TWI694855B - 具有更強、更高彈性及更輕之材料的高爾夫球桿頭 - Google Patents

具有更強、更高彈性及更輕之材料的高爾夫球桿頭 Download PDF

Info

Publication number
TWI694855B
TWI694855B TW105143086A TW105143086A TWI694855B TW I694855 B TWI694855 B TW I694855B TW 105143086 A TW105143086 A TW 105143086A TW 105143086 A TW105143086 A TW 105143086A TW I694855 B TWI694855 B TW I694855B
Authority
TW
Taiwan
Prior art keywords
equal
club head
specific
psi
mpa
Prior art date
Application number
TW105143086A
Other languages
English (en)
Other versions
TW201729874A (zh
Inventor
馬修W 賽門
艾力克J 莫里斯
柯瑞S 貝肯
雷恩M 史托克
Original Assignee
美商卡斯登製造公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商卡斯登製造公司 filed Critical 美商卡斯登製造公司
Publication of TW201729874A publication Critical patent/TW201729874A/zh
Application granted granted Critical
Publication of TWI694855B publication Critical patent/TWI694855B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/047Heads iron-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0416Heads having an impact surface provided by a face insert
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0408Heads characterised by specific dimensions, e.g. thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0408Heads characterised by specific dimensions, e.g. thickness
    • A63B53/0412Volume
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0466Heads wood-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/32Golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Golf Clubs (AREA)

Abstract

本案說明一種具有面部平板及本體的高爾夫球桿頭,該面部平板和該本體的至少一者含有更強、更高彈性及/或更輕之材料,此材料具有特定之密度、降伏應力、彈性模數、依降伏應力對密度之比值所測得的特定強度,以及依降伏應力對彈性模數之比值所測得的特定彈性。

Description

具有更強、更高彈性及更輕之材料的高爾夫球桿頭
本案主張2015年12月27日申請之美國臨時專利申請案第62/271,282號、2016年4月27日申請之美國臨時專利申請案第62/328,502號、2016年9月26日申請之美國臨時專利申請案第62/399,929號以及2016年12月1日申請之美國臨時專利申請案第62/428,730號案的權利,茲將該等申請案的內容依參考方式完全併入本案。
本申請案是關於高爾夫球桿。詳言之,本案所說明的是一種用於高爾夫球桿頭之更強、更高彈性及/或更輕之材料,以利改善高爾夫球桿的效能特徵。
高爾夫球桿頭可區分為各種形式,例如木桿、混合桿、鐵桿、楔型沙桿或推桿。各類型的高爾夫球桿頭的差異可以是在球桿頭材料方面,藉以維持其耐固性與可製造性,以及在球桿頭形狀、設計和角度方面,以達到不同的效能特徵。
目前,可利用各式材料來製造高爾夫球桿頭。對於高爾夫球桿頭的材料選擇可基於諸多因素,包含可製造性與耐固性。一般說來,在 高爾夫球桿頭的材料選擇上,會顯著地考量到材料降伏強度,藉此確保球桿頭擁有足夠的耐固性以避免失效。此外,球桿頭的設計(即如球桿頭形狀和角度)也用來優化其效能特徵(即如球速及球桿頭寬容度)。然而,目前在高爾夫業界,並沒有為了獲致特定的效能特徵而進行材料的開發或選擇。相反地,效能特徵是透過球桿頭的設計去達成,而材料的選擇則是基於某項特定設計所需的強度和可製造性來決定。
因為,業界需要一種可以用來分析、選擇及/或開發用於高爾夫球桿頭之材料的能力,以改善特定的效能特徵(像是球速及球桿頭寬容度),同時能維持球桿頭的耐固度此種能力與高爾夫球桿頭的設計無關,以便能夠開發出擁有比單獨憑藉設計所達成之效能還要佳之效能特徵的高爾夫球桿頭。
在此說明一種具有至少一比目前之高爾夫球桿頭中所使用的更強、更高彈性及/或更輕之材料(以下稱為「材料」)的高爾夫球桿頭。該材料可設置在面部平板、本體或是面部平板與本體的組合上。該材料具有依該材料的降伏強度對密度之比值所測得的強度對重量比值或是特定強度。該更強、更高彈性及/或更輕之材料進一步具有依該材料的降伏強度對彈性模數之比值所測得的強度對模數比值或是特定彈性。在材料種類上(即如鋼鐵、鈦、鋁、其他金屬或合成物),本案所述之材料的強度對重量比值及/或強度對模數比值是分別地大於目前高爾夫球桿頭材料的強度對重量比值及/或強度對模數比值。
在許多具體實施例中,該更強、更高彈性及/或更輕之材料 的特定強度是大於在類似材料中目前之高爾夫球桿頭材料的特定強度。該材料的強度增加可使得材料的重量更輕,並因而可以在與使用已知材料的類似球桿頭相比較之下,可增大使用該材料之球桿頭的重量酌定幅度。此重量酌定幅度的增加可提高球桿頭上之重量配置的彈性,故而獲得設置重心的優化以及球桿頭慣性力矩的提高(由於週緣重量增加之故)。從而,相較於使用已知材料的類似球桿頭,擁有增加特定強度之材料的球桿頭可獲得重心位置的優化以及球桿頭寬容度的提升。
在許多具體實施例中,該材料的特定彈性是大於在類似材料中目前高爾夫球桿頭材料的特定彈性。而相較於使用已知材料的類似球桿頭,該材料的特定增加彈性可使使用該材料的球桿頭之彈性增加。球桿頭的彈性增加可減少高爾夫球在撞擊到球桿頭時的能量損失,藉此提升球速與距離。從而,相較於使用已知材料的類似球桿頭,含有具有特定增加彈性之材料的高爾夫球桿頭可獲致更大的球速與行進距離。
在許多具體實施例中,該高爾夫球桿頭的更強、更高彈性及更輕之材料可具有大於目前高爾夫球桿頭材料的特定強度,以及大於目前高爾夫球桿頭材料的特定彈性。在這些具體實施例中,球桿頭可具有相較於目前高爾夫球桿頭而增加的重量酌定幅度和彈性,同時仍維持球桿頭的耐固度。
在後文說明及申請專利範圍裡的「第一」、「第二」、「第三」、「第四」等等這些詞彙,若有,是為在多個類似元件之間加以區分,而非必然地用於描述特定順序或依時次序。應瞭解該等所用詞彙在適當情況下可為互換,使得本案具體實施例能夠例如按除本文所述之外的序列,或是 在此另予說明的方式,進行運作。此外,該等詞彙「包含」、「具有」以及任何其等的變化詞項皆欲以涵蓋非斥他性的包納,使得含有一列元件的程序、方法、系統、物項、裝置或設備不必然地受限於這些元件,然確得含有其他未經顯明列舉或是此程序、方法、系統、物項、裝置或設備裡內隱性地具備的元件。
在本案說明及申請專利範圍中的該等詞彙「左方」、「右方」、「前方」、「後方」、「頂部」、「底部」、「位於上方」、「位於下方」等等,若有,是用於描述之目的,並非必然地用於陳述永久性的相對位置。應瞭解該等所用詞彙在適當情況下可為互換,使得本案所描述之設備、方法及/或製造物項的具體實施例能夠例如按除本文所述之外的其他指向,或是在此另予說明的方式,進行運作。
詞彙「合成材料」在本案中的定義,是指兩種或更多具有顯著差異之物理或化學性質的組成材料,而在當合併後可產生擁有異於這些個別成份之特徵的材料。
詞彙「材料類別」在本案中的定義,是指一組具有類似組成方式的材料。例如,鈦合金,或是含有鈦質與其他化學元素之混合物的金屬,在此是指一種材料類別。在進一步範例中,鋼合金,或是含有鐵質與其他化學元素之混合物的材料,在此也是指一種材料類別。
詞彙「強度對重量比值」及「特定強度」在本案中的定義,是指一種依照材料的降伏強度對該材料的密度之比值所測得的材料性質。
詞彙「強度對模數比值」及「特定彈性」在本案中的定義,則是指一種依照材料的降伏強度對材料的彈性模數之比值所測得的材料性 質。
在詳細解釋任何本案之具體實施例之前,應先瞭解本案在其應用上並不侷限於如後文說明中所述或者後隨圖式中所繪之元件建構與排置的細節。本案可提供其他的具體實施例,並且依照各種方式所實作或執行。
10‧‧‧本體
14‧‧‧面部平板
18‧‧‧桿頸
20‧‧‧桿軸
22‧‧‧前側末端
24‧‧‧後側末端
26‧‧‧跟部局部
28‧‧‧趾部局部
30‧‧‧頂側或冠部
34‧‧‧底側或底部
100‧‧‧高爾夫球桿頭
圖1顯示的是根據一具體實施例之高爾夫球桿頭。
圖2說明的是在球桿頭本體中所使用各種鋼鐵類型高爾夫球桿頭材料的強度對重量比值和強度對模數比值之間的關係。
圖3說明的是在球桿頭面部平板中所使用各種鋼鐵類型高爾夫球桿頭材料的強度對重量比值和強度對模數比值之間的關係。
圖4說明各種鈦質類型高爾夫球桿頭材料的強度對重量比值和強度對模數比值之間的關係。
圖5說明具有增高的強度對重量及/或強度對模數比值之各種示範性高爾夫球桿頭材料的效能益處。
圖6A說明各種示範性材料的強度對重量比值和強度對模數比值之間的關係。
圖6B-6C說明圖6A之示範性材料的內部能量。
由本案之詳細說明及圖式將可瞭解本案的其他特點。
為簡便而清楚地說明,本案圖式說明了一般的建構方式,而且省略習知之特性及技術的敘述與細節,以避免模糊本案的重點。此外,圖式中的元件並不必然地依比例繪製。例如,此等圖式中部分構件的維度 可能相對於其他構件而誇大,藉以有助於更加瞭解本案的具體實施例。在不同圖式內的相同參考號碼代表相同的元件。
圖1說明一高爾夫球桿頭100,其具有本體10及面部平板14。該高爾夫球桿頭100進一步包含前側末端22、相對於該前側末端22的後側末端24、跟部局部26、相對於該跟部局部26的趾部局部28、頂側或冠部30,以及相對於該冠部30的底側或底部34。
本案所述的高爾夫球桿頭100可為任何種類的高爾夫球桿頭,包含開球型球桿頭、球道木型球桿頭、混合型球桿頭、交叉型球桿頭、鐵桿型球桿頭、楔型球桿頭或是推桿型球桿頭。該球桿頭100可耦接於桿軸20以構成高爾夫球桿。在一些具體實施例中,該球桿頭100含有桿頸18,其係經組態設定以收納高爾夫球桿的桿軸20。在一些具體實施例中,該球桿頭100含有一桿孔,其係經組態設定以收納高爾夫球桿的桿軸20。
該高爾夫球桿頭100進一步含有一種更強、更高彈性及/或更輕之材料(以下稱為「材料」),或是複數種材料。例如,該高爾夫球桿頭100可含有第一材料。在一些具體實施例中,整個球桿頭100可含有該第一材料。在其他具體實施例中,該球桿頭100的一部份可含有該第一材料。例如,在一些具體實施例中,該面部平板14可含有該第一材料,並且該本體10可含有不同材料或複數種材料。而在其他具體實施例中,該本體可含有該第一材料,並且該面部平板可含有不同材料或複數種材料。
在一些具體實施例中,該高爾夫球桿頭100進一步含有不同於該第一材料的第二材料。例如,在一些具體實施例中,該面部平板可含 有該第一材料,並且該本體10可含有該第二材料。進一步來說,在一些具體實施例裡,該本體可含有該第一材料,並且該面部平板可含有該第二材料。在其他具體實施例裡,該面部平板可含有該第一材料及該第二材料。在其他具體實施例裡,該本體可含有該第一材料及該第二材料。
該更強、更高彈性及/或更輕的材料或是複數種材料可含有任何類型的材料。在一些具體實施例中,該材料包含鈦合金。在一些具體實施例中,該材料包含鋼合金。在一些具體實施例中,該材料包含鋁合金。在一些具體實施例中,該材料含有合成物,像是碳纖維合成物、玻璃纖維合成物、高分子合成物、芳族聚酰胺合成物、硼纖維合成物或是天然纖維(即如木質)合成物。該合成物可進一步包含高分子樹脂,像是環氧樹脂、乙烯樹脂、酯、聚酯、聚氨酯或聚丙烯。在一些具體實施例中,該合成材料可含有碳纖維合成材料。在一些具體實施例中,該材料包含碳纖維合成材料,此碳纖維合成材料可為熱塑性材料。相較於利用熱固性碳纖維合成材料,利用熱塑性碳纖維合成材料可縮短該材料要達到所欲性質,像是特定強度及/或特定彈性,而需要的處理時間。在其他具體實施例裡,該材料可包含任何類型的金屬、金屬合金、聚合物、塑膠或合成材料。
在一些具體實施例中,該第一材料及該第二材料可含有相同或類似的材料組成。在一些具體實施例中,該第一材料及該第二材料可含有不同的材料組成。
A.材料性質
該更強、更高彈性及/或更輕之材料包含特定的重心、降伏應力、彈性模數及延長度。現參照下列的關係式1,該材料的延長度可為依 照對該材料之初始長度(L)施予拉力而致在長度上的變化(ΔL)之比值所測得的延長度百分比。
Figure 105143086-A0305-02-0010-1
該材料進一步包含依降伏應力(σy)對該材料的密度(ρ)之比值所測得的強度對重量比值或特定強度(參見下列的關係式2),以及依該降伏應力(σy)對該材料的彈性模數(E)之比值所測得的強度對模數比值或特定彈性(參見下列的關係式3)。
Figure 105143086-A0305-02-0010-2
Figure 105143086-A0305-02-0010-3
現參照圖5,高爾夫球桿頭所使用之材料(即如含有材料B的球桿頭相較於含有材料A的球桿頭)的特定強度增加可獲致減少球桿頭重量(增加酌定重量以利重心位置及慣性力矩的優化)。此外,高爾夫球桿頭所使用之材料(即如含有材料C的球桿頭相較於含有材料A的球桿頭)的特定彈性增加可獲致增大球速及行進距離。又進一步,高爾夫球桿頭所使用之材料(即如含有材料D的球桿頭相較於含有材料A的球桿頭)的特定強度及特定彈性兩者都增加則能有利地獲致重量減少,且併同於球速及行進距離增大,以改善球桿頭效能而不致犧牲耐固度。
圖2-4說明,相較於本案所述材料的特定強度與特定彈性(即 如圖5中的材料D),目前高爾夫球桿頭中所採用的各種材料(即如圖5中的材料A)之特定強度(強度對重量的比值)和特定彈性(強度對模數的比值)間的關係。許多目前的高爾夫球桿頭材料是單獨地基於降伏強度所選定。相對地,基於特定強度,且併同於特定彈性,來選擇材料可提供單獨基於降伏強度增加卻無法達成的球桿頭效能改善結果。一般說來,具有提高特定強度的材料在當針對類似耐固度而設計時可得到較輕重量的材料,而具有提高特定彈性的材料在當針對類似耐固度而設計時可獲致較高的彈性。
高爾夫球桿頭中會希望是輕重量材料,藉以增加重量酌定幅度,並且高爾夫球桿頭中會希望是彈性材料,藉以在撞擊高爾夫球的過程中減少能量損失。然而,目前的球桿頭材料通常並不是針對重量及彈性而選擇(即如通常不是運用特定強度且併同於特定彈性來選擇目前的球桿頭材料)。相反地,目前的高爾夫球桿頭材料一般是依照降伏強度或特定強度所選定,藉以基於球桿設計來避免球桿頭失效。從而,目前的高爾夫球桿頭材料是基於強度性質所選定,並且,除了其他的參數之外(像是重心位置優化以及球桿頭慣性力矩最大化),會被進一步設計以達到重量降減、重量重分配和彈性。
例如,目前的高爾夫球桿頭通常係經設計以增加重量酌定幅度,使得能夠將更多的重量分配至球桿頭上的特定位置以達到所欲重心位置並且提高球桿頭的慣性力矩。在目前的球桿頭裡,通常會是藉由縮減球桿頭之所欲局部內(即如面部平板、冠部等等)的厚度來增加酌定重量,而同時利用具有降伏強度或特定強度的材料來避免球桿頭的薄型局部失效。對於進一步範例,目前的高爾夫球桿頭通常係經設計以提升可彎度或彈性。 而在目前的球桿頭裡,通常是藉由縮減球桿頭之所欲局部內的厚度及/或藉由改換結構設計的方式來增加彈性,而同時利用具有降伏強度或特定強度的材料來避免球桿頭的薄型局部或高應力範圍失效。在這些範例裡,薄化以及/或是改變目前球桿頭的結構設計皆受限於所運用材料的強度。故而,目前球桿頭中藉由設計以達到重量降減及彈性的方式會受限於材料強度。然相較於目前的球桿頭,確可藉由利用更強、更高彈性及/或更輕之材料,並連同球桿頭設計,以進一步增加酌定重量及/或彈性,即如後文所詳述。
本案所述的材料係經開發或選定藉以在該高爾夫球桿頭100中減少重量及/或增加彈性,而與球桿頭設計無關。為達此目的,在一材料類別中,材料的特定強度及/或特定彈性(即如圖5中的材料B、C或D)分別地大於目前高爾夫球桿頭材料的特定強度及/或特定彈性(即如圖5中的材料A)。例如,在一些具體實施例裡,在一材料類別中,相較於目前的球桿頭材料(即如圖5的材料A),該材料(即如圖5的材料B)具有增加的特定強度。進一步舉例,在一些具體實施例裡,在一材料類別中相較於目前的球桿頭材料(即如圖5的材料A),該材料(即如圖5的材料C)具有增加的特定彈性。又進一步舉例,在一些具體實施例裡,在一材料類別中,相較於目前的球桿頭材料(即如圖5的材料A),該材料(即如圖5的材料D)具有增加的特定強度及增加的特定彈性。在一材料類別中,相較於目前球桿頭材料增加的特定強度及增加的特定彈性可改善具有更強、更高彈性及/或更輕材料之高爾夫球桿頭100的效能特徵,將於後文詳述。
在許多具體實施例中,該材料的特定強度是大於在一材料類別中目前高爾夫球桿頭材料的特定強度。對於一給定體積,特定強度增加 可對應於減少材料的重量,並同時維持耐固度。材料的特定強度增加可減少該球桿頭100的重量而無關於球桿頭設計,並同時維持為防止該球桿頭100失效所必要的降伏強度。在這些具體實施例中,可進一步設計該球桿頭100(即如厚度減少)以供節省額外的重量並同時仍維持耐固度,藉此讓該球桿頭100能夠相較於具有已知材料的球桿頭而增加酌定重量。酌定重量增加可在達到球桿頭100的所欲重心位置及慣性力矩上提高設計彈性。例如,酌定重量增加可供將額外的酌定重量定位於該球桿頭100上的低處和後方,藉以達到較低且較後的重心位置。在進一步範例裡,酌定重量增加可供將額外的酌定重量定位於球桿頭100的週緣上,藉此增加球桿頭100的慣性力矩以增加偏離中心敲擊的寬容度。從而,相較於具有已知材料的類似高爾夫球桿頭,擁有另增特定強度之材料的球桿頭100可獲得優化的重心位置及提升的球桿頭慣性力矩。
相反地,相較於具有本案所述之更強、更高彈性及/或更輕之材料的球桿頭,目前的高爾夫球桿頭材料,或是具有比起本案所述材料之特定強度為較低之特定強度的材料,可擁有較低的降伏強度故而導致較低的耐固度,或者是較高密度,因此造成非所樂見的重量增加或酌定重量減少而需優化地定位於該球桿頭的其他範圍內(從而影響到重心定位優化和慣性力矩增益)。
在許多具體實施例中,該材料的特定彈性是大於在一材料類別中目前高爾夫球桿頭材料的特定彈性。針對於一給定形狀或組態,特定彈性增加可對應於材料的彈性增加。該材料的特定彈性增加可增加該球桿頭100的可彎度或彈性(亦即復原係數或特徵時間)而無關於球桿頭設計,並 同時維持為防止該球桿頭100失效所必要的降伏強度。在這些具體實施例中,可進一步設計該球桿頭100(即如厚度減少)以供額外的彈性並同時仍維持耐固度,藉此讓該球桿頭100能夠相較於具有已知材料的球桿頭而提增彈性。彈性增加可提高撞擊時的彎度,而這會將拉扭能量轉換為動能(或是內部能量或彈簧能量)且傳送至高爾夫球,藉以減少撞擊時的能量損失並且提升球速與行進距離。從而,相較於具有已知材料的類似高爾夫球桿頭,具有增加特定彈性之材料的球桿頭100可獲致增大的球速與行進距離。
相反地,目前的高爾夫球桿頭材料,或是具有比起本案所述材料的特定彈性為較低之特定彈性的材料,可能具有較低的降伏強度而導致耐固度下降,或者較高彈性模數而造成彈性降低及/或面部偏離減少,因此相較於具有如本案所述更強、更高彈性及/或更輕之材料的球桿頭就會對高爾夫球的行進距離造成限制。
相較於類似材料類別的目前高爾夫球桿頭材料,具有增加特定強度和增加特定彈性之材料的球桿頭100可供提高重量節省及彈性,且與球桿頭設計無關,並同時維持足夠強度以避免球桿頭失效。可針對額外的重量節省和彈性來進一步設計本案所述的球桿頭100,而又不致犧牲球桿頭強度或耐固度。因此,相較於具有已知材料的類似球桿頭,擁有更強、更高彈性及更輕之材料的球桿頭100可供增加酌定重量(因為重量節省提高)並擴大彈性。球桿頭100的酌定重量增加可供將更多的重量分配到球桿頭100上的特定位置處,藉以達到所欲重心位置並且增加該球桿頭100的慣性力矩,使得球桿頭對於偏離中心敲擊的寬容度擴增。而球桿頭100的彈性增加則可提高該球桿頭100在撞擊到高爾夫球時的變形。而球桿頭100的 變形增加可減少撞擊時的能量損失,使得更多能量能夠被傳送到高爾夫球上,以增大球速與行進距離。
I).具有更強、更高彈性及更輕之材料的中空本體球桿頭
在許多具體實施例中,含有該更強、更高彈性及/或更輕之材料(後文中稱為「材料」)的球桿頭可為中空本體類型的球桿頭,像是開球桿、球道木桿或混合桿。在許多具體實施例中,該球桿頭的桿面角度可為小於或等於35度、小於或等於30度、小於或等於25度、小於或等於20度、小於或等於15度或是小於或等於10度。
在這些具體實施例中,可以是該球桿頭本體10包含該材料,該面部平板14包含該材料,或者是該球桿頭本體10和該面部平板14可含有該材料。
a).含有更強、更高彈性、更輕之材料的本體
在許多具體實施例中,該球桿頭100的本體10含有該更強、更高彈性及/或更輕之材料。在這些具體實施例中,整個本體10可含有該材料,或是至少本體10的局部可含有該材料,而該本體10的其餘部份則含有不同材料或複數種材料。例如,在一些具體實施例中,該球桿頭100之冠部30的局部可含有該材料。對於進一步範例,在一些具體實施例中,該球桿頭100之底部34的局部可含有該材料。在許多具體實施例中,該本體10的材料係經鑄造以構成該本體10的至少一局部。
在一些具體實施例中,該材料相比於目前用在高爾夫球桿頭的材料,經過處理之後(即如依特定參數進行熱處理)可含有較大的特定強度 及/或較高的特定彈性。在其他具體實施例裡,該材料相比於目前用在高爾夫球桿頭的材料,無須經過熱處理或是其他的處理技術,即可含有較大的特定強度及/或較高的特定彈性。在這些具體實施例中,相較於目前在高爾夫球桿頭中所使用的材料,該材料可經處理(即如熱處理)以進一步提升特定強度及/或特定彈性。
i).含有更強、更高彈性、更輕之鋼合金的本體
圖2說明,相較於本案所述之球桿頭本體中含有鋼合金的更強、更高彈性及/或更輕之材料,在目前球桿頭本體中所使用之各種鋼合金類型材料的特定強度(亦即強度對重量比值)以及特定彈性(亦即強度對模數比值)的範圍。許多在高爾夫球桿頭中所採用的已知鋼合金類型材料皆擁有小於600,000PSI/lb/in3(149MPa/g/cm3)的特定強度、小於0.0060的特定彈性、小於170,000PSI(1172MPa)的降伏強度,以及大於28,000,000PSI(193,053MPa)的彈性模數。
在其中該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,鋼合金的特定強度可為大於或等於600,000PSI/lb/in3(149MPa/g/cm3)。
例如,該鋼合金的特定強度可大於或等於625,000PSI/lb/in3(156MPa/g/cm3)、大於或等於650,000PSI/lb/in3(162MPa/g/cm3)、大於或等於675,000PSI/lb/in3(168MPa/g/cm3)、大於或等於700,000PSI/lb/in3(174MPa/g/cm3)、大於或等於725,000PSI/lb/in3(181MPa/g/cm3)、大於或等於750,000PSI/lb/in3(187MPa/g/cm3)、大於或等於775,000PSI/lb/in3(193 MPa/g/cm3)、大於或等於800,000PSI/lb/in3(199MPa/g/cm3)、大於或等於825,000PSI/lb/in3(205MPa/g/cm3)、大於或等於850,000PSI/lb/in3(212MPa/g/cm3)、大於或等於875,000PSI/lb/in3(218MPa/g/cm3)、大於或等於900,000PSI/lb/in3(224MPa/g/cm3)、大於或等於925,000PSI/lb/in3(230MPa/g/cm3)、大於或等於950,000PSI/lb/in3(237MPa/g/cm3)、大於或等於975,000PSI/lb/in3(243MPa/g/cm3)、大於或等於1,000,000PSI/lb/in3(249MPa/g/cm3)、大於或等於1,025,000PSI/lb/in3(255MPa/g/cm3)、大於或等於1,075,000PSI/lb/in3(268MPa/g/cm3),或者大於或等於1,125,000PSI/lb/in3(280MPa/g/cm3)。
在進一步的範例中,該鋼合金的特定強度可為在600,000PSI/lb/in3(149MPa/g/cm3)及1,125,000PSI/lb/in3(280MPa/g/cm3)之間、在625,000PSI/lb/in3(156MPa/g/cm3)及1,025,000PSI/lb/in3(255MPa/g/cm3)之間、在725,000PSI/lb/in3(181MPa/g/cm3)及1,025,000PSI/lb/in3(255MPa/g/cm3)之間,或是在825,000PSI/lb/in3(205MPa/g/cm3)及1,025,000PSI/lb/in3(255MPa/g/cm3)之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,鋼合金的特定彈性可大於或等於0.0060。例如,該鋼合金的特定彈性可為大於或等於0.0062、大於或等於0.0064、大於或等於0.0066、大於或等於0.0068、大於或等於0.0070、大於或等於0.0072、大於或等於0.0076、大於或等於0.0080、大於或等於0.0084、大於或等於0.0088、大於或等於0.0092、大於或等於0.0096、大於或等於0.0100、大於或等於0.0105、大於或等於0.0110、大於或等於0.0115、大於或等於 0.0120、大於或等於0.0125、大於或等於0.0130、大於或等於0.0135、大於或等於0.0140、大於或等於0.0145,或者是大於或等於0.0150。
在進一步的範例中,該鋼合金的特定彈性可為在0.0060及0.0120之間、在0.0070及0.0120之間、在0.0080及0.0120之間、在0.0090及0.0120之間、在0.0060及0.0150之間、在0.0070及0.0150之間、在0.0080及0.0150之間,或者在0.0090及0.0150之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的降伏強度可為大於或等於170,000PSI(1172MPa)、大於或等於175,000PSI(1207MPa)、大於或等於180,000PSI(1241MPa)、大於或等於185,000PSI(1276MPa)、大於或等於190,000PSI(1310MPa)、大於或等於195,000PSI(1344MPa)、大於或等於200,000PSI(1379MPa)、大於或等於225,000PSI(1551MPa),或者是大於或等於250,000PSI(1724MPa)。進一步,含有鋼合金之材料的降伏強度可位在170,000PSI(1172MPa)及250,000PSI(1724MPa)之間、在175,000PSI(1207MPa)及250,000PSI(1724MPa)之間、在180,000PSI(1241MPa)及250,000PSI(1724MPa)之間、在185,000PSI(1276MPa)及250,000PSI(1724MPa)之間、在190,000PSI(1310MPa)及250,000PSI(1724MPa)之間,或者是在200,000PSI(1379MPa)及250,000PSI(1724MPa)之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的彈性模數可為小於或等於28,000,000PSI(193,053MPa)、小於或等於27,500,000PSI(189,606MPa)、小於或等於27,000,000PSI(186,159MPa)、小於或等於26,500,000PSI (182,711MPa)、小於或等於26,000,000PSI(179,264MPa)、小於或等於25,500,000PSI(175,816MPa),或者是小於或等於25,000,000PSI(172,369MPa)。更進一步,該鋼合金的彈性模數可為在25,000,000PSI(172,369MPa)及28,000,000PSI(193,053MPa)之間、在25,000,000PSI(172,369MPa)及27,000,000PSI(186,159MPa)之間,或者是在25,000,000PSI(172,369MPa)及26,000,000PSI(179,264MPa)之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的密度可為小於或等於0.40lb/in3(11.0g/cm3)、小於或等於0.35lb/in3(9.7g/cm3)、小於或等於0.30lb/in3(8.3g/cm3)、小於或等於0.29lb/in3(8.0g/cm3)、小於或等於0.28lb/in3(7.8g/cm3)、小於或等於0.27lb/in3(7.5g/cm3)、小於或等於0.26lb/in3(7.2g/cm3),或者是小於或等於0.25lb/in3(6.9g/cm3)。此外,該鋼合金的密度可為在0.25lb/in3(6.9g/cm3)及0.40lb/in3(11.0g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.35lb/in3(9.7g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.30lb/in3(8.3g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.29lb/in3(8.0g/cm3)之間,或者是在0.25lb/in3(6.9g/cm3)及0.28lb/in3(7.8g/cm3)之間。
參照圖2,該更強、更高彈性及/或更輕之鋼合金的特定強度及/或特定彈性可能會移位至目前用於高爾夫球桿頭本體的鋼合金類型材料圖形之外的範圍處。例如,該鋼合金的特定強度可為大於目前高爾夫球桿頭本體所採用之已知鋼合金類型材料的特定強度(即如在圖5中材料B相較於材料A)。相較於具有已知鋼合金的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加酌定重量。對於進一步範例,該鋼合金的特定彈性 可為大於目前高爾夫球桿頭本體所採用之已知鋼合金類型材料的特定彈性(即如在圖5中材料C相較於材料A)。相較於具有已知鋼合金的類似球桿頭,特定彈性上升可獲以增加球桿頭本體的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。在許多具體實施例中,該鋼合金的特定強度和特定彈性可分別地大於已知鋼合金類型材料的特定強度和特定彈性(即如在圖5中材料D相較於材料A)。
在該球桿頭100的本體10內包含更強、更高彈性及/或更輕之鋼合金的具體實施例裡,該鋼合金可為任何能夠達到所欲特定強度及特定彈性的合成物。例如,該鋼合金可含有具18.0-19.0wt%鎳、8.5-9.5wt%鈷、4.6-5.2wt%鉬並且其餘的合金組成為鐵與其他微量元素的C300鋼料。在一些具體實施例中,含有C300鋼料之鋼合金的微量元素可包含0.5-0.8wt%鈦、0.05-0.15wt%鋁、小於0.5wt%鉻、小於0.5wt%銅、小於0.1wt%錳、小於0.1wt%矽、小於0.3wt%碳、小於0.01wt%磷,或是小於0.01wt%硫。在本範例中,含有C300鋼料之鋼合金的密度為0.289lb/in3(7.99g/cm3)。
如前所述,可令該鋼合金承受於熱處理以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有C300鋼料的鋼合金承受於熱處理,這包含將該鋼合金加熱至約攝氏830度約60分鐘,並且接著將該鋼合金加熱至約攝氏480度約4小時。在此範例中,該熱處理程序可獲得擁有壓彎強度214,400-241,200PSI(1478-1663MPa)、彈性模數22,041,000-22,989,000PSI(151,970-158,500MPa)、特定強度742,742-835,585PSI/lb/in3(185-208MPa/g/cm3)以及特定彈性0.0097-0.0105的 C300鋼合金鋼料。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有C300鋼料的鋼合金承受於熱處理,這包含將該鋼合金加熱至攝氏750-900度45-90分鐘,並且隨後將該鋼合金加熱至攝氏400-550度3-5小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,,該鋼合金可含有具11.0-13.0wt%鈷、18.0-19.0wt%鎳、4.5-5.5wt%鉬、1.0-2.0wt%鈦並且其餘合金組成為鐵與其他微量元素的C350鋼料。在一些具體實施例中,含有C350鋼料之鋼合金的微量元素可包含0.05-0.15wt%鋁、小於或等於0.03wt%碳、小於或等於0.01wt%磷、小於或等於0.10wt%矽、小於或等於0.50wt%銅、小於或等於0.10wt%錳、小於或等於0.01wt%硫,以及小於或等於0.50wt%鉻。在本範例中,含有C350鋼料之鋼合金的密度為0.292 lb/in3(8.08g/cm3)。
此外,可令該鋼合金承受於熱處理以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有C350鋼料的鋼合金承受於熱處理,這包含將該鋼合金加熱至約攝氏830度約60分鐘,並且接著將該鋼合金加熱至約攝氏512度約4小時。在此範例中,該熱處理程序可獲得擁有降伏強度279,200-314,100PSI(1925-2166MPa)、彈性模數25,017,000-26,093,000PSI(172,490-179,900MPa)、特定強度956,492-1,076,053PSI/lb/in3(238-268MPa/g/cm3)以及特定彈性0.0112-0.0120的C350鋼合金鋼料。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有C350鋼料的鋼合金承受於熱處理,這 包含將該鋼合金加熱至攝氏750-900度45-90分鐘,並且隨後將該鋼合金加熱至攝氏450-550度5-7小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含Ni-Co-Cr鋼合金,此者具有2.0-3.0wt%鉻、14.0-16.0wt%鈷、10.0-12.0wt%鎳及1.0-2.0wt%鉬,而其餘的合金成份則為鐵和其他微量元素。在一些具體實施例中,該Ni-Co-Cr鋼合金的微量元素可包含小於或等於0.35wt%碳。在本範例中,該Ni-Co-Cr鋼合金的密度為0.288 lb/in3(7.97g/cm3)。
此外,令該更強、更高彈性及/或更輕之的鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,可令該Ni-Co-Cr鋼合金承受於熱處理,這包含將該鋼合金加熱至約攝氏915度約60分鐘,隨後在液態氮裡低溫冷凍到攝氏-73度約60分鐘,然後將該鋼合金加熱至約攝氏482度約6小時。在此範例中,該熱處理程序可獲得擁有降伏強度220,000-247,500PSI(1517-1706MPa)、彈性模數24,087,000-25,123,000PSI(166,070-173,220MPa)、特定強度763,889-859,375PSI/lb/in3(190-214MPa/g/cm3)以及特定彈性0.0091-0.0099的Ni-Co-Cr鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令該Ni-Co-Cr鋼合金承受於熱處理,這包含將該鋼合金加熱至攝氏850-950度45-90分鐘,隨後選擇性地在液態氮裡低溫冷凍約45-90分鐘,然後將該鋼合金加熱至攝氏450-550度4-6小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到 所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕鋼合金可包含Ni-Co-Cr鋼合金,此者具有2.0-3.0wt%鉻、15.0-16.5wt%鈷、12.0-13.0wt%鎳及1.0-2.0wt%鉬,而其餘的合金成份則為鐵和其他微量元素。在一些具體實施例中,該Ni-Co-Cr鋼合金的微量元素可包含小於或等於0.4wt%碳。在本範例中,該Ni-Co-Cr鋼合金的密度為0.284 lb/in3(7.86g/cm3)。
此外,令該鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,可令該Ni-Co-Cr鋼合金承受於熱處理,這包含將該鋼合金加熱至約攝氏968度約60分鐘,隨後在液態氮裡低溫冷凍至攝氏-73度約60分鐘,再將該鋼合金加熱至約攝氏482度約2.5小時,然後在液態氮裡低溫冷凍至攝氏-73度約60分鐘,接著將該鋼合金加熱至約攝氏482度約2.5小時,然後又在液態氮裡低溫冷凍至攝氏-73度約60分鐘。在此範例中,該熱處理程序可獲得擁有降伏強度240,000-270,000PSI(1655-1862MPa)、彈性模數25,203,000-26,287,000PSI(173,770-181,240MPa)、特定強度845,070-950,704PSI/lb/in3(210-237MPa/g/cm3)以及特定彈性0.0095-0.0103的Ni-Co-Cr鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令該Ni-Co-Cr鋼合金承受熱處理,這包含將該鋼合金加熱至攝氏900-1050度45-60分鐘,隨後選擇性地在液態氮裡低溫冷凍45-90分鐘,再將該鋼合金加熱至攝氏400-550度1.5-3.5小時,然後選擇性地在液態氮裡低溫冷凍約45-90分鐘,接著將該鋼合金加熱至約攝氏400-550度1.5-3.5小時,然後又選擇性地在液態氮裡低溫冷凍約45-90分鐘。此外,在其他具體實施例裡,可針對 不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可含有565鋼料,此者具有11.0-12.5wt%鉻、1.0-2.0wt%鈷、11.0-12.5wt%鎳、0.5-1.5wt%鉬及1.5-2.5wt%鈦,而其餘的合金成份為鐵及其他微量元素。在一些具體實施例中,含有565鋼料之鋼合金的微量元素可包含小於或等於0.05wt%碳、小於或等於0.04wt%磷、小於或等於0.03wt%硫以及小於或等於0.5wt%鋁。在本範例中,含有565鋼料之鋼合金的密度為0.284 lb/in3(7.87g/cm3)。
此外,令含有565鋼料的鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。在此範例中,該熱處理程序可獲得擁有降伏強度212,000-238,500PSI(1462-1644MPa)、彈性模數22,320,000-23,280,000PSI(153,890-160,510MPa)、特定強度745,439-838,619PSI/lb/in3(186-209MPa/g/cm3)以及特定彈性0.0095-0.0102的565鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含經淬火及回火的鋼合金,此者具有3.0-4.5wt%鎳、1.0-2.0wt%矽、0.75-1.5wt%鉻、小於1.0wt%銅、小於1.25wt%錳、小於1.0wt%鉬、小於0.75wt%釩,而其餘的合金成份為鐵和其他微量元素。在本範例中,該經淬火及回火之鋼合金的密度為0.284 lb/in3(7.86g/cm3)。
此外,令該鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。在此範例中,該熱處理程序可獲得擁有降伏強度220,000PSI(1517MPa)、彈性模數23,100,000PSI(159,270MPa)、特定強度774,755PSI/lb/in3(193MPa/g/cm3)以及特定彈性0.0095的經淬火及回火之鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
ii).含有更強、更高彈性、更輕之鈦合金的本體
圖4說明,相較於本案所述含有鈦合金的更強、更高彈性及/或更輕之材料,在目前高爾夫球桿頭中所使用之各種鈦合金類型材料的特定強度(亦即強度對重量比值)以及特定彈性(亦即強度對模數比值)的範圍。許多在高爾夫球桿頭本體中所採用的已知鈦合金類型材料皆擁有小於730,500PSI/lb/in3的特定強度、小於0.0065的特定彈性、小於115,000PSI(793MPa)的降伏強度,以及大於18,500,000PSI(127,553MPa)的彈性模數。
在該球桿頭100的本體內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金的特定強度可大於或等於730,500PSI/lb/in3(182MPa/g/cm3)。例如,該鈦合金的特定強度可大於或等於650,000PSI/lb/in3(162MPa/g/cm3)、大於或等於700,000PSI/lb/in3(174MPa/g/cm3)、大於或等於750,000PSI/lb/in3(187MPa/g/cm3)、大於或等於800,000PSI/lb/in3(199MPa/g/cm3)、大於或等於850,000PSI/lb/in3(212 MPa/g/cm3)、大於或等於900,000PSI/lb/in3(224MPa/g/cm3)、大於或等於950,000PSI/lb/in3(237MPa/g/cm3)、大於或等於1,000,000PSI/lb/in3(249MPa/g/cm3)、大於或等於1,050,000PSI/lb/in3(262MPa/g/cm3),或是大於或等於1,100,000PSI/lb/in3(272MPa/g/cm3)。對於進一步範例,該鈦合金的特定強度可為在730,500PSI/lb/in3(182MPa/g/cm3)及1,100,000PSI/lb/in3(272MPa/g/cm3)之間、在850,000PSI/lb/in3(212MPa/g/cm3)及1,100,000PSI/lb/in3(272MPa/g/cm3)之間、在900,000PSI/lb/in3(224MPa/g/cm3)及1,100,000PSI/lb/in3(272MPa/g/cm3)之間,或是在950,000PSI/lb/in3(237MPa/g/cm3)及1,100,000PSI/lb/in3(272MPa/g/cm3)之間。
在該球桿頭100的本體10內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金的特定彈性可大於或等於0.0060。例如,該鈦合金的特定彈性可大於或等於0.0065、大於或等於0.0070、大於或等於0.0075、大於或等於0.0080、大於或等於0.0085、大於或等於0.0090、大於或等於0.0095、大於或等於0.0100、大於或等於0.0105、大於或等於0.0110、大於或等於0.0115,或者大於或等於0.0120。此外,該鈦合金的特定彈性可為在0.0070及0.0120之間、在0.0075及0.0120之間、在0.0080及0.0120之間、在0.0085及0.0120之間、在0.090及0.0120之間、在0.0095及0.0120之間,或者在0.0100及0.0120之間。
在該球桿頭100的本體內包含具有鈦合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鈦合金的壓彎強度可為大於或等於115,000PSI(793MPa)、大於或等於120,000PSI(827MPa)、大於或等於125,000PSI(862MPa)、大於或等於130,000PSI(896MPa)、大於或等於 135,000PSI(931MPa)、大於或等於140,000PSI(965MPa)、大於或等於145,000PSI(1000MPa)、大於或等於150,000PSI(1034MPa)、大於或等於160,000PSI(1103MPa)、大於或等於170,000PSI(1172MPa)、大於或等於180,000PSI(1241MPa)、大於或等於190,000PSI(1310MPa),或者是大於或等於200,000PSI(1379MPa)。進一步,該鈦合金的降伏強度可位在120,000PSI(827MPa)及200,000PSI(1379MPa)之間、在130,000PSI(896MPa)及200,000PSI(1379MPa)之間、在140,000PSI(965MPa)及200,000PSI(1379MPa)之間、在150,000PSI(1034MPa)及200,000PSI(1379MPa)之間、在160,000PSI(1103MPa)及200,000PSI(1379MPa)之間,或者是在170,000PSI(1172MPa)及200,000PSI(1379MPa)之間。
在該球桿頭100的本體內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金的彈性模數可為小於或等於18,500,000PSI(127,553MPa)、小於或等於18,000,000PSI(124,106MPa)、小於或等於17,500,000PSI(120,658MPa)、小於或等於17,000,000PSI(117,211MPa)、小於或等於16,500,000PSI(113,764MPa)、小於或等於16,000,000PSI(110,316MPa)、小於或等於15,500,000PSI(106,869MPa)、小於或等於15,000,000PSI(103,421MPa)、小於或等於14,500,000PSI(99,974MPa),或者是小於或等於14,000,000PSI(96,527MPa)。此外,該鈦合金之彈性模數可位在14,000,000PSI(96,527MPa)及18,500,000PSI(127,553MPa)之間、在14,000,000PSI(96,527MPa)及17,500,000PSI(120,658MPa)之間、在14,000,000PSI(96,527MPa)及16,500,000PSI(113,764MPa)之間、在14,000,000PSI(96,527MPa)及16,000,000PSI(110,316MPa)之間、在 14,000,000PSI(96,527MPa)及15,500,000PSI(106,869MPa)之間,或者是在14,000,000PSI(96,527MPa)及15,000,000PSI(103,421MPa)之間。
在該球桿頭100的本體內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金的密度可為小於或等於0.30lb/in3(8.3g/cm3)、小於或等於0.25lb/in3(6.9g/cm3)、小於或等於0.20lb/in3(5.5g/cm3)、小於或等於0.19lb/in3(5.3g/cm3)、小於或等於0.18lb/in3(5.0g/cm3),或者是小於或等於0.17lb/in3(4.7g/cm3)。此外,該鈦合金的密度可為在0.17lb/in3(4.7g/cm3)及0.30lb/in3(8.3g/cm3)之間、在0.17lb/in3(4.7g/cm3)及0.25lb/in3(6.9g/cm3)之間、在0.17lb/in3(4.7g/cm3)及0.20lb/in3(5.5g/cm3)之間,或是在0.17lb/in3(4.7g/cm3)及0.19lb/in3(5.3g/cm3)之間。
參照圖4,該更強、更高彈性及/或更輕之鈦合金的特定強度及/或特定彈性可能會移位至用於高爾夫球桿頭本體的目前或已知鈦合金類型材料圖形之外的範圍處。例如,該鈦合金的特定強度可為大於目前高爾夫球桿頭本體所採用之已知鈦合金類型材料的特定強度(即如在圖5中材料B相較於材料A)。相較於具有已知鈦合金的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加重量酌定幅度。在進一步的範例中,該鈦合金的特定彈性可為大於目前高爾夫球桿頭本體所採用之已知鈦合金類型材料的特定彈性(即如在圖5中材料C相較於材料A)。相較於具有已知鈦合金的類似球桿頭,特定彈性上升可獲以增加球桿頭本體的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。在許多具體實施例中,該鈦合金的特定強度和特定彈性可分別地大於已知鈦合金類型材料的特定強度和特定彈性(即如在圖5中材料D相較於材料A)。
在該球桿頭100的本體10內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金可為任何能夠達到所欲特定強度及特定彈性的合成物。
iii).含有更強、更高彈性、更輕之鋁合金的本體
在該球桿頭100的本體內包含具有鋁合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋁合金的特定強度可大於或等於600,000PSI/lb/in3(149MPa/g/cm3)。例如,該鋁合金的特定強度可大於或等於650,000PSI/lb/in3(162MPa/g/cm3)、大於或等於700,000PSI/lb/in3(174MPa/g/cm3)、大於或等於750,000PSI/lb/in3(187MPa/g/cm3)、大於或等於800,000PSI/lb/in3(199MPa/g/cm3)、大於或等於850,000PSI/lb/in3(212MPa/g/cm3)、大於或等於900,000PSI/lb/in3(224MPa/g/cm3)、大於或等於950,000PSI/lb/in3(237MPa/g/cm3),或是大於或等於1,000,000PSI/lb/in3(249MPa/g/cm3)。對於進一步範例,該鋁合金的特定強度可為在600,000PSI/lb/in3(149MPa/g/cm3)及1,000,000PSI/lb/in3(249MPa/g/cm3)之間、在700,000PSI/lb/in3(174MPa/g/cm3)及1,000,000PSI/lb/in3(249MPa/g/cm3)之間、在800,000PSI/lb/in3(199MPa/g/cm3)及1,000,000PSI/lb/in3(249MPa/g/cm3)之間,或是在900,000PSI/lb/in3(224MPa/g/cm3)及1,000,000PSI/lb/in3(249MPa/g/cm3)之間。
在一些具體實施例中,該鋁合金的特定強度可為大於目前高爾夫球桿頭本體中所採用之已知鋁合金類型材料的特定強度。相較於具有已知鋁合金的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加 酌定重量。在一些具體實施例中,該鋁合金的特定彈性可為大於目前高爾夫球桿頭本體中所採用之已知鋁合金類型材料的特定彈性。相較於具有已知鋁合金的類似球桿頭,特定彈性上升可獲以增加球桿頭本體的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。
在該球桿頭100的本體10內包含更強、更高彈性及/或更輕之鋁合金的具體實施例裡,該鋁合金可為任何能夠達到所欲特定強度及特定彈性的合成物。對於進一步範例,該鋁合金可包含擁有7.3-8.3wt%鋅、2.2-3.0wt%鎂、1.6-2.4wt%銅、0.05-0.15wt%鋯,而其餘合金組成為鋁與其他微量元素的鋁7068合金。在一些具體實施例中,含有鋁7068合金之鋁合金的微量元素包含小於0.12wt%矽、小於0.15wt%鐵、小於0.10wt%錳、小於0.05wt%鉻,或是小於0.10wt%鈦。
在許多具體實施例中,可將該更強、更高彈性及/或更輕之鋁合金設置在該球桿頭100之本體10的冠部30、底部34、前側末端22、後側末端24、跟部局部26、趾部局部28或是前述位置之組合的至少一局部上。在一些具體實施例中,是將該鋁合金設置在該球桿頭100之冠部30的局部上。在這些具體實施例中,鋁合金穿過外部表面延伸至該冠部30的內部表面而定義一厚度。在許多具體實施例中,此厚度可為小於或等於1.00mm、小於或等於0.95mm、小於或等於0.90mm、小於或等於0.85mm、小於或等於0.80mm、小於或等於0.75mm、小於或等於0.70mm、小於或等於0.65mm、小於或等於0.60mm、小於或等於0.55mm,或是小於或等於0.50mm。
iv).含有更強、更高彈性、更輕之合成材料的本體
在該球桿頭100的本體內包含具有合成材料之更強、更高彈性及/或更輕之材料的具體實施例裡,該合成材料的特定強度可大於或等於2,000,000PSI/lb/in3(498MPa/g/cm3)。例如,該合成材料的特定強度可大於或等於2,250,000PSI/lb/in3(560MPa/g/cm3)、大於或等於2,500,000PSI/lb/in3(623MPa/g/cm3)、大於或等於2,750,000PSI/lb/in3(685MPa/g/cm3)、大於或等於3,000,000PSI/lb/in3(747MPa/g/cm3)、大於或等於3,250,000PSI/lb/in3(810MPa/g/cm3)、大於或等於3,500,000PSI/lb/in3(872MPa/g/cm3)、大於或等於3,750,000PSI/lb/in3(934MPa/g/cm3),或是大於或等於4,000,000PSI/lb/in3(996MPa/g/cm3)。對於進一步範例,該合成材料的特定強度可為在2,000,000PSI/lb/in3(498MPa/g/cm3)及4,000,000PSI/lb/in3(996MPa/g/cm3)之間、在2,250,000PSI/lb/in3(560MPa/g/cm3)及4,000,000PSI/lb/in3(996MPa/g/cm3)之間、在2,500,000PSI/lb/in3(623MPa/g/cm3)及4,000,000PSI/lb/in3(996MPa/g/cm3)之間、在2,750,000PSI/lb/in3(685MPa/g/cm3)及4,000,000PSI/lb/in3(996MPa/g/cm3)之間,或是在3,000,000PSI/lb/in3(747MPa/g/cm3)及4,000,000PSI/lb/in3(996MPa/g/cm3)之間。
在該球桿頭100的本體內包含具有合成材料之更強、更高彈性及/或更輕之材料的具體實施例裡,該合成材料的特定彈性可為大於或等於0.0150、大於或等於0.0175、大於或等於0.0200、大於或等於0.0225、大於或等於0.0250、大於或等於0.0275、大於或等於0.0300、大於或等於0.0325、大於或等於0.0350、大於或等於0.0375,或是大於或等於0.0400。進一步,該合成材料的特定彈性可在0.0150及0.0400之間、在0.0200及 0.0400之間、在0.0250及0.0400之間,或是在0.0300及0.0400之間。
在一些具體實施例中,該合成材料的特定強度可為大於目前高爾夫球桿頭本體中所採用之已知合成材料的特定強度。相較於具有已知合成材料的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加重量酌定幅度。在一些具體實施例中,該合成材料的特定彈性可為大於目前高爾夫球桿頭本體中所採用之已知合成材料的特定彈性。相較於具有已知合成材料的類似球桿頭,特定彈性上升可獲以增加球桿頭本體的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。
在該球桿頭100的本體10內包含更強、更高彈性及/或更輕之合成材料的具體實施例裡,該合成材料可為任何能夠達到所欲特定強度及特定彈性的合成物。在許多具體實施例中,可將該合成材料設置在該球桿頭100之本體10的冠部30、底部34、前側末端22、後側末端24、跟部局部26、趾部局部28或是前述位置之組合的至少一局部上。在一些具體實施例中,是將該合成材料設置在該球桿頭100之冠部30的局部上。在這些具體實施例中,合成材料穿過外部表面延伸至該冠部30的內部表面而定義一厚度。在許多具體實施例中,此厚度可為小於或等於1.00mm、小於或等於0.95mm、小於或等於0.90mm、小於或等於0.85mm、小於或等於0.80mm、小於或等於0.75mm、小於或等於0.70mm、小於或等於0.65mm、小於或等於0.60mm、小於或等於0.55mm,或是小於或等於0.50mm。
b).含有更強、更高彈性、更輕之材料的面部平板
在許多具體實施例中,該球桿頭面部平板14含有該更強、 更高彈性及/或更輕之材料。在一些具體實施例中,整個面部平板14含有該材料。在一些具體實施例中,該面部平板14的至少一局部含有該材料,而該面部平板14的其餘部份含有不同材料或複數種材料。在許多具體實施例中,該面部平板14的材料是由薄片材料所構成,藉此形成該面部平板14的至少一局部。
在一些具體實施例中,該材料相比於目前用在高爾夫球桿頭的材料,經過處理之後(即如依特定參數進行熱處理)可含有較大的特定強度及/或較高的特定彈性。在其他具體實施例裡,該材料相比於目前用在高爾夫球桿頭的材料,無須經過熱處理或是其他的處理技術即可含有較大的特定強度及/或較高的特定彈性。在這些具體實施例中,相較於目前在高爾夫球桿頭中所使用的材料,該材料可經處理(即如熱處理)以進一步提升特定強度及/或特定彈性。
i).含有更強、更高彈性、更輕之鋼合金的面部平板
圖3說明,相較於本案所述含有鋼合金的更強、更高彈性及/或更輕之材料,在目前高爾夫球桿頭面部平板中所使用之各種已知鋼合金類型材料的特定強度(亦即強度對重量比值)以及特定彈性(亦即強度對模數比值)的範圍。許多在目前高爾夫球桿頭面部平板中所採用的已知鋼合金皆擁有小於828,000PSI/lb/in3(206MPa/g/cm3)的特定強度、小於0.0082的特定彈性、小於220,000PSI(1517MPa)的壓彎強度,以及大於35,000,000PSI(241,317MPa)的彈性模數。
在該球桿頭100的面部平板內包含具有鋼合金之更強、更高 彈性及/或更輕之材料的具體實施例裡,該鋼合金的特定強度可大於或等於650,000PSI/lb/in3(162MPa/g/cm3)。
例如,該鋼合金的特定強度可為大於或等於700,000PSI/lb/in3(174MPa/g/cm3)、大於或等於750,000PSI/lb/in3(187MPa/g/cm3)、大於或等於800,000PSI/lb/in3(199MPa/g/cm3)、大於或等於810,000PSI/lb/in3(202MPa/g/cm3)、大於或等於820,000PSI/lb/in3(204MPa/g/cm3)、大於或等於830,000PSI/lb/in3(207MPa/g/cm3)、大於或等於840,000PSI/lb/in3(209MPa/g/cm3)、大於或等於850,000PSI/lb/in3(212MPa/g/cm3)、大於或等於875,000PSI/lb/in3(218MPa/g/cm3)、大於或等於900,000PSI/lb/in3(224MPa/g/cm3)、大於或等於925,000PSI/lb/in3(230MPa/g/cm3)、大於或等於950,000PSI/lb/in3(237MPa/g/cm3)、大於或等於975,000PSI/lb/in3(243MPa/g/cm3)、大於或等於1,000,000PSI/lb/in3(249MPa/g/cm3)、大於或等於1,050,000PSI/lb/in3(262MPa/g/cm3)、大於或等於1,100,000PSI/lb/in3(274MPa/g/cm3)、大於或等於1,115,000PSI/lb/in3(278MPa/g/cm3)、大於或等於1,120,000PSI/lb/in3(279MPa/g/cm3)、大於或等於1,130,000PSI/lb/in3(282MPa/g/cm3)、大於或等於1,140,000PSI/lb/in3(284MPa/g/cm3)、大於或等於1,150,000PSI/lb/in3(287MPa/g/cm3)、大於或等於1,175,000PSI/lb/in3(293MPa/g/cm3),或是大於或等於1,200,000PSI/lb/in3(299MPa/g/cm3)。
在進一步的範例中,該鋼合金的特定強度可在830,000PSI/lb/in3(207MPa/g/cm3)及1,200,000PSI/lb/in3(299MPa/g/cm3)之間、在850,000PSI/lb/in3(212MPa/g/cm3)及1,200,000PSI/lb/in3(299MPa/g/cm3)之 間、在900,000PSI/lb/in3(224MPa/g/cm3)及1,200,000PSI/lb/in3(299MPa/g/cm3)之間、在950,000PSI/lb/in3(237MPa/g/cm3)及1,200,000PSI/lb/in3(299MPa/g/cm3)之間,或是在1,000,000PSI/lb/in3(249MPa/g/cm3)及1,200,000PSI/lb/in3(299MPa/g/cm3)之間。
在該球桿頭100的面部平板內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的特定彈性可大於或等於0.0060。例如,該鋼合金的特定彈性可為大於或等於0.0065、大於或等於0.0070、大於或等於0.0075、大於或等於0.0080、大於或等於0.0082、大於或等於0.0085、大於或等於0.0090、大於或等於0.0095、大於或等於0.0100、大於或等於0.0105、大於或等於0.0110、大於或等於0.0115、大於或等於0.0120、大於或等於0.0125、大於或等於0.0130、大於或等於0.0135、大於或等於0.0140、大於或等於0.0145,或者是大於或等於0.0150。此外,該鋼合金的特定彈性可為在0.0080及0.0150之間、在0.0085及0.0150之間、在0.0090及0.0150之間、在0.0095及0.0150之間、在0.0100及0.0150之間、在0.0080及0.0140之間、在0.0090及0.0140之間,或者在0.0100及0.0140之間。
在該球桿頭100的面部平板內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的降伏強度可為大於或等於220,000PSI(1517MPa)、大於或等於230,000PSI(1586MPa)、大於或等於240,000PSI(1655MPa)、大於或等於250,000PSI(1724MPa)、大於或等於260,000PSI(1793MPa)、大於或等於270,000PSI(1862MPa)、大於或等於280,000PSI(1931MPa)、大於或等於290,000PSI(1999MPa),或者是大 於或等於300,000PSI(2068MPa)。進一步,該鋼合金的降伏強度可位在220,000PSI(1517MPa)及300,000PSI(2068MPa)之間、在230,000PSI(1586MPa)及300,000PSI(2068MPa)之間、在250,000PSI(1724MPa)及300,000PSI(2068MPa)之間、在260,000PSI(1793MPa)及300,000PSI(2068MPa)之間,或者是在270,000PSI(1862MPa)及300,000PSI(2068MPa)之間。
在該球桿頭100的面部平板內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的彈性模數可為小於或等於35,000,000PSI(241,317MPa)、小於或等於32,500,000PSI(224,080MPa)、小於或等於30,000,000PSI(206,843MPa)、小於或等於28,500,000PSI(196,501MPa)、小於或等於27,500,000PSI(189,606MPa)、小於或等於25,000,000PSI(172,369MPa),或者是小於或等於22,500,000PSI(137,895MPa)。更進一步,該鋼合金的彈性模數可為在22,500,000PSI(137,895MPa)及35,000,000PSI(241,317MPa)之間、在22,500,000PSI(137,895MPa)及32,500,000PSI(224,080MPa)之間、在22,500,000PSI(137,895MPa)及30,000,000PSI(206,843MPa)之間,或者是在22,500,000PSI(137,895MPa)及27,500,000PSI(189,606MPa)之間。
在該球桿頭100的面部平板內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的密度可為小於或等於0.40 lb/in3(11.0g/cm3)、小於或等於0.35 lb/in3(9.7g/cm3)、小於或等於0.30 lb/in3(8.3g/cm3)、小於或等於0.29 lb/in3(8.0g/cm3)、小於或等於0.28 lb/in3(7.8g/cm3)、小於或等於0.27 lb/in3(7.5g/cm3)、小於或等於0.26 lb/in3(7.2g/cm3),或者是小於或等於0.25 lb/in3(6.9g/cm3)。此外,該鋼合金的密度可 為在0.25lb/in3(6.9g/cm3)及0.40lb/in3(11.0g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.35lb/in3(9.7g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.30lb/in3(8.3g/cm3)之間,或是在0.25lb/in3(6.9g/cm3)及0.28lb/in3(7.8g/cm3)之間。
參照圖3,該更強、更高彈性及/或更輕之鋼合金的特定強度及/或特定彈性可能會移位至目前用於高爾夫球桿頭面部平板的鋼合金類型材料圖形之外的範圍處。例如,該鋼合金的特定強度可為大於目前高爾夫球桿頭面部平板所採用之已知鋼合金類型材料的特定強度(即如在圖5中材料B相較於材料A)。相較於具有已知鋼合金的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加重量酌定幅度。對於進一步範例,該鋼合金的特定彈性可為大於目前高爾夫球桿頭面部平板所採用之已知鋼合金類型材料的特定彈性(即如在圖5中材料C相較於材料A)。相較於具有已知鋼合金的類似球桿頭,特定彈性上升可獲以增加面部平板的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。在許多具體實施例中,該鋼合金的特定強度和特定彈性可分別地大於已知鋼合金類型材料的特定強度和特定彈性(即如在圖5中材料D相較於材料A)。
在該球桿頭100的面部平板14內包含更強、更高彈性及/或更輕之鋼合金的具體實施例裡,該鋼合金可為任何能夠達到所欲特定強度及特定彈性的合成物。例如,該鋼合金可含有具18.0-19.0wt%鎳、8.5-9.5wt%鈷、4.6-5.2wt%鉬並且其餘合金組成為鐵與其他微量元素的C300鋼料。在一些具體實施例中,含有C300鋼料之鋼合金的微量元素可包含0.5-0.8wt%鈦、0.05-0.15wt%鋁、小於0.5wt%鉻、小於0.5wt%銅、小於0.1wt%錳、小於0.1wt%矽、小於0.3wt%碳、小於0.01wt%磷,或是小於0.01wt% 硫。在本範例中,該C300鋼合金的密度為0.289 lb/in3(7.99g/cm3)。
此外,可令該更強、更高彈性及/或更輕之鋼合金承受於熱處理以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有C300鋼料的鋼合金承受於熱處理,這包含將該鋼合金加熱至約攝氏830度約60分鐘,並且接著將該鋼合金加熱至約攝氏480度約4小時。在此範例中,該熱處理程序可獲得擁有降伏強度268,000PSI(1848MPa)、彈性模數23,700,000PSI(163,410MPa)、特定強度928,428PSI/lb/in3(231MPa/g/cm3)以及特定彈性0.0113的C300鋼料的鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有C300鋼料的鋼合金承受於熱處理,這包含將該鋼合金加熱至攝氏750-900度45-90分鐘,並且隨後將該鋼合金加熱至攝氏400-550度3-5小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可含有具11.0-13.0wt%鈷、18.0-19.0wt%鎳、4.5-5.5wt%鉬、1.0-2.0wt%鈦並且其餘合金組成為鐵與其他微量元素的C350鋼料。在一些具體實施例中,含有C350之鋼合金的微量元素可包含0.05-0.15wt%鋁、小於或等於0.03wt%碳、小於或等於0.01wt%磷、小於或等於0.10wt%矽、小於或等於0.50wt%銅、小於或等於0.10wt%錳、小於或等於0.01wt%硫,以及小於或等於0.50wt%鉻。在本範例中,C350鋼合金的密度為0.292 lb/in3(8.08g/cm3)。
此外,令該更強、更高彈性及/或更輕之鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有C350鋼料的鋼合金承受於熱處理,這包含將該鋼合金加熱至約攝氏830度約60分鐘,並且接著將該鋼合金加熱至約攝氏512度約4小時。在此範例中,該熱處理程序可獲得擁有降伏強度349,000PSI(2406MPa)、彈性模數26,900,000PSI(185,470MPa)、特定強度1,195,615PSI/lb/in3(298MPa/g/cm3)以及特定彈性0.0130的C350鋼料的鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有C350的鋼合金承受熱處理,這包含將該鋼合金加熱至攝氏750-900度45-90分鐘,並且隨後將該鋼合金加熱至攝氏450-550度7-5小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含Ni-Co-Cr鋼合金,這含有2.0-3.0wt%鉻、14.0-16.0wt%鈷、10.0-12.0wt%鎳及1.0-2.0wt%鉬,而其餘的合金組成則為鐵和其他微量元素。在一些具體實施例中,該Ni-Co-Cr鋼合金的微量元素可包含小於或等於0.35wt%碳。在本範例中,該Ni-Co-Cr鋼合金的密度為0.288 lb/in3(7.97g/cm3)。
此外,令該更強、更高彈性及/或更輕之鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,可令含有該Ni-Co-Cr鋼合金的鋼合金承受熱處理,這包含將該鋼合金加熱至約攝氏915度約60分鐘,隨後在液態氮裡低溫冷凍至攝氏-73度約60分鐘,然後將該鋼合金加熱至約攝氏482度約6小時。在此範例中,該熱處理程序可獲得擁有降伏強度 275,000PSI(1896MPa)、彈性模數25,900,000PSI(178,570MPa)、特定強度954,861PSI/lb/in3(238MPa/g/cm3)以及特定彈性0.0106的Ni-Co-Cr鋼合金鋼料。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令該Ni-Co-Cr鋼合金承受熱處理,這包含將該鋼合金加熱至約攝氏850-950度約45-90分鐘,隨後選擇性地在液態氮裡低溫冷凍45-90分鐘,然後將該鋼合金加熱至約攝氏450-550度約4-6小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含Ni-Co-Cr鋼合金,這含有2.0-3.0wt%鉻、15.0-16.5wt%鈷、12.0-13.0wt%鎳及1.0-2.0wt%鉬,而其餘的合金組成則為鐵和其他微量元素。在一些具體實施例中,該Ni-Co-Cr鋼合金的微量元素可包含小於或等於0.4wt%碳。在本範例中,該Ni-Co-Cr鋼合金的密度為0.284 lb/in3(7.86g/cm3)。
此外,令該更強、更高彈性及/或更輕之鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,可令含有該Ni-Co-Cr鋼合金的鋼合金承受熱處理,這包含將該鋼合金加熱至約攝氏968度約60分鐘,隨後在液態氮裡低溫冷凍至攝氏-73度約60分鐘,再將該鋼合金加熱至約攝氏482度約2.5小時,然後在液態氮裡低溫冷凍至攝氏-73度約60分鐘,接著將該鋼合金加熱至約攝氏482度約2.5小時,然後又在液態氮裡低溫冷凍至攝氏-73度約60分鐘。在此範例中,該熱處理程序可獲得擁有降伏強度300,000PSI(2068MPa)、彈性模數27,100,000PSI(186,850MPa)、特定強度1,056,338PSI/lb/in3(263MPa/g/cm3)以及特定彈性0.0111的Ni-Co-Cr 鋼合金鋼料。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令該Ni-Co-Cr鋼合金承受熱處理,這包含將該鋼合金加熱至攝氏900-1050度45-60分鐘,隨後選擇性地在液態氮裡低溫冷凍45-90分鐘,再將該鋼合金加熱至攝氏400-550度1.5-3.5小時,然後選擇性地在液態氮裡低溫冷凍45-90分鐘,接著將該鋼合金加熱至約攝氏400-550度1.5-3.5小時,然後又選擇性地在液態氮裡低溫冷凍約45-90分鐘。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可含有565鋼料,此者具有11.0-12.5wt%鉻、1.0-2.0wt%鈷、11.0-12.5wt%鎳、0.5-1.5wt%鉬及1.5-2.5wt%鈦,而其餘的合金組成為鐵及其他微量元素。在一些具體實施例中,含有565鋼料之鋼合金的微量元素可包含小於或等於0.05wt%碳、小於或等於0.04wt%磷、小於或等於0.03wt%硫以及小於或等於0.5wt%鋁。在本範例中,該565鋼合金的密度為0.284 lb/ir3(7.87g/cm3)。
此外,令該更強、更高彈性及/或更輕之鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。在此範例中,該熱處理程序可獲得擁有降伏強度265,000PSI(1827MPa)、彈性模數24,000,000PSI(165,470MPa)、特定強度931,799PSI/lb/in3(232MPa/g/cm3)以及特定彈性0.0110的565鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。除此之外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈 性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含經淬火及回火的鋼合金,此者具有3.0-4.5wt%鎳、1.0-2.0wt%矽、0.75-1.5wt%鉻、小於1.0wt%銅、小於1.25wt%錳、小於1.0wt%鉬、小於0.75wt%釩,而其餘的合金組成為鐵和其他微量元素。在本範例中,該經淬火及回火之鋼合金的密度為0.284 lb/in3(7.86g/cm3)。
此外,令該更強、更高彈性及/或更輕之鋼合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,可令該經淬火及回火之鋼合金承受熱處理,這包含將該鋼合金加熱至攝氏918度約60分鐘,隨後在液態氮裡低溫冷凍至攝氏-73度約8小時,然後將該鋼合金加熱至約攝氏260度約2小時。在此範例中,該熱處理程序可獲得擁有降伏強度240,000PSI(1655MPa)、彈性模數23,600,000PSI(162,720MPa)、特定強度845,188PSI/lb/in3(211MPa/g/cm3)以及特定彈性0.0102的經淬火及回火之鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令該經淬火及回火之鋼合金承受熱處理,這包含將該鋼合金加熱至攝氏850-1050度45-90分鐘,隨後在液態氮冷卻及選擇性低溫冷凍6-10小時,然後將該鋼合金加熱至攝氏200-350度3-5小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
ii).含有更強、更高彈性、更輕之鈦合金的面部平板
圖4說明,相較於本案所述的更強、更高彈性及/或更輕之 鈦質面部平板材料,在目前高爾夫球桿頭面部平板中所使用之各種已知鈦合金類型材料的特定強度(亦即強度對重量比值)以及特定彈性(亦即強度對模數比值)的範圍。許多在目前高爾夫球桿頭面部平板中所採用的已知鈦合金皆擁有小於900,000PSI/lb/in3(224MPa/g/cm3)的特定強度、小於0.0090的特定彈性、小於160,000PSI(1103MPa)的降伏強度,以及大於18,500,000PSI(127,553MPa)的彈性模數。
在該球桿頭100的面部平板內包含具有鈦合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鈦合金的特定強度可大於或等於900,000PSI/lb/in3(224MPa/g/cm3)。
例如,該鈦合金的特定強度可為大於或等於910,000PSI/lb/in3(227MPa/g/cm3)、大於或等於920,000PSI/lb/in3(229MPa/g/cm3)、大於或等於930,000PSI/lb/in3(232MPa/g/cm3)、大於或等於930,500PSI/lb/in3(232MPa/g/cm3)、大於或等於940,000PSI/lb/in3(234MPa/g/cm3)、大於或等於950,000PSI/lb/in3(237MPa/g/cm3)、大於或等於960,000PSI/lb/in3(239MPa/g/cm3)、大於或等於970,000PSI/lb/in3(242MPa/g/cm3)、大於或等於980,000PSI/lb/in3(244MPa/g/cm3)、大於或等於990,000PSI/lb/in3(247MPa/g/cm3)、大於或等於1,000,000PSI/lb/in3(249MPa/g/cm3)、大於或等於1,050,000PSI/lb/in3(262MPa/g/cm3)、大於或等於1,075,000PSI/lb/in3(268MPa/g/cm3)、大於或等於1,100,000PSI/lb/in3(274MPa/g/cm3)、大於或等於1,150,000PSI/lb/in3(286MPa/g/cm3)、大於或等於1,120,000PSI/lb/in3(279MPa/g/cm3)、大於或等於1,130,000PSI/lb/in3(282MPa/g/cm3)、大於或等於1,140,000PSI/lb/in3(284MPa/g/cm3)、大於或等於1,150,000 PSI/lb/in3(287MPa/g/cm3)、大於或等於1,175,000PSI/lb/in3(293MPa/g/cm3)、大於或等於1,200,000PSI/lb/in3(299MPa/g/cm3)、大於或等於1,250,000PSI/lb/in3(312MPa/g/cm3),或是大於或等於1,300,000PSI/lb/in3(324Mpa/g/cm3)。
在進一步的範例中,該鈦合金的特定強度可為在900,000PSI/lb/in3(224MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間、在920,000PSI/lb/in3(229MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間、在930,500PSI/lb/in3(232MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間、在950,000PSI/lb/in3(237MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間、在970,000PSI/lb/in3(242MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間、在990,000PSI/lb/in3(247MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間、在1,050,000PSI/lb/in3(262MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間,或是在1,075,000PSI/lb/in3(268MPa/g/cm3)及1,300,000PSI/lb/in3(324Mpa/g/cm3)之間。
在該球桿頭100的面部平板內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金的特定彈性可大於或等於0.0075。例如,該鈦合金的特定彈性可為大於或等於0.0080、大於或等於0.0085、大於或等於0.0090、大於或等於0.0091、大於或等於0.0092、大於或等於0.0093、大於或等於0.0094、大於或等於0.0095、大於或等於0.0096、大於或等於0.0097、大於或等於0.0098、大於或等於0.0099、大於或等於0.0100、大於或等於0.0105、大於或等於0.0110、大於或等於0.0115、大於或等於0.0120、大於或等於0.0125、大於或等於0.0130、大於或等於0.0135,或是 大於或等於0.0140。
在進一步的範例中,該鈦合金的特定彈性可為在0.0080及0.0140之間、在0.0085及0.0140之間、在0.0090及0.0140之間、在0.0100及0.0140之間、在0.0105及0.0140之間、在0.0110及0.0140之間、在0.0115及0.0140之間、在0.0120及0.0140之間、在0.0125及0.0140之間、在0.0130及0.0140之間,或是在0.0135及0.0140之間。
在該球桿頭100的面部平板包含具有鈦合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鈦合金的降伏強度可為大於或等於160,000PSI(1103MPa)、大於或等於161,000PSI(1110MPa)、大於或等於162,000PSI(1117MPa)、大於或等於163,000PSI(1124MPa)、大於或等於164,000PSI(1131MPa)、大於或等於165,000PSI(1138MPa)、大於或等於170,000PSI(1172MPa)、大於或等於175,000PSI(1207MPa)、大於或等於180,000PSI(1241MPa)、大於或等於185,000PSI(1276MPa)、大於或等於190,000PSI(1310MPa)、大於或等於195,000PSI(1344MPa),或是大於或等於200,000PSI(1379MPa)。進一步,該鈦合金的降伏強度可位在160,000PSI(1103MPa)及200,000PSI(1379MPa)之間、在163,000PSI(1124MPa)及200,000PSI(1379MPa)之間、在165,000PSI(1138MPa)及200,000PSI(1379MPa)之間、在170,000PSI(1172MPa)及200,000PSI(1379MPa)之間、在175,000PSI(1207MPa)及200,000PSI(1379MPa)之間,或者是在180,000PSI(1241MPa)及200,000PSI(1379MPa)之間。
在該球桿頭100的面部平板內包含具有鈦合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鈦合金的彈性模數可為小於或 等於18,500,000PSI(127,553MPa)、小於或等於18,000,000PSI(124,106MPa)、小於或等於17,500,000PSI(120,658MPa)、小於或等於17,000,000PSI(117,211MPa)、小於或等於16,500,000PSI(113,764MPa)、小於或等於16,000,000PSI(110,316MPa)、小於或等於15,500,000PSI(106,869MPa)、小於或等於15,000,000PSI(103,421MPa)、小於或等於14,500,000PSI(99,974MPa)、小於或等於14,000,000PSI(96,527MPa)、小於或等於13,500,000PSI(93,079MPa)、小於或等於13,000,000PSI(89,632MPa)、小於或等於12,500,000PSI(86,184MPa),或是小於或等於12,000,000PSI(82,737MPa)。進一步,該鈦合金之彈性模數可位在14,000,000PSI(96,527MPa)及18,500,000PSI(127,553MPa)之間、在14,000,000PSI(96,527MPa)及18,000,000PSI(124,106MPa)之間、在14,000,000PSI(96,527MPa)及17,500,000PSI(120,658MPa)之間、在14,000,000PSI(96,527MPa)及17,000,000PSI(117,211MPa)之間、在14,000,000PSI(96,527MPa)及16,500,000PSI(113,764MPa)之間、在14,000,000PSI(96,527MPa)及16,000,000PSI(110,316MPa)之間、在14,000,000PSI(96,527MPa)及15,500,000PSI(106,869MPa),或是在14,000,000PSI(96,527MPa)及15,000,000PSI(103,421MPa)之間。
在該球桿頭100的面部平板內包含具有鈦合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鈦合金的密度可為小於或等於0.30lb/in3(8.3g/cm3)、小於或等於0.25lb/in3(6.9g/cm3)、小於或等於0.20lb/in3(5.5g/cm3)、小於或等於0.195lb/in3(5.40g/cm3)、小於或等於0.19lb/in3(5.3g/cm3)、小於或等於0.185lb/in3(5.12g/cm3)、小於或等於0.18lb/in3(5.0 g/cm3)、小於或等於0.175lb/in3(4.84g/cm3)、小於或等於0.17lb/in3(4.7g/cm3)、小於或等於0.165lb/in3(4.57g/cm3),或是小於或等於0.16lb/in3(4.4g/cm3)。此外,該鈦合金的密度可為在0.17lb/in3(4.7g/cm3)及0.30lb/in3(8.3g/cm3)之間、在0.17lb/in3(4.7g/cm3)及0.25lb/in3(6.9g/cm3)之間、在0.17lb/in3(4.7g/cm3)及0.20lb/in3(5.5g/cm3)之間,或是在0.17lb/in3(4.7g/cm3)及0.19lb/in3(5.3g/cm3)之間。
參照圖4,該更強、更高彈性及/或更輕之鈦合金的特定強度及/或特定彈性可能會移位至目前用於高爾夫球桿頭面部平板的鈦合金類型材料圖形之外的範圍處。例如,該鈦合金的特定強度可為大於目前高爾夫球桿頭面部平板所採用之已知鈦合金類型材料的特定強度(即如在圖5中材料B相較於材料A)。相較於具有已知鈦合金的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加重量酌定幅度。在進一步的範例中,該鈦合金的特定彈性可為大於目前高爾夫球桿頭面部平板所採用之鈦合金類型材料的特定彈性(即如在圖5中材料C相較於材料A)。相較於具有已知鈦合金的類似球桿頭,特定彈性上升可獲以增加面部平板的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。在許多具體實施例中,該鈦合金的特定強度和特定彈性可分別地大於已知鈦合金類型材料的特定強度和特定彈性(即如在圖5中材料D相較於材料A)。
在該球桿頭100的面部平板14內包含更強、更高彈性及/或更輕之鈦合金的具體實施例裡,該鈦合金可為任何能夠達到所欲特定強度及特定彈性的合成物。例如,該鈦合金可包含具有3-4wt%鈦、7.5-8.5wt%釩、5.5-6.5wt%鉻、3.5-4.5wt%鉬以及3.5-4.5wt%鋯,而其餘的合金組成 則為鈦和其他微量元素的Ti 3-8-6-4-4。在一些具體實施例中,含有Ti 3-8-6-4-4之材料的微量元素可包含小於0.05wt%碳、小於0.03wt%鐵、小於0.03wt%氮,或是小於0.14wt%氧。在本範例中,含有Ti 3-8-6-4-4鈦合金之材料的密度為0.175 lb/in3(4.83g/cm3)。
此外,令該更強、更高彈性及/或更輕之鈦合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有Ti 3-8-6-4-4的鈦合金承受於熱處理,這包含將該鈦合金加熱至約攝氏900度約30分鐘,並且接著將該鈦合金加熱至約攝氏480度約16小時。在此範例中,該熱處理程序可獲得擁有降伏強度185,000PSI(1276MPa)、彈性模數14,400,000PSI(99,280MPa)、特定強度1,060,172PSI/lb/in3(264MPa/g/cm3)以及特定彈性0.0128的Ti 3-8-6-4-4鈦合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有Ti 3-8-6-4-4的鈦合金承受熱處理,這包含將該鈦合金加熱至攝氏800-1000度15-75分鐘,並且接著將該鈦合金加熱至攝氏400-550度10-20小時。此外,在其他具體實施例裡,可針對不同的鈦合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鈦合金可含有具9-11wt%釩、1.6-2.2wt%鐵和2.6-3.4wt%鋁,並且其餘的合金組成為鈦與其他微量元素的Ti 10-2-3。在一些具體實施例中,含有Ti 10-2-3之鈦合金的微量元素可包含小於0.05wt%碳、小於0.05wt%氮及小於0.13wt%氧。在本範例中,Ti 10-2-3鈦合金的密度為0.168 lb/in3(4.65g/cm3)。
此外,令該更強、更高彈性及/或更輕之鈦合金承受熱處理, 可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有Ti 10-2-3的鈦合金承受熱處理,這包含將該鈦合金加熱至約攝氏760度約30分鐘,並且接著將該鈦合金加熱至約攝氏385度約8小時。在此範例中,該熱處理程序可獲得擁有降伏強度180,000PSI(1241MPa)、彈性模數16,000,000PSI(110,320MPa)、特定強度1,071,429PSI/lb/in3(267MPa/g/cm3)以及特定彈性0.0113的Ti 10-2-3鈦合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有Ti 10-2-3的鈦合金承受熱處理,這包含將該鈦合金加熱至攝氏700-825度15-75分鐘,並且接著將該鈦合金加熱至攝氏300-450度約5-15小時。此外,在其他具體實施例裡,可針對不同的鈦合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鈦合金可含有具14-16wt%釩、2.5-3.5wt%鉻和2.5-3.5wt%錫,並且其餘的合金組成為鈦與其他微量元素,的Ti 15-3-3-3。在一些具體實施例中,含有Ti 15-3-3-3之鈦合金的微量元素可包含小於0.05wt%碳、小於0.25wt%鐵、小於0.05wt%氮及小於0.13wt%氧。在本範例中,Ti 15-3-3-3鈦合金的密度為0.172 lb/in3(4.76g/cm3)。
此外,令該更強、更高彈性及/或更輕之鈦合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有Ti 15-3-3-3的鈦合金承受熱處理,這包含將該鈦合金加熱至約攝氏790度約30分鐘,並且接著將該鈦合金加熱至約攝氏480度約8小時。在此範例中,該熱處理程序可獲得擁有降伏強度160,000PSI(1103MPa)、彈性模 數13,000,000PSI(89,630MPa)、特定強度930,774PSI/lb/in3(232MPa/g/cm3)以及特定彈性0.0123的Ti 15-3-3-3鈦合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有Ti 15-3-3-3的鈦合金承受熱處理,這包含將該鈦合金加熱至攝氏700-850度15-75分鐘,並且接著將該鈦合金加熱至攝氏400-550度5-15小時。此外,在其他具體實施例裡,可針對不同的鈦合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鈦合金可含有具15wt%鉬、5wt%鋯、3wt%鋁,並且其餘的合金組成為鈦與其他微量元素的Ti 15-5-3。在本範例中,該Ti 15-5-3鈦合金的密度為0.181 lb/in3(5.01g/cm3)。
此外,令該更強、更高彈性及/或更輕之鈦合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有Ti 15-5-3的鈦合金承受熱處理,這包含將該鈦合金加熱至約攝氏850度約30分鐘,並且接著將該鈦合金加熱至約攝氏500度約6小時。在此範例中,該熱處理程序可獲得擁有降伏強度189,000PSI(1303MPa)、彈性模數14,500,000PSI(99,970MPa)、特定強度1,044,199PSI/lb/in3(260MPa/g/cm3)以及特定彈性0.0130的Ti 15-5-3鈦合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有Ti 15-5-3的鈦合金承受熱處理,這包含將該鈦合金加熱至攝氏800-900度15-75分鐘,並且接著將該鈦合金加熱至攝氏400-600度5-7小時。此外,在其他具體實施例裡,可針對不同的鈦合金組成成份來改變這些熱處理參 數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鈦合金可含有具7.5-8.5wt%釩、0.8-1.5wt%鋁、4.0-6.0wt%鐵,並且其餘的合金組成為鈦與其他微量元素的Ti 185。在一些具體實施例中,含有Ti 185之鈦合金的微量元素可包含小於或等於0.07wt%氮、小於或等於0.05wt%碳、在0.25-0.50wt%之間的氧,以及在0.80-1.5wt%之間的鋁。在本範例中,該Ti 185鈦合金的密度為0.168 lb/in3(4.65g/cm3)。
此外,令該更強、更高彈性及/或更輕之鈦合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有Ti 185的鈦合金承受熱處理,這包含將該鈦合金加熱至約攝氏704度約60分鐘,並且接著將該鈦合金加熱至約攝氏482度約2小時。在此範例中,該熱處理程序可獲得擁有降伏強度210,000PSI(1448MPa)、彈性模數16,400,000PSI(113,070MPa)、特定強度1,250,000PSI/lb/in3(311MPa/g/cm3)以及特定彈性0.0128的Ti 185鈦合金。對於進一步範例,在一具體實施例中,可令含有Ti 185的鈦合金承受熱處理,這包含將該鈦合金加熱至約攝氏675度約30分鐘。在此範例中,該熱處理程序可獲得擁有降伏強度178,000PSI(1227MPa)、彈性模數16,500,000PSI(113,760MPa)、特定強度1,059,524PSI/lb/in3(264MPa/g/cm3)以及特定彈性0.0108的Ti 185鈦合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有Ti 185的鈦合金承受熱處理,這包含將該鈦合金加熱至攝氏600-800度約30-90分鐘,及/或接著將該鈦合金加熱至攝氏400-550度約1-3小時。此外,在其他具體實施例裡,可針對不同的鈦合金組 成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鈦合金可含有具6.0wt%釩、6.0wt%鋁、2.0wt%錫,並且其餘的合金組成為鈦與其他微量元素的Ti 6-6-2。在一些具體實施例中,含有Ti 6-6-2之鈦合金的微量元素可包含小於或等於0.5wt%銅,以及小於或等於0.5wt%鐵。在本範例中,該Ti 6-6-2鈦合金的密度為0.164 lb/in3(4.54g/cm3)。
此外,令該更強、更高彈性及/或更輕之鈦合金承受熱處理,可以達到前述的特定強度及特定彈性。例如,在一具體實施例中,可令含有Ti 6-6-2的鈦合金承受熱處理,這包含將該鈦合金加熱至約攝氏900度約30分鐘,隨後以水淬火,並且接著將該鈦合金加熱至約攝氏500度約6小時。在此範例中,該熱處理程序可獲得擁有降伏強度161,000PSI(1110MPa)、彈性模數16,200,000PSI(111,700MPa)、特定強度981,707PSI/lb/in3(245MPa/g/cm3)以及特定彈性0.0099的Ti 6-6-2鈦合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有Ti 6-6-2的鈦合金承受熱處理,這包含將該鈦合金加熱至攝氏800-1000度15-75分鐘,隨後以水淬火,並且接著將該鈦合金加熱至攝氏400-600度5-7小時。此外,在其他具體實施例裡,可針對不同的鈦合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
在進一步的範例中,該更強、更高彈性及/或更輕之鈦合金可含有具7-8wt%鋁、2-3wt%鉬、0.5-1.5wt%鐵及0.5-1.5wt%釩,並且其餘的合金組成為鈦與其他微量元素的ST721。在一些具體實施例中,含有ST721之鈦合金的微量元素可包含小於0.25wt%矽、小於0.20wt%氧、小 於0.05wt%碳及小於0.04wt%氮。在本範例中,該ST721鈦合金的密度為0.162 lb/in3(4.47g/cm3)。此外,在本範例中,該ST721鈦合金具有降伏強度175,000PSI(1207MPa)、彈性模數13,900,000PSI(95,840MPa)、特定強度1,083,519PSI/lb/in3(270MPa/g/cm3)以及特定彈性0.0126。
II).具有更強、更高彈性、更輕之材料的鐵型球桿頭
在許多具體實施例中,含有更強、更高彈性及/或更輕之材料的球桿頭可為鐵型球桿頭或楔型沙桿球桿頭。在許多具體實施例中,球桿頭的桿面角度可為大於或等於15度、大於或等於20度、大於或等於25度、大於或等於30度、大於或等於45度、大於或等於50度,或是大於或等於55度。
在一些具體實施例中,整個球桿頭可含有該更強、更高彈性及/或更輕之材料。在其他具體實施例中,球桿頭的至少一局部可含有該材料,而球桿頭的其餘部份則含有不同材料或複數種材料。例如,在一些具體實施例中,球桿頭中包含前側末端22及桿頸18的一局部可含有該材料,並且球桿頭的後側末端24可包含不同材料或複數種材料。
圖2說明的是相較於本案所述含有鋼合金的更強、更高彈性及/或更輕之材料,在目前球桿頭本體中所使用之各種鋼合金類型材料的特定強度(亦即強度對重量比值)以及特定彈性(亦即強度對模數比值)的範圍。許多在目前鐵型高爾夫球桿頭本體中所採用的已知鋼合金類型材料皆擁有小於500,000PSI/lb/in3(125MPa/g/cm3)的特定強度、小於0.0060的特定彈性、小於170,000PSI(1172MPa)的降伏強度,以及大於35,000,000PSI (241,317MPa)的彈性模數。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料,並且該球桿頭100為鐵型或楔型沙桿類型之球桿頭的具體實施例裡,該鋼合金的特定強度可大於或等於500,000PSI/lb/in3(125MPa/g/cm3)。
例如,該鋼合金的特定強度可大於或等於510,000PSI/lb/in3(127MPa/g/cm3)、大於或等於520,000PSI/lb/in3(130MPa/g/cm3)、大於或等於530,000PSI/lb/in3(132MPa/g/cm3)、大於或等於540,000PSI/lb/in3(135MPa/g/cm3)、大於或等於550,000PSI/lb/in3(137MPa/g/cm3)、大於或等於560,000PSI/lb/in3(139MPa/g/cm3)、大於或等於570,000PSI/lb/in3(142MPa/g/cm3)、大於或等於580,000PSI/lb/in3(144MPa/g/cm3)、大於或等於590,000PSI/lb/in3(147MPa/g/cm3)、大於或等於600,000PSI/lb/in3(149MPa/g/cm3),大於或等於625,000PSI/lb/in3(156MPa/g/cm3)、大於或等於675,000PSI/lb/in3(168MPa/g/cm3)、大於或等於725,000PSI/lb/in3(181MPa/g/cm3)、大於或等於775,000PSI/lb/in3(193MPa/g/cm3)、大於或等於825,000PSI/lb/in3(205MPa/g/cm3)、大於或等於875,000PSI/lb/in3(218MPa/g/cm3)、大於或等於925,000PSI/lb/in3(230MPa/g/cm3),或者大於或等於975,000PSI/lb/in3(243MPa/g/cm3)。
在進一步的範例中,該鋼合金的特定強度可為在510,000PSI/lb/in3(127MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在530,000PSI/lb/in3(132MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在550,000PSI/lb/in3(137MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3) 之間、在570,000PSI/lb/in3(142MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在590,000PSI/lb/in3(147MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在625,000PSI/lb/in3(156MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在675,000PSI/lb/in3(168MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在725,000PSI/lb/in3(181MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間、在775,000PSI/lb/in3(193MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間,或是在825,000PSI/lb/in3(205MPa/g/cm3)及975,000PSI/lb/in3(243MPa/g/cm3)之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料,並且該球桿頭100為鐵型或楔型沙桿類型之球桿頭的具體實施例裡,該鋼合金的特定彈性可大於或等於0.0060。例如,該鋼合金的特定彈性可為大於或等於0.0062、大於或等於0.0064、大於或等於0.0066、大於或等於0.0068、大於或等於0.0070、大於或等於0.0072、大於或等於0.0076、大於或等於0.0080、大於或等於0.0084、大於或等於0.0088、大於或等於0.0092、大於或等於0.0096、大於或等於0.0100、大於或等於0.0104、大於或等於0.0108、大於或等於0.0112、大於或等於0.0116、大於或等於0.0120、大於或等於0.0125、大於或等於0.0130、大於或等於0.0135,或者是大於或等於0.0140。
在進一步的範例中,該鋼合金的特定彈性可為在0.0060及0.0140之間、在0.0062及0.0120之間、在0.0064及0.0120之間、在0.0066及0.0120之間、在0.0068及0.0120之間、在0.0070及0.0120之間、在0.0080及0.0120之間、在0.0088及0.0120之間,或者在0.0096及0.0120之間。
在一些具體實施例中,該更強、更高彈性及/或更輕之鋼合金的延長度可大於8%、大於9%、大於10%、大於11%、大於12%、大於13%、大於14%或是大於15%,藉以讓本體的塑膠變形能夠彎折而達到所要的球桿頭100桿面角度及/或球桿角度。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,鋼合金的降伏強度可為大於或等於170,000PSI(1172MPa)、大於或等於175,000PSI(1207MPa)、大於或等於180,000PSI(1241MPa)、大於或等於185,000PSI(1276MPa)、大於或等於190,000PSI(1310MPa)、大於或等於195,000PSI(1344MPa)、大於或等於200,000PSI(1379MPa)、大於或等於225,000PSI(1551MPa),或者是大於或等於250,000PSI(1724MPa)。進一步,該鋼合金的降伏強度可位在170,000PSI(1172MPa)及250,000PSI(1724MPa)之間、在175,000PSI(1207MPa)及250,000PSI(1724MPa)之間、在180,000PSI(1241MPa)及250,000PSI(1724MPa)之間、在190,000PSI(1310MPa)及250,000PSI(1724MPa)之間,或者是在200,000PSI(1379MPa)及250,000PSI(1724MPa)之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,該鋼合金的彈性模數可為小於或等於35,000,000PSI(241,317MPa)、小於或等於32,500,000PSI(224,080MPa)、小於或等於30,000,000PSI(206,843MPa)、小於或等於28,000,000PSI(193,053MPa)、小於或等於27,500,000PSI(189,606MPa)、小於或等於27,000,000PSI(186,159MPa)、小於或等於26,500,000PSI(182,711MPa)、小於或等於26,000,000PSI(179,264MPa)、小於或等於25,500,000PSI (175,816MPa),或者是小於或等於25,000,000PSI(172,369MPa)。更進一步,該鋼合金的彈性模數可為在25,000,000PSI(172,369MPa)及35,000,000PSI(241,317MPa)之間、在25,000,000PSI(172,369MPa)及30,000,000PSI(206,843MPa)之間,或者是在25,000,000PSI(172,369MPa)及27,000,000PSI(186,159MPa)之間。
在該球桿頭100的本體內包含具有鋼合金之更強、更高彈性及/或更輕之材料的具體實施例裡,鋼合金的密度可為小於或等於0.40lb/in3(11.0g/cm3)、小於或等於0.35lb/in3(9.7g/cm3)、小於或等於0.30lb/in3(8.3g/cm3)、小於或等於0.29lb/in3(8.0g/cm3)、小於或等於0.28lb/in3(7.8g/cm3)、小於或等於0.27lb/in3(7.5g/cm3)、小於或等於0.26lb/in3(7.2g/cm3),或者是小於或等於0.25lb/in3(6.9g/cm3)。此外,該鋼合金的密度可為在0.25lb/in3(6.9g/cm3)及0.40lb/in3(11.0g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.35lb/in3(9.7g/cm3)之間、在0.25lb/in3(6.9g/cm3)及0.30lb/in3(8.3g/cm3)之間,或是在0.25lb/in3(6.9g/cm3)及0.28lb/in3(7.8g/cm3)之間。
參照圖2,該更強、更高彈性及/或更輕之鋼合金的特定強度及/或特定彈性可能會移位至目前用於高爾夫球桿頭本體的鋼合金類型材料圖形之外的範圍處。例如,該鋼合金的特定強度可為大於目前高爾夫球桿頭本體所採用之已知鋼合金類型材料的特定強度(即如在圖5中材料B相較於材料A)。相較於具有已知鋼合金的類似球桿頭,特定強度上升可獲以減少球桿頭重量或是增加酌定重量。在進一步的範例中,該鋼合金的特定彈性可為大於目前高爾夫球桿頭本體所採用之已知鋼合金類型材料的特定彈性(即如在圖5中材料C相較於材料A)。相較於具有已知鋼合金的類似球 桿頭,特定彈性上升可獲以增加球桿頭本體的彈性,藉以在撞擊時提高傳送至高爾夫球的能量。在許多具體實施例中,該鋼合金的特定強度和特定彈性可分別地大於已知鋼合金類型材料的特定強度和特定彈性(即如在圖5中材料D相較於材料A)。
在該球桿頭100的本體內包含更強、更高彈性及/或更輕之鋼合金的具體實施例裡,該鋼合金可為任何能夠達到所欲特定強度及特定彈性的合成物。此外,在許多具體實施例中,可令含有該鋼合金承受於熱處理以達到前述的特定強度及特定彈性。在許多具體實施例中,該熱處理包含將該鋼合金加熱至約攝氏850度至少30分鐘,然後將鋼合金淬火,再接著執行至少一次回火步驟(亦即第一回火步驟)。在許多具體實施例中,該至少一次回火步驟包含將該鋼合金加熱至低於約攝氏600-700的溫度至少30分鐘,然後令鋼合金在空氣中冷卻至室溫。在一些具體實施例中,該熱處理程序可包含額外的回火步驟,這包含將該鋼合金加熱至低於約攝氏600-700的溫度至少30分鐘,然後令鋼合金在空氣中冷卻至室溫,其中該額外回火步驟的溫度可等同於、低於或高於該第一回火步驟的溫度。
在許多具體實施例中,該至少一次回火步驟釋放該更強、更高彈性及/或更輕之鋼合金裡的內部應力,藉此達到所欲特定強度及特定彈性。在一些具體實施例中,該等一或更多回火步驟可包含將該鋼合金加熱至約攝氏200-650度之間的溫度至少30分鐘以釋放該鋼合金內的內部應力,並同時維持所欲延長度,例如像是大於8-10%的延長度。在一些具體實施例中,維持該鋼合金大於8%、大於9%或大於10%的延長度可讓含有該鋼合金的球桿頭本體能夠針對於所欲桿面角度及/或球桿角度而彎折。
例如,該更強、更高彈性及/或更輕之材料可包含4140鋼合金,此者具有0.30-0.43wt%碳、0.80-1.1wt%鉻、0.5-1.0wt%錳、0.15-0.25wt%鉬及0.15-0.30wt%矽,而其餘的合金組成為鐵及其他微量元素。在一些具體實施例中,含有4140鋼合金之材料的微量元素可含有小於0.035wt%磷以及小於0.04wt%硫。在本範例中,該4140鋼合金的密度為0.284 lb/in3(7.85g/cm3)。
在本範例裡,可令含有4140合金鋼料的鋼合金承受一示範性熱處理程序,這包含:將該鋼合金加熱至約攝氏850度約1小時,將該鋼合金在油脂中淬火,回火該鋼合金至約攝氏400度約4小時,令該鋼合金在空氣中冷卻,回火該鋼合金至約攝氏300度約4小時,然後令該鋼合金在空氣中冷卻。在此範例中,該熱處理程序可獲得擁有降伏強度187,800PSI(1295MPa)、彈性模數29,560,000PSI(203,810MPa)、特定強度662,202PSI/lb/in3(165MPa/g/cm3)、特定彈性0.0064以及延長度14%的4140鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,可令含有4140合金鋼料的鋼合金承受熱處理程序,這包含:將該鋼合金加熱至攝氏800-900度30-90分鐘,將該鋼合金在油脂中淬火,回火該鋼合金至攝氏350-450度3-4小時,令該鋼合金在空氣中冷卻,回火該鋼合金至攝氏250-350度5-7小時,然後令該鋼合金在空氣中冷卻。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含4340鋼合金,此者具有1.65-2.00wt%鎳、0.30-0.43wt%碳、0.7-0.9wt%鉻、0.6-0.8wt%錳、0.2-0.3wt%鉬以及0.15-0.30wt%矽,而其餘的合金 組成為鐵及其他微量元素。在一些具體實施例中,含有4340鋼合金之材料的微量元素可含有小於0.035wt%磷以及小於0.04wt%硫。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可含有具18.0-19.0wt%鎳、8.5-9.5wt%鈷、4.6-5.2wt%鉬,並且其餘合金組成為鐵與其他微量元素的C300鋼料。在一些具體實施例中,含有C300鋼料之鋼合金的微量元素可包含0.5-0.8wt%鈦、0.05-0.15wt%鋁、小於0.5wt%鉻、小於0.5wt%銅、小於0.1wt%錳、小於0.1wt%矽、小於0.3wt%碳、小於0.01wt%磷,或是小於0.01wt%硫。
在進一步的範例中,該更強、更高彈性及/或更輕之鋼合金可包含經淬火及回火的鋼合金,此者具有3.0-4.5wt%鎳、1.0-2.0wt%矽、0.75-1.5wt%鉻、小於1.0wt%銅、小於1.25wt%錳、小於1.0wt%鉬、小於0.75wt%釩,而其餘的合金組成為鐵和其他微量元素。在本範例中,該經淬火及回火之鋼合金的密度為0.284lb/in3(7.86g/cm3)。
在本範例中,可令該經淬火及回火的鋼合金承受一示範性熱處理程序以達到前述的特定強度及特定彈性。該示範性熱處理程序可包含將該鋼合金加熱至約攝氏918度約60分鐘,隨後在液態氮裡低溫冷凍至攝氏-73度約8小時,然後將該鋼合金加熱至約攝氏260度約2小時。在此範例中,該熱處理程序可獲得擁有壓彎強度220,000PSI(1517MPa)、彈性模數23,100,000PSI(159,270MPa)、特定強度774,755PSI/lb/in3(193MPa/g/cm3)以及特定彈性0.0095的經淬火及回火之鋼合金。在其他具體實施例裡,可改變這些熱處理參數以達到所要的特定強度及特定彈性參數。例如,該熱處理程序可包含將該鋼合金加熱至攝氏約850-1000度約30-90 分鐘,隨後在液態氮冷卻及選擇性低溫冷凍約6-10小時,然後將該鋼合金加熱至約攝氏200-350度約1-3小時。此外,在其他具體實施例裡,可針對不同的鋼合金組成成份來改變這些熱處理參數以達到所要的特定強度及特定彈性參數。
B.更強、更高彈性、更輕之材料的優點
該球桿頭100的更強、更高彈性及/或更輕之材料可改善該球桿頭100的所欲效能特徵,而無關於球桿頭設計,並同時維持耐固強度。即如前文所討論,可藉由選定或開發該材料以具備增加特定強度及增加特定彈性來改善具有該材料或複數種材料之球桿頭100的效能特徵而優於具已知材料的球桿頭。從而,可改善具有該材料或複數種材料之球桿頭100的效能特徵而優於具有已知材料之類似球桿頭僅僅基於設計所達到的效能特徵。
具備擁有大於類似材料類別目前球桿頭材料之特定強度的特定強度之材料的球桿頭100,相較於具有已知材料的類似球桿頭,可具有降減重量或另增加重量酌定幅度的好處。重量酌定幅度的增加在獲得所欲重心位置,以及在增強該球桿頭100慣性力矩以擴大偏離中心敲擊的寬容度等方面可提升設計彈性。
具備擁有大於類似材料類別目前球桿頭材料之特定彈性的特定彈性之材料的球桿頭100,相較於具有已知材料的類似球桿頭,可具有提增的彈性。彈性增加可減少撞擊到高爾夫球時的能量損失,藉此增加傳送到高爾夫球的能量而提增球速及行進距離。
如前所述,圖5說明的是,相較於已知球桿頭材料的範例A,各種更強、更高彈性及/或更輕之材料範例(亦即材料B、C及D)。現參照圖5,相較於目前高爾夫球桿頭中所採用的已知材料範例A,材料範例B具有更高的特定強度及類似的特定彈性。在許多具體實施例中,材料B比起材料A可具有較低密度,且因此具有較高的特定強度。從而,在這些具體實施例中,相較於含有已知材料A的球桿頭,含有材料B的球桿頭可設計成具有減少重量(並因而酌定重量增加)。此外,在許多具體實施例中,材料B比起已知材料A具有較高的降伏強度,且因而有較高的特定強度。所以,在這些具體實施例中,比起含有已知材料A的球桿頭,含有材料B的球桿頭可具有較薄的厚度而同時仍維持耐固度。在一些具體實施例中,厚度減少可獲以節省額外的重量並且進一步增加酌定重量。因此,含有材料B的球桿頭比起含有目前球桿頭材料A的球桿頭將有較輕的重量。進一步,含有材料B的球桿頭相較於含有已知材料A的球桿頭具有類似的球速,原因是,由於球桿頭因降伏強度增加之故而薄化,因此較高模數會移除彈性上的任何增加。
進一步參照圖5,比起目前高爾夫球桿頭中所採用的材料範例A,示範性更強、更高彈性及/或更輕之材料C具有較高的特定彈性和類似的特定強度。在許多具體實施例中,相比於已知材料A,材料C具有較低的彈性模數且因此有較高的特定彈性。所以,在這些具體實施例中,相較於含有已知材料A而具類似設計的球桿頭來說,含有材料C的球桿頭可提高彈性(並因此在當撞擊高爾夫球時可提高球速)。此外,在許多具體實施例中,比起已知材料A,材料C可具有較高的降伏強度並因而有較高的特 定彈性。所以,在這些具體實施例中,相較於含有已知材料A的球桿頭,含有材料C的球桿頭可有較薄的厚度而同時仍能維持耐固度。在一些具體實施例中,厚度減少可獲以額外節省重量且進一步提高酌定重量。因此,相較於含有已知材料A的球桿頭,含有材料C的球桿頭當撞擊高爾夫球時將可提升球速並且具有類似的重量,這是因為較高密度將移除球桿頭由於降伏強度增加之故而薄化的任何重量節省。
又進一步參照圖5,比起目前高爾夫球桿頭中所採用的已知材料範例A,示範性更強、更高彈性及/或更輕之材料D具有較高的特定強度和較高的特定彈性。在許多具體實施例中,材料D比起已知材料A可具有較低密度,且因此具有較高的特定強度。從而,在這些具體實施例中,相較於含有已知材料A的球桿頭,含有材料D的球桿頭可設計成重量減少(並因而酌定重量增加)。此外,在許多具體實施例中,材料D比起已知材料A具有較低彈性模數且因而有較高的特定彈性。所以,在這些具體實施例中,含有材料D的球桿頭比起含有已知材料A而具類似設計的球桿頭可具有增加的彈性(並因此在當撞擊高爾夫時提高球速)。又進一步,在許多具體實施例中,比起已知材料A,材料D可具有較高的降伏強度並因而有較高的特定強度及/或特定彈性。所以,在這些具體實施例中,相較於含有已知材料A的球桿頭,含有材料D的球桿頭可有較薄的厚度而同時維持耐固度。在一些具體實施例中,厚度減少可獲以額外節省重量且進一步提高重量酌定幅度。所以,比起含有已知材料A的球桿頭,含有材料D的球桿頭將有較輕的重量並且在當撞擊高爾夫球時將有更快的球速。
從而,對於球桿頭效能,包含具有增加特定強度且併同增 加特定彈性之材料的球桿頭可最為有利(藉由提高球速且增加酌定重量)。相對地,含有下列其中一項之材料的球桿頭:增加特定強度或增加特定彈性,可提供一些效能優勢,然可能無法提供含有具備增加特定強度及增加特定彈性兩者的材料之球桿頭般多的優點。
而利用特定材料組成、特定處理技術(即如熱處理參數)、特定製造方法(即如鑄造、機械加工),或者是前述優化技術的組合,能夠達成該更強、更高彈性及/或更輕之材料。
C.具有更強、更高彈性、更輕之材料之球桿頭的製造方法
一種製造高爾夫球桿頭100的方法包含構成具有面部平板14及本體10的球桿頭100,而該面部平板14及該本體10的至少一者含有具備特定強度和特定彈性之更強、更高彈性及/或更輕之材料(後文中稱為「材料」)或複數種材料。
在一些具體實施例中,該面部平板14是分別於該本體10所構成並且耦接於該本體10以構成該球桿頭100。在其他具體實施例裡,該面部平板14是整合於該本體10或該本體10其一局部所構成以構成該球桿頭100。例如,在一些具體實施例中,該面部平板14及該本體10可為一起構成。在進一步的範例中,在一些具體實施例中,該面部平板14可與該本體10中含有前側末端22、頂側30、底側34、跟部局部26、趾部局部28及桿頸18之至少一者的局部一起構成,而同時該球桿頭100的後側末端24或其餘部份則為分別地構成。例如,該面部平板14以及該本體10其一局部(即如該面部平板14以及該本體10中含有該桿頸18的前側末端22)可為 鎔鑄成單一元件,該本體10的其餘部份(即如該後側末端24)則可以分別元件的方式鑄造,並且後續地藉由焊燒或任何其他的適當方法耦接於該面部平板14。
在該面部平板14內含有該材料的具體實施例裡,該面部平板14可為至少部份地藉由機械加工、鑄造、3D列印、金屬射出模鑄、鍛造或是任何其他的適當方法所構成。在一些具體實施例中,即如類似於高爾夫球桿頭面部平板中所採用的眾多目前材料般,該材料組成可供進行球桿頭面部平板的機械加工。例如,該材料組成可供針對各種類型的球桿頭,像是開球型球桿頭、球道木型球桿頭、混合型球桿頭、鐵桿型球桿頭、楔型沙桿球桿頭或是推桿型球桿頭,進行面部平板機械加工。在一些具體實施例中,即如類似於高爾夫球桿頭面部平板中所採用的眾多目前材料般,該材料組成可供進行球桿頭面部平板的鑄造處理。例如,該材料組成可供針對各種類型的球桿頭,像是開球型球桿頭、球道木型球桿頭、混合型球桿頭、鐵桿型球桿頭、楔型沙桿球桿頭或是推桿型球桿頭,進行面部平板鑄造處理。
在該面部平板14內含有該材料的具體實施例裡,該面部平板14可進行一或更多後處理程序,例如像是熱處理或回火處理,藉以達到所要的材料性質。在這些具體實施例中,在各種溫度處依各種時段長度的熱處理或回火處理可獲致該材料的所欲特定強度及/或特定彈性。在其中該面部平板14進行後處理的具體實施例裡,可在將該面部平板14耦接於該本體10以構成該球桿頭100之前或之後進行該後處理。
在該本體10內含有該材料的具體實施例裡,該本體10可 為至少部份地藉由機械加工、鑄造、3D列印、金屬射出模鑄、鍛造或是任何其他的適當方法所構成。在一些具體實施例中,即如類似於高爾夫球桿頭本體中所採用的眾多目前材料般,該材料組成可供進行球桿頭本體的鑄造處理。例如,該材料組成可供針對各種類型的球桿頭,像是開球型球桿頭、球道木型球桿頭、混合型球桿頭、鐵桿型球桿頭、楔型沙桿球桿頭或是推桿型球桿頭,進行本體鑄造處理。在一些具體實施例中,即如類似於高爾夫球桿頭本體中所採用的眾多目前材料般,該材料組成可供進行球桿頭本體的機械加工。例如,該材料組成可供對於各種類型的球桿頭,像是鐵桿型球桿頭、楔型沙桿球桿頭或是推桿型球桿頭,對該本體進行機械加工。
在該本體10內含有該材料的具體實施例裡,該本體10可進行一或更多後處理程序,例如像是熱處理或回火處理,藉以達到所要的材料性質。在這些具體實施例中,在各種溫度處依各種時段長度的熱處理或回火處理可獲致該材料的所欲特定強度及/或特定彈性。在其中該本體10進行後處理的具體實施例裡,可在將該本體10耦接於該面部平板14以構成該球桿頭100之前或之後進行該後處理。
本案所述的製造方法僅為示範性質,並且不限於本案所述之具體實施例。該方法確可運用於本案文中未予特定地描述或說明的眾多不同具體實施例或實例。而在其他具體實施例中,則可依照任何其他的適當次序來執行所述製造方法。在其他具體實施例裡,可合併、劃分或跳略該等製程的一或更多者。
D.範例
現在參照圖6A,後文中將針對於具備含有Ti-6-4,一種已知高爾夫球桿頭材料之面部平板並且具備含有Ti-8-1-1,一種已知高爾夫球桿頭材料之本體的控制高爾夫球桿頭來說明具備含有不同材料之面部平板的各種示範性球桿頭。在這些範例中,該含有Ti-6-4之控制球桿頭的面部平板具有5.5-6.7wt%鋁及3.5-4.5wt%釩,而其餘的合金組成則為鈦和其他微量元素,這些包含小於或等於0.08wt%碳、小於或等於0.015wt%氫、小於或等於0.25wt%鐵、小於或等於0.05wt%氮,以及小於或等於0.2wt%氧。在這些範例中,含有Ti-6-4之控制球桿頭的面部平板具有密度0.160 lb/in3(4.42g/cm3)、降伏強度130,000PSI(896MPa)、彈性模數16,500,000PSI(113,760MPa)、特定強度814,026PSI/lb/in3(203MPa/g/cm3),以及特定彈性0.0079。在這些範例中,該控制球桿頭的面部平板具有最大厚度0.150英吋及最小厚度0.100英吋,藉以基於前述參數來最大化面部偏折並且防止失效。現參照圖6B,當以每小時100英哩(mph)撞擊到高爾夫球時,控制高爾夫球桿頭儲存有68.6 lbf-inch的內部能量。前述示範性高爾夫球桿頭的本體材料是與該控制球桿頭的材料相同(Ti-8-1-1)。
I)範例1
在一範例中,一示範性高爾夫球桿頭可具備含有Ti-7S的面部平板,其中該Ti-7S含有7.0-8.0wt%鋁、1.75-2.25wt%鉻、2.25-2.75wt%鉬、0.75-1.25wt%釩,以及0.35-0.65wt%鐵,而其餘的合金組成為鈦和其他的微量元素,這包含小於或等於0.2wt%矽。在這些範例中,含有Ti-7S 的面部平板具有密度0.162 lb/in3(4.47g/cm3)、降伏強度169,000PSI(1165MPa)、彈性模數18,900,000PSI(130,310MPa)、特定強度1,406,440PSI/lb/in3(261MPa/g/cm3),以及特定彈性0.0089。
該示範性高爾夫球桿頭的特定強度是大於該控制高爾夫球桿頭的特定強度。此外,該示範性高爾夫球桿頭的特定彈性是大於但類似於該控制高爾夫球桿頭的特定彈性。在一些具體實施例中,該示範性高爾夫球桿頭的面部平板厚度可為與該控制高爾夫球桿頭的面部平板厚度相同。在這些具體實施例中,參照圖6B,該示範性高爾夫球桿頭在以100mph撞擊高爾夫球時可具有79.9 lb-inch的內部能量,此值高於該控制高爾夫球桿頭16.5%。進一步,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板會比該控制高爾夫球桿頭重0.5公克,這是因為該示範性高爾夫球桿頭的面部平板密度大於該控制高爾夫球桿頭的面部平板密度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高(彈性模數減少),面部平板彎折增加而致內部能量儲存增加,因此球速加快。
在其他根據本範例的具體實施例裡,相較於該控制高爾夫球桿頭,該示範性高爾夫球桿頭可具有降減的面部平板厚度然仍可維持耐固度,這是因為該示範性高爾夫球桿頭的降伏強度大於該控制高爾夫球桿頭的降伏強度。在此範例中,相較於該控制球桿頭,該示範性高爾夫球桿頭的面部平板減少,使得該面部平板具有0.140英吋的最大厚度及0.090英吋的最小厚度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定 彈性升高且面部平板厚度減少,面部平板彎折增加而致內部能量儲存增加,因此球速加快。在這些具體實施例中,具有降減面部平板厚度之示範性高爾夫球桿頭的球速仍高於具有與該控制高爾夫球桿頭相同厚度之示範性球桿頭的球速。此外,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板比該控制高爾夫球桿頭輕3公克,使得該示範性高爾夫球桿頭的酌定重量增加。
II)範例2
在一範例中,一示範性高爾夫球桿頭可具備含有SSAT-2041的面部平板,其中該SSAT-2041含有21.0-23.0wt%釩、3.5-4.5wt%鋁以及0.5-1.5wt%錫,而其餘的合金組成則為鈦及其他微量元素,這些包含小於或等於0.05wt%碳、小於或等於1.0wt%矽、小於或等於1.0wt%鉬,以及小於或等於0.50wt%鐵。在本範例裡,含有SSAT-2041的面部平板具有0.172 lb/in3(4.76g/cm3)的密度,並且承受於攝氏800度30分鐘的第一熱處理和攝氏480度6.5小時的第二熱處理,如此獲得降伏強度160,000PSI(1103MPa)、彈性模數12,000,000PSI(82,740MPa)、特定強度930,422PSI/lb/in3(232MPa)以及特定彈性0.0133。
該示範性高爾夫球桿頭的特定強度是大於但類似於該控制高爾夫球桿頭的特定強度。此外,該示範性高爾夫球桿頭的特定彈性大於該控制高爾夫球桿頭的特定彈性。在一些具體實施例中,該示範性高爾夫球桿頭的面部平板厚度可為與該控制高爾夫球桿頭的面部平板厚度相同。在這些具體實施例中,參照圖6B,該示範性高爾夫球桿頭在以100mph撞 擊高爾夫球時可具有114.0 lb-inch的內部能量,此值高於該控制高爾夫球桿頭66.2%。進一步,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板會比該控制高爾夫球桿頭重2.5公克,這是因為該示範性高爾夫球桿頭的面部平板密度大於該控制高爾夫球桿頭的面部平板密度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高(彈性模數減少),面部平板彎折增加而致內部能量儲存增加,因此球速加快。
在其他根據本範例的具體實施例裡,相較於該控制高爾夫球桿頭,該示範性高爾夫球桿頭可具有降減的面部平板厚度,然仍可維持耐固度,這是因為該示範性高爾夫球桿頭的降伏強度大於該控制高爾夫球桿頭的降伏強度。在此範例中,相較於該控制球桿頭,該示範性高爾夫球桿頭的面部平板減少,使得該面部平板具有0.145英吋的最大厚度及0.095英吋的最小厚度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高(彈性模數減少)及面部平板厚度減少,面部平板彎折增加而致內部能量儲存增加,因此球速加快。在這些具體實施例中,具有降減面部平板厚度之示範性高爾夫球桿頭的球速仍高於具有與該控制高爾夫球桿頭相同厚度之示範性球桿頭的球速。進一步,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板會比該控制高爾夫球桿頭重0.7公克,這是因為該示範性高爾夫球桿頭的面部平板密度大於該控制高爾夫球桿頭的面部平板密度。
III)範例3
在一範例中,一示範性高爾夫球桿頭可具備含有ST721的面部平板,其中該ST721含有7.0-8.0wt%鋁、2.0-3.0wt%鉬、0.5-1.5wt%鐵及0.5-1.5wt%釩,而其餘的合金組成為鈦及其他微量元素,這些包含小於或等於0.04wt%氮、小於或等於0.05wt%碳、小於或等於0.20wt%氧,和小於或等於0.25wt%矽。在本範例中,含有ST721的面部平板具有密度0.013 lb/in3(4.47g/cm3)、降伏強度175,000PSI(1207MPa)、彈性模數13,900,000PSI(95,840MPa)、特定強度1,083,591PSI/lb/in3(270MPa),以及特定彈性0.0126。
該示範性高爾夫球桿頭的特定強度是大於該控制高爾夫球桿頭的特定強度。此外,該示範性高爾夫球桿頭的特定彈性大於該控制高爾夫球桿頭的特定彈性。在一些具體實施例中,該示範性高爾夫球桿頭的面部平板厚度可為與該控制高爾夫球桿頭的面部平板厚度相同。在這些具體實施例中,參照圖6B,該示範性高爾夫球桿頭在以100mph撞擊高爾夫球時可具有98.7 lb-inch的內部能量,此值高於該控制高爾夫球桿頭43.9%。進一步,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板會比該控制高爾夫球桿頭重0.5公克,這是因為該示範性高爾夫球桿頭的面部平板密度大於該控制高爾夫球桿頭的面部平板密度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高(彈性模數減少),面部平板彎折增加而致內部能量儲存增加,因此球速加快。
在其他根據本範例的具體實施例裡,相較於該控制高爾夫 球桿頭,該示範性高爾夫球桿頭可具有降減的面部平板厚度,然仍可維持耐固度,這是因為該示範性高爾夫球桿頭的降伏強度大於該控制高爾夫球桿頭的降伏強度。在此範例中,相較於該控制球桿頭,該示範性高爾夫球桿頭的面部平板減少,使得該面部平板具有0.140英吋的最大厚度及0.090英吋的最小厚度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高(彈性模數減少)及面部平板厚度減少,面部平板彎折增加而致內部能量儲存增加,因此球速加快。在這些具體實施例中,具有降減面部平板厚度之示範性高爾夫球桿頭的球速仍高於具有與該控制高爾夫球桿頭相同厚度之示範性球桿頭的球速。此外,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板比該控制高爾夫球桿頭輕3公克,使得該示範性球桿頭的酌定重量增加。
IV)範例4
在一範例中,一示範性高爾夫球桿頭可具備含有Ti-185的面部平板,其中該Ti-185含有約7.5-8.5wt%釩、4.0-6.0wt%鐵、0.8-1.5wt%鋁、0.25-0.5wt%氧,而其餘的合金組成為鈦及其他微量元素,這些包含小於或等於0.07wt%氮和小於或等於0.05wt%碳。在本範例裡,含有Ti-185的面部平板具有0.168 lb/in3(4.65g/cm3)的密度,並且承受於攝氏675度30分鐘的熱處理,如此獲得降伏強度178,000PSI(1227MPa)、彈性模數16,500,000PSI(113,760MPa)、特定強度1,059,524PSI/lb/in3(264MPa)以及特定彈性0.0108。
該示範性高爾夫球桿頭的特定強度是大於該控制高爾夫球桿頭的特定強度。此外,該示範性高爾夫球桿頭的特定彈性大於該控制高爾夫球桿頭的特定彈性。在一些具體實施例中,該示範性高爾夫球桿頭的面部平板厚度可為與該控制高爾夫球桿頭的面部平板厚度相同。在這些具體實施例中,參照圖6B,該示範性高爾夫球桿頭在以100mph撞擊高爾夫球時可具有89.9 lb-inch的內部能量,此值高於該控制高爾夫球桿頭31.0%。進一步,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板會比該控制高爾夫球桿頭重1.5公克,這是因為該示範性高爾夫球桿頭的面部平板密度大於該控制高爾夫球桿頭的面部平板密度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高,面部平板彎折增加而致內部能量儲存增加,因此球速加快。
在其他根據本範例的具體實施例裡,相較於該控制高爾夫球桿頭,該示範性高爾夫球桿頭可具有降減的面部平板厚度,然仍可維持耐固度,這是因為該示範性高爾夫球桿頭的降伏強度大於該控制高爾夫球桿頭的降伏強度。在此範例中,相較於該控制球桿頭,該示範性高爾夫球桿頭的面部平板減少,使得該面部平板具有0.130英吋的最大厚度及0.080英吋的最小厚度。在這些具體實施例中,比起該控制高爾夫球桿頭,該示範性高爾夫球桿頭在撞擊高爾夫球時會有較快的球速。在撞擊時,由於特定彈性升高且面部平板厚度減少,面部平板彎折增加而致內部能量儲存增加,因此球速加快。參照圖6C,該示範性高爾夫球桿頭在以100mph撞擊高爾夫球時具有114.4 lb-inch的內部能量,此值高於該控制高爾夫球桿頭 66.8%。此外,在這些具體實施例中,該示範性高爾夫球桿頭的面部平板比該控制高爾夫球桿頭輕6公克,使得該示範性高爾夫球桿頭的酌定重量增加。
替換一或更多的本案中所揭示元件,可組成新的建構,但並非修改。此外,現已針對於特定具體實施例描述多項益處、其他優點以及問題的解決方案。然而,不應將這些益處、優點與問題的解決方案,以及可能促使任何益處、優點或解決方案出現或是變得更為顯著的任何一或更多元件,詮釋為任一或所有申請專利範圍的關鍵、必要或基本特性或元件。
由於高爾夫規則可能隨時變更(即如像是「United States Golf Association(USGA)」、「Royal and Ancient Golf Club of St.Andrews(R&A)」等等的高爾夫標準組織及/或領導團體可能會採用新的規定或是消除或修訂舊的規則,因此與本案所述設備、方法及製造物項相關聯的高爾夫裝備有可能會在任何特定時刻符合於或不符合於高爾夫規則。從而,與本案所述設備、方法及製造物項相關聯的高爾夫裝備可能是依合規或者不合規的高爾夫裝備所廣告宣傳、促銷及/或販售。本案所述的設備、方法及製造物項並不就此而受到侷限。
以上所述的範例雖可為關聯於開球型高爾夫球桿所描述,然本案所述的設備、方法及製造物項確可適用於其他種類的高爾夫球桿,像是球道木型高爾夫球桿、混合型高爾夫球桿、鐵桿型高爾夫球桿、楔型沙桿或是推桿型高爾夫球桿。或另者,本案所述的設備、方法及製造物項可適用於其他類型的運動裝備,像是曲棍球棍、網球球拍、釣魚竿、滑雪 桿等等。
同時,本案示的具體實施例與限制在奉獻學說下並非公獻於大眾,倘若該等具體實施例及/或限制:(1)並未在申請專利範圍中被顯明地主張;以及(2)在等同學說下為或潛在地為申請專利範圍中之表示元件及/或限制的等同項目。
本案示的各種特性及優點是在後文申請專利範圍中陳述。
10‧‧‧本體
14‧‧‧面部平板
18‧‧‧桿頸
20‧‧‧桿軸
22‧‧‧前側末端
24‧‧‧後側末端
26‧‧‧跟部局部
28‧‧‧趾部局部
30‧‧‧頂側或冠部
34‧‧‧底側或底部

Claims (5)

  1. 一種高爾夫球桿頭,其包含:一本體;以及一面部平板,其是由具備下列特性的材料所構成:一密度;一降伏應力;一彈性模數;依降伏應力對密度之比值所測得的一特定強度;以及依降伏應力對彈性模數之比值所測得的一特定彈性;其中該材料為下列其中一者:一鈦合金,其中該鈦合金的特定強度大於1,070,000PSI/(lb/in3),並且該鈦合金的特定彈性大於0.0120,其中該鈦合金被加熱至攝氏800~1000度達15~75分鐘,並隨後被加熱至攝氏400~550度達10~20小時;或者一鋼合金,其中該鋼合金的特定強度大於或等於1,075,000PSI/(lb/in3),並且該鋼合金的特定彈性大於0.0112;其中該鋼合金被加熱至攝氏750~900度達45~90分鐘,並隨後被加熱至攝氏450~550度達5~7小時;其中該球桿頭為開球桿、混合桿或球道木桿類型的球桿頭。
  2. 如申請專利範圍第1項之高爾夫球桿頭,其中當材料為鈦合金時,材料的降伏強度大於160,000PSI。
  3. 如申請專利範圍第1項之高爾夫球桿頭,其中當材料為鈦合金時,材料的彈性模數小於16,500,000PSI。
  4. 如申請專利範圍第1項之高爾夫球桿頭,其中當材料為鋼合金時,該材料的降伏強度大於240,000PSI。
  5. 如申請專利範圍第1項之高爾夫球桿頭,其中當材料為鋼合金時,該材料的彈性模數小於28,500,000PSI/(lb/in3)。
TW105143086A 2015-12-27 2016-12-23 具有更強、更高彈性及更輕之材料的高爾夫球桿頭 TWI694855B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562271282P 2015-12-27 2015-12-27
US62/271,282 2015-12-27
US201662328502P 2016-04-27 2016-04-27
US62/328,502 2016-04-27
US201662399929P 2016-09-26 2016-09-26
US62/399,929 2016-09-26
US201662428730P 2016-12-01 2016-12-01
US62/428,730 2016-12-01

Publications (2)

Publication Number Publication Date
TW201729874A TW201729874A (zh) 2017-09-01
TWI694855B true TWI694855B (zh) 2020-06-01

Family

ID=59086086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143086A TWI694855B (zh) 2015-12-27 2016-12-23 具有更強、更高彈性及更輕之材料的高爾夫球桿頭

Country Status (5)

Country Link
US (1) US10537770B2 (zh)
JP (1) JP6871254B2 (zh)
GB (1) GB2561504B (zh)
TW (1) TWI694855B (zh)
WO (1) WO2017116943A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005889B2 (en) * 2014-06-03 2018-06-26 Conductive Composites Company Ip, Llc Fishing rod with enhanced tactile response
US10589155B2 (en) 2017-12-28 2020-03-17 Taylor Made Golf Company, Inc. Golf club head
US10188915B1 (en) 2017-12-28 2019-01-29 Taylor Made Golf Company, Inc. Golf club head
US10695621B2 (en) 2017-12-28 2020-06-30 Taylor Made Golf Company, Inc. Golf club head
TWI711478B (zh) * 2019-07-15 2020-12-01 復盛應用科技股份有限公司 高爾夫球桿頭合金
TWI704235B (zh) * 2020-01-09 2020-09-11 明安國際企業股份有限公司 高爾夫球桿頭之組成合金
US11857848B1 (en) * 2020-04-17 2024-01-02 Cobra Golf Incorporated Systems and methods for additive manufacturing of a golf club
CN115505785A (zh) * 2021-06-03 2022-12-23 复盛应用科技股份有限公司 高尔夫球杆头合金及高尔夫球杆头制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW293779B (zh) * 1994-09-21 1996-12-21 Maruman Golf
TW200948423A (en) * 2008-02-21 2009-12-01 Roger Cleveland Golf Co Inc A golf club head

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2054557A1 (en) * 1990-10-31 1992-05-01 Robert Alexander Dircks Tandem roller pipe bender
JPH0679356A (ja) * 1991-08-16 1994-03-22 Robert A Dircks 直列ローラ式管曲げ機
US5407202A (en) * 1992-11-03 1995-04-18 Igarashi; Lawrence Y. Golf club with faceplate of titanium or other high strength, lightweight metal materials
US5480153A (en) * 1994-05-27 1996-01-02 Igarashi; Lawrence Y. Golf wood club with smooth groove-free face
US7357731B2 (en) 1995-12-04 2008-04-15 Johnson William L Golf club made of a bulk-solidifying amorphous metal
DE60030246T2 (de) * 1999-06-11 2007-07-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanlegierung und verfahren zu deren herstellung
JP2002332531A (ja) * 1999-06-11 2002-11-22 Toyota Central Res & Dev Lab Inc チタン合金およびその製造方法
JP3708792B2 (ja) 2000-05-12 2005-10-19 明久 井上 ゴルフクラブヘッド
US20040009935A1 (en) * 2002-07-03 2004-01-15 Isis Pharmaceuticals Inc. Antisense modulation of p21-activated kinase 2 expression
US20040099350A1 (en) * 2002-11-21 2004-05-27 Mantione John V. Titanium alloys, methods of forming the same, and articles formed therefrom
AU2004216125A1 (en) * 2003-02-27 2004-09-10 Roger Cleveland Golf Company, Inc. Golf club head of ductile or gray iron
US7387578B2 (en) 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
TWI321592B (en) * 2006-03-07 2010-03-11 Univ Nat Chiao Tung High strength and high toughness alloy with low density
JP2008099902A (ja) 2006-10-19 2008-05-01 Sri Sports Ltd ウッド型ゴルフクラブヘッド
US8012274B2 (en) * 2007-03-22 2011-09-06 Skaff Corporation Of America, Inc. Mechanical parts having increased wear-resistance
US20120077617A1 (en) * 2010-09-23 2012-03-29 Hu Shun-Fu Golf club head
US8888607B2 (en) 2010-12-28 2014-11-18 Taylor Made Golf Company, Inc. Fairway wood center of gravity projection
US20150111664A1 (en) 2011-08-10 2015-04-23 Acushnet Company Golf club head with multi-material components
WO2013125039A1 (ja) 2012-02-24 2013-08-29 新日鐵住金株式会社 ゴルフクラブフェース用チタン合金
US9044653B2 (en) * 2012-06-08 2015-06-02 Taylor Made Golf Company, Inc. Iron type golf club head
CN104436578B (zh) * 2013-09-16 2018-01-26 大田精密工业股份有限公司 高尔夫球杆头及其低密度合金
TWI468531B (zh) * 2013-09-30 2015-01-11 Advanced Int Multitech Co Ltd The golf club head is made of stainless steel alloy
JP6308843B2 (ja) 2014-03-31 2018-04-11 住友ゴム工業株式会社 ゴルフクラブヘッド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW293779B (zh) * 1994-09-21 1996-12-21 Maruman Golf
TW200948423A (en) * 2008-02-21 2009-12-01 Roger Cleveland Golf Co Inc A golf club head

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
http://www.dtic.mil/dtic/tr/fulltext/u2/a382105.pdf,2000/08/28 *
http://www.dtic.mil/dtic/tr/fulltext/u2/a382105.pdf,2000/08/28。
https://www.ulbrich.com/uploads/data-sheets/TI-15-3-3-3-15-333-UNS-R58153.pdf,2015/01/06 *
https://www.ulbrich.com/uploads/data-sheets/TI-15-3-3-3-15-333-UNS-R58153.pdf,2015/01/06。

Also Published As

Publication number Publication date
GB2561504A (en) 2018-10-17
US10537770B2 (en) 2020-01-21
JP2019500140A (ja) 2019-01-10
JP6871254B2 (ja) 2021-05-12
GB2561504B (en) 2021-08-18
TW201729874A (zh) 2017-09-01
KR20180097715A (ko) 2018-08-31
WO2017116943A1 (en) 2017-07-06
US20170182377A1 (en) 2017-06-29
GB201811354D0 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
TWI694855B (zh) 具有更強、更高彈性及更輕之材料的高爾夫球桿頭
US7491136B2 (en) Low-density FeAlMn alloy golf-club heads and golf clubs comprising same
US10688350B2 (en) Golf club heads with energy storage characteristics
US20100178996A1 (en) Titanium alloy for golf-club heads, and clubheads comprising same
WO2017011348A1 (en) Golf club heads with reduced variability in characteristic time
US20070209738A1 (en) High strength and high toughness alloy with low density and the method of making
JP2013159857A (ja) ゴルフクラブヘッド用Fe−Cr−Ni系合金
JP7487274B2 (ja) 可変のフェース形状および材料特性を有するゴルフクラブヘッド
US20110061772A1 (en) Low-density high-toughness alloy and the fabrication method thereof
TWI650162B (zh) 雙相高爾夫桿頭的鈦合金
US10695620B2 (en) Club heads with bounded face to body yield strength ratio and related methods
US7041002B2 (en) Golf club head
WO2014042196A1 (ja) アイアン型ゴルフクラブ
CN107596654B (zh) 铸造型高尔夫球铁杆头合金
KR102679983B1 (ko) 보다 강하고 보다 유연하며 보다 가벼운 재료를 갖는 골프 클럽 헤드
CN105986209A (zh) 高尔夫球杆头的制造方法
CN106854736B (zh) 铁基低密度高尔夫球头不锈钢合金及其制造方法
US10293218B2 (en) Golf club head having a nanocrystalline titanium alloy
US11446553B2 (en) Club heads with bounded face to body yield strength ratio and related methods
US20230018249A1 (en) Club heads with bounded face to body yield strength ratio and related methods
US20230014268A1 (en) Golf club heads with energy storage characteristics
TW202009041A (zh) 高爾夫鐵桿頭之組成合金及其製造方法
TW200404589A (en) Material for golf club head with low iron density
JP2004357849A (ja) ゴルフクラブヘッドのフェース面の加工方法及びそのゴルフクラブヘッド