TWI696823B - Slit light source and vision inspection apparatus having the same - Google Patents

Slit light source and vision inspection apparatus having the same Download PDF

Info

Publication number
TWI696823B
TWI696823B TW108110136A TW108110136A TWI696823B TW I696823 B TWI696823 B TW I696823B TW 108110136 A TW108110136 A TW 108110136A TW 108110136 A TW108110136 A TW 108110136A TW I696823 B TWI696823 B TW I696823B
Authority
TW
Taiwan
Prior art keywords
light
light source
slit
lens portion
slit light
Prior art date
Application number
TW108110136A
Other languages
Chinese (zh)
Other versions
TW202007952A (en
Inventor
柳弘俊
李明國
余弼相
Original Assignee
南韓商宰體有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商宰體有限公司 filed Critical 南韓商宰體有限公司
Publication of TW202007952A publication Critical patent/TW202007952A/en
Application granted granted Critical
Publication of TWI696823B publication Critical patent/TWI696823B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本發明涉及狹縫光源以及具有該狹縫光源的視覺檢查裝置,詳言之,涉及生成狹縫形狀的光並照射於照射物件的狹縫光源以及具有該狹縫光源的視覺檢查裝置。本發明揭露一種狹縫光源(20),包括:一光源部(100),生成光;以及一光學系(200),按照提前設定的倍率聚光從所述光源部(100)生成的光形成狹縫光,其中,所述光學系(200)包括:一平行光形成透鏡部(210),用於將從所述光源部(100)散發的光轉換成平行光;以及一聚光透鏡部(220),聚光通過所述平行光形成透鏡部(210)的光。 The present invention relates to a slit light source and a visual inspection device having the slit light source. Specifically, it relates to a slit light source that generates slit-shaped light and irradiates an irradiated object, and a visual inspection device having the slit light source. The invention discloses a slit light source (20), comprising: a light source part (100) generating light; and an optical system (200) formed by condensing light generated from the light source part (100) according to a preset magnification Slit light, wherein the optical system (200) includes: a parallel light forming lens portion (210) for converting light emitted from the light source portion (100) into parallel light; and a condenser lens portion (220), condensing light passing through the parallel light to form the lens portion (210).

Description

狹縫光源以及具有該狹縫光源的視覺檢查裝置 Slit light source and visual inspection device with the same

本發明涉及狹縫光源以及具有該狹縫光源的視覺檢查裝置,更詳細地,涉及生成狹縫形狀的光並照射於照射物件的狹縫光源以及具有該狹縫光源的視覺檢查裝置。 The present invention relates to a slit light source and a visual inspection device having the slit light source. More specifically, it relates to a slit light source that generates slit-shaped light and irradiates an irradiated object, and a visual inspection device having the slit light source.

半導體元件等在製程中、後執行各種檢查,以提高製程產量等。 Semiconductor devices, etc. perform various inspections during and after the process to increase process yield.

然後,在對半導體元件等檢查物件的檢查中有2D以及3D檢查中的至少一種的視覺檢查,對被檢查物件照射光,獲取被光照射的檢查物件的影像,分析獲取的影像。 Then, at least one of 2D and 3D inspections is used for inspection of inspection objects such as semiconductor elements, and the inspection object is irradiated with light, an image of the inspection object irradiated with light is acquired, and the acquired image is analyzed.

在此,用於執行視覺檢查的視覺檢查裝置一般包括:從光源生成固定圖案的光照射於檢查物件的光源;以及獲取通過光源被光照射的檢查物件的影像的影像獲取裝置(攝像機或者掃描器)。 Here, the visual inspection apparatus for performing visual inspection generally includes: a light source that generates light of a fixed pattern from the light source and irradiates the inspection object; and an image acquisition device (camera or scanner) that acquires an image of the inspection object irradiated with light by the light source ).

然後,對於所述光源,根據檢查形態可適應點光源、狹縫光源等。 Then, the light source can be adapted to point light sources, slit light sources, etc. according to the inspection form.

但是,參照韓國公開專利公報第10-2011-17158號,光源中狹縫光源一般由光源部、遠心透鏡以及介入於光源部與遠心鏡頭之間的狹縫部件構成。 However, referring to Korean Laid-Open Patent Publication No. 10-2011-17158, the slit light source in the light source is generally composed of a light source section, a telecentric lens, and a slit member interposed between the light source section and the telecentric lens.

但是,現有的狹縫光源使用狹縫部件,進而通過狹縫部件阻擋光的一部分出現光損失,因此存在需要使用輸出大的光源。 However, the conventional slit light source uses a slit member, and a part of the light blocked by the slit member causes light loss. Therefore, there is a need to use a light source with a large output.

另外,若對現有的光源使用白色光,則存在因色素差無法鮮明地形成狹縫光的邊界,以及在縮小狹縫光的寬度上存在局限性的問題。 In addition, if white light is used for the existing light source, there is a problem that the boundary of the slit light cannot be clearly formed due to color difference, and there is a limitation in reducing the width of the slit light.

最後,現有的狹縫光源存在很難根據狹縫光的用途改變狹縫光 的光束寬度的問題。 Finally, the existing slit light source is difficult to change the slit light according to the purpose of the slit light The problem of the beam width.

本發明的目的在於,認識到上述問題提供如下的狹縫光源以及具有該狹縫光源的視覺檢查裝置:利用多個圓柱透鏡構成倍率光學系,進而不存在光損失,並在白色光的情況下,也能夠無色差地形成照射區域邊界清晰的狹縫光。 The object of the present invention is to recognize the above-mentioned problems and provide a slit light source and a visual inspection device having the slit light source: a magnification optical system is formed by a plurality of cylindrical lenses, and there is no light loss, and in the case of white light It is also possible to form slit light with clear boundaries of the irradiation area without chromatic aberration.

另外,本發明的目的在於提供如下的狹縫光源以及具有該狹縫光源的視覺檢查裝置:將調整從光源發出的光的光束寬度的光束寬度調整透鏡部可移動地設置在光路上,進而能夠更加容易調整用於形成狹縫光的倍率光學系的倍率。 In addition, an object of the present invention is to provide a slit light source and a visual inspection device having the slit light source: a beam width adjustment lens unit that adjusts the beam width of light emitted from the light source is movably provided on an optical path, and thus can It is easier to adjust the magnification of the magnification optical system used to form the slit light.

為了達到如上所述的目的,本發明揭露一種狹縫光源20,包括:生成光的光源部100;以及光學系200,按照提前設定的倍率聚光從所述光源部100生成的光形成狹縫光,其中,所述光學系200包括:平行光形成透鏡部210,用於將從所述光源部100散發的光轉換成平行光;以及聚光透鏡部220,聚光通過所述平行光形成透鏡部210的光。 In order to achieve the above-mentioned object, the present invention discloses a slit light source 20, which includes: a light source section 100 that generates light; and an optical system 200 that forms a slit by condensing light generated from the light source section 100 at a previously set magnification Light, wherein the optical system 200 includes: a parallel light forming lens portion 210 for converting light emitted from the light source portion 100 into parallel light; and a condenser lens portion 220 for collecting light by the parallel light The light of the lens part 210.

所述光源部100可包括多個LED光源110,所述多個LED光源110排成一列以提前設定的發散角生成白色光。 The light source part 100 may include a plurality of LED light sources 110 arranged in a row to generate white light with a divergence angle set in advance.

所述光學系200可進一步包括光束寬度調整透鏡部230,所述光束寬度調整透鏡部230設置在所述平行光形成透鏡部210與所述聚光透鏡部220之間的光路上以調整所述平行光的光束寬度。 The optical system 200 may further include a beam width adjusting lens portion 230 disposed on the optical path between the parallel light forming lens portion 210 and the condenser lens portion 220 to adjust the Beam width of parallel light.

所述平行光形成透鏡部210可包括一個以上的圓柱透鏡212,所述一個以上的圓柱透鏡212具有與通過光軸的光的照射方向垂直的長度。 The parallel light forming lens portion 210 may include one or more cylindrical lenses 212 having a length perpendicular to the irradiation direction of light passing through the optical axis.

所述光束寬度調整透鏡部230可包括一個以上的圓柱透鏡232,所述一個以上的圓柱透鏡232具有與通過光軸的光的照射方向垂直的長度。 The beam width adjusting lens part 230 may include one or more cylindrical lenses 232 having a length perpendicular to the irradiation direction of light passing through the optical axis.

所述光束寬度調整透鏡部230可包括多個圓柱透鏡232。 The beam width adjusting lens part 230 may include a plurality of cylindrical lenses 232.

所述多個圓柱透鏡232中的至少一個可沿著所述光軸移動以調整所述光學系200的倍率。 At least one of the plurality of cylindrical lenses 232 can move along the optical axis to adjust the magnification of the optical system 200.

所述光束寬度調整透鏡部230可包括依次配置的多個圓柱透鏡232。 The beam width adjustment lens part 230 may include a plurality of cylindrical lenses 232 arranged in sequence.

所述多個圓柱透鏡232中的至少一個可更換。 At least one of the plurality of cylindrical lenses 232 is replaceable.

所述聚光透鏡部220可包括一個以上的圓柱透鏡222,所述一個以上的圓柱透鏡222具有與通過光軸的光的照射方向垂直的長度。 The condenser lens portion 220 may include one or more cylindrical lenses 222 having a length perpendicular to the irradiation direction of light passing through the optical axis.

所述光源部100生成白色光;所述聚光透鏡部220可包括依次配置的多個圓柱透鏡222,以降低通過所述聚光透鏡部220的白色光的色差。 The light source section 100 generates white light; the condenser lens section 220 may include a plurality of cylindrical lenses 222 arranged in order to reduce the chromatic aberration of the white light passing through the condenser lens section 220.

本發明揭露一種視覺檢查裝置,包括:如申請專利範圍第1項至第8項中任一項所述的狹縫光源20,作為向照射物件10照射光的光源;以及影像獲取部30,獲取通過所述狹縫光源20被狹縫光照射的所述照射物件10的影像。 The present invention discloses a visual inspection device, including: the slit light source 20 as described in any one of claims 1 to 8 as a light source for irradiating light to an irradiated object 10; and an image acquisition unit 30 for acquiring The image of the illuminated object 10 illuminated by the slit light through the slit light source 20.

本發明的狹縫光源以及具有該狹縫光源的視覺檢查裝置具有以下優點:利用多個圓柱透鏡構成倍率光學系,進而不存在光損失,並在白色光的情況下,也能夠無色差地形成照射區域邊界清晰的狹縫光。 The slit light source and the visual inspection device having the slit light source of the present invention have the advantage that the magnification optical system is formed by a plurality of cylindrical lenses, and there is no light loss, and it can be formed without chromatic aberration even in the case of white light The slit light with clear boundary of the irradiation area.

另外,本發明的狹縫光源以及具有該狹縫光源的視覺檢查裝置具有以下優點:將調整從光源發出的光的光束寬度的光束寬度調整透鏡部可移動地設置在光路上,進而能夠更加容易調整用於形成狹縫光的倍率光學系的倍率。 In addition, the slit light source and the visual inspection apparatus having the slit light source of the present invention have the advantage that the beam width adjustment lens portion that adjusts the beam width of the light emitted from the light source can be movably provided on the optical path, thereby making it easier The magnification of the magnification optical system for forming slit light is adjusted.

具體地說,具有以下優點:在本發明的倍率光學系的結構適用可修正色差的多個圓柱透鏡,進而也能夠清晰地寬度非常小的狹縫光,並且即使不更換構成倍率光學系的構成元素,也能夠通過倍率光學系調整倍率按照需要調整狹縫光的寬度。 Specifically, it has the advantage that a plurality of cylindrical lenses that can correct chromatic aberration can be applied to the structure of the magnification optical system of the present invention, and the slit light with a very small width can be clearly seen, and the configuration of the magnification optical system can be changed without changing For the element, the magnification optical system can also adjust the magnification to adjust the width of the slit light as necessary.

10‧‧‧照射物件 10‧‧‧irradiated objects

20‧‧‧狹縫光源 20‧‧‧Slit light source

30‧‧‧影像獲取部 30‧‧‧Image Acquisition Department

100‧‧‧光源部 100‧‧‧Light Source Department

110‧‧‧LED光源 110‧‧‧LED light source

200‧‧‧光學系 200‧‧‧ Department of Optics

210‧‧‧平行光形成透鏡部 210‧‧‧ Parallel light forming lens section

212‧‧‧圓柱透鏡 212‧‧‧Cylinder lens

220‧‧‧聚光透鏡部 220‧‧‧Condensing lens department

222‧‧‧圓柱透鏡 222‧‧‧Cylinder lens

230‧‧‧光束寬度調整透鏡部 230‧‧‧beam width adjustment lens

232‧‧‧圓柱透鏡 232‧‧‧Cylinder lens

圖1是示出本發明一實施例的視覺檢查裝置的概念圖;圖2是示出本發明一實施例的狹縫光源的剖面圖;圖3是示出圖2的狹縫光源的立體圖;以及圖4是示出本發明的狹縫光源適用可修正色差的多個圓柱透鏡時所形成的 狹縫光的圖片。 1 is a conceptual diagram showing a visual inspection device according to an embodiment of the present invention; FIG. 2 is a sectional view showing a slit light source according to an embodiment of the present invention; FIG. 3 is a perspective view showing the slit light source of FIG. 2; And FIG. 4 shows that the slit light source of the present invention is formed when a plurality of cylindrical lenses capable of correcting chromatic aberration are applied Picture of slit light.

以下,參照附圖如下說明本發明的狹縫光源以及具有該狹縫光源的視覺檢查裝置。 Hereinafter, the slit light source of the present invention and the visual inspection device having the slit light source will be described as follows with reference to the drawings.

如圖1所示,本發明的視覺檢查裝置包括:狹縫光源20,是對照射物件10照射光的光源;以及影像獲取部30,獲取通過狹縫光源20被狹縫光照射的照射物件10的影像。 As shown in FIG. 1, the visual inspection device of the present invention includes: a slit light source 20 that is a light source that irradiates light to an irradiated object 10; and an image acquisition unit 30 that acquires an irradiated object 10 that is irradiated with slit light through the slit light source 20 Image.

所述狹縫光源20作為向照射物件10照射狹縫光的結構,將在以下進行詳細說明。 The slit light source 20 is a structure for irradiating the slit light to the irradiation object 10 and will be described in detail below.

所述影像獲取部30作為獲取通過狹縫光源20被狹縫光照射的照射物件10的影像的結構,只要是能夠獲取影像的結構,可以是任意一種結構,諸如數位相機、掃描器等。 The image acquisition unit 30 may be any structure, such as a digital camera, a scanner, etc., as long as it can acquire an image of the irradiation object 10 illuminated by the slit light through the slit light source 20.

具有上述結構的視覺檢查裝置執行通過狹縫光源20照射狹縫光以及通過影像獲取部30獲取影像,通過與影像獲取部30結合或者分開的控制部(圖中未示)分析已獲取的影像,進而可執行平面形狀等2D檢查、凸起高度、是否形成裂紋等3D檢查等。 The visual inspection apparatus having the above-mentioned structure executes slit light irradiation through the slit light source 20 and acquisition of an image through the image acquisition unit 30, and analysis of the acquired image by a control unit (not shown) that is combined with or separated from the image acquisition unit 30. Furthermore, 2D inspections such as planar shapes, 3D inspections such as the height of protrusions and the formation of cracks can be performed.

例如,所述照射物件10可對所述狹縫光源20以水平方向相對線性移動,而視覺檢查裝置從通過影像獲取部30獲取的影像檢測照射物件10的三維形狀。 For example, the irradiation object 10 can relatively linearly move the slit light source 20 in the horizontal direction, and the visual inspection device detects the three-dimensional shape of the irradiation object 10 from the image acquired by the image acquisition unit 30.

另一方面,如上所述的視覺檢查裝置等需要對照射物件10照射狹縫光,具體需要根據照射物件10的種類、檢查種類等照射最佳化的狹縫光的狹縫光源20。 On the other hand, the above-mentioned visual inspection apparatus or the like needs to irradiate the slit light to the irradiation object 10, and specifically needs the slit light source 20 that irradiates the slit light optimized according to the type of the irradiation object 10, the inspection type, and the like.

據此,如圖2和圖3所示,本發明的狹縫光源20包括:生成光的光源部100;以及光學系200,按照提前設定的倍率聚光從光源部100發散的光形成狹縫光。 Accordingly, as shown in FIGS. 2 and 3, the slit light source 20 of the present invention includes: a light source section 100 that generates light; and an optical system 200 that forms a slit by condensing light diverging from the light source section 100 at a previously set magnification Light.

所述光源部100作為生成用於形成狹縫光的光的結構,只要是能夠生成光的結構,可以是任意一種結構,諸如雷射束產生裝置、LED照明裝置等。 The light source unit 100 may be any structure as long as it can generate light for forming slit light, as long as it can generate light, such as a laser beam generating device, an LED lighting device, or the like.

例如,所述光源部100可使用一個以上的LED元件,可包括沿 著狹縫光的長度方向配置在基板(圖中未示)上的多個LED光源110。 For example, the light source unit 100 may use more than one LED element, which may include A plurality of LED light sources 110 arranged on the substrate (not shown) along the longitudinal direction of the slit light.

對於所述基板,只要是能夠設置構成LED光源110的LED元件的基板,可以是任意一種基板,可使用PCB、FPCB、金屬PCB等。 The substrate may be any substrate as long as it can be provided with LED elements constituting the LED light source 110, and PCB, FPCB, metal PCB, etc. may be used.

所述多個LED光源110沿著狹縫光的長度方向配置在基板上,以提前設定的發散角(例如,120°的發散角)生成單色光或者白色光,進而可形成狹縫光。 The plurality of LED light sources 110 are arranged on the substrate along the longitudinal direction of the slit light, and generate monochromatic light or white light at a divergence angle set in advance (for example, a divergence angle of 120°), thereby forming slit light.

另一方面,從所述光源部100生成的光沿著狹縫光的長度方向變化光量(亮度),為了改善這一現象,在光源部100的前方可設置用於擴散由光源部100生成的光的光擴散部件(圖中未示)。 On the other hand, the light generated from the light source unit 100 changes the amount of light (luminance) along the longitudinal direction of the slit light. To improve this phenomenon, a light source unit 100 may be provided in front of the light source unit 100 to diffuse the light generated by the light source unit 100. Light diffuser (not shown).

所述光擴散部件作為散射透射的光,以沿著狹縫光的長度方向形成均勻的光的結構,可以是塗佈有光擴散薄膜、光擴散物質的透明部件等各種結構。 The light diffusing member serves to scatter transmitted light to form uniform light along the longitudinal direction of the slit light, and may be various structures such as a transparent member coated with a light diffusing film and a light diffusing substance.

所述光學系200作為按照提前設定的倍率聚光從光源部100生成的光以形成狹縫光的結構,可以具有各種結構。 The optical system 200 may have various structures as a structure for collecting light generated from the light source unit 100 at a magnification set in advance to form slit light.

如圖2和圖3所示,所述光學系200可包括:用於將從光源部100發散的光轉換成平行光的平行光形成透鏡部210;以及聚光通過所述平行光形成透鏡部210的光的聚光透鏡部220。 As shown in FIGS. 2 and 3, the optical system 200 may include: a parallel light forming lens portion 210 for converting light diverging from the light source portion 100 into parallel light; and condensing light passing through the parallel light forming lens portion The light condensing lens portion 220 of 210.

所述平行光形成透鏡部210作為用於將從光源部100發散的光轉換成平行光的結構,可具有各種結構。 The parallel light forming lens unit 210 may have various structures as a structure for converting light diverging from the light source unit 100 into parallel light.

例如,所述平行光形成透鏡部210可包括一個以上的圓柱透鏡212,具有與通過光軸的光的照射方向垂直的長度。 For example, the parallel light forming lens portion 210 may include one or more cylindrical lenses 212 having a length perpendicular to the irradiation direction of light passing through the optical axis.

如圖2和圖3所示,所述圓柱透鏡212可具有與經過光軸的光的照射方向(X軸方向)垂直的長度(Y軸方向),並且可形成根據與光源部100的距離或者倍率具有適當的曲率的透鏡面。 As shown in FIGS. 2 and 3, the cylindrical lens 212 may have a length (Y-axis direction) perpendicular to the irradiation direction (X-axis direction) of light passing through the optical axis, and may be formed according to the distance from the light source section 100 or A lens surface with a proper curvature.

較佳地,所述圓柱透鏡212以長度方向設置多個LED光源110的配置方向,以形成均勻的狹縫光源。 Preferably, the cylindrical lens 212 has a plurality of LED light sources 110 arranged along the longitudinal direction to form a uniform slit light source.

所述圓柱透鏡212作為準直透鏡(collimator lens),聚光從光源部100生成的光,進而可以減小所產生的光的發散角將光轉換成平行光從平行光到接近平行光的近平行光。 The cylindrical lens 212 serves as a collimator lens to collect the light generated from the light source unit 100, which can reduce the divergence angle of the generated light and convert the light into parallel light from parallel light to near parallel light Parallel light.

所述聚光透鏡部220作為聚光通過光束寬度調整透鏡部300的 光的結構,可以具有各種結構。 The condensing lens portion 220 serves as The structure of light may have various structures.

例如,所述聚光透鏡部220可包括與經過光軸的光的照射方向垂直的長度的一個以上的圓柱透鏡222。 For example, the condenser lens portion 220 may include one or more cylindrical lenses 222 having a length perpendicular to the irradiation direction of light passing through the optical axis.

如圖2和圖3所示,所述圓柱透鏡222可具有與經過光軸的光的照射方向(X軸方向)垂直的長度(Y軸方向),並且根據與光源部100的距離或者倍率可形成具有適當曲率的透鏡面。 As shown in FIGS. 2 and 3, the cylindrical lens 222 may have a length (Y-axis direction) perpendicular to the irradiation direction (X-axis direction) of light passing through the optical axis, and depending on the distance or magnification from the light source section 100 A lens surface with an appropriate curvature is formed.

較佳地,以所述圓柱透鏡222的長度方向設置多個LED光源110的配置方向,以形成均勻的狹縫光。 Preferably, the arrangement direction of the plurality of LED light sources 110 is set in the longitudinal direction of the cylindrical lens 222 to form uniform slit light.

在所述光源部100生成白色光的情況下,聚光透鏡部220較佳為包括依次配置的多個圓柱透鏡222而不是單個圓柱透鏡222,以減少通過聚光透鏡部220的白色光的色差。 When the light source section 100 generates white light, the condenser lens section 220 preferably includes a plurality of cylindrical lenses 222 arranged in sequence instead of a single cylindrical lens 222 to reduce the chromatic aberration of white light passing through the condenser lens section 220 .

例如,如圖2和圖3所示,所述聚光透鏡部220可包括使對四個以上的波長的焦點距離一致的四個圓柱透鏡222。 For example, as shown in FIGS. 2 and 3, the condenser lens portion 220 may include four cylindrical lenses 222 that make the focal distances for four or more wavelengths uniform.

在這一情況下,減少在白色光中因各個波長的曲折率差異產生的色差,進而在聚光的狹縫光的寬度在100μm以下的情況下,也能夠清晰地形成通過聚光透鏡部220的狹縫光的邊界,因此具有使利用狹縫光的視覺檢查更加準確的優點。 In this case, the chromatic aberration caused by the difference in the tortuosity of each wavelength in white light is reduced, and even when the width of the condensed slit light is 100 μm or less, the condensing lens portion 220 can be clearly formed The slit light boundary has the advantage of making the visual inspection using slit light more accurate.

圖4是在用單個圓柱透鏡222構成聚光透鏡部220時所形成的狹縫光與在形成能夠對四個以上的波長修正焦點距離的多個圓柱透鏡222構成聚光透鏡部220時所形成的狹縫光的圖片,據此可以確認到在用多個圓柱透鏡222形成聚光透鏡部220時更加改善了色差以形成更加清晰的狹縫光。 4 is a slit light formed when a single cylindrical lens 222 is used to form the condenser lens portion 220 and a plurality of cylindrical lenses 222 capable of correcting the focal length for four or more wavelengths is used to form the condenser lens portion 220 It can be confirmed from the picture of the slit light that the chromatic aberration is more improved when the condenser lens portion 220 is formed with a plurality of cylindrical lenses 222 to form a clearer slit light.

所述平行光形成透鏡部210對應於倍率光學系的接目鏡,而聚光透鏡部220對應於倍率光學系的物鏡,因此光學系200整體可由與倍率光學系(成像光學系)對應的結構構成。 The parallel light forming lens portion 210 corresponds to the eyepiece of the magnification optical system, and the condenser lens portion 220 corresponds to the objective lens of the magnification optical system. Therefore, the entire optical system 200 can be composed of a structure corresponding to the magnification optical system (imaging optical system) .

因此,所述光學系200的倍率可由平行光形成透鏡部210以及聚光透鏡部220的倍率的乘積定義。 Therefore, the magnification of the optical system 200 can be defined by the product of the magnifications of the parallel light forming lens portion 210 and the condenser lens portion 220.

另一方面,所述光學系200的狹縫光在用於檢查球柵陣列(Ball grid array,BGA)的凸起(bump)的情況下,根據在BGA元件形成的凸起大小、高度,需改變所使用的狹縫光的寬度。 On the other hand, when the slit light of the optical system 200 is used to inspect bumps of a ball grid array (BGA), depending on the size and height of the bumps formed on the BGA element, Change the width of the slit light used.

但是,在光源部100與平行光形成透鏡部210之間的距離以及聚 光透鏡部220與照射物件10之間的距離被固定的狀態下,光學系200的整體倍率是固定的,因此在照射物件10變化的情況下,存在應更換平行光形成透鏡部210或者聚光透鏡部220本身的問題。 However, the distance and concentration between the light source unit 100 and the parallel light forming lens unit 210 In a state where the distance between the optical lens portion 220 and the irradiation object 10 is fixed, the overall magnification of the optical system 200 is fixed. Therefore, when the irradiation object 10 changes, the parallel light should be replaced to form the lens portion 210 or to focus The problem of the lens part 220 itself.

據此,本發明的光學系200還可包括設置在平行光形成透鏡部210與聚光透鏡部220之間光路上調整平行光的光束寬度的光束寬度調整透鏡部230。 Accordingly, the optical system 200 of the present invention may further include a beam width adjustment lens section 230 provided on the optical path between the parallel light forming lens section 210 and the condenser lens section 220 to adjust the beam width of the parallel light.

所述光束寬度調整透鏡部230作為以寬度方向(Z軸方向)發散或者聚光從平行光形成透鏡部210發出的平行光或者近平行光的結構,可具有各種結構。 The beam width adjustment lens portion 230 may have various structures as a structure that diverges or condenses the parallel light or near-parallel light emitted from the parallel light forming lens portion 210 in the width direction (Z-axis direction).

例如,所述光束寬度調整透鏡部230可包括具有與通過光軸的光的照射方向垂直的長度的一個以上的圓柱透鏡232。 For example, the beam width adjustment lens part 230 may include one or more cylindrical lenses 232 having a length perpendicular to the irradiation direction of light passing through the optical axis.

如圖2和圖3所示,所述圓柱透鏡232可具有與經過光軸的光的照射方向(X軸方向)垂直的長度(Y軸方向),並且可形成根據與光源部100的距離或者倍率具有適當曲率的透鏡面。 As shown in FIGS. 2 and 3, the cylindrical lens 232 may have a length (Y-axis direction) perpendicular to the irradiation direction (X-axis direction) of light passing through the optical axis, and may be formed according to the distance from the light source section 100 or Lens surface with appropriate curvature.

所述圓柱透鏡232較佳為以長度方向設置多個LED光源110的配置方向,以形成均勻的狹縫光。 The cylindrical lens 232 is preferably arranged along the longitudinal direction of the plurality of LED light sources 110 to form a uniform slit light.

所述光束寬度調整透鏡部230較佳為包括多個圓柱透鏡232。 The beam width adjusting lens part 230 preferably includes a plurality of cylindrical lenses 232.

所述多個圓柱透鏡232可依次配置在光路上。 The plurality of cylindrical lenses 232 may be sequentially arranged on the optical path.

另外,所述多個圓柱透鏡232中的至少一個可沿著光軸(或者光路)移動,以調整光學系200的倍率。 In addition, at least one of the plurality of cylindrical lenses 232 can move along the optical axis (or optical path) to adjust the magnification of the optical system 200.

在一實施例中,如圖2和圖3所示,所述光束寬度調整透鏡部230包括依次設置的四個圓柱透鏡232,在四個圓柱透鏡232中兩個末端的兩個透鏡232a、232b是固定的,而內側的兩個圓柱透鏡232b、232c中的至少一個可沿著光軸(或者光路)移動。但是不限於此。 In one embodiment, as shown in FIGS. 2 and 3, the beam width adjusting lens portion 230 includes four cylindrical lenses 232 arranged in sequence, and two lenses 232a, 232b at two ends of the four cylindrical lenses 232 It is fixed, and at least one of the inner two cylindrical lenses 232b, 232c can move along the optical axis (or optical path). But it is not limited to this.

本發明是將多個圓柱透鏡232中的至少一個圓柱透鏡232可移動地設置在光路上,進而即使不更換聚光透鏡部220,也能夠簡單地調整光學系200的整體倍率。 In the present invention, at least one cylindrical lens 232 of the plurality of cylindrical lenses 232 is movably provided on the optical path, and even if the condenser lens portion 220 is not replaced, the overall magnification of the optical system 200 can be easily adjusted.

本發明的狹縫光源20不使用阻擋一部分光的狹縫部件,而是在倍率光學系適用圓柱透鏡形成狹縫光源,進而沒有光損失地調整照射的狹縫光的寬度且無需更換透鏡,通過對白色光修正焦點距離具有也能夠清晰地形成 100μm以下的寬度非常小的狹縫光的優點。 The slit light source 20 of the present invention does not use a slit member that blocks a part of light, but applies a cylindrical lens to the slit light source in the magnification optical system, and then adjusts the width of the slit light without loss of light without replacing the lens. The focus distance can be clearly formed for white light correction The advantage of slit light with a very small width of 100 μm or less.

另一方面,所述狹縫光源20不限於圖1的視覺檢查裝置,而是可用作各種照明系統的光源。 On the other hand, the slit light source 20 is not limited to the visual inspection device of FIG. 1 but can be used as a light source for various lighting systems.

例如,本發明的狹縫光源20可靈活用作線掃描相機(line scan camera)的光源。 For example, the slit light source 20 of the present invention can be flexibly used as a light source of a line scan camera.

以上,不過是對可由本發明實現的較佳實施例的一部分進行了說明,眾所周知本發明的範圍不限於上述的實施例,以上說明的本發明的技術思想以及與其根本的思想應全部包括在本發明的範圍內。 The above is merely a description of a part of the preferred embodiments that can be implemented by the present invention. It is well known that the scope of the present invention is not limited to the above-mentioned embodiments. The technical idea of the present invention described above and its fundamental idea should all be included in this Within the scope of the invention.

10‧‧‧照射物件 10‧‧‧irradiated objects

20‧‧‧狹縫光源 20‧‧‧Slit light source

30‧‧‧影像獲取部 30‧‧‧Image Acquisition Department

Claims (9)

一種狹縫光源(20),包括:一光源部(100),生成光;以及一光學系(200),按照提前設定的倍率聚光從所述光源部(100)生成的光形成狹縫光;其中,所述光學系(200)包括:一平行光形成透鏡部(210),用於將從所述光源部(100)散發的光轉換成平行光;以及一聚光透鏡部(220),聚光通過所述平行光形成透鏡部(210)的光;其中,所述平行光形成透鏡部(210)包括:一個以上的圓柱透鏡(212),具有與通過光軸的光的照射方向垂直的長度。 A slit light source (20) includes: a light source part (100) that generates light; and an optical system (200) that condenses light generated from the light source part (100) at a magnification set in advance to form slit light Wherein the optical system (200) includes: a parallel light forming lens portion (210) for converting light emitted from the light source portion (100) into parallel light; and a condenser lens portion (220) , Condensing light passing through the parallel light forming lens portion (210); wherein, the parallel light forming lens portion (210) includes: one or more cylindrical lenses (212) having an irradiation direction with light passing through the optical axis Vertical length. 如申請專利範圍第1項所述的狹縫光源(20),其中,所述光源部(100)包括:多個LED光源(110),排成一列,以提前設定的發散角生成白色光。 The slit light source (20) according to item 1 of the patent application range, wherein the light source part (100) includes a plurality of LED light sources (110) arranged in a row to generate white light at a divergence angle set in advance. 如申請專利範圍第1項所述的狹縫光源(20),其中,所述光學系(200)進一步包括:一光束寬度調整透鏡部(230),設置在所述平行光形成透鏡部(210)與所述聚光透鏡部(220)之間的光路上,以調整所述平行光的光束寬度。 The slit light source (20) according to item 1 of the patent application range, wherein the optical system (200) further includes: a beam width adjusting lens portion (230) provided on the parallel light forming lens portion (210) ) And the condenser lens portion (220) on the optical path to adjust the beam width of the parallel light. 如申請專利範圍第3項所述的狹縫光源(20),其中,所述光束寬度調整透鏡部(230)包括:一個以上的圓柱透鏡(232),具有與通過光軸的光的照射方向垂直的長度。 The slit light source (20) according to item 3 of the patent application range, wherein the beam width adjusting lens portion (230) includes: one or more cylindrical lenses (232) having an irradiation direction with light passing through the optical axis Vertical length. 如申請專利範圍第4項所述的狹縫光源(20),其中,所述光束寬度調整透鏡部(230)包括多個圓柱透鏡(232),以及所述多個圓柱透鏡(232)中的至少一個可沿著所述光軸移動,以調整所述光學系(200)的倍率。 The slit light source (20) according to item 4 of the patent application range, wherein the beam width adjusting lens portion (230) includes a plurality of cylindrical lenses (232), and the plurality of cylindrical lenses (232) At least one can move along the optical axis to adjust the magnification of the optical system (200). 如申請專利範圍第4項所述的狹縫光源(20),其中,所述光束寬度調整透鏡部(230)包括依次配置的多個圓柱透鏡(232),以及所述多個圓柱透鏡(232)中的至少一個可更換。 The slit light source (20) according to item 4 of the patent application range, wherein the beam width adjusting lens portion (230) includes a plurality of cylindrical lenses (232) arranged in sequence, and the plurality of cylindrical lenses (232) ) At least one of them is replaceable. 如申請專利範圍第1項所述的狹縫光源(20),其中,所述聚光透鏡部(220)包括:一個以上的圓柱透鏡(222),具有與通過光軸的光的照射方向垂直的長度。 The slit light source (20) according to item 1 of the patent application range, wherein the condenser lens portion (220) includes: one or more cylindrical lenses (222) having a direction perpendicular to the irradiation direction of light passing through the optical axis length. 如申請專利範圍第7項所述的狹縫光源(20),其中,所述光源部(100)生成白色光,以及所述聚光透鏡部(220)包括:依次配置的多個圓柱透鏡(222),以降低通過所述聚光透鏡部(220)的白色光的色差。 The slit light source (20) according to item 7 of the patent application range, wherein the light source part (100) generates white light, and the condenser lens part (220) includes: a plurality of cylindrical lenses arranged in sequence ( 222) to reduce the chromatic aberration of the white light passing through the condenser lens portion (220). 一種視覺檢查裝置,包括:如申請專利範圍第1項至第8項中任一項之所述的狹縫光源(20),作為向照射物件(10)照射光的光源;以及一影像獲取部(30),獲取通過所述狹縫光源(20)被狹縫光照射的所述照射物件(10)的影像。 A visual inspection device, comprising: a slit light source (20) as described in any one of patent application items 1 to 8, as a light source for irradiating light to an irradiation object (10); and an image acquisition unit (30) Obtain an image of the illuminated object (10) illuminated by the slit light through the slit light source (20).
TW108110136A 2018-08-02 2019-03-22 Slit light source and vision inspection apparatus having the same TWI696823B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0090335 2018-08-02
KR1020180090335A KR20200015049A (en) 2018-08-02 2018-08-02 Slit light source and vision inspection apparatus having the same

Publications (2)

Publication Number Publication Date
TW202007952A TW202007952A (en) 2020-02-16
TWI696823B true TWI696823B (en) 2020-06-21

Family

ID=69426859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110136A TWI696823B (en) 2018-08-02 2019-03-22 Slit light source and vision inspection apparatus having the same

Country Status (3)

Country Link
KR (1) KR20200015049A (en)
CN (1) CN110793917A (en)
TW (1) TWI696823B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101744605A (en) * 2008-12-08 2010-06-23 株式会社尼德克 Ophthalmological device
CN104459510A (en) * 2014-12-18 2015-03-25 中国科学院上海技术物理研究所 LED array junction temperature quick on-line detecting device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622556B2 (en) * 1999-02-23 2005-02-23 セイコーエプソン株式会社 Illumination optical system and projection display device
CN2566291Y (en) * 2002-09-16 2003-08-13 上海光通激光光电子技术创新中心有限公司 Semiconductor laser light beam shaping device
CN1503014A (en) * 2002-11-22 2004-06-09 鸿富锦精密工业(深圳)有限公司 Polarization device, polarization light source and LCD device
JP4465460B2 (en) * 2003-06-30 2010-05-19 国立大学法人浜松医科大学 Ultra-thin illumination light generator for microscope and observation method using said device
US7439483B2 (en) * 2006-04-17 2008-10-21 Korea Advanced Institute Of Science And Technology Real-time confocal microscope using the dispersion optics
JP4312775B2 (en) * 2006-04-18 2009-08-12 韓国科学技術院 Real-time confocal microscope using dispersive optics
JP5942242B2 (en) * 2011-10-20 2016-06-29 株式会社目白ゲノッセン Inspection lighting device
CN103206964B (en) * 2012-01-16 2015-05-20 中国科学院西安光学精密机械研究所 Spectrum weight tunable weak light star simulation system
KR20140081159A (en) * 2012-12-21 2014-07-01 에이티아이 주식회사 Measurement Device with a means of Width adjustment for line beam and cylinder lens
CN105092585B (en) * 2014-05-05 2018-01-05 南京理工大学 Sub-surface measurement apparatus and method based on total internal reflection and optical coherence tomography
JP6476062B2 (en) * 2014-06-19 2019-02-27 株式会社Screenホールディングス Light irradiation apparatus and drawing apparatus
KR20170062380A (en) * 2015-11-27 2017-06-07 (주)제이티 Slit light source, and vision inspection apparatus having the same
CN106520535B (en) * 2016-10-12 2019-01-01 山东大学 A kind of label-free cell detection device and method based on mating plate illumination
CN107340305A (en) * 2017-06-14 2017-11-10 杭州兆深科技有限公司 A kind of testing agency and detection method for liquid-transfering sucker
CN107203051B (en) * 2017-07-12 2019-08-16 天津津航技术物理研究所 A kind of optical system of fixed-focus parallel light tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101744605A (en) * 2008-12-08 2010-06-23 株式会社尼德克 Ophthalmological device
CN104459510A (en) * 2014-12-18 2015-03-25 中国科学院上海技术物理研究所 LED array junction temperature quick on-line detecting device

Also Published As

Publication number Publication date
TW202007952A (en) 2020-02-16
KR20200015049A (en) 2020-02-12
CN110793917A (en) 2020-02-14

Similar Documents

Publication Publication Date Title
US10007100B2 (en) Light sheet illumination microscope and light sheet illumination method
KR102079181B1 (en) Pattern lighting appartus and method thereof
JP2022183309A (en) Wafer inspection system and apparatus
JP6487617B2 (en) Defect inspection method and defect inspection apparatus for microlens array
JP6895768B2 (en) Defect inspection equipment and defect inspection method
JP2016025316A (en) Illumination optical system, lighting system, and illumination optical element
TWI644078B (en) Slit light source, and vision inspection apparatus having the same
TWI696823B (en) Slit light source and vision inspection apparatus having the same
KR102401059B1 (en) Slit light source and vision inspection apparatus having the same
TWI706122B (en) Slit light source and vision inspection apparatus having the same
JP6513980B2 (en) Imaging apparatus and imaging method
KR102355523B1 (en) Slit light source and vision inspection apparatus having the same
ITTV20100025A1 (en) INSPECTION SYSTEM OF THE EYE FUND AND RELATIVE PROCEDURE
WO2017175303A1 (en) Sample shape measurement method and sample shape measurement device
US10677743B1 (en) Inspection apparatus and inspection method
JP2005017127A (en) Interferometer and shape measuring system
JP2011134687A (en) Lighting system
KR20210095245A (en) Compact machine vision inspection using line-beam
TW202009081A (en) Laser processing apparatus
JP6300158B2 (en) Inspection illumination method and inspection illumination device
KR102066129B1 (en) Apparatus and method for 3d information using dot array
JP6396774B2 (en) Image acquisition apparatus and image acquisition method
JP2015094802A (en) Objective optical system and image acquisition device
JP2006146043A (en) Position adjusting method, position adjusting apparatus, and optical system
JP2010014467A (en) Surface inspection device and surface inspection method