60893 mm, and the radius of curvature of the image side surface S13 of the first lens L11. R1 12 = -23.11372 mm, the radius of curvature R1 21 = 2.92011 mm of the object side surface S14 of the second lens L12, the curvature radius R1 22 of the image side surface S15 of the second lens L12 = 1.35420 mm, and the object side surface S16 of the third lens L13 The radius of curvature R1 31 = 20.57349 mm, the radius of curvature R1 32 of the third lens L13 is R1 32 = -4.65176 mm, and the effective focal length of the sixth lens L16 is f1 6 = 19.54329 mm. From the above data, f1 4 /f1 = - 1.7159, f1 5 /f1=12.0768, f1/TTL1=0.8337, (R1 11 -R1 12 )/(R1 11 +R1 12 )=-1.1496, (R1 21 -R1 22 )/(R1 21 +R1 22 )= 0.3664, (R1 31 - R1 32 ) / (R1 31 + R1 32 ) = 1.5843, and f1 6 / f1 = 4.6197, all satisfying the requirements of the above conditions (1) to (7).
另外,第一實施例之成像鏡頭1的光學性能也可達到要求,這可從第2A至第2C圖看出。第2A圖所示的,是第一實施例之成像鏡頭1的縱向球差(Longitudinal Spherical Aberration)圖。第2B圖所示的,是 第一實施例之成像鏡頭1的像散場曲(Astigmatic Field Curves)圖。第2C圖所示的,是第一實施例之成像鏡頭1的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also be achieved, which can be seen from the 2A to 2C drawings. Fig. 2A is a longitudinal Spherical Aberration diagram of the imaging lens 1 of the first embodiment. Figure 2B shows that The astigmatic field curve of the imaging lens 1 of the first embodiment. Fig. 2C is a distortion diagram of the imaging lens 1 of the first embodiment.
由第2A圖可看出,第一實施例之成像鏡頭1對波長為486.1300nm、587.5600nm、656.2800nm之光線所產生的縱向球差值介於-0.013mm至0.025mm之間。由第2B圖可看出,第一實施例之成像鏡頭1對波長為587.5600nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.038mm至0.013mm之間。由第2C圖可看出,第一實施例之成像鏡頭1對波長為587.5600nm之光線所產生的畸變介於0%至2.3%之間。顯見第一實施例之成像鏡頭1之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from FIG. 2A, the longitudinal lens difference produced by the imaging lens 1 of the first embodiment for light having wavelengths of 486.1300 nm, 587.5600 nm, and 656.2800 nm is between -0.013 mm and 0.025 mm. As can be seen from FIG. 2B, the imaging lens 1 of the first embodiment has an astigmatic field curvature of -0.038 mm to 0.013 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 587.5600 nm. between. As can be seen from FIG. 2C, the imaging lens 1 of the first embodiment has a distortion of between 0% and 2.3% for light having a wavelength of 587.5600 nm. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 1 of the first embodiment can be effectively corrected, thereby obtaining better optical performance.
請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置與光路示意圖。成像鏡頭2沿著光軸OA2從物側至像側依序包括一光圈ST2、一第一透鏡L21、一第二透鏡L22、一第三透鏡L23、一第四透鏡L24、一第五透鏡L25、一第六透鏡L26及一濾光片OF2。成像時,來自物側之光線最後成像於一成像面IMA2上。第一透鏡L21具有正屈光力由塑膠材質製成,其物側面S22為凸面像側面S23為凹面,物側面S22與像側面S23皆為非球面表面。第二透鏡L22具有負屈光力由塑膠材質製成,其物側面S24為凸面像側面S25為凹面,物側面S24與像側面S25皆為非球面表面。第三透鏡L23具有正屈光力由塑膠材質製成,其物側面S26為凸面像側面S27為凸面,物側面S26與像側面S27皆為非球面表面。第四透鏡L24具有負屈光力由塑膠材質製成,其物側面S28為凹面像側面S29為凸面,物側面S28與像側面S29皆為非球面表面。第五透鏡L25具有正屈光力由塑膠材質製成,其物側面S210為凹面像側面S211為凸面,物側面 S210與像側面S211皆為非球面表面。第六透鏡L26具有正屈光力由塑膠材質製成,其物側面S212為凸面像側面S213為凹面,物側面S212與像側面S213皆為非球面表面。濾光片OF2其物側面S214與像側面S215皆為平面。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration and an optical path of a second embodiment of an imaging lens according to the present invention. The imaging lens 2 sequentially includes an aperture ST2, a first lens L21, a second lens L22, a third lens L23, a fourth lens L24, and a fifth lens L25 from the object side to the image side along the optical axis OA2. a sixth lens L26 and a filter OF2. At the time of imaging, the light from the object side is finally imaged on an image plane IMA2. The first lens L21 has a positive refractive power made of a plastic material, and the object side surface S22 has a convex surface side surface S23 which is a concave surface, and the object side surface S22 and the image side surface S23 are aspherical surfaces. The second lens L22 has a negative refractive power made of a plastic material, and the object side surface S24 has a convex image side surface S25 as a concave surface, and the object side surface S24 and the image side surface S25 are aspherical surfaces. The third lens L23 has a positive refractive power made of a plastic material, and the object side surface S26 has a convex image side surface S27 as a convex surface, and the object side surface S26 and the image side surface S27 are aspherical surfaces. The fourth lens L24 has a negative refractive power made of a plastic material, and the object side surface S28 has a concave image side surface S29 as a convex surface, and the object side surface S28 and the image side surface S29 are aspherical surfaces. The fifth lens L25 has a positive refractive power made of a plastic material, and the object side surface S210 has a concave image side surface S211 which is convex, and the object side surface Both the S210 and the image side surface S211 are aspherical surfaces. The sixth lens L26 has a positive refractive power made of a plastic material, and the object side surface S212 has a convex image side surface S213 as a concave surface, and the object side surface S212 and the image side surface S213 are aspherical surfaces. The filter side OF2 has a flat side surface S214 and an image side surface S215.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第二實施例中的成像鏡頭2需滿足底下七條件:
其中,f24為第四透鏡L24之有效焦距,f2為成像鏡頭2之有效焦距,f25為第五透鏡L25之有效焦距,TTL2為第一透鏡L21之物側面S22至成像面IMA2於光軸OA2上之距離,R211為第一透鏡L21之物側面S22之曲率半徑,R212為第一透鏡L21之像側面S23之曲率半徑,R221為第二透鏡L22之物側面S24之曲率半徑,R222為第二透鏡L22之像側面S25之曲率半徑,R231為第三透鏡L23之物側面S26之曲率半徑,R232為第三透鏡L23之像側面S27之曲率半徑,f26為第六透鏡L26之有效焦距。 Where f2 4 is the effective focal length of the fourth lens L24, f2 is the effective focal length of the imaging lens 2, f2 5 is the effective focal length of the fifth lens L25, and TTL2 is the object side S22 of the first lens L21 to the imaging plane IMA2 on the optical axis The distance on the OA2, R2 11 is the radius of curvature of the object side surface S22 of the first lens L21, R2 12 is the radius of curvature of the image side surface S23 of the first lens L21, and R2 21 is the radius of curvature of the object side surface S24 of the second lens L22. R2 22 a radius of curvature of the image side surface of the second lens L22 of S25, R2 31 side surface S26 of a radius of curvature of the third lens L23 thereof, R2 32 of the third lens L23 of the side surface S27 of the curvature radius, f2 6 sixth The effective focal length of lens L26.
利用上述透鏡與光圈ST2之設計,使得成像鏡頭2能有效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 The design of the lens and the aperture ST2 described above enables the imaging lens 2 to effectively shorten the total length of the lens, improve the viewing angle, effectively correct aberrations, and improve lens resolution.
表三為第3圖中成像鏡頭2之各透鏡之相關參數表,表三資料顯示本實施例之成像鏡頭2之有效焦距等於4.2300mm、光圈值等 於2.1、視角等於68.7°、鏡頭總長度等於5.111mm。 Table 3 is a table of related parameters of the lenses of the imaging lens 2 in FIG. 3, and Table 3 shows that the effective focal length of the imaging lens 2 of the present embodiment is equal to 4.2300 mm, the aperture value, and the like. In 2.1, the viewing angle is equal to 68.7°, and the total length of the lens is equal to 5.111 mm.
表三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 3 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16
其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表四為表三中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 4 is the relevant parameter table of the aspherical surface of each lens in Table 3, where k is the conical coefficient (Conic Constant) and A~G is the aspherical coefficient.
第二實施例之成像鏡頭2,其第四透鏡L24之有效焦距f24=-5.9056mm,成像鏡頭2之有效焦距f2=4.2300mm,第五透鏡L25之有效焦距f25=51.38527mm,第一透鏡L21之物側面S22至成像面IMA2於光軸OA2上之距離TTL2=5.111mm,第一透鏡L21之物側面S22之曲率半徑R211=1.54413mm,第一透鏡L21之像側面S23之曲率半徑R212=9.67325mm,第二透鏡L22之物側面S24之曲率半徑R221=3.61352mm,第二透鏡L22之像側面S25之曲率半徑R222=1.67168mm,第三透鏡L23之物側面S26之曲率半徑R231=5.84750mm,第三透鏡L23之像側面S27之曲率半徑R232=-5.97789mm,第六透鏡L26之有效焦距f26=14.10489mm,由上述資料可得到f24/f2=-1.3962、f25/f2=12.1485、f2/TTL2=0.8276、(R211-R212)/(R211+R212)=-0.7247、(R221-R222)/(R221+R222)=0.3674、(R231-R232)/(R231+R232)=-90.6927、f26/f2=3.3347,皆能滿足上述條件(8)至條件(14)之要求。 In the imaging lens 2 of the second embodiment, the effective focal length f2 4 of the fourth lens L24 is -5.9056 mm, the effective focal length of the imaging lens 2 is f2 = 4.2300 mm, and the effective focal length of the fifth lens L25 is f2 5 = 51.38527 mm, the first The distance from the object side surface S22 of the lens L21 to the imaging surface IMA2 on the optical axis OA2 is TTL2=5.111 mm, the radius of curvature R2 11 of the object side surface S22 of the first lens L21 is 1.54413 mm, and the radius of curvature of the image side surface S23 of the first lens L21. R2 12 =9.67325 mm, the radius of curvature R2 21 =3.61352 mm of the object side surface S24 of the second lens L22, the curvature radius R2 22 of the image side surface S25 of the second lens L22 = 1.67168 mm, and the curvature of the object side surface S26 of the third lens L23 The radius R2 31 = 5.84450 mm, the radius of curvature R2 32 of the third lens L23 is R5 32 = -5.97789 mm, and the effective focal length of the sixth lens L26 is f2 6 = 14.10489 mm. From the above data, f2 4 / f2 = -1.3962 , f2 5 /f2=12.1485, f2/TTL2=0.8276, (R2 11 -R2 12 )/(R2 11 +R2 12 )=-0.7247, (R2 21 -R2 22 )/(R2 21 +R2 22 )=0.3674 (R2 31 - R2 32 ) / (R2 31 + R2 32 ) = -90.6927, f2 6 / f2 = 3.3347, all of which satisfy the requirements of the above conditions (8) to (14).
另外,第二實施例之成像鏡頭2的光學性能也可達到要求,這可從第4A至第4C圖看出。第4A圖所示的,是第二實施例之成像鏡頭2的縱向球差(Longitudinal Spherical Aberration)圖。第4B圖所示的,是第二實施例之成像鏡頭2的像散場曲(Astigmatic Field Curves)圖。第4C圖所示的,是第二實施例之成像鏡頭2的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also be achieved, which can be seen from Figs. 4A to 4C. Fig. 4A is a longitudinal Spherical Aberration diagram of the imaging lens 2 of the second embodiment. Fig. 4B is an astigmatic field curve diagram of the imaging lens 2 of the second embodiment. Fig. 4C is a distortion diagram of the imaging lens 2 of the second embodiment.
由第4A圖可看出,第二實施例之成像鏡頭2對波長為486.1300nm、587.5600nm、656.2800nm之光線所產生的縱向球差值介於-0.038mm至0.038mm之間。由第4B圖可看出,第二實施例之成像鏡頭2對波長為587.5600nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.075mm至0.038mm之間。由第4C圖可看出,第二實施例之成像鏡頭2對波長為587.5600nm之光線所產生的畸變介於0%至2.3%之間。顯見第二實施例之成像鏡頭2之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from FIG. 4A, the longitudinal lens difference produced by the imaging lens 2 of the second embodiment for light having wavelengths of 486.1300 nm, 587.5600 nm, and 656.2800 nm is between -0.038 mm and 0.038 mm. As can be seen from FIG. 4B, the imaging lens 2 of the second embodiment has an astigmatic field curvature of -0.075 mm to 0.038 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 587.5600 nm. between. As can be seen from Fig. 4C, the imaging lens 2 of the second embodiment produces a distortion of between 0% and 2.3% for light having a wavelength of 587.5600 nm. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 2 of the second embodiment can be effectively corrected, thereby obtaining better optical performance.
請參閱第5圖,第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。成像鏡頭3沿著光軸OA3從物側至像側依序包括一光圈ST3、一第一透鏡L31、一第二透鏡L32、一第三透鏡L33、一第四透鏡L34、一第五透鏡L35、一第六透鏡L36及一濾光片OF3。成像時,來自物側之光線最後成像於一成像面IMA3上。第一透鏡L31具有正屈光力由塑膠材質製成,其物側面S32為凸面像側面S33為凸面,物側面S32與像側面S33皆為非球面表面。第二透鏡L32具有負屈光力由塑膠材質製成,其物側面S34為凸面像側面S35為凹面,物側面S34與像側面S35皆為非球面表面。第三透鏡L33具有正屈光力由塑膠材質製成,其物側面S36為凸面像側面S37為凸面,物側面S36與像側面S37皆為非球面表面。第四 透鏡L34具有負屈光力由塑膠材質製成,其物側面S38為凹面像側面S39為凸面,物側面S38與像側面S39皆為非球面表面。第五透鏡L35具有正屈光力由塑膠材質製成,其物側面S310為凹面像側面S311為凸面,物側面S310與像側面S311皆為非球面表面。第六透鏡L36具有正屈光力由塑膠材質製成,其物側面S312為凸面像側面S313為凹面,物側面S312與像側面S313皆為非球面表面。濾光片OF3其物側面S314與像側面S315皆為平面。 Please refer to FIG. 5, which is a schematic diagram of a lens configuration and an optical path of a third embodiment of an imaging lens according to the present invention. The imaging lens 3 sequentially includes an aperture ST3, a first lens L31, a second lens L32, a third lens L33, a fourth lens L34, and a fifth lens L35 from the object side to the image side along the optical axis OA3. A sixth lens L36 and a filter OF3. At the time of imaging, the light from the object side is finally imaged on an image plane IMA3. The first lens L31 has a positive refractive power made of a plastic material, and the object side surface S32 has a convex image side surface S33 as a convex surface, and the object side surface S32 and the image side surface S33 are aspherical surfaces. The second lens L32 has a negative refractive power made of a plastic material, and the object side surface S34 has a convex image side surface S35 which is a concave surface, and the object side surface S34 and the image side surface S35 are both aspherical surfaces. The third lens L33 has a positive refractive power made of a plastic material, and the object side surface S36 has a convex image side surface S37 as a convex surface, and the object side surface S36 and the image side surface S37 are aspherical surfaces. fourth The lens L34 has a negative refractive power made of a plastic material, and the object side surface S38 has a concave image side surface S39 as a convex surface, and the object side surface S38 and the image side surface S39 are aspherical surfaces. The fifth lens L35 has a positive refractive power made of a plastic material, and the object side surface S310 has a concave image side surface S311 as a convex surface, and the object side surface S310 and the image side surface S311 are both aspherical surfaces. The sixth lens L36 has a positive refractive power made of a plastic material, and the object side surface S312 has a convex image side surface S313 as a concave surface, and the object side surface S312 and the image side surface S313 are aspherical surfaces. The filter OF3 has a flat surface S314 and an image side surface S315.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第三實施例中的成像鏡頭3需滿足底下七條件:
其中,f34為第四透鏡L34之有效焦距,f3為成像鏡頭3之有效焦距,f35為第五透鏡L35之有效焦距,TTL3為第一透鏡L31之物側面S32至成像面IMA3於光軸OA3上之距離,R311為第一透鏡L31之物側面S32之曲率半徑,R312為第一透鏡L31之像側面S33之曲率半徑,R321為第二透鏡L32之物側面S34之曲率半徑,R322為第二透鏡L32之像側面S35之曲率半徑,R331為第三透鏡L33之物側面S36之曲率半徑,R332為第三透鏡L33之像側面S37之曲率半徑,f36為第六透鏡L36之有效焦距。 Where f3 4 is the effective focal length of the fourth lens L34, f3 is the effective focal length of the imaging lens 3, f3 5 is the effective focal length of the fifth lens L35, and TTL3 is the object side S32 of the first lens L31 to the imaging plane IMA3 on the optical axis The distance on the OA3, R3 11 is the radius of curvature of the object side surface S32 of the first lens L31, R3 12 is the radius of curvature of the image side surface S33 of the first lens L31, and R3 21 is the radius of curvature of the object side surface S34 of the second lens L32. R3 22 is the radius of curvature of the image side surface S35 of the second lens L32, R3 31 is the radius of curvature of the object side surface S36 of the third lens L33, R3 32 is the radius of curvature of the image side surface S37 of the third lens L33, and f3 6 is the sixth The effective focal length of lens L36.
利用上述透鏡與光圈ST3之設計,使得成像鏡頭3能有 效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 With the design of the above lens and aperture ST3, the imaging lens 3 can be Effectively shortens the total length of the lens, improves the viewing angle, effectively corrects aberrations, and improves lens resolution.
表五為第5圖中成像鏡頭3之各透鏡之相關參數表,表五資料顯示本實施例之成像鏡頭3之有效焦距等於4.1263mm、光圈值等於2.2、視角等於69.9°、鏡頭總長度等於5.171mm。 Table 5 is a table of related parameters of the lenses of the imaging lens 3 in FIG. 5. Table 5 shows that the effective focal length of the imaging lens 3 of the present embodiment is equal to 4.1263 mm, the aperture value is equal to 2.2, the viewing angle is equal to 69.9°, and the total length of the lens is equal to 5.171mm.
表五中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 5 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10 + Eh 12 + Fh 14 + Gh 16
其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表六為表五中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 6 is the relevant parameter table of the aspherical surface of each lens in Table 5, where k is the conic coefficient (Conic Constant) and A~G is the aspherical coefficient.
第三實施例之成像鏡頭3,其第四透鏡L34之有效焦距f34=-5.6582mm,成像鏡頭3之有效焦距f3=4.1263mm,第五透鏡L35之有效焦距f35=94.59428mm,第一透鏡L31之物側面S32至成像面IMA3於光軸OA3上之距離TTL3=5.171mm,第一透鏡L31之物側面S32之曲率半徑R311=1.81502mm,第一透鏡L31之像側面S33之曲率半徑R312=-18.25035mm,第二透鏡L32之物側面S34之曲率半徑R321=2.43828mm,第二透鏡L32之像側面S35之曲率半徑R322=1.27797mm,第三透鏡L33之物側面S36之曲率半徑R331=30.56156mm,第三透鏡L33之像側面S37之曲率半徑R332=-2.78424mm,第六透鏡L36之有效焦距f36=15.46644mm,由上述資料可得到f34/f3=-1.3713、f35/f3=22.9247、f3/TTL3=0.7980、(R311-R312)/(R311+R312)=-1.2209、(R321-R322)/(R321+R322)=0.3122、 (R331-R332)/(R331+R332)=1.2005、f36/f3=3.7483,皆能滿足上述條件(15)至條件(21)之要求。 In the imaging lens 3 of the third embodiment, the effective focal length f3 4 of the fourth lens L34 is -5.6582 mm, the effective focal length of the imaging lens 3 is f3 = 4.1263 mm, and the effective focal length of the fifth lens L35 is f3 5 = 94.59428 mm, the first The distance from the object side surface S32 of the lens L31 to the imaging surface IMA3 on the optical axis OA3 is TTL3=5.171 mm, the radius of curvature R3 11 of the object side surface S32 of the first lens L31 is 1.81502 mm, and the radius of curvature of the image side surface S33 of the first lens L31. R3 12 = -18.25035 mm, the radius of curvature R3 21 = 2.43828 mm of the object side surface S34 of the second lens L32, the curvature radius R3 22 of the image side surface S35 of the second lens L32 = 1.27797 mm, and the object side surface S36 of the third lens L33 The radius of curvature R3 31 = 30.56156 mm, the radius of curvature of the image side surface S37 of the third lens L33 is R3 32 = -2.78424 mm, and the effective focal length of the sixth lens L36 is f3 6 = 15.46644 mm. From the above data, f3 4 /f3 = - 1.3713, f3 5 /f3=22.9247, f3/TTL3=0.7980, (R3 11 -R3 12 )/(R3 11 +R3 12 )=-1.2209, (R3 21 -R3 22 )/(R3 21 +R3 22 )= 0.3122, (R3 31 - R3 32 ) / (R3 31 + R3 32 ) = 1.2005, f3 6 / f3 = 3.7483, all satisfying the requirements of the above conditions (15) to (21).
另外,第三實施例之成像鏡頭3的光學性能也可達到要求,這可從第6A至第6C圖看出。第6A圖所示的,是第三實施例之成像鏡頭3的縱向球差(Longitudinal Spherical Aberration)圖。第6B圖所示的,是第三實施例之成像鏡頭3的像散場曲(Astigmatic Field Curves)圖。第6C圖所示的,是第三實施例之成像鏡頭3的畸變(Distortion)圖。 Further, the optical performance of the imaging lens 3 of the third embodiment can also be achieved, which can be seen from Figs. 6A to 6C. Fig. 6A is a longitudinal Spherical Aberration diagram of the imaging lens 3 of the third embodiment. Fig. 6B is an astigmatism field curve diagram of the imaging lens 3 of the third embodiment. Fig. 6C is a distortion diagram of the imaging lens 3 of the third embodiment.
由第6A圖可看出,第三實施例之成像鏡頭3對波長為486.1300nm、587.5600nm、656.2800nm之光線所產生的縱向球差值介於-0.025mm至0.038mm之間。由第6B圖可看出,第三實施例之成像鏡頭3對波長為587.5600nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.075mm至0.013mm之間。由第6C圖可看出,第三實施例之成像鏡頭3對波長為587.5600nm之光線所產生的畸變介於0%至2.3%之間。顯見第三實施例之成像鏡頭3之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from Fig. 6A, the longitudinal lens difference produced by the imaging lens 3 of the third embodiment for light having wavelengths of 486.1300 nm, 587.5600 nm, and 656.2800 nm is between -0.025 mm and 0.038 mm. As can be seen from FIG. 6B, the imaging lens 3 of the third embodiment has an astigmatic field curvature of -0.075 mm to 0.013 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 587.5600 nm. between. As can be seen from Fig. 6C, the distortion of the imaging lens 3 of the third embodiment for light having a wavelength of 587.5600 nm is between 0% and 2.3%. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 3 of the third embodiment can be effectively corrected, thereby obtaining better optical performance.
請參閱第7圖,第7圖係依據本發明之成像鏡頭之第四實施例的透鏡配置與光路示意圖。成像鏡頭4沿著光軸OA4從物側至像側依序包括一光圈ST4、一第一透鏡L41、一第二透鏡L42、一第三透鏡L43、一第四透鏡L44、一第五透鏡L45、一第六透鏡L46及一濾光片OF4。成像時,來自物側之光線最後成像於一成像面IMA4上。第一透鏡L41具有正屈光力由塑膠材質製成,其物側面S42為凸面像側面S43為凸面,物側面S42與像側面S43皆為非球面表面。第二透鏡L42具有負屈光力由塑膠材質製成,其物側面S44為凸面像側面S45為凹面,物側面S44與像側面S45皆為 非球面表面。第三透鏡L43具有正屈光力由塑膠材質製成,其物側面S46為凹面像側面S47為凸面,物側面S46與像側面S47皆為非球面表面。第四透鏡L44具有負屈光力由塑膠材質製成,其物側面S48為凹面像側面S49為凸面,物側面S48與像側面S49皆為非球面表面。第五透鏡L45具有正屈光力由塑膠材質製成,其物側面S410為凹面像側面S411為凸面,物側面S410與像側面S411皆為非球面表面。第六透鏡L46具有正屈光力由塑膠材質製成,其物側面S412為凸面像側面S413為凹面,物側面S412與像側面S413皆為非球面表面。濾光片OF4其物側面S414與像側面S415皆為平面。 Please refer to FIG. 7. FIG. 7 is a schematic view showing a lens configuration and an optical path of a fourth embodiment of the imaging lens according to the present invention. The imaging lens 4 sequentially includes an aperture ST4, a first lens L41, a second lens L42, a third lens L43, a fourth lens L44, and a fifth lens L45 from the object side to the image side along the optical axis OA4. a sixth lens L46 and a filter OF4. At the time of imaging, the light from the object side is finally imaged on an image plane IMA4. The first lens L41 has a positive refractive power made of a plastic material, and the object side surface S42 has a convex image side surface S43 as a convex surface, and the object side surface S42 and the image side surface S43 are aspherical surfaces. The second lens L42 has a negative refractive power made of a plastic material, and the object side surface S44 has a convex image side surface S45 as a concave surface, and the object side surface S44 and the image side surface S45 are both Aspherical surface. The third lens L43 has a positive refractive power made of a plastic material, and the object side surface S46 has a concave image side surface S47 as a convex surface, and the object side surface S46 and the image side surface S47 are aspherical surfaces. The fourth lens L44 has a negative refractive power made of a plastic material, and the object side surface S48 has a concave image side surface S49 as a convex surface, and the object side surface S48 and the image side surface S49 are aspherical surfaces. The fifth lens L45 has a positive refractive power made of a plastic material, and the object side surface S410 has a concave image side surface S411 as a convex surface, and the object side surface S410 and the image side surface S411 are aspherical surfaces. The sixth lens L46 has a positive refractive power made of a plastic material, and the object side surface S412 has a convex image side surface S413 as a concave surface, and the object side surface S412 and the image side surface S413 are aspherical surfaces. The filter OF4 has a flat surface S414 and an image side surface S415.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第四實施例中的成像鏡頭4需滿足底下七條件:
其中,f44為第四透鏡L44之有效焦距,f4為成像鏡頭4之有效焦距,f45為第五透鏡L45之有效焦距,TTL4為第一透鏡L41之物側面S42至成像面IMA4於光軸OA4上之距離,R411為第一透鏡L41之物側面S42之曲率半徑,R412為第一透鏡L41之像側面S43之曲率半徑,R421為第二透鏡L42之物側面S44之曲率半徑,R422為第二透鏡L42之像側面S45之曲率半徑,R431為第三透鏡L43之物側面S46之曲率半徑,R432為第三透鏡L43之像側面S47之曲率半徑,f46為第六透鏡L46之有效焦 距。 Where f4 4 is the effective focal length of the fourth lens L44, f4 is the effective focal length of the imaging lens 4, f4 5 is the effective focal length of the fifth lens L45, and TTL4 is the object side S42 of the first lens L41 to the imaging plane IMA4 on the optical axis The distance on the OA4, R4 11 is the radius of curvature of the object side surface S42 of the first lens L41, R4 12 is the radius of curvature of the image side surface S43 of the first lens L41, and R4 21 is the radius of curvature of the object side surface S44 of the second lens L42. R4 22 is the radius of curvature of the image side surface S45 of the second lens L42, R4 31 is the radius of curvature of the object side surface S46 of the third lens L43, R4 32 is the radius of curvature of the image side surface S47 of the third lens L43, and f4 6 is the sixth The effective focal length of lens L46.
利用上述透鏡與光圈ST4之設計,使得成像鏡頭4能有效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 The design of the lens and the aperture ST4 described above enables the imaging lens 4 to effectively shorten the total length of the lens, improve the viewing angle, effectively correct aberrations, and improve lens resolution.
表七為第7圖中成像鏡頭4之各透鏡之相關參數表,表七資料顯示本實施例之成像鏡頭4之有效焦距等於4.0826mm、光圈值等於2.1、視角等於70.4°、鏡頭總長度等於5.162mm。 Table 7 is a table of related parameters of the lenses of the imaging lens 4 in FIG. 7. Table 7 shows that the effective focal length of the imaging lens 4 of the present embodiment is equal to 4.0826 mm, the aperture value is equal to 2.1, the viewing angle is equal to 70.4°, and the total length of the lens is equal to 5.162mm.
表七中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 7 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16
其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表八為表七中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 8 is a table of related parameters of the aspherical surfaces of the respective lenses in Table 7, where k is a conical coefficient (Conic Constant) and A to G are aspherical coefficients.
第四實施例之成像鏡頭4,其第四透鏡L44之有效焦距f44=-5.9766mm,成像鏡頭4之有效焦距f4=4.0826mm,第五透鏡L45之有效焦距f45=102.82794mm,第一透鏡L41之物側面S42至成像面IMA4於光軸OA4上之距離TTL4=5.162mm,第一透鏡L41之物側面S42之曲率半徑R411=1.83223mm,第一透鏡L41之像側面S43之曲率半徑R412=-16.04122mm,第二透鏡L42之物側面S44之曲率半徑R421=2.63800mm,第二透鏡L42之像側面S45之曲率半徑R422=1.43222mm,第三透鏡L43之物側面S46之曲率半徑R431=-8.17324mm,第三透鏡L43之像側面S47之曲率半徑R432=-2.26469mm,第六透鏡L46之有效焦距f46=14.57148mm,由 上述資料可得到f44/f4=-1.4639、f45/f4=25.1870、f4/TTL4=0.7910、(R411-R412)/(R411+R412)=-1.2579、(R421-R422)/(R421+R422)=0.2962、(R431-R432)/(R431+R432)=0.5661、f46/f4=3.5692,皆能滿足上述條件(22)至條件(28)之要求。 In the imaging lens 4 of the fourth embodiment, the effective focal length f4 4 of the fourth lens L44 is -5.9766 mm, the effective focal length of the imaging lens 4 is f4 = 4.0826 mm, and the effective focal length of the fifth lens L45 is f4 5 = 102.82794 mm, the first The distance from the object side surface S42 of the lens L41 to the imaging surface IMA4 on the optical axis OA4 is TTL4=5.162 mm, the radius of curvature R4 11 of the object side surface S42 of the first lens L41 is 1.83223 mm, and the radius of curvature of the image side surface S43 of the first lens L41. R4 12 = -16.04122 mm, the radius of curvature R4 21 of the object side S44 of the second lens L42 is 2.63800 mm, the radius of curvature R4 22 of the image side surface S45 of the second lens L42 is 1.432222 mm, and the object side surface S46 of the third lens L43 The radius of curvature R4 31 = -8.77334 mm, the radius of curvature R4 32 of the third lens L43 is R2 32 = -2.246469 mm, and the effective focal length of the sixth lens L46 is f4 6 = 14.57148 mm. From the above data, f4 4 /f4 = -1.4639, f4 5 /f4=25.1870,f4/TTL4=0.7910,(R4 11 -R4 12 ) / (R4 11 + R4 12) = - 1.2579, (R4 21 -R4 22) / (R4 21 + R4 22) = 0.2962, (R4 31 - R4 32 ) / (R4 31 + R4 32 ) = 0.5661, f4 6 / f4 = 3.5692, all satisfying the requirements of the above conditions (22) to (28).
另外,第四實施例之成像鏡頭4的光學性能也可達到要求,這可從第8A至第8C圖看出。第8A圖所示的,是第四實施例之成像鏡頭4的縱向球差(Longitudinal Spherical Aberration)圖。第8B圖所示的,是第四實施例之成像鏡頭4的像散場曲(Astigmatic Field Curves)圖。第8C圖所示的,是第四實施例之成像鏡頭4的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 4 of the fourth embodiment can also be achieved, which can be seen from Figs. 8A to 8C. Fig. 8A is a longitudinal Spherical Aberration diagram of the imaging lens 4 of the fourth embodiment. Fig. 8B is an astigmatism field curve diagram of the imaging lens 4 of the fourth embodiment. Fig. 8C is a distortion diagram of the imaging lens 4 of the fourth embodiment.
由第8A圖可看出,第四實施例之成像鏡頭4對波長為486.1300nm、587.5600nm、656.2800nm之光線所產生的縱向球差值介於-0.025mm至0.038mm之間。由第8B圖可看出,第四實施例之成像鏡頭4對波長為587.5600nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.075mm至0.013mm之間。由第8C圖可看出,第四實施例之成像鏡頭4對波長為587.5600nm之光線所產生的畸變介於0%至2.3%之間。顯見第四實施例之成像鏡頭4之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from Fig. 8A, the longitudinal spherical aberration value of the imaging lens 4 of the fourth embodiment for light having wavelengths of 486.1300 nm, 587.5600 nm, and 656.2800 nm is between -0.025 mm and 0.038 mm. As can be seen from FIG. 8B, the imaging lens 4 of the fourth embodiment has an astigmatic field curvature of -0.075 mm to 0.013 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 587.5600 nm. between. As can be seen from Fig. 8C, the imaging lens 4 of the fourth embodiment produces a distortion of between 0% and 2.3% for light having a wavelength of 587.5600 nm. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 4 of the fourth embodiment can be effectively corrected, thereby obtaining better optical performance.
請參閱第9圖,第9圖係依據本發明之成像鏡頭之第五實施例的透鏡配置與光路示意圖。成像鏡頭5沿著光軸OA5從物側至像側依序包括一光圈ST5、一第一透鏡L51、一第二透鏡L52、一第三透鏡L53、一第四透鏡L54、一第五透鏡L55、一第六透鏡L56及一濾光片OF5。成像時,來自物側之光線最後成像於一成像面IMA5上。第一透鏡L51具有正屈 光力由塑膠材質製成,其物側面S52為凸面像側面S53為凸面,物側面S52與像側面S53皆為非球面表面。第二透鏡L52具有負屈光力由塑膠材質製成,其物側面S54為凸面像側面S55為凹面,物側面S54與像側面S55皆為非球面表面。第三透鏡L53具有正屈光力由塑膠材質製成,其物側面S56為凹面像側面S57為凸面,物側面S56與像側面S57皆為非球面表面。第四透鏡L54具有正屈光力由塑膠材質製成,其物側面S58為凹面像側面S59為凸面,物側面S58與像側面S59皆為非球面表面。第五透鏡L55具有正屈光力由塑膠材質製成,其物側面S510為凹面像側面S511為凸面,物側面S510與像側面S511皆為非球面表面。第六透鏡L56具有正屈光力由塑膠材質製成,其物側面S512為凸面像側面S513為凹面,物側面S512與像側面S513皆為非球面表面。濾光片OF5其物側面S514與像側面S515皆為平面。 Referring to FIG. 9, FIG. 9 is a schematic diagram showing a lens configuration and an optical path of a fifth embodiment of an imaging lens according to the present invention. The imaging lens 5 sequentially includes an aperture ST5, a first lens L51, a second lens L52, a third lens L53, a fourth lens L54, and a fifth lens L55 from the object side to the image side along the optical axis OA5. A sixth lens L56 and a filter OF5. At the time of imaging, the light from the object side is finally imaged on an image plane IMA5. The first lens L51 has a positive vertex The light force is made of a plastic material, and the object side surface S52 has a convex image side surface S53 as a convex surface, and the object side surface S52 and the image side surface S53 are aspherical surfaces. The second lens L52 has a negative refractive power made of a plastic material, and the object side surface S54 has a convex image side surface S55 which is a concave surface, and the object side surface S54 and the image side surface S55 are aspherical surfaces. The third lens L53 has a positive refractive power made of a plastic material, and the object side surface S56 has a concave image side surface S57 as a convex surface, and the object side surface S56 and the image side surface S57 are aspherical surfaces. The fourth lens L54 has a positive refractive power made of a plastic material, and the object side surface S58 has a concave image side surface S59 as a convex surface, and the object side surface S58 and the image side surface S59 are aspherical surfaces. The fifth lens L55 has a positive refractive power made of a plastic material, and the object side surface S510 has a concave image side surface S511 as a convex surface, and the object side surface S510 and the image side surface S511 are aspherical surfaces. The sixth lens L56 has a positive refractive power made of a plastic material, and the object side surface S512 has a convex image side surface S513 as a concave surface, and the object side surface S512 and the image side surface S513 are aspherical surfaces. The filter OF5 has a flat side surface S514 and an image side surface S515.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第五實施例中的成像鏡頭5需滿足底下二條件:
其中,f54為第四透鏡L54之有效焦距,f5為成像鏡頭5之有效焦距,TTL5為第一透鏡L51之物側面S52至成像面IMA5於光軸OA5上之距離。 Where f5 4 is the effective focal length of the fourth lens L54, f5 is the effective focal length of the imaging lens 5, and TTL5 is the distance from the object side S52 of the first lens L51 to the imaging plane IMA5 on the optical axis OA5.
利用上述透鏡與光圈ST5之設計,使得成像鏡頭5能有效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 With the design of the above lens and aperture ST5, the imaging lens 5 can effectively shorten the total length of the lens, improve the viewing angle, effectively correct the aberration, and improve the lens resolution.
表九為第9圖中成像鏡頭5之各透鏡之相關參數表,表九資料顯示本實施例之成像鏡頭5之有效焦距等於3.2114mm、光圈值等於2.2、視角等於83.9°、鏡頭總長度等於4.599mm。 Table 9 is a table of related parameters of the lenses of the imaging lens 5 in FIG. 9. Table 9 shows that the effective focal length of the imaging lens 5 of the present embodiment is equal to 3.2114 mm, the aperture value is equal to 2.2, the viewing angle is equal to 83.9°, and the total length of the lens is equal to 4.599mm.
表九中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 9 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16
其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表十為表九中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 10 is the relevant parameter table of the aspherical surface of each lens in Table 9, where k is a conical coefficient (Conic Constant) and A~G is an aspherical coefficient.
第五實施例之成像鏡頭5,其第四透鏡L54之有效焦距f54=33.0280mm,成像鏡頭5之有效焦距f5=3.2114mm,第一透鏡L51之物側面S52至成像面IMA5於光軸OA5上之距離TTL5=4.599mm,由上述資料可得到f54/f5=10.2846、f5/TTL5=0.6983,皆能滿足上述條件(29)至條件(30)之要求。 In the imaging lens 5 of the fifth embodiment, the effective focal length f5 4 of the fourth lens L54 is 33.0280 mm, the effective focal length of the imaging lens 5 is f5=3.2114 mm, and the object side surface S52 of the first lens L51 to the imaging plane IMA5 is on the optical axis OA5. The distance above is TTL5=4.599mm. From the above data, f5 4 /f5=10.2846 and f5/TTL5=0.6983 can be obtained, which can meet the requirements of the above conditions (29) to (30).
另外,第五實施例之成像鏡頭5的光學性能也可達到要求,這可從第10A至第10C圖看出。第10A圖所示的,是第五實施例之成像鏡頭5的縱向球差(Longitudinal Spherical Aberration)圖。第10B圖所示的,是第五實施例之成像鏡頭5的像散場曲(Astigmatic Field Curves)圖。第10C圖所示的,是第五實施例之成像鏡頭5的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 5 of the fifth embodiment can also be achieved, which can be seen from the 10A to 10C drawings. Fig. 10A is a longitudinal Spherical Aberration diagram of the imaging lens 5 of the fifth embodiment. Fig. 10B is a view showing an astigmatism field curve of the imaging lens 5 of the fifth embodiment. Fig. 10C is a distortion diagram of the imaging lens 5 of the fifth embodiment.
由第10A圖可看出,第五實施例之成像鏡頭5對波長為435.8400nm、546.0700nm、656.2800nm之光線所產生的縱向球差值介於-0.005mm至0.045mm之間。由第10B圖可看出,第五實施例之成像鏡頭 5對波長為546.0700nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.2mm至0.06mm之間。由第10C圖可看出,第五實施例之成像鏡頭5對波長為546.0700nm之光線所產生的畸變介於-0.1%至2.0%之間。顯見第五實施例之成像鏡頭5之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from Fig. 10A, the imaging lens 5 of the fifth embodiment produces a longitudinal spherical aberration value of -0.005 mm to 0.045 mm for light having a wavelength of 435.8400 nm, 546.0700 nm, and 656.2800 nm. As can be seen from FIG. 10B, the imaging lens of the fifth embodiment 5 pairs of light with a wavelength of 546.0700 nm have an astigmatic field curvature between -0.2 mm and 0.06 mm in the direction of the Tangential and the Sagittal direction. As can be seen from Fig. 10C, the imaging lens 5 of the fifth embodiment produces a distortion of -0.1% to 2.0% for light having a wavelength of 546.0700 nm. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 5 of the fifth embodiment can be effectively corrected, thereby obtaining better optical performance.
請參閱第11圖,第11圖係依據本發明之成像鏡頭之第六實施例的透鏡配置與光路示意圖。成像鏡頭6沿著光軸OA6從物側至像側依序包括一光圈ST6、一第一透鏡L61、一第二透鏡L62、一第三透鏡L63、一第四透鏡L64、一第五透鏡L65、一第六透鏡L66及一濾光片OF6。成像時,來自物側之光線最後成像於一成像面IMA6上。第一透鏡L61具有正屈光力由塑膠材質製成,其物側面S62為凸面像側面S63為凸面,物側面S62與像側面S63皆為非球面表面。第二透鏡L62具有負屈光力由塑膠材質製成,其物側面S64為凸面像側面S65為凹面,物側面S64與像側面S65皆為非球面表面。第三透鏡L63具有正屈光力由塑膠材質製成,其物側面S66為凹面像側面S67為凸面,物側面S66與像側面S67皆為非球面表面。第四透鏡L64具有正屈光力由塑膠材質製成,其物側面S68為凹面像側面S69為凸面,物側面S68與像側面S69皆為非球面表面。第五透鏡L65具有正屈光力由塑膠材質製成,其物側面S610為凹面像側面S611為凸面,物側面S610與像側面S611皆為非球面表面。第六透鏡L66具有正屈光力由塑膠材質製成,其物側面S612為凸面像側面S613為凹面,物側面S612與像側面S613皆為非球面表面。濾光片OF6其物側面S614與像側面S615皆為平面。 Please refer to FIG. 11, which is a schematic diagram of a lens configuration and an optical path of a sixth embodiment of an imaging lens according to the present invention. The imaging lens 6 sequentially includes an aperture ST6, a first lens L61, a second lens L62, a third lens L63, a fourth lens L64, and a fifth lens L65 from the object side to the image side along the optical axis OA6. a sixth lens L66 and a filter OF6. At the time of imaging, the light from the object side is finally imaged on an image plane IMA6. The first lens L61 has a positive refractive power made of a plastic material, and the object side surface S62 has a convex image side surface S63 as a convex surface, and the object side surface S62 and the image side surface S63 are aspherical surfaces. The second lens L62 has a negative refractive power made of a plastic material, and the object side surface S64 has a convex image side surface S65 as a concave surface, and the object side surface S64 and the image side surface S65 are aspherical surfaces. The third lens L63 has a positive refractive power made of a plastic material, and the object side surface S66 has a concave image side surface S67 as a convex surface, and the object side surface S66 and the image side surface S67 are aspherical surfaces. The fourth lens L64 has a positive refractive power made of a plastic material, and the object side surface S68 has a concave image side surface S69 as a convex surface, and the object side surface S68 and the image side surface S69 are aspherical surfaces. The fifth lens L65 has a positive refractive power made of a plastic material, and the object side surface S610 has a concave image side surface S611 as a convex surface, and the object side surface S610 and the image side surface S611 are both aspherical surfaces. The sixth lens L66 has a positive refractive power made of a plastic material, and the object side surface S612 has a convex image side surface S613 as a concave surface, and the object side surface S612 and the image side surface S613 are aspherical surfaces. The filter OF6 has a flat side surface S614 and an image side surface S615.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第六實施例中的成像鏡頭6需滿足底下二條件:
其中,f64為第四透鏡L64之有效焦距,f6為成像鏡頭6之有效焦距,TTL6為第一透鏡L61之物側面S62至成像面IMA6於光軸OA6上之距離。 Where f6 4 is the effective focal length of the fourth lens L64, f6 is the effective focal length of the imaging lens 6, and TTL6 is the distance from the object side S62 of the first lens L61 to the imaging plane IMA6 on the optical axis OA6.
利用上述透鏡與光圈ST6之設計,使得成像鏡頭6能有效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 The design of the lens and the aperture ST6 described above enables the imaging lens 6 to effectively shorten the total length of the lens, improve the viewing angle, effectively correct aberrations, and improve lens resolution.
表十一為第11圖中成像鏡頭6之各透鏡之相關參數表,表十一資料顯示本實施例之成像鏡頭6之有效焦距等於3.6224mm、光圈值等於2.0、視角等於77.0°、鏡頭總長度等於4.795mm。 Table 11 is a table of related parameters of the lenses of the imaging lens 6 in FIG. 11. Table 11 shows that the effective focal length of the imaging lens 6 of the present embodiment is equal to 3.6224 mm, the aperture value is equal to 2.0, the viewing angle is equal to 77.0°, and the total length of the lens is Degree is equal to 4.795mm.
表十一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 11 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 +Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16
其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表十二為表十一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 12 is the relevant parameter table of the aspherical surface of each lens in Table 11, where k is a conical coefficient (Conic Constant) and A~G is an aspherical coefficient.
第六實施例之成像鏡頭6,其第四透鏡L64之有效焦距f64=87.4928mm,成像鏡頭6之有效焦距f6=3.6224mm,第一透鏡L61之物側面S62至成像面IMA6於光軸OA6上之距離TTL6=4.795mm,由上述資料可得到f64/f6=24.1475、f6/TTL6=0.7555,皆能滿 足上述條件(31)至條件(32)之要求。 In the imaging lens 6 of the sixth embodiment, the effective focal length f6 4 of the fourth lens L64 is 87.4928 mm, the effective focal length of the imaging lens 6 is f6 = 3.6224 mm, and the object side surface S62 of the first lens L61 to the imaging plane IMA6 is on the optical axis OA6. The distance above is TTL6=4.795mm. From the above data, f6 4 /f6=24.1475 and f6/TTL6=0.7555 can be obtained, which can meet the requirements of the above conditions (31) to (32).
另外,第六實施例之成像鏡頭6的光學性能也可達到要求,這可從第12A至第12C圖看出。第12A圖所示的,是第六實施例之成像鏡頭6的縱向球差(Longitudinal Spherical Aberration)圖。第12B圖所示的,是第六實施例之成像鏡頭6的像散場曲(Astigmatic Field Curves)圖。第12C圖所示的,是第六實施例之成像鏡頭6的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 6 of the sixth embodiment can also be achieved, which can be seen from Figs. 12A to 12C. Fig. 12A is a longitudinal Spherical Aberration diagram of the imaging lens 6 of the sixth embodiment. Fig. 12B is an astigmatic field curve diagram of the imaging lens 6 of the sixth embodiment. Fig. 12C is a distortion diagram of the imaging lens 6 of the sixth embodiment.
由第12A圖可看出,第六實施例之成像鏡頭6對波長為435.8400nm、546.0700nm、656.2800nm之光線所產生的縱向球差值介於-0.010mm至0.036mm之間。由第12B圖可看出,第六實施例之成像鏡頭6對波長為546.0700nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.12mm至0.04mm之間。由第12C圖可看出,第六實施例之成像鏡頭6對波長為546.0700nm之光線所產生的畸變介於0%至2.3%之間。顯見第六實施例之成像鏡頭6之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from Fig. 12A, the longitudinal spherical aberration of the imaging lens 6 of the sixth embodiment for light having a wavelength of 435.8400 nm, 546.0700 nm, and 656.2800 nm is between -0.010 mm and 0.036 mm. As can be seen from Fig. 12B, the imaging lens 6 of the sixth embodiment has an astigmatic field curvature of -0.12 mm to 0.04 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 546.0700 nm. between. As can be seen from Fig. 12C, the imaging lens 6 of the sixth embodiment has a distortion of between 0% and 2.3% for light having a wavelength of 546.0700 nm. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 6 of the sixth embodiment can be effectively corrected, thereby obtaining better optical performance.
請參閱第13圖,第13圖係依據本發明之成像鏡頭之第七實施例的透鏡配置與光路示意圖。成像鏡頭7沿著光軸OA7從物側至像側依序包括一光圈ST7、一第一透鏡L71、一第二透鏡L72、一第三透鏡L73、一第四透鏡L74、一第五透鏡L75、一第六透鏡L76及一濾光片OF7。成像時,來自物側之光線最後成像於一成像面IMA7上。第一透鏡L71具有正屈光力由塑膠材質製成,其物側面S72為凸面像側面S73為凸面,物側面S72與像側面S73皆為非球面表面。第二透鏡L72具有負屈光力由塑膠材質製成,其物側面S74為凸面像側面S75為凹面,物側面S74與像側面S75皆為 非球面表面。第三透鏡L73具有正屈光力由塑膠材質製成,其物側面S76為凹面像側面S77為凸面,物側面S76與像側面S77皆為非球面表面。第四透鏡L74具有正屈光力由塑膠材質製成,其物側面S78為凹面像側面S79為凸面,物側面S78與像側面S79皆為非球面表面。第五透鏡L75具有正屈光力由塑膠材質製成,其物側面S710為凹面像側面S711為凸面,物側面S710與像側面S711皆為非球面表面。第六透鏡L76具有正屈光力由塑膠材質製成,其物側面S712為凸面像側面S713為凹面,物側面S712與像側面S713皆為非球面表面。濾光片OF7其物側面S714與像側面S715皆為平面。 Please refer to FIG. 13, which is a schematic diagram of a lens configuration and an optical path of a seventh embodiment of an imaging lens according to the present invention. The imaging lens 7 sequentially includes an aperture ST7, a first lens L71, a second lens L72, a third lens L73, a fourth lens L74, and a fifth lens L75 from the object side to the image side along the optical axis OA7. A sixth lens L76 and a filter OF7. At the time of imaging, the light from the object side is finally imaged on an image plane IMA7. The first lens L71 has a positive refractive power made of a plastic material, and the object side surface S72 has a convex image side surface S73 as a convex surface, and the object side surface S72 and the image side surface S73 are aspherical surfaces. The second lens L72 has a negative refractive power made of a plastic material, and the object side surface S74 has a convex image side surface S75 as a concave surface, and the object side surface S74 and the image side surface S75 are both Aspherical surface. The third lens L73 has a positive refractive power made of a plastic material, and the object side surface S76 has a concave image side surface S77 as a convex surface, and the object side surface S76 and the image side surface S77 are aspherical surfaces. The fourth lens L74 has a positive refractive power made of a plastic material, and the object side surface S78 has a concave image side surface S79 as a convex surface, and the object side surface S78 and the image side surface S79 are aspherical surfaces. The fifth lens L75 has a positive refractive power made of a plastic material, and the object side surface S710 has a concave image side surface S711 as a convex surface, and the object side surface S710 and the image side surface S711 are both aspherical surfaces. The sixth lens L76 has a positive refractive power made of a plastic material, and the object side surface S712 has a convex image side surface S713 which is a concave surface, and the object side surface S712 and the image side surface S713 are both aspherical surfaces. The filter OF7 has a flat side surface S714 and an image side surface S715.
另外,為使本發明之成像鏡頭能保持良好的光學性能,第七實施例中的成像鏡頭7需滿足底下二條件:
其中,f74為第四透鏡L74之有效焦距,f7為成像鏡頭7之有效焦距,TTL7為第一透鏡L71之物側面S72至成像面IMA7於光軸OA7上之距離。 Where f7 4 is the effective focal length of the fourth lens L74, f7 is the effective focal length of the imaging lens 7, and TTL7 is the distance from the object side S72 of the first lens L71 to the imaging plane IMA7 on the optical axis OA7.
利用上述透鏡與光圈ST7之設計,使得成像鏡頭7能有效的縮短鏡頭總長度、提高視角、有效的修正像差、提升鏡頭解析度。 With the design of the above lens and aperture ST7, the imaging lens 7 can effectively shorten the total length of the lens, improve the viewing angle, effectively correct aberrations, and improve lens resolution.
表十三為第13圖中成像鏡頭7之各透鏡之相關參數表,表十三資料顯示本實施例之成像鏡頭7之有效焦距等於3.7460mm、光圈值等於2.2、視角等於75.2°、鏡頭總長度等於4.873mm。 Table 13 is a table of related parameters of the lenses of the imaging lens 7 in Fig. 13. Table 13 shows that the effective focal length of the imaging lens 7 of the present embodiment is equal to 3.7460 mm, the aperture value is equal to 2.2, the viewing angle is equal to 75.2°, and the total length of the lens is Degree is equal to 4.873mm.
表十三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspherical surface depression z of each lens in Table 13 is obtained by the following formula: z = ch 2 /{1 + [1 - (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 +Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16
其中: c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 among them: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A~G: aspheric coefficient.
表十四為表十三中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 14 is a table of related parameters of the aspherical surfaces of the respective lenses in Table 13, where k is a conical coefficient (Conic Constant) and A to G are aspherical coefficients.
第七實施例之成像鏡頭7,其第四透鏡L74之有效焦距f74=91.3460mm,成像鏡頭7之有效焦距f7=3.7460mm,第一透鏡L71之物側面S72至成像面IMA7於光軸OA7上之距離TTL7=4.873mm,由上述資料可得到f74/f7=24.3847、f7/TTL7=0.7687,皆能滿足上述條件(33)至條件(34)之要求。 In the imaging lens 7 of the seventh embodiment, the effective focal length f7 4 of the fourth lens L74 is 91.3460 mm, the effective focal length f7 of the imaging lens 7 is 3.7460 mm, and the object side surface S72 of the first lens L71 to the imaging plane IMA7 is on the optical axis OA7. The distance above is TTL7=4.873mm. From the above data, f7 4 /f7=24.3847 and f7/TTL7=0.7687 can be obtained, which can meet the requirements of the above conditions (33) to (34).
另外,第七實施例之成像鏡頭7的光學性能也可達到要求,這可從第14A至第14C圖看出。第14A圖所示的,是第七實施例之成像鏡頭7的縱向球差(Longitudinal Spherical Aberration)圖。第14B圖所示的,是第七實施例之成像鏡頭7的像散場曲(Astigmatic Field Curves)圖。第14C圖所示的,是第七實施例之成像鏡頭7的畸變(Distortion)圖。 Further, the optical performance of the imaging lens 7 of the seventh embodiment can also be achieved, which can be seen from Figs. 14A to 14C. Fig. 14A is a longitudinal Spherical Aberration diagram of the imaging lens 7 of the seventh embodiment. Fig. 14B is a view showing an astigmatism field curve of the imaging lens 7 of the seventh embodiment. Fig. 14C is a distortion diagram of the imaging lens 7 of the seventh embodiment.
由第14A圖可看出,第七實施例之成像鏡頭7對波長為435.8400nm、546.0700nm、656.2800nm之光線所產生的縱向球差值介於-0.030mm至0.050mm之間。由第14B圖可看出,第七實施例之成像鏡頭7對波長為546.0700nm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之像散場曲介於-0.1mm至0.05mm之間。由第14C圖可看出,第七實施例之成像鏡頭7對波長為546.0700nm之光線所產生的畸變介於-0.1%至2.3% 之間。顯見第七實施例之成像鏡頭7之縱向球差、像散場曲、畸變都能被有效修正,從而得到較佳的光學性能。 As can be seen from Fig. 14A, the longitudinal spherical aberration value of the imaging lens 7 of the seventh embodiment for light having a wavelength of 435.8400 nm, 546.0700 nm, and 656.2800 nm is between -0.030 mm and 0.050 mm. As can be seen from Fig. 14B, the imaging lens 7 of the seventh embodiment has an astigmatic field curvature of -0.1 mm to 0.05 mm in the direction of the tangential direction and the sagittal direction for the light having a wavelength of 546.0700 nm. between. As can be seen from Fig. 14C, the imaging lens 7 of the seventh embodiment has a distortion of -0.1% to 2.3% for light having a wavelength of 546.0700 nm. between. It is apparent that the longitudinal spherical aberration, the astigmatic field curvature, and the distortion of the imaging lens 7 of the seventh embodiment can be effectively corrected, thereby obtaining better optical performance.
上述實施例中,第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡及第六透鏡之物側面與像側面皆為非球面表面,然而可以了解到,若第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡及第六透鏡之物側面及像側面改為至少有一面為非球面表面,亦應屬本發明之範疇。 In the above embodiment, the object side surface and the image side surface of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are both aspherical surfaces, but it can be understood that if the first lens, It is also within the scope of the present invention that the object side and the image side of the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are at least one aspherical surface.
1‧‧‧成像鏡頭 1‧‧‧ imaging lens
L11‧‧‧第一透鏡 L11‧‧‧ first lens
L12‧‧‧第二透鏡 L12‧‧‧ second lens
L13‧‧‧第三透鏡 L13‧‧‧ third lens
L14‧‧‧第四透鏡 L14‧‧‧4th lens
L15‧‧‧第五透鏡 L15‧‧‧ fifth lens
L16‧‧‧第六透鏡 L16‧‧‧ sixth lens
ST1‧‧‧光圈 ST1‧‧‧ aperture
OF1‧‧‧濾光片 OF1‧‧‧Filter
OA1‧‧‧光軸 OA1‧‧‧ optical axis
IMA1‧‧‧成像面 IMA1‧‧‧ imaging surface
S11、S12、S13、S14、S15‧‧‧面 S11, S12, S13, S14, S15‧‧
S16、S17、S18、S19、S110‧‧‧面 S16, S17, S18, S19, S110‧‧‧
S111、S112、S113、S114、S115‧‧‧面 S111, S112, S113, S114, S115‧‧‧
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104120892A TWI559030B (en) | 2015-06-29 | 2015-06-29 | Lens assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104120892A TWI559030B (en) | 2015-06-29 | 2015-06-29 | Lens assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI559030B true TWI559030B (en) | 2016-11-21 |
TW201701014A TW201701014A (en) | 2017-01-01 |
Family
ID=57851694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104120892A TWI559030B (en) | 2015-06-29 | 2015-06-29 | Lens assembly |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI559030B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI727556B (en) * | 2019-11-26 | 2021-05-11 | 大陸商玉晶光電(廈門)有限公司 | Optical imaging lens |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201520594A (en) * | 2014-10-23 | 2015-06-01 | 玉晶光電股份有限公司 | Imaging lens and electronic apparatus utilizing the imaging lens |
TWM503575U (en) * | 2015-03-20 | 2015-06-21 | Largan Precision Co Ltd | Photographing optical lens assembly, image capturing unit and electronic device |
-
2015
- 2015-06-29 TW TW104120892A patent/TWI559030B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201520594A (en) * | 2014-10-23 | 2015-06-01 | 玉晶光電股份有限公司 | Imaging lens and electronic apparatus utilizing the imaging lens |
TWM503575U (en) * | 2015-03-20 | 2015-06-21 | Largan Precision Co Ltd | Photographing optical lens assembly, image capturing unit and electronic device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI727556B (en) * | 2019-11-26 | 2021-05-11 | 大陸商玉晶光電(廈門)有限公司 | Optical imaging lens |
US11500178B2 (en) | 2019-11-26 | 2022-11-15 | Genius Electronic Optical (Xiamen) Co., Ltd. | Optical imaging lens |
Also Published As
Publication number | Publication date |
---|---|
TW201701014A (en) | 2017-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108873245B (en) | Wide-angle lens | |
CN106324810B (en) | Imaging lens | |
CN110058385B (en) | Wide-angle lens | |
CN108957709B (en) | Wide-angle lens | |
CN107577030B (en) | Wide-angle lens | |
TWI480576B (en) | Wide-angle lens | |
TW201939088A (en) | Lens assembly | |
US20150241661A1 (en) | Lens Assembly | |
TWI556004B (en) | Lens assembly | |
TWI704387B (en) | Lens assembly | |
US11314043B2 (en) | Lens assembly including six lenses of −−++−+ refractive powers | |
TWI668480B (en) | Lens assembly | |
TWI677731B (en) | Lens assembly | |
TWI559030B (en) | Lens assembly | |
TW201541116A (en) | Lens assembly | |
TW201819981A (en) | Lens assembly | |
TWI743117B (en) | Lens assembly | |
TWI745371B (en) | Wide-angle lens assembly | |
TW201901230A (en) | Wide-angle lens (13) | |
TWI808056B (en) | Wide-angle lens assembly | |
CN114442267A (en) | Imaging lens | |
TWI504926B (en) | Miniaturized lens assembly | |
TW201725414A (en) | Lens assembly | |
TWI801909B (en) | Lens assembly and optical apparatus thereof | |
TWI752152B (en) | Wide-angle lens assembly |