TWI695089B - 熱浸鍍鋅系統與方法 - Google Patents

熱浸鍍鋅系統與方法 Download PDF

Info

Publication number
TWI695089B
TWI695089B TW108111758A TW108111758A TWI695089B TW I695089 B TWI695089 B TW I695089B TW 108111758 A TW108111758 A TW 108111758A TW 108111758 A TW108111758 A TW 108111758A TW I695089 B TWI695089 B TW I695089B
Authority
TW
Taiwan
Prior art keywords
air knife
thickness
module
zinc
steel strip
Prior art date
Application number
TW108111758A
Other languages
English (en)
Other versions
TW202037735A (zh
Inventor
羅凱帆
黃俊奎
羅萬福
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW108111758A priority Critical patent/TWI695089B/zh
Application granted granted Critical
Publication of TWI695089B publication Critical patent/TWI695089B/zh
Publication of TW202037735A publication Critical patent/TW202037735A/zh

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

本發明提出一種熱浸鍍鋅系統,包括氣刀模組、鋅液槽與計算模組。鋅液槽儲存有鋅液,鋼帶浸入鋅液槽以後會通過氣刀模組。計算模組用以取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度。

Description

熱浸鍍鋅系統與方法
本發明是有關於一種熱浸鍍鋅系統與方法。
熱浸鍍鋅(Hot-dip galvanization,HDG)是常見的鋼鐵防蝕方法,鋼帶在浸入鍍鋅槽以後會通過氣刀來移除多餘的鋅液。鍍鋅鋼板耐蝕性主要取決於鋅層厚度,鋅層厚度通常以鍍鋅重量(coating weight,CW)為依據,由於鋅層在高溫時無法量測其厚度,習知作法是在後端設置感測器來量測鋅層冷膜厚度,但由於感測器的位置不同於氣刀位置(兩者可能相差超過一百公尺以上),因此在調整氣刀參數以後並無法馬上得知鋅層厚度。如何解決此問題,為此領域技術人員所關心的議題。
本發明的實施例提出一種熱浸鍍鋅系統,包括氣刀模組、鋅液槽與計算模組。鋅液槽儲存有鋅液,鋼帶浸入鋅液槽以後會通過氣刀模組。計算模組用以取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度。
在一些實施例中,製程參數包括產線速度、相關於鋼帶的鋼帶參數、相關於鋅液槽的鋅液槽參數與相關於氣刀模組的氣刀參數。
在一些實施例中,鋅液槽包括沉浸輥、校正輥與穩定輥。上述的鋅液槽參數包括沉浸輥、校正輥以及穩定輥的輥徑與輥位置。
在一些實施例中,上述的鋼帶參數包括鋼帶的鋼種、寬度與厚度。
在一些實施例中,上述的氣刀模組包括下刀唇、上刀唇與多個馬達。這些馬達對應至多個氣刀位置,用以調整氣刀模組在氣刀位置上的開度。上述的氣刀參數包括開度、氣進口壓力與多個氣刀至鋼帶距離。
在一些實施例中,計算模組用以對於每一個氣刀位置訓練出一迴歸模型,並根據迴歸模型預測鋅層在對應的氣刀位置上的厚度。
在一些實施例中,上述的迴歸模型包括多個弱分類器,迴歸模型表示為以下方程式(1)。
F(x)=h 1(x)+h 2(x)+…h i (x)+…+h n (x)...(1)
其中x為製程參數,hi(x)為對應的弱分類器所預測出的厚度,n為弱分類器的個數,F(x)為迴歸模型所預測出的厚度。
在一些實施例中,每一個弱分類器可以表示為以下方程式(2),其中w與b為訓練後的參數。
hi(x)=w.x+b...(2)
在一些實施例中,其中計算模組控制馬達以根據鋅層的厚度調整氣刀模組在對應的氣刀位置上的開度。
以另外一個角度來說,本發明的實施例提出一種熱浸鍍鋅方法,包括:將鋼帶浸入鋅液槽後使鋼帶通過氣刀模組;取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度;以及根據厚度調整氣刀模組的開度。
在上述的系統與方法中,可以即時的預測出鋅層的厚度,藉此可及時的調整氣刀模組,避免長度方向上的延遲與寬度上的鋅層厚度不均問題。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100‧‧‧熱浸鍍鋅系統
110‧‧‧鋅液槽
111‧‧‧沉浸輥
112‧‧‧校正輥
113‧‧‧穩定輥
120‧‧‧氣刀模組
121‧‧‧下刀唇
122‧‧‧上刀唇
123‧‧‧馬達
130‧‧‧計算模組
140‧‧‧X射線鍍鋅厚度測量儀
150‧‧‧鋼帶
401~403、501~503‧‧‧步驟
[圖1]是根據一實施例繪示熱浸鍍鋅系統的示意圖。
[圖2]是根據一實施例繪示氣刀模組的示意圖。
[圖3]是根據一實施例繪示氣刀至鋼帶距離的示意圖。
[圖4]是根據一實施例繪示訓練多個弱分類器的示意圖。
[圖5]是根據一實施例繪示熱浸鍍鋅方法的流程圖。
圖1是根據一實施例繪示熱浸鍍鋅系統的示意圖。請參照圖1,熱浸鍍鋅系統100包括鋅液槽110、氣刀模 組120、計算模組130,在一些實施例中還包括X射線鍍鋅厚度測量儀(X-ray coating weight gauge)140,但在一些實施例中X射線鍍鋅厚度測量儀140也可以省略。鋅液槽110中還設置有沉浸輥111、校正輥112與穩定輥113。鋅液槽110中儲存有鋅液,鋼帶150會浸入鋅液槽110以在鋼帶150上形成一鋅層。校正輥112與穩定輥113可用來在鋼帶150上形成一張力,藉由改變校正輥112的位置可以調整張力的大小。當鋼帶150由鋅液槽110穿出以後,鋼帶150表面帶有尚未凝固的鋅液,接下來鋼帶150會通過氣刀模組120,氣刀模組120會吹出氣體來移除多餘的鋅液。
計算模組130可為任意的電腦、伺服器或控制器,用以取得至少一個製程參數,並根據製程參數來預測出鋼帶150上鋅層的厚度。計算模組130可以根據預測出的厚度來控制氣刀模組120以調整氣刀出口的壓力,進而調整鋅層的厚度。在習知技術中,鋅層的厚度是由X射線鍍鋅厚度測量儀140來量測,但從圖1可以得知,X射線鍍鋅厚度測量儀140的位置不同於氣刀模組120的位置,因此即使根據量測的厚度來調整氣刀模組120,也無法及時的改變鋅層的厚度,此現象稱為長度方向的量測延遲。因此,本實施例相較於習知技術來說,至少具有即時控制氣刀模組120的功效,可以解決上述長度方向量測延遲的問題。
更具體來說,計算模組130會建立一個迴歸模型,此迴歸模型的輸入為上述的製程參數,回歸模型的輸出則是鋅層的厚度。在訓練階段,鋅層的厚度是透過X射線鍍 鋅厚度測量儀140來量測,所量測的資料是時間序列,但由於產線速度隨時會改變,無法準確計算所需時間,因此可改以鋼帶位置作為依據,做法是將產線速度對時間做積分,計算出對應的鋼帶位置,如以下方程式(1)所示。
Local=∫ v S Δt…(1)
其中Local表示鋼帶位置,v s 為產線速度(鋼帶150的速度)。換言之,透過上述方程式(1)可以將每一筆量測到的厚度都對應至鋼帶上的一個特定位置。鋼帶上每一個位置都有對應的製程參數。這些製程參數可包括產線速度、相關於鋼帶的鋼帶參數、相關於鋅液槽110的鋅液槽參數與相關於氣刀模組120的氣刀參數。
鋼帶參數可包括鋼帶150的鋼種、寬度與厚度,在一些實施例中鋼帶150的厚度並不均勻,因此也會取得鋼帶在各個位置上的厚度,後續在考慮氣刀參數時會用到,以下再詳細說明。在一些實施例中,鋼帶參數還可包括訂單編號、母鋼捲編號、以及上游相關參數(如退火溫度、退火時間)等。另外,鋅液槽參數可包括沉浸輥111、校正輥112以及穩定輥113的輥徑與輥位置。
氣刀參數說明如下,圖2是根據一實施例繪示氣刀模組的示意圖。請參照圖2,氣刀模組120包括下刀唇121、上刀唇122與多個馬達123,氣體是由氣刀模組120的進口(未繪示)輸入,最後從上刀唇122與下刀唇121之間的出口噴射至鋼帶150。這些馬達123是設置在不同的氣刀位置,用以調整在對應位置上的開度(即上刀唇122與下刀 唇121之間的距離),改變刀唇的開度可以改變氣刀出口的壓力分佈,上述的氣刀參數便包括了這些開度以及氣刀的氣進口壓力。此外,圖3是根據一實施例繪示氣刀至鋼帶距離的示意圖,請參照圖2與圖3,氣刀是從圖2的紙面噴出,在圖3中射向鋼帶150。由於鋼帶150的厚度可能不平均,因此在不同的位置上氣刀120至鋼帶150的距離也會不同,舉例來說,距離Z0會比距離Z1大,而距離Z1會比距離Z2大。在一些實施例中,當鋼帶150經過軋延以後便可以得知鋼帶的厚度,並不需要額外設置感測器來量測鋼帶厚度,而根據氣刀模組120的設置位置便可以得到氣刀120至鋼帶150的距離。上述的氣刀參數還包括了每個氣刀位置上的氣刀至鋼帶距離(即距離Z0、Z1、Z2等)。
在一些實施例中,由於每個馬達123都是獨立控制的,因此對於每一個氣刀位置(即馬達123所在位置)都可獨立訓練出一個迴歸模型,在一些實施例中共有14組馬達123,因此共會訓練出14個迴歸模型。上述的產線速度、鋼帶參數、鋅液槽參數對所有的氣刀位置來說都相同,因此都會作為上述14組迴歸模型的輸入。然而,刀唇開度、氣刀至鋼帶距離等參數則會根據氣刀位置被分組,分別輸入至對應的迴歸模型。
在一些實施例中,每個迴歸模型都包括多個弱分類器,可表示為以下方程式(2)。
F(x)=h 1(x)+h 2(x)+…h i (x)+…+h n (x)...(2)
其中x為上述的製程參數所形成的向量,換言 之,向量x可包括產線速度、鋼帶參數、鋅液槽參數與對應位置上的氣刀參數。hi(x)為對應的弱分類器所預測出的厚度,n為弱分類器的個數,F(x)為迴歸模型所預測出的該厚度。在一些實施例中,每一個弱分類器為支持向量迴歸(support vector regression,SVR),表示為以下方程式(3)。
hi(x)=w.x+b…(3)
其中w與b為訓練後的參數,然而本領域具有通常知識者當可理解支持向量迴歸,在此並不再贅述。
上述訓練多個弱分類器的做法,是要讓這些弱分類器彼此互補,使得結合出一個較強的分類器,因此在每次訓練完一個弱分類器以後,下一個弱分類器會根據預測錯誤的資料來訓練。具體來說,圖4是根據一實施例繪示訓練多個弱分類器的示意圖。請參照圖4,在訓練階段時量測到的鋅層厚度為基本事實(ground truth),以下標記為y,在步驟401中,根據收集的製程參數x與量測到的厚度y來訓練出一個弱分類器h 1(x)。接下來將厚度y減去第一個弱分類器的預測結果h 1(x),並在步驟402中根據製程參數x與y-h 1(x)來訓練出第二個弱分類器h 2(x)。類似的,在步驟403中根據製程參數x與y-h 1(x)-h 2(x)來訓練出第三個弱分類器h 3(x)。這樣的訓練會持續下去,直到預測出的厚度與實際的厚度之間的誤差在一預設範圍之內,由於訓練資料有很多筆,在一些實施例中上述的誤差可為方均根(mean square error,MSE),但本發明並不在此限。
在測試階段,計算模組130可以即時的預測出鋅層的厚度。此外,計算模組130也可控制馬達123以根據鋅層的厚度調整氣刀模組120在對應的氣刀位置上的開度。舉例來說,如果鋅層的厚度大於一臨界值,則可以減少對應位置上的開度,藉此增加氣刀壓力,移除多餘的鋅液,如此一來可以減少鋅液的消耗。然而,本發明並不限制如何控制氣刀的開度。
在其他實施例中,上述的迴歸模型也可以是線性迴歸、最小絕對選擇收縮算子(Least Absolute Selection Shrinkage Operator,LASSO)演算法、邏輯迴歸(Logistic regression)等其他迴歸演算法,本發明並不在此限。
圖5是根據一實施例繪示熱浸鍍鋅方法的流程圖。請參照圖5,在步驟501中,將鋼帶浸入鋅液槽後使鋼帶通過氣刀模組。在步驟502中,取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度。在步驟503中,根據厚度調整氣刀模組的開度。然而,圖5中各步驟已經詳細說明如上,在此並不再贅述。此外,圖5的流程可以實作為程式碼,由電腦系統執行,或者也可實作為電路,本發明並不在此限。
在上述提出的熱浸鍍鋅系統與方法中,不需要等到鋅層降溫凝固便可以根據製程參數即時地預測出鋅層的厚度,如此一來可以解決長度方向量測延遲的問題。另外,由於氣刀模組中具有多組馬達,且每組馬達是獨立地控制,因此可以解決寬度上鋅層厚度不均的問題。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧熱浸鍍鋅系統
110‧‧‧鋅液槽
111‧‧‧沉浸輥
112‧‧‧校正輥
113‧‧‧穩定輥
120‧‧‧氣刀模組
130‧‧‧計算模組
140‧‧‧X射線鍍鋅厚度測量儀
150‧‧‧鋼帶

Claims (9)

  1. 一種熱浸鍍鋅系統,包括:一氣刀模組,包括:下刀唇;上刀唇;以及多個馬達,對應至多個氣刀位置,用以調整該氣刀模組在該些氣刀位置上的多個開度;一鋅液槽,儲存有鋅液,其中一鋼帶浸入該鋅液槽以後通過該氣刀模組;以及一計算模組,用以取得至少一製程參數,該至少一製程參數包括該些開度,該計算模組用以根據該至少一製程參數對於每一該些氣刀位置訓練出一迴歸模型,並根據該迴歸模型預測該鋼帶上一鋅層在對應的該氣刀位置上的厚度。
  2. 如申請專利範圍第1項所述之熱浸鍍鋅系統,其中該至少一製程參數包括產線速度、相關於該鋼帶的至少一鋼帶參數、相關於該鋅液槽的至少一鋅液槽參數與相關於該氣刀模組的至少一氣刀參數。
  3. 如申請專利範圍第2項所述之熱浸鍍鋅系統,其中該鋅液槽包括:一沉浸輥;一校正輥;以及 一穩定輥,其中該至少一鋅液槽參數包括該沉浸輥、該校正輥以及該穩定輥的輥徑與輥位置。
  4. 如申請專利範圍第2項所述之熱浸鍍鋅系統,其中該至少一鋼帶參數包括該鋼帶的鋼種、寬度與厚度。
  5. 如申請專利範圍第2項所述之熱浸鍍鋅系統,其中該至少一氣刀參數包括該些開度、一氣進口壓力與多個氣刀至鋼帶距離。
  6. 如申請專利範圍第1項所述之熱浸鍍鋅系統,其中該迴歸模型包括多個弱分類器,該迴歸模型表示為以下方程式(1),F(x)=h 1(x)+h 2(x)+…h i (x)+…+h n (x)...(1)其中x為該至少一製程參數,hi(x)為對應的該弱分類器所預測出的厚度,n為該些弱分類器的個數,F(x)為該迴歸模型所預測出的厚度。
  7. 如申請專利範圍第6項所述之熱浸鍍鋅系統,其中每一該些弱分類器可以表示為以下方程式(2),hi(x)=w.x+b...(2)其中w與b為訓練後的參數。
  8. 如申請專利範圍第1項所述之熱浸鍍鋅系統,其中該計算模組控制該些馬達以根據該鋅層的該厚度調整該氣刀模組在對應的該氣刀位置上的開度。
  9. 一種熱浸鍍鋅方法,包括:將一鋼帶浸入一鋅液槽後使該鋼帶通過一氣刀模組,其中該氣刀模組包括下刀唇、上刀唇以及多個馬達,該些馬達對應至多個氣刀位置,用以調整該氣刀模組在該些氣刀位置上的多個開度;取得至少一製程參數,該至少一製程參數包括該些開度,並根據該至少一製程參數對於每一該些氣刀位置訓練出一迴歸模型,並根據該迴歸模型預測該鋼帶上一鋅層在對應的該氣刀位置上的厚度;以及根據該厚度調整該氣刀模組在對應的該氣刀位置上的開度。
TW108111758A 2019-04-02 2019-04-02 熱浸鍍鋅系統與方法 TWI695089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108111758A TWI695089B (zh) 2019-04-02 2019-04-02 熱浸鍍鋅系統與方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108111758A TWI695089B (zh) 2019-04-02 2019-04-02 熱浸鍍鋅系統與方法

Publications (2)

Publication Number Publication Date
TWI695089B true TWI695089B (zh) 2020-06-01
TW202037735A TW202037735A (zh) 2020-10-16

Family

ID=72176058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111758A TWI695089B (zh) 2019-04-02 2019-04-02 熱浸鍍鋅系統與方法

Country Status (1)

Country Link
TW (1) TWI695089B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201233812A (en) * 2011-02-10 2012-08-16 China Steel Corp Method of producing Zn-Fe alloy steel having predetermined Γ -phase layer body thickness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201233812A (en) * 2011-02-10 2012-08-16 China Steel Corp Method of producing Zn-Fe alloy steel having predetermined Γ -phase layer body thickness

Also Published As

Publication number Publication date
TW202037735A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
KR102099910B1 (ko) 연속적인 두께-가변형 스트립 물질을 위한 용융 아연도금 층 두께 조절 시스템 및 방법
KR100847974B1 (ko) 압연, 단조 또는 교정 라인의 재질 제어 방법 및 그 장치
JP7269330B2 (ja) メッキ量制御装置およびメッキ量制御方法
US9056342B2 (en) Rolled material cooling control apparatus, rolled material cooling control method, and rolled material cooling control program
CN106868440B (zh) 一种带钢连续热镀锌镀层厚度预测及其调节方法
KR101130483B1 (ko) 스트립형 기판 상에 코팅을 연속 퇴적시키는 방법 및 설비
KR101688384B1 (ko) 연속 용융도금 설비의 도금두께 제어 시스템 및 방법
TWI695089B (zh) 熱浸鍍鋅系統與方法
Guelton et al. Coating weight control on ArcelorMittal’s galvanizing line at Florange Works
JP4890433B2 (ja) 圧延材の温度予測方法、圧延材の冷却装置の制御方法、及び連続圧延設備
KR101879084B1 (ko) 선행냉각장치 및 이를 포함하는 도금 설비
JP7405844B2 (ja) 産業亜鉛めっきラインにおいて塗装重量均一性を制御する方法
JP5949315B2 (ja) 連続鋳造鋳片の製造方法
JP2007301603A (ja) 圧延材の巻き取り温度制御方法及び圧延装置
KR102045652B1 (ko) 인공지능 기반 열연 런아웃 테이블 열유속계수 결정 장치
KR100393679B1 (ko) 용융도금공정에서의 도금량 예측제어방법
JP2012011448A (ja) 圧延材の冷却制御方法、及びこの冷却制御方法が適用された連続圧延機
JP2009233716A (ja) 圧延材の冷却方法
KR102045651B1 (ko) 인공지능 기반 열연 런아웃 테이블 열유속계수 추정 장치
JP2007283346A (ja) 圧延材の冷却制御方法及び圧延装置
JP5954043B2 (ja) 連続鋳造鋳片の品質判定方法及び鋼の連続鋳造方法
JP2016169430A (ja) 溶融亜鉛めっき鋼板の製造方法
JP2022000535A (ja) 付着量予測モデルの生成方法、めっき付着量の予測方法、めっき付着量制御方法、溶融めっき鋼板の製造方法、及びそれらを実行する装置、並びに品質予測モデルの生成方法
JP5824826B2 (ja) めっき浴内の温度分布推定装置、温度分布推定方法、及び連続溶融金属めっきプロセスの操業方法
KR101585728B1 (ko) 다입력-다출력 전자기 진동제어 장치 및 방법