TWI695637B - 通訊裝置、通訊方法及積體電路 - Google Patents
通訊裝置、通訊方法及積體電路 Download PDFInfo
- Publication number
- TWI695637B TWI695637B TW105130302A TW105130302A TWI695637B TW I695637 B TWI695637 B TW I695637B TW 105130302 A TW105130302 A TW 105130302A TW 105130302 A TW105130302 A TW 105130302A TW I695637 B TWI695637 B TW I695637B
- Authority
- TW
- Taiwan
- Prior art keywords
- prb
- prb group
- group
- index
- pucch
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 48
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims abstract description 60
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims abstract description 60
- 238000001514 detection method Methods 0.000 claims description 14
- 238000013507 mapping Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 101150071746 Pbsn gene Proteins 0.000 claims description 4
- 238000000926 separation method Methods 0.000 abstract description 21
- 238000013468 resource allocation Methods 0.000 abstract description 13
- 230000002776 aggregation Effects 0.000 description 66
- 238000004220 aggregation Methods 0.000 description 66
- 230000005540 biological transmission Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 25
- 238000012937 correction Methods 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004244 micellar electrokinetic capillary chromatography Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101001056707 Homo sapiens Proepiregulin Proteins 0.000 description 1
- 102100025498 Proepiregulin Human genes 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
訊號分配部是將含有PDSCH的資源分配資訊的下行控制訊號分配於下行資源。特定部是在下行控制訊號橫跨上述第1PRB組與上述第2PRB組而配置之情況下,使用設定於第1PRB組及第2PRB組的任一個之偏移(offset)值來特定PUCCH資源。訊號分離部是從來自已傳送下行控制訊號的終端的接收訊號中,將包含於已特定的PUCCH資源的ACK/NACK訊號分離。
Description
發明領域
本揭示內容是有關於一種基地台、終端及通訊方法。
發明背景
近年來,使用蜂巢式網路(cellular network)之機器類型通訊(Machine-Type Communications(MTC))正備受檢討(例如,參照非專利文獻1)。於MTC的用途上,被考慮的有:智慧電錶的自動讀錶或庫存管理、利用了位置資訊的物流管理或寵物及家畜管理、或是行動簽核等。在MTC上,可設想得到的是使對應於MTC的終端(也有稱為MTC終端或MTC UE)與網路連接之作法。已預料到的是,雖然MTC終端被大量地配置,但1個1個的MTC終端的流量並沒有那麼多。因此,所期望的是MTC終端為低成本、低耗電。又,因為也考慮到將MTC終端配置於電波難以到達之建築物的地下等,所以亦被要求覆蓋範圍之擴張。
對於以3GPP標準化的LTE升級版(LTE-Advanced)的擴張,為了實現MTC終端的低成本化,已在檢討的有,不論系統頻帶如何,均將MTC終端使用於通訊的資源限定在6PRB(Physical resource block(實體資源塊))以下。當系統頻帶比6PRB更寬時,
MTC終端僅於系統頻帶的一部分進行接收來傳送、接收。使用於傳送、接收的PRB是進行重新調諧(retuning)而可以變更。將此6PRB以下的資源稱為「窄頻帶(Narrowband)」。窄頻帶是被定為以連續的PRB所構成。
又,作為MTC終端用的控制訊號,已在檢討的有使用將EPDCCH(Enhanced Physical Downlink Control CHannel(增強型實體下行鏈路控制通道))擴充為MTC用的MPDCCH(用於MTC之PDCCH)之作法。MPDCCH是配置於窄頻帶(Narrowband)內的PDSCH區域。又,在MTC中,為了擴充覆蓋範圍,已在檢討的有將MPDCCH分配給窄頻帶(Narrowband)中所含的全部的6個PRB對(PRB pair)的方法。在EPDCCH中,每1個PRB對有16個EREG(Enhanced Resource Element Group(增強型資源要素群組)),當將每1個ECCE(Enhanced CCE(增強型CCE))的EREG數設為4的話,6個PRB對的ECCE數會成為24個ECCE。再者,ECCE為分配EPDCCH時的單位,而EREG是將ECCE映射至RE(Resource Element(資源要素))時所使用的單位。又,所謂PRB對是資源的單位,為1個子訊框(subframe)(時間方向)×12個副載波(頻率),在僅於頻率軸上顯示之情況下,有時亦只稱為PRB。
在設定為MTC終端用的MPDCCH上,已在檢討的是在6個PRB對內配置以4個PRB對構成之MPDCCH(4PRB組(4 PRB set))、或者以2個PRB對構成之MPDCCH(2PRB組(2 PRB set))之作法。又,作為MPDCCH的聚合等級(Aggregation level)而被檢討的有1、2、4、8、16、24。且,聚合等級是表示構成MPDCCH的ECCE數。針對Aggregation level(聚合等級)=1、2、4、8,是侷限於4PRB組或2PRB組内而配置MPDCCH,針對Aggregation level(聚合等級)=16,是於4PRB組内的全部16個ECCE中配置1個MPDCCH。
此外,在對於線路品質較低的MTC終端,已在檢討的有於由4個PRB對與2個PRB對所構成之與MPDCCH的資源重疊的窄頻帶内的所有的6個PRB對內配置1個MPDCCH之作法。此時,為Aggregation level(聚合等級)=24,亦只稱為「24ECCEs」。 先前技術文獻 非專利文獻
非專利文獻1:3GPP TR 36.888 V12.0.0,“Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12),” June 2013。
發明概要 在MTC終端上,是與以往的終端相同,接收下行鏈路控制訊號的MPDCCH,並接收以MPDCCH所指定的下行鏈路資料(PDSCH),且將接收結果之ACK/NACK訊號以UL控制訊號的PUCCH來傳送。此時,所檢討的作法是,為了特定MTC終端用的PUCCH的資源(PUCCH資源),而與EPDCCH相同地進行,並使各MTC終端使用按每個PRB組而設定的偏移(offset)(稱為「N_pucch」)。
然而,並未檢討關於如何定義對於在窄頻帶内的所有6個PRB對配置1個MPDCCH的「24ECCEs」之偏移(N_pucch)。
在此,本揭示的一態樣為提供一種基地台、終端及通訊方法,其可以有效率地特定在窄頻帶内的所有6個PRB對配置1個MPDCCH的情況下的PUCCH資源。
關於本揭示之一態樣之基地台,具備: 訊號分配部,將含有PDSCH(Physical Downlink Shared Channel(實體下行鏈路共享通道))的資源分配資訊的下行控制訊號分配於下行資源; 特定部,根據分配有下行控制訊號之下行資源,來特定對PDSCH之ACK/NACK訊號所分配之PUCCH(Physical Uplink Control Channel(實體上行鏈路控制通道))資源;及 訊號分離部,從來自已傳送下行控制訊號的終端的接收訊號中,將包含於已特定之PUCCH資源之ACK/NACK訊號分離, 下行資源是由複數個PRB對所構成,且於各複數個PRB對分配第1PRB組及第2PRB組之任一個, 上述特定部是在將下行控制訊號橫跨前述第1PRB組及前述第2PRB組而配置之情況下,使用設定於第1PRB組與第2PRB組的任一個之偏移值來特定PUCCH資源。
關於本揭示之一態樣之終端,具備: 接收部,接收含有PDSCH(Physical Downlink Shared Channel(實體下行鏈路共享通道))的資源分配資訊的下行控制訊號; 特定部,根據分配有下行控制訊號之下行資源,來特定對PDSCH之ACK/NACK訊號所分配之PUCCH (Physical Uplink Control Channel(實體上行鏈路控制通道))資源;及 訊號分配部,於已特定之PUCCH資源中分配前述ACK/NACK訊號, 下行資源是由複數個PRB對所構成,且於各複數個PRB對分配第1PRB組與第2PRB組之任一個, 上述特定部是在將下行控制訊號橫跨第1PRB組與第2PRB 組而配置之情況下,使用設定於第1PRB組與第2PRB組的任一個之偏移值來特定PUCCH資源。
再者,這些全面的或具體的態樣,可以利用系統、方法、積體電路、電腦程式、或者記錄媒體來實現,亦可藉系統、裝置、方法、積體電路、電腦程式及記錄媒體的任意的組合來實現。
根據本揭示的一個態樣,可以效率良好地特定在窄頻帶内所有的6個PRB對配置1個MPDCCH時的PUCCH資源。
本揭示的一個態樣中的進一步的優點與效果,可從說明書及圖式而變得清楚。雖然所述優點及/或效果是藉由一些實施形態以及說明書及圖式所記載的特徵來分別提供,但為了得到1個或其以上的相同的特徵,並不一定需要全部都提供。
用以實施發明之形態 (成為本揭示之基礎的知識見解) 藉由使用用於特定對MTC終端之PUCCH資源之偏移(N_pucch),可以區別以往終端及MTC終端的PUCCH資源,而避免PUCCH資源的衝突。又,藉由將N_pucch按每個重複等級(Repetition level)來指示,即便於不同的重複等級的MTC終端間也可以避免PUCCH資源的衝突。藉此,可解決與基地台之距離不同的終端彼此之訊號多重時產生的遠近問題。
但是,在單一的MTC用的N_pucch上,並無法避免在同一重複等級的複數個MTC終端間的PUCCH資源的衝突。
對此,所考慮的是,針對同一重複等級的MTC終端的PUCCH資源,與EPDCCH同樣地進行,從已傳送指示DL資料訊號的傳送之DL指定(assignment)的DL控制訊號(MPDCCH)的配置中,特定出傳送ACK/NACK的PUCCH format 1a/1b的資源。
在EPDCCH中,是對每個EPDCCH-PRB-set q=0、1均設定偏移NPUCCH,q (e1)
(以下,省略記載為「N_pucch,q」),而從ECCE編號中特定PUCCH的資源。在EPDCCH中,PUCCH format 1a/1b的資源(資源編號)是以下式來特定。
nECCE,q
是表示在第q號的EPDCCH PRB組中DCI(Downlink Control Information(下行鏈路控制資訊))所映射之最初的ECCE編號所形成的偏移。ΔARO
是表示以包含於DCI的2位元的ARO(ACK/NACK Resource Offset(ACK/NACK資源偏移))所指示的偏移,在FDD的情況下,取-2、-1、0、+2之值。又,NPUCCH,q (e1)
是利用上層而被通知到每個終端。又,NRB ECCE,q
是表示每個RB的ECCE數,n'是表示根據天線埠的偏移。
圖1是顯示上述之PUCCH資源的概念圖。
如圖1所示,藉由將設定於各個PRB組的偏移值NPUCCH,0 (e1)
與NPUCCH,1 (e1)
設定為分開的值,以將對應於各個PRB組的PUCCH資源配置成不重疊,因而可以避免PUCCH資源的衝突。又,也可以將NPUCCH,0 (e1)
與NPUCCH,1 (e1)
設定為接近的值,使對應於各個PRB組的PUCCH資源重疊,以將PUCCH資源整體縮小。
關於MPDCCH,所考慮的也是與EPDCCH同樣地進行來特定PUCCH資源。此時,針對配置於以4個PRB對或2個PRB對所構成的PRB組內之MPDCCH,可以採用與上述之EPDCCH相同的方法來特定PUCCH資源。
然而,針對已在窄頻帶内的24個ECCEs配置MPDCCH的情況(亦即,橫跨4PRB組與2PRB組而配置MPDCCH的情況)的PUCCH資源,會無法適用與上述EPDCCH同樣的方法,而有無法特定資源的課題。再者,雖然也可考慮將對應於24個CCEs的MPDCCH的偏移另行通知之作法,但在這種情況下,會導致傳訊(signaling)量增加。
以下,針對在窄頻帶内的24個ECCEs中配置MPDCCH的情況下,不增加傳訊量而特定PUCCH資源的方法作說明。
以下,針對本揭示內容之實施形態,參照圖式並詳細地進行說明。
[MTC 24個ECCEs之說明] 如上所述,在MTC中所使用的24個ECCEs之MPDCCH是配置於包含於窄頻帶内的6個PRB對之可以在MPDCCH中使用的全部的RE中。以下,針對作為24個ECCEs的MPDCCH的配置方法而被考慮的2個的選項1、2(Option 1、2)作說明。
(選項1:圖2A、圖2B) 在選項1中,是將24個ECCEs的MPDCCH以頻率優先(Frequency first)方式進行配置。具體而言,在窄頻帶中,是在將MPDCCH的符號列從OFDM符號(OFDM symbol)編號較低之OFDM符號開始,縱貫PRB對來從頻率較低的一方往較高的一方配置後,移動至下一個OFDM符號,同樣地縱貫PRB對並從頻率較低的一方往較高的一方配置。
圖2A與圖2B是顯示選項1的MPDCCH配置例。
在圖2A中,是將2PRB組分配於PRB對#0、 #1,將4PRB組分配於PRB對#2~#5。在圖2A中,是在不區別2PRB組的資源(PRB對#0、#1)、與4PRB組的資源(PRB對#2~#5)的情形下,在可以於MPDCCH中使用的全部的RE中配置24個ECCEs的MPDCCH。
在圖2B中,是將2PRB組分配於PRB對#2、#3,將4PRB組分配於PRB對#0、#1、#4、#5。在圖2B中也與圖2A同樣,在不區別2PRB組的資源(PRB對#2、#3)、與4PRB組的資源(PRB對#0、#1、#4、#5)的情形下,在可以於MPDCCH中使用的全部的RE中配置24個ECCEs的MPDCCH。
(選項2:圖3A、圖3B) 在選項2中,是將24個ECCEs的MPDCCH以窄頻帶内的MPDCCH PRB組優先的方式進行配置。因此,MPDCCH的配置順序會依將PRB組分配到那個PRB對而變更。
圖3A及圖3B是顯示選項2的MPDCCH配置例,且為先從4PRB組配置MPDCCH之例。具體而言,首先,是將MPDCCH配置於4PRB組内的RE,之後,配置於2PRB組内的RE。再者,4PRB組内與2PRB組内的配置是與EPDCCH同様,成為頻率優先。亦即,在PRB組内的PRB對中,是在將MPDCCH的符號列從OFDM符號編號較低之OFDM符號開始,縱貫PRB對來從頻率較低的一方往較高的一方配置後,移動至下一個OFDM符號,同樣地縱貫PRB對並從頻率較低的一方往較高的一方配置。
在圖3A中,是將2PRB組分配於PRB對#0、 #1,將4PRB 組分配於PRB對#2~#5。因此,在圖3A中,24個ECCEs的MPDCCH是在配置於4PRB組所分配的PRB#2~#5之後,再配置於2PRB組所分配的PRB#0、#1。
在圖3B中,是將2PRB組分配於PRB對#2、#3,將4PRB 組分配於PRB對#0、#1、#4、#5。據此,在圖3B中,24個ECCEs的MPDCCH是在配置於4PRB組所分配的PRB#0、#1、#4、#5之後,再配置於2PRB組所分配的PRB#2、#3。
再者,在以下中,於任一個選項中,均將檢測出24個ECCEs的MPDCCH的情況下的最小的ECCE編號假設為nECCE,q
=0。
[通訊系統之概要] 本揭示之各個實施形態之通訊系統具備例如對應於LTE-Advanced系統的基地台100及終端200。終端200是例如MTC終端。
圖4是顯示本揭示之實施形態的基地台100的主要部位構成之方塊圖。在圖4所示之基地台100中,訊號分配部105是將含有PDSCH的資源分配資訊的下行控制訊號(MPDCCH),分配於下行資源(窄頻帶)。PUCCH資源特定部108是根據下行控制訊號所分配之下行資源,來特定對PDSCH的ACK/NACK訊號所分配之PUCCH資源。訊號分離部109是從來自已傳送下行控制訊號的終端的接收訊號中,將包含於已特定的PUCCH資源的ACK/NACK訊號分離。
又,圖5是顯示本揭示之各實施形態的終端200的主要部位構成之方塊圖。在圖5所示之終端200中,MPDCCH接收部207會接收包含PDSCH的資源分配資訊之下行控制訊號(MPDCCH)。PUCCH資源特定部208是根據下行控制訊號所分配之下行資源,來特定對PDSCH的ACK/NACK訊號所分配之PUCCH資源。訊號分配部211會對已特定之PUCCH資源分配ACK/NACK訊號。
再者,上述下行資源(窄頻帶)是以複數個PRB對所構成、而複數個PRB對的每一個中會分配有第1PRB組及第2PRB組之任一個。PUCCH資源特定部108、208是在將下行控制訊號橫跨上述第1PRB組與上述第2PRB組而配置之情況下,使用設定於第1PRB組與第2PRB組的任一個的偏移值來特定PUCCH資源。
(實施形態1) [基地台的構成] 圖6為顯示本實施形態之基地台100的構成之方塊圖。在圖6中,基地台100具有聚合等級設定部101、MPDCCH生成部102、錯誤更正編碼部103、調變部104、訊號分配部105、傳送部106、接收部107、PUCCH資源特定部108、訊號分離部109、PUCCH接收部110、解調部111、錯誤更正解碼部112。
聚合等級設定部101是根據基地台100所保持之MTC終端的收訊品質及MPDCCH的資訊位元數(圖未示),來設定對該MTC終端的聚合等級。聚合等級設定部101會將已設定之聚合等級輸出至MPDCCH生成部102。
MPDCCH生成部102會生成發給MTC終端之作為控制資訊的MPDCCH。具體而言,MPDCCH生成部102是生成MPDCCH的資訊位元,進行錯誤更正編碼,且由自聚合等級設定部101輸入之聚合等級、與可以使用於MPDCCH的RE數中,進行速率匹配來生成傳送位元串,並將傳送位元串輸出至訊號分配部105。於MPDCCH中含有例如,表示PDSCH的資源分配的DL分配資訊、及表示PUSCH的資源分配之UL分配資訊等。又,DL分配資訊會被輸出至訊號分配部105,UL分配資訊會被輸出至訊號分離部109。
錯誤更正編碼部103是對傳送資料訊號(DL資料訊號)或上層之傳訊進行錯誤更正編碼,並將編碼後的訊號輸出至調變部104。
調變部104會對從錯誤更正編碼部103接收之訊號施行調變處理,並將調變後的資料訊號輸出至訊號分配部105。
訊號分配部105會將從調變部104接收之訊號(含有資料訊號)、及從MPDCCH生成部102接收之控制訊號(MPDCCH),分配於預定的下行資源。例如,訊號分配部105在MPDCCH的聚合等級為1、2、4、8時,會將MPDCCH分配於窄頻帶内的PRB組0或PRB組1之任一個,在MPDCCH的聚合等級為16時,會將MPDCCH分配於於PRB數為4之PRB組。又,訊號分配部105在聚合等級為24(24個ECCEs)之情況下,會橫跨窄頻帶内的PRB組0與PRB組1而將MPDCCH分配於窄頻帶内的全部的ECCE。又,訊號分配部105會在傳送資料訊號與上層的傳訊之中,將MTC終端用的訊號分配於窄頻帶。藉由如此進行而將控制訊號(MPDCCH)及資料訊號(PDSCH)分配於預定的資源,可形成傳送訊號。所形成之傳送訊號是被輸出至傳送部106。又,訊號分配部105會將表示MPDCCH所分配的資源的分配資訊(例如,MPDCCH所配置之PRB組編號、最小ECCE編號、及包含於DL分配資訊的ARO)輸出至PUCCH資源特定部108。
傳送部106會對從訊號分配部105輸入的傳送訊號施行升頻轉換(up convert)等的無線傳送處理,並透過天線傳送至終端200。
接收部107是透過天線接收從終端200傳送來的訊號,並對接收訊號施行降頻轉換(down convert)等的無線接收處理,並輸出至訊號分離部109。
PUCCH資源特定部108是根據顯示於從訊號分配部105所輸入之分配資訊的MPDCCH所分配的下行資源,來特定對於藉由該MPDCCH所指示之資料訊號(PDSCH)的ACK/NACK訊號所分配之PUCCH資源。PUCCH資源特定部108會將表示已特定之PUCCH資源的資訊輸出至訊號分離部109。又,針對PUCCH資源特定部108中的PUCCH資源的特定方法之詳細內容將闡述於後。
訊號分離部109是根據由MPDCCH生成部102所輸入之資訊,從接收訊號中將UL資料訊號分離,並輸出至解調部111。又,訊號分離部109是根據由PUCCH資源特定部108所輸入的資訊,而從接收訊號中將包含於PUCCH資源的訊號(含有ACK/NACK訊號)分離,並輸出至PUCCH接收部110。
PUCCH接收部110會從由訊號分離部109所輸入之訊號(PUCCH)中判定ACK與NACK,並向上層通知。
解調部111是對由訊號分離部109輸入之訊號施行解調處理,並將所得到之訊號輸出至錯誤更正解碼部112。
錯誤更正解碼部112是將由解調部111輸入之訊號解碼,而得到來自終端200的接收資料訊號。
[終端的構成] 圖7為顯示關於本實施形態之終端200的構成之方塊圖。 在圖7中,終端200具有:接收部201、訊號分離部202、解調部203、錯誤更正解碼部204、錯誤判定部205、ACK/NACK生成部206、MPDCCH接收部207、PUCCH資源特定部208、錯誤更正編碼部209、調變部210、訊號分配部211、及傳送部212。
接收部201是根據預定的模式(pattern)或受上層通知的資訊(圖未示),來特定訊號被分配到系統頻帶內的哪個窄頻帶,且在已特定之窄頻帶中進行重新調諧。並且,接收部201是透過天線接收接收訊號,並在對接收訊號施行降頻轉換等的接收處理後,輸出至訊號分離部202。
訊號分離部202是將配置於具有分配MPDCCH之可能性的PRB中的訊號(MPDCCH訊號),輸出至MPDCCH接收部207。又,訊號分離部202是根據由MPDCCH接收部207輸入之DL分配資訊,來從接收訊號DL中分離資料訊號及上層傳訊,並輸出至解調部203。
解調部203是將從訊號分離部202接收的訊號解調,並將解調後的訊號輸出至錯誤更正解碼部204。
錯誤更正解碼部204會將從解調部203接收的解調訊號解碼,並將所得到的接收資料訊號輸出。又,接收資料訊號會被輸出至錯誤判定部205。
錯誤判定部205是以接收資料訊號的CRC來檢測錯誤,並將検測結果輸出至ACK/NACK生成部206。
ACK/NACK生成部206是根據從錯誤判定部205輸入之接收資料訊號的檢測結果,在無錯誤時生成ACK,有錯誤時生成NACK,並將所生成之ACK/NACK訊號輸出至上層及訊號分配部211。
MPDCCH接收部207會對每個PRB組0與PRB組1的檢索空間、及橫跨PRB組0與PRB組1而分配於窄頻帶内的全部的ECCE之「24個ECCEs」嘗試接收由訊號分離部202接收的MPDCCH訊號,以檢測作為含有DL分配資訊或UL分配資訊之控制訊號之MPDCCH。MPDCCH接收部207會將作為發給自終端之訊號而被檢測出的DL分配資訊輸出至訊號分離部202,並將UL分配資訊輸出至訊號分配部211。又,MPDCCH接收部207會將顯示配置有MPDCCH之PRB組編號、最小ECCE編號、及包含於DL分配資訊的ARO的分配資訊輸出至PUCCH資源特定部208。
PUCCH資源特定部208是根據由MPDCCH接收部207所輸入之分配資訊(PRB組編號、最小ECCE編號、ARO)、以及以上層預先通知的N_pucch資訊,來特定對接收資料訊號之ACK/NACK分配的PUCCH資源。PUCCH資源特定部208會將表示已特定之PUCCH資源的資訊輸出至訊號分配部211。又,針對PUCCH資源特定部208中的PUCCH資源的特定方法之詳細內容將闡述於後。
錯誤更正編碼部209會對傳送資料訊號(UL資料訊號)進行錯誤更正編碼,並將編碼後的資料訊號輸出至調變部210。
調變部210會對由錯誤更正編碼部209收到之訊號進行調變,並將調變後的資料訊號輸出至訊號分配部211。
訊號分配部211是根據從MPDCCH接收部207收到之UL分配資訊,將從調變部210輸入之資料訊號分配於資源,並輸出至傳送部212。又,訊號分配部211是根據從PUCCH資源特定部208輸入之PUCCH資源的分配資訊,將從ACK/NACK生成部206輸入之ACK/NACK訊號分配於PUCCH資源,並輸出至傳送部212。
傳送部212是根據預定之模式來將對應於分配UL資料的窄頻帶之資源特定出,並進行重新調諧。並且,傳送部212會對從訊號分配部211輸入的訊號施行升頻轉換等的傳送處理,且透過天線進行傳送。
[基地台100及終端200的動作] 針對具有以上之構成的基地台100及終端200中的動作詳細地進行說明。
在本實施形態中,基地台100(PUCCH資源特定部108)及終端200 (PUCCH資源特定部208)是在將MPDCCH橫跨複數個PRB組(4PRB組及2PRB組)而配置的情況(即,24個CCEs的MPDCCH的情況)下,使用設定於複數個PRB組的任一個之偏移值(N_pucch),來特定PUCCH資源。
以下針對關於本實施形態之動作例1、2作說明。
(動作例1) 在動作例1中,終端200(MTC終端)於無論在選項1、2的任一個之中均檢測出24個ECCEs的MPDCCH的情況下,是使用在窄頻帶内的PRB組之中,於分配於PRB編號為最小的PRB對的PRB組中所設定的偏移値(MTC N_pucch)來特定PUCCH資源。
例如,在選項1的圖2A與選項2的圖3A中,終端200是使用對應於分配於PRB#0的2PRB組的N_pucch,來特定PUCCH資源。另一方面,在選項1的圖2B與選項2的圖3B中,終端200是使用對應於分配於PRB#0的4PRB組之N_pucch,來特定PUCCH資源。
又,基地台100是與終端200相同地進行,使用已分配MPDCCH之窄頻帶內的PRB組之中,於分配到PRB編號為最小的PRB對之PRB組中所設定的偏移値(MTC N_pucch),來特定分配有ACK/NACK訊號的PUCCH資源。
如此進行而將對應於24個ECCEs的MPDCCH的PUCCH資源特定的情況下,因應MPDCCH的PRB組之對PRB對的分配,設定於24個ECCEs的MPDCCH的偏移値N_pucch會不同。此後,藉由MPDCCH的PRB組的分配,可以切換對應於24個ECCEs的MPDCCH的PUCCH資源。
圖8是顯示2個窄頻帶1、3使用於相異之MTC終端(終端200),而在雙方的窄頻帶中檢測出24個ECCEs的MPDCCH時的PUCCH資源的分配例。
在圖8中,在2PRB組中設定有N_pucch,0、在4PRB組中設定有N_pucch,1。又,在圖8所示之2個窄頻帶中,PRB組的分配不同。具體而言,在窄頻帶1中,是與圖2A同樣,將2PRB組分配於PRB對#0、#1,並將4PRB組分配置PRB對#2~#5。 另一方面,在窄頻帶3中,是與圖2B同樣,將2PRB組分配於PRB對# 14、#15,並將4PRB組分配於PRB對#12、#13、#16、#17。
此時,使用窄頻帶1的MTC終端是利用分配於PRB編號為最小的PRB對#0之2PRB組中所設定的N_pucch,0來特定PUCCH資源。另一方面,使用窄頻帶3之MTC終端是利用於分配於PRB編號為最小的PRB對#12的4PRB組中所設定之N_pucch,1來特定PUCCH資源。
藉此,如圖8所示,即使在2個窄頻帶1、3中將24個ECCEs的MPDCCH同時配置的情況下,各個MTC終端仍可使用不同的N_pucch來特定PUCCH資源,所以可以防止PUCCH資源的衝突。
(動作例2) 在動作例2中,終端200(MTC終端)於無論是在選項1、2之任一個之中均檢測出24個ECCEs的MPDCCH的情況下,是使用在窄頻帶内的PRB組之中,設定於PRB組編號為最小的PRB組中的偏移値(N_pucch,0)來特定PUCCH資源。
在此,N_pucch,0是對PRB組0(第一PRB組)所設定之N_ pucch。2PRB組與4PRB組之中,哪個PRB組為PRB組0或PRB組1,可在上層(RRC傳訊)設定時進行指示、或是將其中一方的PRB組設為PRB組0來預先設定亦可。又,N_pucch,0與N_pucch,1是以上層(RRC傳訊)來通知終端200。上層的傳訊經考慮有,使MTC終端可以用共通方式接收的MTC用SIB、或是終端200個別的傳訊。
又,基地台100是與終端200相同地進行,利用已分配MPDCCH的窄頻帶內的PRB組之中,於PRB組編號為最小的PRB組中所設定的偏移値(N_pucch,0),來特定分配有ACK/NACK訊號的PUCCH資源。
如此進行而將對應於24個ECCEs的MPDCCH的PUCCH資源特定的情況下,可在窄頻帶中於不依靠各個PRB組被分配至哪個PRB對之情形下,隨時使用N_pucch,0。
又,在使用24個ECCEs,而未設想MU-MIMO的情況下,於已配置有24個ECCEs的窄頻帶中並不會配置其他的MPDCCH。因此,為了不製作出不需要的閒置資源,宜使用資源編號較低的PUCCH資源。於是,藉由在特定出對應於24個ECCEs的MPDCCH的PUCCH資源時使用N_pucch,0,可以期待設定資源編號較低的PUCCH資源。藉此,可以實現PUCCH資源的縮小,而可以確保更寬廣之PUSCH的資源。再者,在此所假設的是,N_pucch,0之値小於N_pucch,1之値。
又,在設想MU-MIMO,而在其他的窄頻帶中傳送MPDCCH,並使用了相同的N_pucch,0且nECCE,0
=0的情況下,會導致PUCCH資源發生衝突。但是,在此情況下,可以藉由ARO來回避PUCCH資源的衝突。
(動作例2之變形例) 再者,於動作例2中,在MTC終端已檢測出24個ECCEs的MPDCCH的情況下,也可設定為使用N_pucch,1來特定PUCCH資源。在此情況下,可以藉由將N_pucch,1設為比N_pucch,0更小之値,來實現PUCCH資源的縮小。
又,在MTC終端已檢測出24個ECCEs的MPDCCH的情況下,也可設定為使用N_pucch,0與N_pucch,1之中較小之値來特定PUCCH資源。此時,無論N_pucch,0、N_pucch,1之大小關係,均可實現PUCCH資源的縮小。
又,在MTC終端已檢測出24個ECCEs的MPDCCH的情況下,也可設定為使用對應於4PRB組的N_pucch或對應於2PRB組的N_pucch來特定PUCCH資源。此時,可以藉由將對應於4PRB組的N_pucch或對應於2PRB組的N_pucch設為較小之値,而實現PUCCH資源的縮小。
以上,針對本實施形態之動作例1、2作了說明。
像這樣,在本實施形態中,基地台100及終端200是在將MPDCCH橫跨複數個PRB組而配置的情況下,利用對應於配置有該MPDCCH的複數個PRB組q的任一個的N_pucch,q來特定PUCCH資源。
如此一來,基地台100及終端200可以在不追加新的傳訊的情形下,特定出對應於以24個ECCEs的形式橫跨複數個PRB組而配置的MPDCCH之PUCCH資源。亦即,根據本實施形態,可以效率良好地特定出在窄頻帶內的全部的6個PRB對中配置1個MPDCCH的情況下的PUCCH資源。
再者,在選項2的MPDCCH配置中,在上述動作例中,雖然是設想為以上層所通知之PRB組0(第一PRB組)為4PRB組,PRB組1(第二PRB組)為2PRB組,且針對將MPDCCH先配置於4PRB組的情況進行了例示,但將MPDCCH先配置於PRB組1(第二PRB組)亦可。
(實施形態2) 由於本實施形態的基地台與終端,基本構成與實施形態1的基地台100及終端200是共通的,所以援用圖6與圖7來作說明。
在實施形態1中,已就以對複數個PRB組設定不同的偏移值N_pucch之情形為前提之情況作了說明。相對於此,在本實施形態中,是就以對複數個PRB組設定共通的偏移值N_pucch之情形為前提之情況來作說明。
在此,針對在本實施形態中對應於MPDCCH的PUCCH資源作說明。
針對同一重複等級的MTC終端的PUCCH,於PRB組設置共通的NPUCCH (el)
(以下省略記載為「N_pucch」),且對每個PRB組,從ECCE編號來特定PUCCH的資源。傳送PUCCH format 1a/1b的PUCCH資源(資源編號)是以下式來特定。
在PRB組0(q=0)的情況下,K0
= 0,在PRB組1(q=1)的情況下,K1
為包含於PRB組0的ECCE數。例如,在PRB組0為4PRB組(16個ECCE)的情況下,會成為K1
=16,在PRB組1為2PRB組(8個ECCE)的情況下,會成為K1
=8。
圖9是顯示本實施形態之PUCCH資源的概念圖。
如圖9所示、對應於PRB組0之PUCCH資源(PUCCH組(0))是使用N_pucch與ECCE編號來特定,對應於PRB組1的PUCCH資源(PUCCH組(1))是使用N_pucch+ECCE編號+K1
(但是,K1
是PUCCH組(0)内的ECCE數)來特定。藉此,將對應於PRB組1的PUCCH資源、與對應於PRB組1的PUCCH資源設定為連續的資源。據此,即便在將全部的MPDCCH以聚合等級1傳送的情況下,仍然可以在不使用ARO的情形下,於確保對應於PRB組0之PUCCH資源後,配置對PRB組1的PUCCH資源。
在本實施形態中,基地台100及終端200是利用共通的N_pucch來特定對應於橫跨複數個PRB組而配置之MPDCCH(24個ECCEs的MPDCCH)的PUCCH資源。
以下,針對有關於本實施形態的動作例3作說明。
(動作例3) 在動作例中3,基地台100及終端200(MTC終端)在選項1、2的任一個之中,均是在檢測出24個ECCEs的MPDCCH的情況下,使用於窄頻帶内的複數個PRB組中共通地設定的N_pucch來特定PUCCH資源。此時,無論將4PRB組及2PRB組分配至哪個PRB對,均設為Kq
=0。又,將使用24個ECCEs的MPDCCH之情況的最小ECCE編號假設為nECCE,q
=0之情況下,PUCCH資源(資源編號)是用以下之式來特定。
藉由根據如此進行而使基地台100及終端200共通的N_pucch來特定對應於24個ECCEs之MPDCCH之PUCCH資源,無論MPDCCH PRB組對PRB對的分配,可以隨時設定資源編號較低之PUCCH資源,作為對應於24個ECCEs之MPDCCH之PUCCH資源。
藉此,可以避免將不需要的閒置之PUCCH資源確保之情形,而實現PUCCH資源的縮小,其結果,可以確保更寬廣之PUSCH的資源。
又,根據本實施形態,與實施形態1同樣,基地台100及終端200可在不追加新的傳訊的情形下,特定出對應於如以24個ECCEs的形式橫跨複數個PRB組而配置之MPDCCH之PUCCH資源。亦即,根據本實施形態,可以效率良好地特定出在窄頻帶內的全部的6個PRB對中配置1個MPDCCH的情況下的PUCCH資源。
再者,與實施形態1的動作例2同樣,在設想MU-MIMO,而在其他的窄頻帶中傳送MPDCCH,且已使用相同的N_pucch,0且nECCE,0
=0的情況下,會導致PUCCH資源發生衝突。但是,在此情況下,可以藉由ARO來回避PUCCH資源的衝突。
又,在本實施形態中,雖已針對使用變數Kq
按每個PRB組q使對應於PRB組之PUCCH資源變化之情況作說明,然而,亦可不使用Kq
而在PRB組q之間共有PUCCH資源。在該情況下,PRB組q之間的PUCCH資源的衝突以ARO來回避即可。特別是,由於如以24個ECCEs的MPDCCH之形式來使用聚合等級較高的MPDCCH的情況下,可預料PUCCH資源並沒有混雜之情形,所以僅用ARO也可以回避衝突。如此,藉由在PRB組q之間共有PUCCH資源之作法,可以削減PUCCH資源量。又,在此情況下,已檢測出24個ECCEs之MPDCCH時的PUCCH資源也可以藉與動作例3相同的式子來求得。
又,在本實施形態中,雖然已針對將K1
設為包含於PRB組0的ECCE數之情況作了說明,但K1
的値並不限定於此,亦可為包含於PRB組0之ECCE數的1/2等的値。當將K1
設為如ECCE數之1/2等較小的値時,可以縮小整體的PUCCH資源量。這個方式在例如PUCCH資源的衝突概率較低的情況中是有效的。
(實施形態3) 如選項2所説明的,將24個ECCEs之MPDCCH優先在窄頻帶内的MPDCCH PRB組分配的情況下,MTC終端會有下述狀況:接收到先配置有MPDCCH的MPDCCH PRB組的最大聚合等級之訊號的錯誤狀況(以下,稱為「誤識別1」)、以及接收到MPDCCH配置為第2個的MPDCCH PRB組的最大聚合等級的訊號之錯誤狀況(以下,稱為「誤識別2」)。
以下,為了簡單地進行説明,假設為將24個ECCEs從PRB組0開始分配。以下,利用圖10與圖11針對上述之誤識別與伴隨其之課題具體地進行說明。
誤識別1會在PRB組0中從可以於MPDCCH中使用的RE數中計算得的可傳送位元數成為MPDCCH的編碼後的位元數的整數倍的情況下發生。又,誤識別2是在除了誤識別1之上述條件外,還在PRB組1中從可以於MPDCCH中使用之RE數中計算得的可傳送位元數成為MPDCCH的編碼後的位元數的整數倍的情況下發生。
在圖10中,所顯示的是,使MPDCCH的編碼後的位元(編碼後位元(After encoding bits))之數為與在聚合等級8(8個ECCEs)中可以傳送之位元數相等的情況。因此,24個ECCEs的傳送位元列是藉由速率匹配(Rate matching),以將編碼後的位元複製2次以作為形成3倍之位元列來生成。如圖10所示,所生成的傳送位元列是在配置於作為PRB組0之4PRB組的16個ECCE後,再配置於作為PRB組1之2PRB組的8個ECCE。
在MPDCCH的編碼後的位元數為與其他的聚合等級中可以傳送之位元數相等之情況下,就沒有必要於速率匹配時削減位元。因此,圖10所示之24個ECCEs的傳送位元列的前半16個ECCE及後半8個ECCE的傳送位元列,在MTC終端的收訊品質較高,在MTC終端就會成為作為16個ECCE或8個ECCE而可以接收之位元列(亦即,作為16個ECCE或8個ECCE而被誤識別之位元列)。
再者,速率匹配時是否可削減位元,會依於MPDCCH傳送時可以使用之RE數而有所不同。又,於MPDCCH傳送時可以使用之RE數是依PDCCH長度、CRS埠數、CSI-RS埠數、CP length長度等而為可變的。因此,針對對於MPDCCH,在何種條件時會發生上述誤識別之問題,要網羅全部的模式是困難的。另一方面,在PDCCH中,於已發生同樣的問題之情況下,所採用的是於資訊位元追加填充位元(padding bit)之對策。這是因為PDCCH會將使用於按每個聚合等級傳送之RE數形成為固定之故。又,在EPDCCH中,是藉由將EPDCCH之對RE的配置設為頻率優先之作法,以回避此問題。
又,上述誤識別是在下述情況下發生:在MTC終端的實際的接收品質比在基地台所預測之MTC終端的接收品質更高,且在MTC終端中,可以在聚合等級較24個ECCEs更低之4PRB組之聚合等級16、或2PRB組之聚合等級8上接收MPDCCH之情況。當此聚合等級的誤識別產生時,會有將PUCCH資源弄錯之課題。
具體而言,雖然基地台以24個ECCEs來傳送MPDCCH,但是當誤識別為MTC終端接收到4PRB組的聚合等級16之MPDCCH、或2PRB組的聚合等級8之MPDCCH時,MTC終端會使用從對應於4PRB組之聚合等級16或2PRB組之聚合等級8的N_pucch中特定之PUCCH資源來傳送ACK/NACK。
例如,在圖11中,MTC終端在識別到已接收到4PRB組的聚合等級16之MPDCCH之情況下,會使用利用設定於4PRB組之N_pucch,0所特定之PUCCH資源(PUCCH組(0))來傳送ACK/NACK;而在識別到已接收到2PRB組的聚合等級8之MPDCCH之情況下,會使用利用設定於2PRB組之N_pucch,1所特定之PUCCH資源(PUCCH組(1))來傳送ACK/NACK。
亦即,在圖11中,MTC終端在對應於基地台原本已預定之24個ECCEs之PUCCH資源中,會有無法傳送ACK/NACK之可能性。另一方面,基地台會以對應於已預定之24個ECCEs的PUCCH資源嘗試接收ACK/NACK,而有誤檢測ACK/NACK之可能性。又,MTC終端由於以未預定的PUCCH資源傳送ACK/NACK,也有對其他的終端所傳送之訊號造成干涉之可能性。
再者,由於在選項1(頻率優先)中,是將24個ECCEs的MPDCCH,以OFDM符號單位橫跨4PRB組與2PRB組而配置,且MPDCCH之對RE的配置會與4PRB組的聚合等級16之MPDCCH、或2PRB組的聚合等級8之MPDCCH相異,所以不會產生有關於上述之誤識別之問題。
在本實施形態中,是針對可以回避上述誤識別之PUCCH資源的特定方法作說明。
再者,由於本實施形態之基地台與終端,基本構成與實施形態1之基地台100與終端200是共通的,所以援用圖6、圖7來作說明。
以下,針對本實施形態之動作例4~6作說明。
(動作例4) 在動作例4中,終端200(MTC終端)於已檢測出24個ECCEs的MPDCCH的情況下,是使用在窄頻帶内的複數個PRB組之中,設定於24個ECCEs的MPDCCH先被配置之PRB組q上之N_puuch,q來特定PUCCH資源。例如,將24個ECCEs的MPDCCH先配置於PRB組0,之後,配置於PRB組1之情況下,終端200會在已檢測出24個ECCEs的MPDCCH時,使用設定於PRB組0之N_puuch,0來特定PUCCH資源。
藉由如此進行,即便以24個ECCEs從基地台100傳送來之MPDCCH已使終端200誤識別為PRB組0之最大聚合等級之MPDCCH的情況下,終端200仍可以使用已對24個ECCEs之MPDCCH確保之PUCCH資源來傳送ACK/NACK。因此,可以回避在發生誤識別1之情況下終端200將PUCCH資源弄錯之情形。
此外,亦可將先配置MPDCCH之PRB組0所分配之PRB對之數量設得比後配置MPDCCH之PRB組1所分配之PRB對之數量多。例如,亦可將PRB組0設為4PRB組,將PRB組1設為2PRB組。如此一來,可以降低誤識別2的發生機率。這是由於在MTC終端中,將24個ECCEs的MPDCCH作為聚合等級8而進行接收時,比起作為聚合等級16而進行接收會要求更高的接收品質,藉此,相較於將24個ECCEs誤識別為聚合等級16之概率,誤識別為聚合等級8之概率較低之故。像這樣,將PRB組0設為4PRB組,將PRB組1設為2PRB組時,在終端200檢測出24個ECCEs的MPDCCH之情況下,藉由使用設定於PRB組0之N_puuch,0來特定PUCCH資源,可以回避因誤識別1而將PUCCH資源弄錯之情形,並且降低誤識別2的發生概率。
又,根據本實施形態,基地台100與終端200是使用設定於先配置MPDCCH之PRB組的偏移值N_pucch來特定PUCCH資源。藉此,與實施形態1同樣,基地台100與終端200可在不追加新的傳訊的情形下,特定出對應於以24個ECCEs之形式橫跨於複數個PRB組而配置的MPDCCH之PUCCH資源。亦即,可以效率良好地將在窄頻帶内的全部的6個PRB對中配置1個MPDCCH的情況之PUCCH資源特定。
(動作例5) 由於在動作例5中,除了動作例4的動作以外,為了回避因誤識別2而將PUCCH資源弄錯之情形,終端200(MTC終端)會在以PRB組的最大聚合等級檢測出MPDCCH之情況下,使用N_pucch,0來特定PUCCH資源。
例如,終端200會在以PRB組1的最大聚合等級檢測出MPDCCH之情況下,使用N_pucch,0來特定PUCCH資源,並在以PRB組1之其他的聚合等級檢測出MPDCCH之情況下,使用設定於PRB組1之N_pucch,1來特定PUCCH資源。
如此一來,終端200在以24個ECCEs檢測出MPDCCH之情況、以PRB組0的最大聚合等級検測出MPDCCH之情況、以及以PRB組1之最大聚合等級検測出MPDCCH之情況的全部3種的情況中,均會使用N_pucch,0來特定PUCCH資源。
據此,即便誤檢測終端200已接收之MPDCCH的聚合等級,使用於ACK/NACK訊號之傳送的PUCCH資源仍會成為與未誤檢測之情況相同之資源,而可以回避因誤識別1與誤識別2而將PUCCH資源弄錯之情形。
再者,將基地台100或MTC終端用的MPDCCH以PRB組1的最大聚合等級傳送,且使用PRB組0的ECCE#0來傳送其他的MTC終端用的MPDCCH之情況下,存有使對應於這些MPDCCH之PUCCH資源產生衝突之課題。但是,這個衝突可以利用ARO來回避。
又,在PRB組1中,僅在MTC終端以最大聚合等級檢測出MPDCCH之情況下才使用N_pucch,0,在MTC終端以其他的聚合等級檢測出MPDCCH之情況下,則使用N_pucch,1。因此,在PRB組1的最大聚合等級以外的其他的聚合等級中,即便使基地台100傳送含有ECCE#0之MPDCCH,與PRB組0之PUCCH資源之衝突概率,與沒有應用動作例5的情況相比較並沒有變化。
(動作例6) 在動作例6中,為了回避誤檢測2,基地台100在配置24個ECCEs的MPDCCH的情況下,會使映射於RE之順序與在PRB組1的最大聚合等級下之RE的映射不同。藉由改變MPDCCH之對RE的映射的順序,可以回避在已傳送24個ECCEs的MPDCCH的情況下,在終端200(MTC終端)中作為PRB組1的最大聚合等級而被誤檢測之情形。
以下,針對MPDCCH之對RE的映射方法的具體例作說明。再者,在以下的說明中,在將MPDCCH於24個ECCEs分配之情況下,是以PRB組0、PRB組1之順序分配。又,將PRB組0設為4PRB組,將PRB組1設為2PRB組。
又,在以PRB組1(在此為2PRB組)的最大聚合等級傳送MPDCCH之情況下,與EPDCCH同樣,於PRB組1(2PRB組)内,MPDCCH是從OFDM符號編號較低的OFDM符號開始,縱貫PRB對並從頻率較低的一方往較高的一方配置後,再移動至下一個OFDM 符號,且同樣地縱貫PRB對並從頻率較低的一方往較高的一方配置。
(例1:鏡像(Mirroring)) 於鏡像中,如圖12A所示,於配置24個ECCEs之MPDCCH時,在PRB組1(2PRB 組)内,MPDCCH會從OFDM符號編號較低的OFDM符號開始,縱貫PRB對並從頻率較高的一方往較低的一方配置後,再移動至下一個OFDM符號,且同樣地縱貫PRB對並從頻率較高的一方往較低的一方配置。亦即,在鏡像中,在24個ECCEs的情況、與PRB組1的最大聚合等級的情況下,是使各OFDM符號中的頻率方向的MPDCCH的配置順序反轉。
因此,在已配置24個ECCEs之MPDCCH之情況、與已配置PRB組1的最大聚合等級的MPDCCH之情況下,因為PRB組1內的MPDCCH的配置順序不同,所以可以回避在MTC終端誤檢測聚合等級之情形。
(例2: PRB對移位(PRB pair shifting)) 在PRB對移位中,於配置24個ECCEs的MPDCCH時,在PRB組1(2PRB組)內,MPDCCH會將PRB對編號移位而配置。 例如,在圖12B中,因為將2PRB組分配於PRB對#0與PRB對#1中,針對24個ECCEs的MPDCCH,對於PRB組1的最大聚合等級之情況,是以PRB 對#0與PRB對#1來使MPDCCH之配置交替。
因此,由於在已配置24個ECCEs的MPDCCH的情況、與已配置PRB組1的最大聚合等級的MPDCCH的情況下,在PRB組1內的MPDCCH的配置順序不同,所以可以回避在MTC終端誤檢測聚合等級之情形。
(例3:OFDM符號移位(OFDM symbol shifting)) 在OFDM符號移位中,是在配置24個ECCEs的MPDCCH時,在PRB組1(2PRB組)內,將OFDM符號編號移位而配置MPDCCH。例如,在圖12C中是顯示將3個OFDM符號編號移位之例。 亦即,在PRB組1(2PRB組)内,MPDCCH是從OFDM符號#3開始,縱貫PRB對並從頻率較低的一方往較高的一方配置後,移動至下一個OFDM符號,且同樣地縱貫PRB對並從頻率較低的一方往較高的一方配置。然後,當配置MPDCCH之OFDM符號成為最終的OFDM符號時,會往最前面的OFDM符號#0移動,直至移動至OFDM符號#2。
因此,由於在已配置24個ECCEs的MPDCCH的情況、與已配置PRB組1的最大聚合等級的MPDCCH的情況下,在PRB組1內的MPDCCH的配置順序不同,所以可以回避在MTC終端誤檢測聚合等級之情形。
以上,已針對MPDCCH之對RE的映射方法的具體例作了說明。
如此進行並根據本實施形態,即使是終端200誤檢測出MPDCCH的聚合等級的情況也可以特定出與沒有誤檢測之情況相同的PUCCH資源、或防止終端200誤檢測MPDCCH的聚合等級之情形。藉由如此進行,可回避在基地台100之ACK/NACK訊號之誤檢測。又,藉由終端200以正確的PUCCH資源傳送ACK/NACK,可以回避對其他終端所傳送之訊號造成干涉之情形。
再者,在上述動作例中,雖然已針對24個ECCEs的MPDCCH以PRB組0、PRB組,1的順序進行分配之情況作了說明,但24個ECCEs的MPDCCH亦可以按PRB組,1、PRB組0的順序進行分配。
以上,已針對本揭示的各個實施形態作了說明。
再者,在上述實施形態1及2中所顯示的是於窄頻帶内將4PRB組與2PRB組分配於不重複的PRB對之例。但是,亦可考慮於窄頻帶内將4PRB組與2PRB組分配於重複之PRB對之情況。圖13A與圖13B所顯示的是,將4PRB組分配於PRB對#2、3、4、5,且將2PRB組分配於重複之PRB對#2、#3之例。再者,在圖13A與圖13B中,24個ECCEs的MPDCCH配置是將選項1(頻率優先)作為前提。亦即,不受4PRB組及2PRB組之配置所影響,在窄頻帶中24個ECCEs的MPDCCH的符號列是從OFDM符號編號較低之OFDM符號開始,縱貫PRB對並從頻率較低的一方往較高的一方配置後,移動至下一個OFDM符號,且同樣地縱貫PRB對並從頻率較低的一方往較高的一方配置。即便是使4PRB組與2PRB組重複的配置,也可以適用實施形態1的動作例2、及實施形態2的動作例3。例如,在動作例2中,只要於MTC終端檢測出24個ECCEs的MPDCCH時,使用N_pucch,0來特定PUCCH資源即可。又,在動作例3中,只要於MTC終端檢測出24個ECCEs的MPDCCH時,使用共通地設定於複數個PRB組之N_pucch來特定PUCCH資源即可。
又,在上述實施形態中,雖然將本揭示之一態樣以硬體構成之情況為例來作說明,但本揭示亦可在與硬體的協作中以軟體來實現。
又,使用於上述實施形態的說明之各功能方塊,典型上是作為積體電路之LSI來實現。積體電路亦可控制於上述實施形態的說明中所使用到的各功能方塊,且具備輸入與輸出。這些可以個別地集成為1個晶片,亦可以用包含一部分或全部的方式來集成1個晶片。在此,雖然做成LSI,但按照集成度的差異,也會有稱為IC、系統LSI(System LSI)、特大型LSI(Super LSI)與超大型LSI (Ultra LSI)之情形。
又,積體電路化之手法並不限於LSI,亦可利用專用電路或通用處理器來實現。亦可在LSI製造後,利用可程式設計的FPGA(Field Programmable Gate Array(現場可程式閘陣列))、或可再構成LSI內部之電路電池的連接與設定之可重組態處理器(reconfigurable processor)。
此外,若是因為半導體技術之進歩或衍生之其他技術而有可替換之LSI之積體電路化的技術出現,當然也可以使用該技術來進行功能方塊的集成化。可具有生物技術之適用等的可能性。
本揭示之基地台是採用下述之構成,其具備: 訊號分配部,將含有PDSCH(Physical Downlink Shared Channel(實體下行鏈路共享通道))的資源分配資訊的下行控制訊號分配於下行資源; 特定部,根據分配有下行控制訊號之下行資源,來特定對PDSCH之ACK/NACK訊號所分配之PUCCH (Physical Uplink Control Channel(實體上行鏈路控制通道))資源;及 訊號分離部,從來自已傳送下行控制訊號的終端的接收訊號中,將包含於已特定之PUCCH資源之ACK/NACK訊號分離, 下行資源是由複數個PRB對所構成,且於各複數個PRB對分配第1PRB組與第2PRB組之任一個, 特定部是在將下行控制訊號橫跨第1PRB組與第2PRB組而配置之情況下,使用設定於第1PRB組及第2PRB組的任一個之偏移值來特定PUCCH資源。
在本揭示之基地台中,於第1PRB組及第2PRB組中分別設定有互相相異之偏移值,特定部是在將下行控制訊號橫跨第1PRB組及第2PRB組而配置之情況下,使用在第1PRB組及第2PRB組之中,設定於分配於PRB編號最小之PRB對的PRB組的偏移值,來特定PUCCH資源。
在本揭示之基地台中,於第1PRB組及第2PRB組中分別設定有互相相異之偏移值,特定部是在將下行控制訊號橫跨第1PRB組與第2PRB組而配置之情況下,使用在第1PRB組及第2PRB組之中,設定於PRB組編號較小之PRB組的偏移值,來特定PUCCH資源。
在本揭示之基地台中,於第1PRB及第2PRB組中分別設定有互相相異之偏移值,特定部是在將下行控制訊號橫跨第1PRB組及第2PRB組而配置之情況下,使用在第1PRB組所設定之偏移值及在第2PRB組所設定之偏移值之中,值較小的偏移值,來特定PUCCH資源。
在本揭示之基地台中,於第1PRB組及第2PRB組中設定有共通的偏移值,特定部是使用共通的偏移值來特定PUCCH資源。
在本揭示之基地台中,於第1PRB組及第2PRB組中分別設定有互相相異之偏移值,特定部是在將下行控制訊號橫跨第1PRB組與第2PRB組而配置之情況下,使用在第1PRB組及第2PRB組之中,設定於先配置下行控制訊號之PRB組的偏移值,來特定PUCCH資源。
在本揭示之基地台中,是使先配置下行控制訊號之PRB組所分配之PRB對之數量比後配置下行控制訊號之PRB組所分配之PRB對之數量更多。
本揭示之終端是採用下述的構成,其具備: 接收部,接收含有PDSCH(Physical Downlink Shared Channel(實體下行鏈路共享通道))的資源分配資訊的下行控制訊號; 特定部,根據分配有下行控制訊號之下行資源,來特定對PDSCH之ACK/NACK訊號所分配之PUCCH (Physical Uplink Control Channel(實體上行鏈路控制通道))資源;及 訊號分配部,於已特定之PUCCH資源中分配ACK/NACK訊號, 下行資源是由複數個PRB對所構成,且於各複數個PRB對分配第1PRB組與第2PRB組之任一個, 特定部是在將下行控制訊號橫跨第1PRB組與第2PRB組而配置之情況下,使用設定於第1PRB組及第2PRB組的任一個之偏移值來特定PUCCH資源。
本揭示之通信方法為: 將含有PDSCH(Physical Downlink Shared Channel(實體下行鏈路共享通道))的資源分配資訊的下行控制訊號,分配於下行資源; 根據下行控制訊號所分配之下行資源,來特定對PDSCH之ACK/NACK訊號所分配之PUCCH(Physical Uplink Control Channel(實體上行鏈路控制通道))資源;且 從來自已傳送下行控制訊號的終端的接收訊號中,將包含於已特定之PUCCH資源之ACK/NACK訊號分離, 下行資源是由複數個PRB對所構成,且於各複數個PRB對分配第1PRB組及第2PRB組之任一個, 在將下行控制訊號橫跨第1PRB組及第2PRB組而配置之情況下,PUCCH資源是使用設定於第1PRB組及第2PRB組的任一個之偏移值來特定。
本揭示之通信方法為: 接收含有PDSCH(Physical Downlink Shared Channel(實體下行鏈路共享通道)的資源分配資訊的下行控制訊號; 根據下行控制訊號所分配之下行資源,來特定對PDSCH之ACK/NACK訊號所分配之PUCCH(Physical Uplink Control Channel(實體上行鏈路控制通道))資源;且 於已特定之PUCCH資源中分配ACK/NACK訊號, 下行資源是以複數個PRB對所構成,且於各複數個PRB對分配第1PRB組及第2PRB組之任一個, 在將下行控制訊號橫跨第1PRB組與第2PRB組而配置之情況下,PUCCH資源是使用設定於第1PRB組及第2PRB組的任一個之偏移值來特定。 産業上之可利用性
本揭示之一態樣在移動通訊系統上是有用的。
100‧‧‧基地台
101‧‧‧Aggregation level(聚合等級)設定部
102‧‧‧MPDCCH生成部
103、209‧‧‧錯誤更正編碼部
104、210‧‧‧調變部
105、211‧‧‧訊號分配部
106、212‧‧‧傳送部
107、201‧‧‧接收部
108、208‧‧‧PUCCH資源特定部
109、202‧‧‧訊號分離部
110‧‧‧PUCCH接收部
111、203‧‧‧解調部
112、204‧‧‧錯誤更正解碼部
200‧‧‧終端
205‧‧‧錯誤判定部
206‧‧‧ACK/NACK生成部
207‧‧‧MPDCCH接收部
圖1是PUCCH資源的概念圖。 圖2A是顯示MPDCCH的配置方法之一例的圖(選項1(Option1))。 圖2B是顯示MPDCCH的配置方法之一例的圖(選項1(Option1))。 圖3A是顯示MPDCCH的配置方法之一例的圖(選項2(Option2))。 圖3B是顯示MPDCCH的配置方法之一例的圖(選項2(Option2))。 圖4是顯示基地台的主要部位構成的方塊圖。 圖5是顯示終端的主要部位構成的方塊圖。 圖6是顯示基地台的構成的方塊圖。 圖7是顯示終端的構成的方塊圖。 圖8是顯示與實施形態1的動作例1有關的PUCCH資源的特定方法之一例的圖。 圖9是PUCCH資源的概念圖。 圖10是供實施形態3的課題之說明用的圖。 圖11是供實施形態3的課題之說明用的圖。 圖12A是顯示與實施形態3的動作例6有關之MPDCCH的配置方法之一例的圖。 圖12B是顯示與實施形態3的動作例6有關之MPDCCH的配置方法之一例的圖。 圖12C是顯示與實施形態3的動作例6有關之MPDCCH的配置方法之一例的圖。 圖13A是顯示有關於變動的4PRB組的分配例之圖。 圖13B是顯示有關於變動的2PRB組的分配例之圖。
101:Aggregation level(聚合等級)設定部
102:MPDCCH生成部
103:錯誤更正編碼部
104:調變部
105:訊號分配部
106:傳送部
107:接收部
108:PUCCH資源特定部
109:訊號分離部
110:PUCCH接收部
111:解調部
112:錯誤更正解碼部
Claims (34)
- 一種通訊裝置,具備:接收機,在操作中,接收映射到複數個實體資源塊(PRB)組中的一個或多個PRB組的下行鏈路控制資訊(DCI);處理電路,在操作中,將ACK/NACK訊號映射到實體上行鏈路控制通道(PUCCH)資源,前述ACK/NACK訊號是根據前述DCI所指示之資料的檢測結果而生成;及發送機,在操作中發送前述ACK/NACK訊號,其中,前述複數個PRB組包含第1PRB組及第2PRB組,對於前述第1PRB組,在不增加前述DCI所映射到的第1ECCE(Enhanced CCE(增強型CCE))索引及PRB組偏移的情況下,決定對前述PUCCH資源的索引,對於前述第2PRB組,透過增加前述DCI所映射到的前述第1ECCE索引及前述PRB組偏移,來決定對前述PUCCH資源的索引。
- 如請求項1之通訊裝置,其中,對前述第2PRB組的前述PRB組偏移的值是根據前述第1PRB組的PRB數來決定。
- 如請求項1之通訊裝置,其中,對前述第2PRB組的前述PRB組偏移的值與前述第1PRB組所包含的ECCE數相同。
- 如請求項1之通訊裝置,其中對前述 PUCCH資源的前述索引是根據對同一重複等級共通的重複等級偏移來決定,前述重複等級偏移是由更上層指示。
- 如請求項1之通訊裝置,其中前述下行鏈路控制資訊是以頻率方向比時間方向優先的方式映射到前述一個或多個PRB組。
- 如請求項1之通訊裝置,其中,當在多個PRB組接收到前述DCI時,透過假設前述第1ECCE索引為0來決定對前述PUCCH資源的前述索引。
- 如請求項1之通訊裝置,其中前述PRB組偏移的值是從多個值中選擇。
- 一種通訊方法,包含下述步驟:接收映射到複數個實體資源塊(PRB)組中的一個或多個PRB組的下行鏈路控制資訊(DCI);將ACK/NACK訊號映射到實體上行鏈路控制通道(PUCCH)資源,前述ACK/NACK訊號是根據前述DCI所指示之資料的檢測結果而生成;及發送前述ACK/NACK訊號, 其中前述複數個PRB組包含第1PRB組及第2PRB組,對於前述第1PRB組,在不增加前述DCI所映射到的第1ECCE(Enhanced CCE(增強型CCE))索引及PRB組偏移的情況下,決定對前述PUCCH資源的索引,對於前述第2PRB組,透過增加前述DCI所映射到的前述第1ECCE索引及前述PRB組偏移,來決定對前述PUCCH資源的索引。
- 如請求項9之通訊方法,其中,對前述第2PRB組的前述PRB組偏移的值是根據前述第1PRB組的PRB數來決定。
- 如請求項9之通訊方法,其中,對前述第2PRB組的前述PRB組偏移的值與前述第1PRB組所包含的ECCE數相同。
- 如請求項9之通訊方法,其中對前述PUCCH資源的前述索引是根據對同一重複等級共通的重複等級偏移來決定,前述重複等級偏移是由更上層指示。
- 如請求項9之通訊方法,其中前述下行鏈路控制資訊是以頻率方向比時間方向優先的方式映射到前述一個或多個PRB組。
- 如請求項9之通訊方法,其中,當在多個PRB組接收到前述DCI時,透過假設前述第1ECCE索引為0來決定對前述PUCCH資源的前述索引。
- 如請求項9之通訊方法,其中前述PRB組偏移的值是從多個值中選擇。
- 一種通訊裝置,具備:發送機,在操作中,發送映射到複數個實體資源塊(PRB)組中的一個或多個PRB組的下行鏈路控制資訊(DCI);及接收機,在操作中,接收在實體上行鏈路控制通道(PUCCH)資源的ACK/NACK訊號,前述ACK/NACK訊號是根據前述DCI所指示之資料的檢測結果而生成,其中前述複數個PRB組包含第1PRB組及第2PRB組,對於前述第1PRB組,在不增加前述DCI所映射到的第1ECCE(Enhanced CCE(增強型CCE))索引及PRB組偏移的情況下,決定對前述PUCCH資源的索引,對於前述第2PRB組,透過增加前述DCI所映射到的前述第1ECCE索引及前述PRB組偏移,來決定對前述PUCCH資源的索引。
- 如請求項17之通訊裝置,其中,對前述第 2PRB組的前述PRB組偏移的值是根據前述第1PRB組的PRB數來決定。
- 如請求項17之通訊裝置,其中,對前述第2PRB組的前述PRB組偏移的值與前述第1PRB組所包含的ECCE數相同。
- 如請求項17之通訊裝置,其中對前述PUCCH資源的前述索引是根據對同一重複等級共通的重複等級偏移來決定,前述重複等級偏移是由更上層指示。
- 如請求項17之通訊裝置,其中前述下行鏈路控制資訊是以頻率方向比時間方向優先的方式映射到前述一個或多個PRB組。
- 如請求項17之通訊裝置,其中,當在多個PRB組接收到前述DCI時,透過假設前述第1ECCE索引為0來決定對前述PUCCH資源的前述索引。
- 如請求項17之通訊裝置,其中前述PRB組偏移的值是從多個值中選擇。
- 一種通訊方法,包含下述步驟: 發送映射到複數個實體資源塊(PRB)組中的一個或多個PRB組的下行鏈路控制資訊(DCI);及接收在實體上行鏈路控制通道(PUCCH)資源的ACK/NACK訊號,前述ACK/NACK訊號是根據前述DCI所指示之資料的檢測結果而生成,其中前述複數個PRB組包含第1PRB組及第2PRB組,對於前述第1PRB組,在不增加前述DCI所映射到的第1ECCE(Enhanced CCE(增強型CCE))索引及PRB組偏移的情況下,決定對前述PUCCH資源的索引,對於前述第2PRB組,透過增加前述DCI所映射到的前述第1ECCE索引及前述PRB組偏移,來決定對前述PUCCH資源的索引。
- 如請求項25之通訊方法,其中,對前述第2PRB組的前述PRB組偏移的值是根據前述第1PRB組的PRB數來決定。
- 如請求項25之通訊方法,其中,對前述第2PRB組的前述PRB組偏移的值與前述第1PRB組所包含的ECCE數相同。
- 如請求項25之通訊方法,其中對前述PUCCH資源的前述索引是根據對同一重複等級共通的重複等級偏移來決定,前述重複等級偏移是由更上層指示。
- 如請求項25之通訊方法,其中前述下行鏈路控制資訊是以頻率方向比時間方向優先的方式映射到前述一個或多個PRB組。
- 如請求項25之通訊方法,其中,當在多個PRB組接收到前述DCI時,透過假設前述第1ECCE索引為0來決定對前述PUCCH資源的前述索引。
- 如請求項25之通訊方法,其中前述PRB組偏移的值是從多個值中選擇。
- 一種積體電路,具有在操作中控制下述動作的電路:接收映射到複數個實體資源塊(PRB)組中的一個或多個PRB組的下行鏈路控制資訊(DCI);將ACK/NACK訊號映射到實體上行鏈路控制通道(PUCCH)資源,前述ACK/NACK訊號是根據前述DCI所指示之資料的檢測結果而生成;及發送前述ACK/NACK訊號,其中前述複數個PRB組包含第1PRB組及第2PRB組,對於前述第1PRB組,在不增加前述DCI所映射到的第1ECCE(Enhanced CCE(增強型CCE))索引及PRB組偏移的情況下,決定對前述PUCCH資源的索引, 對於前述第2PRB組,透過增加前述DCI所映射到的前述第1ECCE索引及前述PRB組偏移,來決定對前述PUCCH資源的索引。
- 一種積體電路,具有在操作中控制下述動作的電路:發送映射到複數個實體資源塊(PRB)組中的一個或多個PRB組的下行鏈路控制資訊(DCI);及接收在實體上行鏈路控制通道(PUCCH)資源的ACK/NACK訊號,前述ACK/NACK訊號是根據前述DCI所指示之資料的檢測結果而生成,其中前述複數個PRB組包含第1PRB組及第2PRB組,對於前述第1PRB組,在不增加前述DCI所映射到的第1ECCE(Enhanced CCE(增強型CCE))索引及PRB組偏移的情況下,決定對前述PUCCH資源的索引,對於前述第2PRB組,透過增加前述DCI所映射到的前述第1ECCE索引及前述PRB組偏移,來決定對前述PUCCH資源的索引。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-218437 | 2015-11-06 | ||
JP2015218437 | 2015-11-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201717673A TW201717673A (zh) | 2017-05-16 |
TWI695637B true TWI695637B (zh) | 2020-06-01 |
Family
ID=58663140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105130302A TWI695637B (zh) | 2015-11-06 | 2016-09-20 | 通訊裝置、通訊方法及積體電路 |
Country Status (15)
Country | Link |
---|---|
US (3) | US11337242B2 (zh) |
EP (2) | EP3902190B1 (zh) |
JP (2) | JP6633646B2 (zh) |
KR (1) | KR102653587B1 (zh) |
CN (1) | CN108353392B (zh) |
AU (1) | AU2016350112B2 (zh) |
CA (1) | CA3003699A1 (zh) |
CO (1) | CO2018004339A2 (zh) |
MX (1) | MX2018005658A (zh) |
MY (1) | MY194919A (zh) |
RU (1) | RU2707724C1 (zh) |
SG (2) | SG10202004190RA (zh) |
TW (1) | TWI695637B (zh) |
WO (1) | WO2017077677A1 (zh) |
ZA (1) | ZA201802834B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102653587B1 (ko) * | 2015-11-06 | 2024-04-01 | 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 | 통신 장치, 통신 방법 및 집적 회로 |
CN107770876A (zh) * | 2016-08-19 | 2018-03-06 | 株式会社Ntt都科摩 | 资源确定方法、基站及移动台 |
CN108282881B (zh) * | 2017-01-06 | 2020-12-15 | 华为技术有限公司 | 一种资源配置方法及装置 |
KR102288629B1 (ko) * | 2017-05-04 | 2021-08-11 | 삼성전자 주식회사 | 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치 |
KR102581454B1 (ko) * | 2017-11-10 | 2023-09-22 | 삼성전자주식회사 | 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치 |
US10904871B2 (en) * | 2017-11-29 | 2021-01-26 | Qualcomm Incorporated | Aggregation level specific PDCCH modification |
CN110198200A (zh) * | 2018-02-24 | 2019-09-03 | 华为技术有限公司 | 一种无线通信方法及装置 |
US12120060B2 (en) * | 2018-09-19 | 2024-10-15 | Qualcomm Incorporated | Acknowledgement codebook design for multiple transmission reception points |
US11778607B2 (en) * | 2021-04-01 | 2023-10-03 | Nokia Technologies Oy | Using relative transmission occasion delay indexing |
WO2024156162A1 (en) * | 2023-05-15 | 2024-08-02 | Zte Corporation | Wireless communication method and device thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101740445B1 (ko) * | 2010-04-22 | 2017-05-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 릴레이 노드로 제어 채널을 송신하는 방법 및 이를 위한 장치 |
JP5097793B2 (ja) * | 2010-04-30 | 2012-12-12 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局装置、移動端末装置および通信制御方法 |
CN103391151B (zh) * | 2012-05-10 | 2016-09-28 | 华为终端有限公司 | 在增强型物理下行控制信道上传输信息的方法及设备 |
JP5990793B2 (ja) | 2012-06-07 | 2016-09-14 | シャープ株式会社 | 端末装置、基地局装置、通信方法および集積回路 |
KR20140019718A (ko) * | 2012-08-06 | 2014-02-17 | 주식회사 케이티 | 송수신포인트의 제어정보 전송방법 및 그 송수신포인트, 단말의 상향링크 컨트롤 채널 자원 매핑방법, 그 단말 |
WO2014025205A1 (ko) * | 2012-08-07 | 2014-02-13 | 엘지전자 주식회사 | 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치 |
US9590786B2 (en) * | 2012-10-14 | 2017-03-07 | Lg Electronics Inc. | Method and apparatus for transmitting acknowledgement in wireless communication system |
CN104995978B (zh) * | 2013-01-22 | 2019-05-14 | 夏普株式会社 | 终端装置、基站装置以及无线通信方法 |
US9918299B2 (en) * | 2013-08-06 | 2018-03-13 | Sun Patent Trust | Wireless communication method for device to device communication and user equipment |
KR101904572B1 (ko) * | 2013-09-27 | 2018-10-08 | 주식회사 케이티 | 단말을 위한 상향 링크 제어 채널 자원 설정 방법 및 장치 |
KR102653587B1 (ko) * | 2015-11-06 | 2024-04-01 | 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 | 통신 장치, 통신 방법 및 집적 회로 |
-
2016
- 2016-09-12 KR KR1020187012755A patent/KR102653587B1/ko active IP Right Grant
- 2016-09-12 EP EP21179200.7A patent/EP3902190B1/en active Active
- 2016-09-12 WO PCT/JP2016/004130 patent/WO2017077677A1/ja active Application Filing
- 2016-09-12 MX MX2018005658A patent/MX2018005658A/es unknown
- 2016-09-12 JP JP2017548624A patent/JP6633646B2/ja active Active
- 2016-09-12 AU AU2016350112A patent/AU2016350112B2/en active Active
- 2016-09-12 CA CA3003699A patent/CA3003699A1/en active Pending
- 2016-09-12 EP EP16861755.3A patent/EP3373675B1/en active Active
- 2016-09-12 MY MYPI2018701674A patent/MY194919A/en unknown
- 2016-09-12 CN CN201680062182.2A patent/CN108353392B/zh active Active
- 2016-09-12 US US15/773,528 patent/US11337242B2/en active Active
- 2016-09-12 RU RU2018111759A patent/RU2707724C1/ru active
- 2016-09-12 SG SG10202004190RA patent/SG10202004190RA/en unknown
- 2016-09-12 SG SG11201803259YA patent/SG11201803259YA/en unknown
- 2016-09-20 TW TW105130302A patent/TWI695637B/zh active
-
2018
- 2018-04-24 CO CONC2018/0004339A patent/CO2018004339A2/es unknown
- 2018-04-30 ZA ZA2018/02834A patent/ZA201802834B/en unknown
-
2019
- 2019-11-11 JP JP2019204200A patent/JP6823140B2/ja active Active
-
2022
- 2022-04-15 US US17/721,856 patent/US11895670B2/en active Active
-
2023
- 2023-12-21 US US18/393,161 patent/US20240137940A1/en active Pending
Non-Patent Citations (3)
Title |
---|
Panasonic, "3GPP TSG-RAN ". R1-157476. 2015/10/9 Samsung , "UCI Transmission Aspects, 3GPP TSG-RAN WG#82b." R1-155433. 2015/10/9 * |
Panasonic, "3GPP TSG-RAN WG1#83". R1-157476. 2015/10/9 |
Samsung , "UCI Transmission Aspects, 3GPP TSG-RAN WG#82b." R1-155433. 2015/10/9 |
Also Published As
Publication number | Publication date |
---|---|
JP6823140B2 (ja) | 2021-01-27 |
MY194919A (en) | 2022-12-23 |
US20240137940A1 (en) | 2024-04-25 |
WO2017077677A1 (ja) | 2017-05-11 |
KR20180079329A (ko) | 2018-07-10 |
US11895670B2 (en) | 2024-02-06 |
AU2016350112A1 (en) | 2018-05-10 |
US20180324841A1 (en) | 2018-11-08 |
EP3373675B1 (en) | 2021-09-08 |
KR102653587B1 (ko) | 2024-04-01 |
US20220240302A1 (en) | 2022-07-28 |
RU2707724C1 (ru) | 2019-11-28 |
SG11201803259YA (en) | 2018-05-30 |
BR112018007613A2 (pt) | 2018-10-23 |
US11337242B2 (en) | 2022-05-17 |
MX2018005658A (es) | 2018-08-01 |
JP6633646B2 (ja) | 2020-01-22 |
JP2020022210A (ja) | 2020-02-06 |
AU2016350112B2 (en) | 2020-09-03 |
EP3373675A4 (en) | 2018-11-07 |
JPWO2017077677A1 (ja) | 2018-08-16 |
EP3902190A1 (en) | 2021-10-27 |
CN108353392A (zh) | 2018-07-31 |
EP3902190B1 (en) | 2022-07-13 |
ZA201802834B (en) | 2019-09-25 |
CA3003699A1 (en) | 2017-05-11 |
TW201717673A (zh) | 2017-05-16 |
EP3373675A1 (en) | 2018-09-12 |
CO2018004339A2 (es) | 2018-07-10 |
SG10202004190RA (en) | 2020-06-29 |
CN108353392B (zh) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI695637B (zh) | 通訊裝置、通訊方法及積體電路 | |
KR102668286B1 (ko) | 신호 송신을 위한 방법 및 장치 | |
AU2012270369B2 (en) | Extension of physical downlink control signaling in a communication system | |
TWI641246B (zh) | 無線通訊裝置、資源分配方法 | |
WO2017026089A1 (ja) | 基地局、端末、送信方法及び受信方法 | |
CN110268651B (zh) | 终端、基站和通信方法 | |
US20160338023A1 (en) | User equipments, base stations and methods for license assisted access (laa) | |
JP6096760B2 (ja) | 基地局装置、端末装置、リソース割当方法及び応答信号送信方法 | |
US10085158B2 (en) | User equipments, base stations and methods | |
US12010692B2 (en) | Unicast or multicast sidelink control information sending method and communications device | |
WO2016033962A1 (zh) | 一种信道复用的方法和装置 | |
WO2014201620A1 (zh) | 下行控制信息的检测与发送方法及设备 | |
CN118433904A (zh) | 一种通信方法及装置 | |
BR112018007613B1 (pt) | Aparelho e método de comunicação, e circuito integrado |