TWI698649B - Antenna measurment system for mimo ota - Google Patents
Antenna measurment system for mimo ota Download PDFInfo
- Publication number
- TWI698649B TWI698649B TW108132966A TW108132966A TWI698649B TW I698649 B TWI698649 B TW I698649B TW 108132966 A TW108132966 A TW 108132966A TW 108132966 A TW108132966 A TW 108132966A TW I698649 B TWI698649 B TW I698649B
- Authority
- TW
- Taiwan
- Prior art keywords
- corner
- bottom corner
- rotating base
- anechoic chamber
- field antenna
- Prior art date
Links
Images
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
Description
本發明是關於一種量測系統,特別是一種應用於多重路徑環境下的多輸入多輸出空中傳輸量測系統。 The invention relates to a measurement system, in particular to a multi-input multi-output air transmission measurement system applied in a multi-path environment.
參閱圖1,是美國專利申請號US 2012/0282863 A1(以下簡稱已知技術1)公開的一種天線測試系統的局部示意圖,此種已知技術是將一待測裝置17放置在電波暗室1中,並利用6個測試天線等間距地環繞該待測裝置17,以量測該待測裝置17的天線特性。
1 is a partial schematic diagram of an antenna testing system disclosed in US Patent Application No. US 2012/0282863 A1 (hereinafter referred to as known technology 1). This known technology is to place a device under test 17 in an
這種已知技術1的缺點在於:(1)、測試天線11與測試天線12彼此相對,所以量測該待測裝置17的接收特性時,相對的兩測試天線11、12所發射出的電磁波就會彼此碰撞干擾造成量測誤差,同理,相對的兩測試天線13、14,以及相對的兩測試天線15、16也會有同樣的問題。(2)、習知1若是採用遠場量測技術,則該等測試天線11、12、13、14、15、16中的任一者距離該待測裝置17的距離r就必須遠大於2D2/λ,以使得從每一個測試天線11、12、13、14、15、16到達該待測裝置17的電磁波是近似均勻平面波。純理論計算時,參數D就是待測天線171的最大幾何直徑,λ是量測時該待測天線171的工作波長,然而在實務應用上,若是該待測裝置17是手機、平板,或是筆記型電腦,則該待測天線171是連接待測裝置17內部的電
路板(圖未示出),以將此電路板作為參考接地面,這會使得整體待測裝置17都參與輻射,而不僅只是該待測天線171而已,因此,為了修正理論與實務的偏差,參數D應修正為待測裝置17的最大幾何直徑,在進入5G毫米波的通訊時代,智慧型手機的尺寸所對應的參數D幾乎不變,但是毫米波的波長λ小至毫米等級,經計算2D2/λ就會變得非常大,因此用於5G通訊量測時的電波暗室1的空間就要遠大於4G通訊量測時的要求,這會嚴重增加建置的場地需求並提高建置費用。(3)、若是要解決前述第(2)項的問題,則類似如圖1的已知技術就得採用近場量測技術以取代遠場量測技術,但近場量測技術在過去被動式天線量測就得將到達該待測裝置17處的非均勻平面波的相位經過複雜的計算,才能轉換達到近似遠場的量測效果,不但無法避免地引入轉換計算誤差,還會因計算時間降低量測效率,但更難克服的問題就是近場量測只適用於被動式量測(待測裝置17關機並將待測天線171以傳導線外接儀器量測),無法對該待測裝置17進行主動式量測(就是將待測裝置17開機進入實際通訊模式量測),原因在於近場量測必須知道量測時電磁波的相位,再利用數值計算的方式將近場量的數據轉換成遠場,但是該待測裝置17於主動式量測時的電磁波都是經過通訊調變後的訊號,因此難以回推計算未調變前的電磁波相位,且越複雜的計算過程引入的誤差和運算時間需求也越大,因此已知技術也沒有辦法解決5G毫米波主動式量測時電波暗室1的空間需求問題。
The disadvantages of this
為了解決前述已知技術的問題,本發明提出一種相較遠場量測節省電波暗室的空間,無須近場轉遠場的繁複 計算,同時適用主、被動式量測,以及還能避免多個測試天線彼此電磁干擾的測試系統。 In order to solve the aforementioned problems of the known technology, the present invention proposes a method that saves the space of the anechoic chamber compared to the far-field measurement, and does not require the complexities of converting the near field to the far field. Calculation, applicable to both active and passive measurement, as well as a test system that can avoid electromagnetic interference between multiple test antennas.
本發明用於多輸入多輸出空中傳輸的天線量測系統包括一電波暗室、一旋轉基座及多數個縮距場天線單元。 The antenna measurement system used for multi-input multi-output air transmission of the present invention includes an electric wave anechoic chamber, a rotating base and a plurality of short-distance field antenna units.
該旋轉基座設置於該電波暗室中,該旋轉基座包括一平台面,該平台面用以放置一待測裝置,該待測裝置包括多數個待測天線。 The rotating base is arranged in the anechoic chamber, and the rotating base includes a platform surface for placing a device to be tested, and the device to be tested includes a plurality of antennas to be tested.
每一個縮距場天線單元包括一訊號饋源,一凹面鏡,一用以固定該訊號饋源與該凹面鏡的連接臂,每一個縮距場天線單元中的該訊號饋源用以朝向對應的該凹面鏡發射一第一射頻訊號,該凹面鏡面向該旋轉基座的平台面設置,用以將該第一射頻訊號反射成為朝向該旋轉基座的平台面的一第二射頻訊號,其中,每一第二射頻訊號是均勻平面波,且任兩個縮距場天線單元的凹面鏡不面對面地設置。 Each narrow field antenna unit includes a signal feed, a concave mirror, and a connecting arm for fixing the signal feed and the concave mirror. The signal feed in each narrow field antenna unit is used to face the corresponding The concave mirror emits a first radio frequency signal, and the concave mirror is arranged facing the platform surface of the rotating base to reflect the first radio frequency signal into a second radio frequency signal facing the platform surface of the rotating base, wherein each The two radio frequency signals are uniform plane waves, and the concave mirrors of any two narrow-field antenna units are not arranged face to face.
較佳地,該電波暗室呈一立方體,並包括一第一頂角、一第二頂角、一第三頂角、一第四頂角、一第一底角、一第二底角、一第三底角、一第四底角。該第一頂角、該旋轉基座的平台面及該第三底角三者依序沿著一直線排列;該第二頂角、該旋轉基座的平台面及該第四底角三者依序沿著一直線排列;該第三頂角、該旋轉基座的平台面及該第一底角三者依序沿著一直線排列;該第四頂角、該旋轉基座的平台面及該第二底角三者依序沿著一直線排列。其中,該等縮 距場天線單元的數量是兩個,分別位於第一頂角及第二底角。 Preferably, the anechoic chamber is in the shape of a cube and includes a first top corner, a second top corner, a third top corner, a fourth top corner, a first bottom corner, a second bottom corner, and a The third bottom corner, a fourth bottom corner. The first top angle, the platform surface of the rotating base, and the third bottom angle are sequentially arranged along a straight line; the second top angle, the platform surface of the rotating base, and the fourth bottom angle are arranged according to The sequence is arranged along a straight line; the third vertex, the platform surface of the rotating base, and the first bottom angle are sequentially arranged along a straight line; the fourth vertex angle, the platform surface of the rotating base, and the The three bottom corners are arranged in sequence along a straight line. Among them, the contraction The number of distance field antenna elements is two, which are located at the first top corner and the second bottom corner respectively.
較佳地,該電波暗室呈一立方體,並包括一第一頂角、一第二頂角、一第三頂角、一第四頂角、一第一底角、一第二底角、一第三底角、一第四底角。該第一頂角、該旋轉基座的平台面及該第三底角三者依序沿著一直線排列;該第二頂角、該旋轉基座的平台面及該第四底角三者依序沿著一直線排列;該第三頂角、該旋轉基座的平台面及該第一底角三者依序沿著一直線排列;該第四頂角、該旋轉基座的平台面及該第二底角三者依序沿著一直線排列。其中,該等縮距場天線單元的數量是三個,分別位於第一頂角、第二底角,以及第三底角與第四頂角的連線中間。 Preferably, the anechoic chamber is in the shape of a cube and includes a first top corner, a second top corner, a third top corner, a fourth top corner, a first bottom corner, a second bottom corner, and a The third bottom corner, a fourth bottom corner. The first top angle, the platform surface of the rotating base, and the third bottom angle are sequentially arranged along a straight line; the second top angle, the platform surface of the rotating base, and the fourth bottom angle are arranged according to The sequence is arranged along a straight line; the third vertex, the platform surface of the rotating base, and the first bottom angle are sequentially arranged along a straight line; the fourth vertex angle, the platform surface of the rotating base, and the The three bottom corners are arranged in sequence along a straight line. Wherein, the number of the reduced-distance field antenna units is three, which are respectively located at the first top corner, the second bottom corner, and the middle of the line connecting the third bottom corner and the fourth top corner.
較佳地,該電波暗室呈一立方體,並包括一第一頂角、一第二頂角、一第三頂角、一第四頂角、一第一底角、一第二底角、一第三底角、一第四底角。該第一頂角、該旋轉基座的平台面及該第三底角三者依序沿著一直線排列;該第二頂角、該旋轉基座的平台面及該第四底角三者依序沿著一直線排列;該第三頂角、該旋轉基座的平台面及該第一底角三者依序沿著一直線排列;該第四頂角、該旋轉基座的平台面及該第二底角三者依序沿著一直線排列,其中,該等縮距場天線單元的數量是四個,分別位於第一頂角、第二底角、第三頂角及第四底角。 Preferably, the anechoic chamber is in the shape of a cube and includes a first top corner, a second top corner, a third top corner, a fourth top corner, a first bottom corner, a second bottom corner, and a The third bottom corner, a fourth bottom corner. The first top angle, the platform surface of the rotating base, and the third bottom angle are sequentially arranged along a straight line; the second top angle, the platform surface of the rotating base, and the fourth bottom angle are arranged according to The sequence is arranged along a straight line; the third vertex, the platform surface of the rotating base, and the first bottom angle are sequentially arranged along a straight line; the fourth vertex angle, the platform surface of the rotating base, and the The three of the two bottom corners are arranged in sequence along a straight line, wherein the number of the reduced-distance field antenna units is four, which are respectively located at the first top corner, the second bottom corner, the third top corner, and the fourth bottom corner.
較佳地,該電波暗室呈一立方體,並包括一第一 頂角、一第二頂角、一第三頂角、一第四頂角、一第一底角、一第二底角、一第三底角、一第四底角。該第一頂角、該旋轉基座的平台面及該第三底角三者依序沿著一直線排列;該第二頂角、該旋轉基座的平台面及該第四底角三者依序沿著一直線排列;該第三頂角、該旋轉基座的平台面及該第一底角三者依序沿著一直線排列;該第四頂角、該旋轉基座的平台面及該第二底角三者依序沿著一直線排列。其中,該等縮距場天線單元的數量是六個,分別位於第一頂角、第二底角、第三頂角、第四底角、第二頂角與第二底角的連線中間,以及第三頂角與第三底角的連線中間。 Preferably, the anechoic chamber is a cube and includes a first Top corner, a second top corner, a third top corner, a fourth top corner, a first bottom corner, a second bottom corner, a third bottom corner, and a fourth bottom corner. The first top angle, the platform surface of the rotating base, and the third bottom angle are sequentially arranged along a straight line; the second top angle, the platform surface of the rotating base, and the fourth bottom angle are arranged according to The sequence is arranged along a straight line; the third vertex, the platform surface of the rotating base, and the first bottom angle are sequentially arranged along a straight line; the fourth vertex angle, the platform surface of the rotating base, and the The three bottom corners are arranged in sequence along a straight line. Among them, the number of the reduced-distance field antenna units is six, which are located in the middle of the line connecting the first top corner, the second bottom corner, the third top corner, the fourth bottom corner, the second top corner, and the second bottom corner. , And the middle of the line between the third top corner and the third bottom corner.
較佳地,該電波暗室還包括多數個螺絲孔,每一個縮距場天線單元的連接臂包括一第一臂部及一第二臂部,每一第一臂部固定於該電波暗室,每一連接臂的第二臂部與該凹面鏡相連接。 Preferably, the anechoic chamber further includes a plurality of screw holes, and the connecting arm of each shortened field antenna unit includes a first arm portion and a second arm portion, and each first arm portion is fixed to the anechoic chamber, each The second arm part of a connecting arm is connected with the concave mirror.
較佳地,該凹面鏡可以相對該連接臂的第二臂部轉動。 Preferably, the concave mirror can rotate relative to the second arm portion of the connecting arm.
較佳地,用於多輸入多輸出空中傳輸的天線量測系統更包括一第一支撐板,該第一支撐板為非導體、低介電常數(permittivity)、低介質損耗(dielectric loss)的材料,該第一支撐板固定於該電波暗室的一壁板,用來支撐對應的一個該縮距場天線單元的重量,且受該第一支撐板支撐的該縮距場天線單元是位於第三頂角與第三底角的連線中間的位 置。 Preferably, the antenna measurement system for multi-input multi-output air transmission further includes a first support plate, the first support plate is non-conductor, low permittivity (permittivity), low dielectric loss (dielectric loss) Material, the first supporting plate is fixed to a wall plate of the anechoic chamber to support the weight of a corresponding one of the short-distance field antenna units, and the short-distance field antenna unit supported by the first supporting plate is located in the first The position in the middle of the line between the three top corners and the third bottom corner Set.
較佳地,用於多輸入多輸出空中傳輸的天線量測系統,更包括一個也是非導體、低介電常數、低介質損耗的第二支撐板,該第二支撐板固定於該電波暗室的該壁板,用來支撐對應的另一個該縮距場天線單元的重量,且受該第二支撐板支撐的該縮距場天線單元是位於第二頂角與第二底角的連線中間的位置。 Preferably, the antenna measurement system for multi-input multi-output air transmission further includes a second support plate that is also non-conductor, low dielectric constant, and low dielectric loss, and the second support plate is fixed to the anechoic chamber. The wall plate is used to support the weight of another corresponding narrow-range field antenna unit, and the narrow-range field antenna unit supported by the second support plate is located in the middle of the line connecting the second top corner and the second bottom corner s position.
較佳地,用於多輸入多輸出空中傳輸的天線量測系統更包括呈T形狀或倒L形狀的一第一支撐柱及一第二支撐柱,該第一支撐板為非導體、低介電常數、低介質損耗的材料,該第一支撐柱固定於該電波暗室的一底板上,用來支撐對應的一個該縮距場天線單元的重量,且受該第一支撐柱支撐的該縮距場天線單元是位於第三頂角與第三底角的連線中間的位置,該第二支撐柱也是非導體、低介電常數、低介質損耗的材料,該第二支撐柱固定於該電波暗室的該底板上,用來支撐對應的另一個該縮距場天線單元的重量,且受該第二支撐柱支撐的該縮距場天線單元是位於第二頂角與第二底角的連線中間的位置。 Preferably, the antenna measurement system for multi-input multi-output air transmission further includes a first support column and a second support column in a T shape or an inverted L shape, and the first support plate is a non-conductor, low dielectric The first support column is fixed on a bottom plate of the electric wave anechoic chamber to support the weight of a corresponding one of the narrow-distance field antenna units, and is supported by the first support column. The distance field antenna unit is located in the middle of the line connecting the third top angle and the third bottom angle. The second support column is also a non-conductor, low dielectric constant, and low dielectric loss material. The second support column is fixed on the On the bottom plate of the anechoic chamber, it is used to support the weight of another corresponding narrowing field antenna unit, and the narrowing field antenna unit supported by the second supporting column is located at the second top corner and the second bottom corner The position in the middle of the connection.
本發明之效果在於:利用縮距場天線單元的凹面鏡將來自訊號饋源的非均勻平面波(第一射頻訊號)反射成均勻平面波(第二射頻訊號),就不受限如圖1習知技術參數r必須遠大於2D2/λ到達該待測裝置才是均勻平面波的限制,因 此改進了遠場量測電波暗室空間需求大或是近場量測計算複雜且不適合主動式量測的問題;此外,本發明亦考量該多數個縮距場天線單元在電波暗室中的空間配置,避免多輸入多輸出(MIMO)測試時任兩個縮距場天線單元反射出的第二射頻訊號相互碰撞干擾的問題。 The effect of the present invention is to use the concave mirror of the telescopic field antenna unit to reflect the non-uniform plane wave (the first radio frequency signal) from the signal feed into a uniform plane wave (the second radio frequency signal). The parameter r must be much larger than 2D 2 /λ to reach the device under test to reach the limit of the uniform plane wave. Therefore, the problem of large space requirement of the anechoic chamber for far-field measurement or complex calculation of near-field measurement and not suitable for active measurement is improved; In addition, the present invention also considers the spatial configuration of the plurality of short-distance field antenna units in the anechoic chamber, so as to avoid the collision and interference of the second radio frequency signals reflected by any two short-distance field antenna units during the multiple input multiple output (MIMO) test. problem.
1:電波暗室 1: anechoic chamber
11~16:測試天線 11~16: Test antenna
17:待測裝置 17: Device under test
171:待測天線 171: Antenna to be tested
2:電波暗室 2: anechoic chamber
200:壁板 200: siding
201:底板 201: Floor
21:第一頂角 21: The first vertex
22:第二頂角 22: second top corner
23:第三頂角 23: third vertex
24:第四頂角 24: fourth vertex
25:第一底角 25: first bottom corner
26:第二底角 26: second bottom corner
27:第三底角 27: Third bottom corner
28:第四底角 28: Fourth bottom corner
3:旋轉基座 3: Rotating base
31:平台面 31: platform surface
4:縮距場天線單元 4: Short-distance field antenna unit
41:訊號饋源 41: signal feed
42:凹面鏡 42: Concave mirror
43:連接臂 43: connecting arm
431:第一臂部 431: first arm
4311:螺絲 4311: screw
4312:固定金屬片 4312: fixed metal sheet
432:第二臂部 432: second arm
5:待測裝置 5: Device to be tested
51:待測天線 51: Antenna to be tested
111:第一射頻訊號 111: The first RF signal
112:第二射頻訊號 112: Second RF signal
291、293:位置 291, 293: Location
20:螺絲孔 20: Screw hole
61:第一支撐板 61: The first support plate
61:第二支撐板 61: second support plate
71:第一支撐柱 71: The first support column
72:第二支撐柱 72: second support column
第1圖是習知技術的局部示意圖。 Figure 1 is a partial schematic diagram of the conventional technology.
第2圖是本發明第一較佳實施例的示意圖。 Figure 2 is a schematic diagram of the first preferred embodiment of the present invention.
第3圖是一示意圖,說明第一較佳實施例的縮距場天線單元。 Figure 3 is a schematic diagram illustrating the reduced-range field antenna unit of the first preferred embodiment.
第4圖是本發明第二較佳實施例的示意圖。 Figure 4 is a schematic diagram of the second preferred embodiment of the present invention.
第5圖是本發明第三較佳實施例的示意圖。 Figure 5 is a schematic diagram of the third preferred embodiment of the present invention.
第6圖是本發明第四較佳實施例的示意圖。 Figure 6 is a schematic diagram of a fourth preferred embodiment of the present invention.
第7圖是一示意圖,說明任一較佳實施例的縮距場天線單元與電波暗室的一種固定方式。 Fig. 7 is a schematic diagram illustrating a method of fixing the distance field antenna unit and the anechoic chamber of any preferred embodiment.
第8圖是一示意圖,說明任一較佳實施例的縮距場天線單元與電波暗室的另一種固定方式。 Fig. 8 is a schematic diagram illustrating another method of fixing the distance field antenna unit and the anechoic chamber of any preferred embodiment.
第9圖是一示意圖,說明第一較佳實施例更包括一第一支撐板。 Figure 9 is a schematic diagram illustrating that the first preferred embodiment further includes a first support plate.
第10圖是一示意圖,說明第一較佳實施例更包括一第二支撐板。 Figure 10 is a schematic diagram illustrating that the first preferred embodiment further includes a second supporting plate.
第11圖是一示意圖,說明以T形狀第一支撐柱取代第一支撐板的實施方式。 Fig. 11 is a schematic diagram illustrating an embodiment in which a T-shaped first support column replaces the first support plate.
第12圖是一示意圖,說明以T形狀第二支撐柱取代第二支撐板的實施方式。 Figure 12 is a schematic diagram illustrating an embodiment in which a T-shaped second support column is used instead of the second support plate.
第13圖是一示意圖,說明以L形狀第一支撐柱取代第一支撐板的實施方式。 Figure 13 is a schematic diagram illustrating an embodiment in which an L-shaped first support column is used instead of the first support plate.
第14圖是一示意圖,說明以L形狀第二支撐柱取代第二支撐板的實施方式。 Fig. 14 is a schematic diagram illustrating an embodiment in which the second support plate is replaced by an L-shaped second support column.
參閱圖2及圖3,本發明用於多輸入多輸出空中傳輸的天線量測系統包括一電波暗室2、一旋轉基座3及多數個縮距場天線單元4。
2 and 3, the antenna measurement system for multi-input multi-output air transmission of the present invention includes an
該旋轉基座3設置於該電波暗室2中,該旋轉基座3包括一平台面31,該平台面31用以放置一待測裝置5,該待測裝置5包括多數個待測天線51。
The rotating
於第一較佳實施例,該電波暗室2呈一立方體,並包括一第一頂角21、一第二頂角22、一第三頂角23、一第四頂角24、一第一底角25、一第二底角26、一第三底角27、一第四底角28。該第一頂角21、該旋轉基座3的平台面31及該第三底角27三者依序沿著一直線排列;該第二頂角22、該旋轉基座3的平台面31及該第四底角28三者依序沿著一直線排列;該第三頂角23、該旋轉基座3的平台面31及該第一底角25三者依序沿著一直線排列;該第四頂角24、該旋轉基座3的平台面31及該第二底角26三者依序沿著一直線排列。
In the first preferred embodiment, the
每一個縮距場天線單元4包括一訊號饋源41,一凹面鏡42,一用以固定該訊號饋源41與該凹面鏡42的連接臂43。每一個縮距場天線單元4中的該訊號饋源41用以朝向對應的該凹面鏡42發射一第一射頻訊號111,該凹面鏡42面向該旋轉基座3的平台面31設置,用以將該第一射頻訊號111反射成為朝向該旋轉基座3的平台面31的一第二射頻訊號112,其中,每一第二射頻訊號112是均勻平面波,且任兩個縮距場天線單元4的凹面鏡42不面對面地設置。
Each narrow
其中,該等縮距場天線單元4的數量是六個,分別位於第一頂角21、第二底角26、第三頂角23、第四底角28、第二頂角22與第二底角26的連線中間(位置293),以及第三頂角23與第三底角27的連線中間(位置291)。
Among them, the number of the shortened
舉例說明,圖2中第一頂角21設置一個縮距場天線單元4,則第三底角27就不能設置縮距場天線單元4;第三頂角23設置一個縮距場天線單元4,則第二底角25就不能設置縮距場天線單元4;同理,位置291設置一個縮距場天線單元4,則位置292就不能設置縮距場天線單元4。如此,就能避免任兩個縮距場天線單元4的凹面鏡42面對面地設置產生兩個第二射頻訊號112相消的干擾問題。
For example, in FIG. 2, a short-range
參閱圖4,是本發明第二較佳實施例的一示意圖,第二較佳實施例與第一較佳實施例近似,差異在於:該等縮距場天線單元4的數量是四個,分別位於第一頂角21、第二底角26、第三頂角23及第四底角28。
Refer to FIG. 4, which is a schematic diagram of the second preferred embodiment of the present invention. The second preferred embodiment is similar to the first preferred embodiment, but the difference is that the number of the reduced
參閱圖5,是本發明第三較佳實施例的一示意圖,第三較佳實施例與第二較佳實施例近似,差異在於:該等縮距場天線單元4的數量是
三個,分別位於第一頂角21、第二底角26,以及第三底角27與第四頂角24的連線中間291。
Referring to FIG. 5, it is a schematic diagram of the third preferred embodiment of the present invention. The third preferred embodiment is similar to the second preferred embodiment, except that the number of the
參閱圖6,是本發明第四較佳實施例的一示意圖,第四較佳實施例與第三較佳實施例近似,差異在於:該等縮距場天線單元4的數量是兩個,分別位於第一頂角21及第二底角26。
Refer to FIG. 6, which is a schematic diagram of the fourth preferred embodiment of the present invention. The fourth preferred embodiment is similar to the third preferred embodiment, but the difference lies in that the number of the narrow
參閱圖7,前述的任一個較佳實施例的該電波暗室2還包括多數個螺絲孔20,每一個縮距場天線單元4的連接臂43包括一第一臂部431及一第二臂部432,每一第一臂部431以螺絲4311鎖接固定於該電波暗室2的壁板200上,每一連接臂43的第二臂部432與該凹面鏡42相連接,且該凹面鏡42可以相對該連接臂43的第二臂部432轉動,以調整該第二射頻訊號112的方向,該第二臂部432也可以相對該第一臂部431繞著Z方向軸轉動。
Referring to FIG. 7, the
參閱圖8,該縮距場天線單元4相較圖7的更包括一固定金屬片4312,該固定金屬片4312與該第一臂部431分別位於該電波暗室2的壁板200的兩側,兩個螺絲4311鎖接固定將該第一臂部431、該壁板200與該該固定金屬片4312三者鎖住固定。此外,在實際應用上不限於用螺絲4311鎖接,也可以用直接焊接的方式固定。
Referring to FIG. 8, the reduced-range
參閱圖2及圖9,圖9示意該第一較佳實施例更包括一第一支撐板61,該第一支撐板61為非導體、低介電常數、低介質損耗的材料以降低對電磁波的干擾,該第一支撐板61固定於該電波暗室2的壁板200,用來支撐對應的一個該縮距場天線單元4的重量,且受該第一支撐板61支撐的該縮距場天線單元4是位於第三頂角23與第三底角27的連線中間的位置291。
2 and 9, FIG. 9 shows that the first preferred embodiment further includes a
參閱圖2及圖10,圖10示意該第一較佳實施例更包括一個也
是非金屬導體、低介電常數、低介質損耗的第二支撐板62。該第二支撐板62固定於該電波暗室2的該壁板200,用來支撐對應的另一個該縮距場天線單元4的重量,且受該第二支撐板62支撐的該縮距場天線單元4是位於第二頂角22與第二底角26的連線中間的位置293。
2 and 10, FIG. 10 shows that the first preferred embodiment further includes a
It is the
參閱圖2、11、12,說明該第一支撐板61及該第二支撐板62(見圖9、10)也可以分別用一第一支撐柱71及一第二支撐柱72取代,該第一支撐柱71及該第二支撐柱72各呈T形狀、並設置固定在該電波暗室2的一底板201上的,且受該第一支撐柱71支撐的該縮距場天線單元4是位於第三頂角23與第三底角27的連線中間的位置291,受該第二支撐柱72支撐的該縮距場天線單元4是位於第二頂角22與第二底角26的連線中間的位置293。
Referring to Figures 2, 11, and 12, it is explained that the
參閱圖2、13、14,該第一支撐柱71及該第二支撐柱72也可以置換成倒L形狀。
Referring to Figs. 2, 13, and 14, the
本發明之效果在於:利用縮距場天線單元4的凹面鏡42將來自訊號饋源41的非均勻平面波(第一射頻訊號111)反射成均勻平面波(第二射頻訊號112),就不受限如圖1習知技術參數r必須遠大於2D2/λ到達該待測裝置5才是均勻平面波的限制,因此改進了遠場量測電波暗室2空間需求大或是近場量測計算複雜且不適合主動式量測的問題;此外,本發明亦考量該多數個縮距場天線單元4在電波暗室2中的空間配置,避免多輸入多輸出(MIMO)測試時任兩個縮距場天線單元4反射出的第二射頻訊號112相互碰撞干擾的問題。
The effect of the present invention is that the concave mirror 42 of the narrow
2:電波暗室 2: anechoic chamber
21:第一頂角 21: The first vertex
22:第二頂角 22: second top corner
23:第三頂角 23: third vertex
24:第四頂角 24: fourth vertex
25:第一底角 25: first bottom corner
26:第二底角 26: second bottom corner
27:第三底角 27: Third bottom corner
28:第四底角 28: Fourth bottom corner
3:旋轉基座 3: Rotating base
31:平台面 31: platform surface
4:縮距場天線單元 4: Short-distance field antenna unit
5:待測裝置 5: Device to be tested
51:待測天線 51: Antenna to be tested
111:第一射頻訊號 111: The first RF signal
112:第二射頻訊號 112: Second RF signal
291、292、293、294:位置 291, 292, 293, 294: location
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108132966A TWI698649B (en) | 2019-09-10 | 2019-09-10 | Antenna measurment system for mimo ota |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108132966A TWI698649B (en) | 2019-09-10 | 2019-09-10 | Antenna measurment system for mimo ota |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI698649B true TWI698649B (en) | 2020-07-11 |
TW202111338A TW202111338A (en) | 2021-03-16 |
Family
ID=72601853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132966A TWI698649B (en) | 2019-09-10 | 2019-09-10 | Antenna measurment system for mimo ota |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI698649B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532704A (en) * | 1993-06-15 | 1996-07-02 | Siepel-Societe Industrielle D'etudes Et Protection Electroique | Device for positioning antennas inside a measurment chamber of the anechoic or of the semi-anechoic type |
EP1992961A2 (en) * | 2007-05-11 | 2008-11-19 | Rosemount Aerospace Inc. | Scanning ladar with adjustable operational parameters |
CN204741460U (en) * | 2015-05-12 | 2015-11-04 | 彭嘉美 | Wireless communication throughput testing arrangement |
TWI635290B (en) * | 2017-07-11 | 2018-09-11 | 川升股份有限公司 | Antenna radiation pattern measurement system for multipath scenario application |
CN208459486U (en) * | 2018-05-30 | 2019-02-01 | 上海益麦电磁技术有限公司 | A kind of Antenna testing system based on suction wave apparatus |
-
2019
- 2019-09-10 TW TW108132966A patent/TWI698649B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532704A (en) * | 1993-06-15 | 1996-07-02 | Siepel-Societe Industrielle D'etudes Et Protection Electroique | Device for positioning antennas inside a measurment chamber of the anechoic or of the semi-anechoic type |
EP1992961A2 (en) * | 2007-05-11 | 2008-11-19 | Rosemount Aerospace Inc. | Scanning ladar with adjustable operational parameters |
CN204741460U (en) * | 2015-05-12 | 2015-11-04 | 彭嘉美 | Wireless communication throughput testing arrangement |
TWI635290B (en) * | 2017-07-11 | 2018-09-11 | 川升股份有限公司 | Antenna radiation pattern measurement system for multipath scenario application |
CN208459486U (en) * | 2018-05-30 | 2019-02-01 | 上海益麦电磁技术有限公司 | A kind of Antenna testing system based on suction wave apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW202111338A (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020224044A1 (en) | Antenna testing method and device, and storage medium | |
TWI635290B (en) | Antenna radiation pattern measurement system for multipath scenario application | |
US20130141287A1 (en) | Apparatus for Measuring a Radiation Pattern of an Active Antenna Arrangement | |
JP4438905B2 (en) | Radiation efficiency measuring apparatus and radiation efficiency measuring method | |
US11933828B2 (en) | Measurement method and device | |
US10156601B2 (en) | Antenna measurement system and antenna measurement method | |
JP7329085B2 (en) | High-speed OTA production line test platform | |
CN110007157B (en) | Antenna measurement system and antenna measurement method | |
US10012683B2 (en) | System for testing wireless terminal and method for controlling same | |
Boehm et al. | Robotically controlled directivity and gain measurements of integrated antennas at 280 GHz | |
TWI540792B (en) | A far-field calibration system of an antenna arrary system | |
TW202012945A (en) | An automatic measurement system for antenna radiation pattern | |
CN109239472B (en) | Antenna radiation pattern measuring system applied to multi-path environment | |
US20200264223A1 (en) | Measurement system, measurement setup as well as method for performing measurements | |
CN115047256A (en) | Array antenna multichannel parallel test device, test method and calibration method | |
CN210294411U (en) | Terahertz compact field test system based on electric scanning antenna | |
TWI674416B (en) | An automatic system for antenna measurement | |
TWI422838B (en) | Multichannel absorberless near field measurement system | |
TWI698649B (en) | Antenna measurment system for mimo ota | |
JP2010124360A (en) | Phased-array antenna inspection system, phased-array antenna inspecting apparatus, phased-array antenna inspection method and phased-array antenna | |
TW202032140A (en) | System for measuring electrical parameters | |
JP5760927B2 (en) | Radio wave measuring apparatus and radio wave measuring method | |
JP2003315440A (en) | Method and apparatus for measuring field in compact range | |
CN112557766A (en) | Antenna measurement system for multiple-input multiple-output air transmission | |
KR20120071840A (en) | Apparatus and method for testing antenna in wireless communication system |