TWI692651B - Optical devices and fabrication method thereof - Google Patents

Optical devices and fabrication method thereof Download PDF

Info

Publication number
TWI692651B
TWI692651B TW107112558A TW107112558A TWI692651B TW I692651 B TWI692651 B TW I692651B TW 107112558 A TW107112558 A TW 107112558A TW 107112558 A TW107112558 A TW 107112558A TW I692651 B TWI692651 B TW I692651B
Authority
TW
Taiwan
Prior art keywords
light
layer
patterned
optical element
transmitting
Prior art date
Application number
TW107112558A
Other languages
Chinese (zh)
Other versions
TW201944123A (en
Inventor
廖志成
劉士豪
呂武羲
羅明城
羅宗仁
魏雲洲
陳茵
李新輝
林學榮
呂文志
呂定蓉
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW107112558A priority Critical patent/TWI692651B/en
Publication of TW201944123A publication Critical patent/TW201944123A/en
Application granted granted Critical
Publication of TWI692651B publication Critical patent/TWI692651B/en

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

An optical device is provided. The optical device includes a substrate including a plurality of pixel units, a dielectric layer disposed on the substrate, a patterned light-transmitting layer disposed on the dielectric layer and corresponded to the pixel units, and a plurality of continuous light-shielding layers disposed on the dielectric layer and located on the both sides of the patterned light-transmitting layer. A method for fabricating an optical device is also provided.

Description

光學元件及其製造方法 Optical element and its manufacturing method

本發明係有關於一種光學元件,特別是有關於一種具有準直效果的光學元件及其製造方法。 The invention relates to an optical element, in particular to an optical element with a collimating effect and a manufacturing method thereof.

傳統上,作為指紋辨識的光學元件中,其準直器的兩側均會設置避免入射光線洩漏至鄰近畫素區域的遮光層。例如,於準直器的兩側設置多層式堆疊的遮光層即是其中一種方式。此種多層式堆疊的遮光層係由黑色遮光材料層與透明材料層相互堆疊設置而成。雖此種遮光層的製作方式較簡易,但由於黑色遮光材料層與透明材料層是採相互堆疊的方式設置,因此,入射準直器的光線仍有可能從其兩側的透明材料層藉由折射或繞射等方式洩漏至相鄰的畫素區域而進一步干擾相鄰畫素區域的收光,由此來看,此種設計並無法確實解決串音干擾的問題。 Traditionally, as an optical element for fingerprint recognition, both sides of its collimator are provided with light shielding layers to prevent incident light from leaking to adjacent pixel regions. For example, it is one of the methods to provide multiple stacked light shielding layers on both sides of the collimator. The multi-layer stacked light shielding layer is formed by stacking black light shielding material layers and transparent material layers on top of each other. Although the manufacturing method of this shading layer is relatively simple, since the black shading material layer and the transparent material layer are arranged in a stacked manner, the light incident on the collimator may still pass through the transparent material layers on both sides Refraction or diffraction leaks to the adjacent pixel area and further interferes with the light reception of the adjacent pixel area. From this point of view, this design cannot reliably solve the problem of crosstalk interference.

因此,開發一種具有理想準直效果且可有效避免串音(cross-talk)現象的光學元件及相關製造方法是眾所期待的。 Therefore, it is expected to develop an optical element and a related manufacturing method that have an ideal collimating effect and can effectively avoid cross-talk.

根據本發明的一實施例,提供一種光學元件。該光學元件包括:一基板,包括複數個畫素單元;一介電層,設置於該基板上;一圖案化透光層,設置於該介電層上,並對應 該等畫素單元;以及複數個連續遮光層,設置於該介電層上,並位於該圖案化透光層的兩側。 According to an embodiment of the invention, an optical element is provided. The optical element includes: a substrate including a plurality of pixel units; a dielectric layer disposed on the substrate; a patterned light-transmitting layer disposed on the dielectric layer and corresponding to the pixel units; and A plurality of continuous light-shielding layers are provided on the dielectric layer and located on both sides of the patterned light-transmitting layer.

根據部分實施例,上述圖案化透光層包括透光度90%以上的有機材料。 According to some embodiments, the patterned light-transmitting layer includes an organic material having a light transmittance of 90% or more.

根據部分實施例,上述圖案化透光層對波長大於550奈米的光線透光。 According to some embodiments, the patterned light-transmitting layer transmits light with a wavelength greater than 550 nm.

根據部分實施例,上述圖案化透光層的厚度與寬度的比例介於5:1至15:1。 According to some embodiments, the ratio of the thickness to the width of the patterned light-transmitting layer is between 5:1 and 15:1.

根據部分實施例,上述圖案化透光層的寬度與上述畫素單元的寬度的比例介於0.5:1至0.75:1。 According to some embodiments, the ratio of the width of the patterned light-transmitting layer to the width of the pixel unit is between 0.5:1 and 0.75:1.

根據部分實施例,上述遮光層為縱向連續。 According to some embodiments, the light shielding layer is continuous in the longitudinal direction.

根據部分實施例,上述遮光層包括一氧化層與一遮光材料層,且上述遮光材料層包圍上述氧化層。 According to some embodiments, the light-shielding layer includes an oxide layer and a light-shielding material layer, and the light-shielding material layer surrounds the oxide layer.

根據部分實施例,上述遮光材料層包括氮化鈦、鈦鎢合金或鎢金屬。 According to some embodiments, the light-shielding material layer includes titanium nitride, titanium-tungsten alloy, or tungsten metal.

根據部分實施例,上述遮光材料層的厚度介於300至1,500埃。 According to some embodiments, the thickness of the light-shielding material layer is between 300 and 1,500 angstroms.

根據部分實施例,本發明光學元件更包括一觸控玻璃,設置於上述圖案化透光層與上述連續遮光層上。 According to some embodiments, the optical element of the present invention further includes a touch glass disposed on the patterned light-transmitting layer and the continuous light-shielding layer.

根據本發明的一實施例,提供一種光學元件的製造方法。該製造方法包括下列步驟:提供一基板,包括複數個畫素單元;形成一介電層於該基板上;形成一圖案化透光層於該介電層上,並對應該等畫素單元;坦覆性地形成一遮光材料層於該圖案化透光層間的區域;以及形成一氧化層於該遮光材 料層上,以於該圖案化透光層的兩側,形成複數個連續遮光層。 According to an embodiment of the present invention, a method for manufacturing an optical element is provided. The manufacturing method includes the following steps: providing a substrate including a plurality of pixel units; forming a dielectric layer on the substrate; forming a patterned light-transmitting layer on the dielectric layer, and corresponding to the pixel units; Frankly forming a light-shielding material layer on the area between the patterned light-transmitting layers; and forming an oxide layer on the light-shielding material layer to form a plurality of continuous light-shielding layers on both sides of the patterned light-transmitting layer.

根據部分實施例,藉由化學氣相沉積(CVD)、物理氣相沉積(PVD)或濺鍍法形成上述遮光材料層於上述圖案化透光層間的區域。 According to some embodiments, the region between the patterned light-transmitting layer and the light-shielding material layer is formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), or sputtering.

根據部分實施例,於形成上述遮光材料層之前,更包括坦覆性地形成一阻障層於上述圖案化透光層間的區域。 According to some embodiments, before forming the light-shielding material layer, it further includes forming a barrier layer overly the region between the patterned light-transmitting layers.

根據部分實施例,於形成上述氧化層之後,更包括實施一回蝕刻或一化學機械研磨製程,以於上述圖案化透光層的兩側,形成上述連續遮光層。 According to some embodiments, after forming the oxide layer, an etch back or a chemical mechanical polishing process is further performed to form the continuous light-shielding layer on both sides of the patterned light-transmitting layer.

在本發明中,設置於透光層(準直器)兩側的遮光層係為縱向連續式的遮光層,即遮光層沿垂直基板的方向延伸形成連續態樣,在遮光層中並未存在任何使光線穿透的間隙,因此,當光線進入透光層時,此入射光線並不會從透光層兩側的遮光層洩漏至鄰近的畫素單元,如此,使得各種角度的入射光線均能更加集中地進入下方所對應的畫素單元,有效改善相鄰畫素間彼此有可能產生的串音(cross-talk)現象。此外,本發明所定義的透光層的厚度與寬度的比例(例如介於5:1至15:1)以及透光層的寬度與畫素單元的寬度的比例(例如介於0.5:1至0.75:1)均為特定適當的比例範圍,此結構間的特定尺寸比例關係不但能維持光準直效果,又能使到達透光層底部(連接畫素單元)的光線訊號維持在一定的適當強度,實有助於維持畫素單元的收光效果。再者,本發明採用分段式的製程步驟逐 步墊高透光層的厚度,此方式可避免一次性製程所製作厚度過高的透光層在後續製程(例如各種沉積法及化學機械研磨(CMP))中可能造成結構傾倒的現象。 In the present invention, the light-shielding layers provided on both sides of the light-transmitting layer (collimator) are longitudinally continuous light-shielding layers, that is, the light-shielding layer extends in a direction perpendicular to the substrate to form a continuous shape, and does not exist in the light-shielding layer Any gap through which light penetrates. Therefore, when light enters the light-transmitting layer, the incident light will not leak from the light-shielding layers on both sides of the light-transmitting layer to the adjacent pixel units. It can enter the pixel units corresponding to the lower part more intensively, effectively improving the cross-talk phenomenon that may occur between adjacent pixels. In addition, the ratio of the thickness to the width of the light-transmitting layer defined in the present invention (for example, between 5:1 to 15:1) and the ratio of the width of the light-transmitting layer to the width of the pixel unit (for example, between 0.5:1 to 0.75:1) are all specific and appropriate ratio range, the specific size ratio relationship between this structure can not only maintain the light collimation effect, but also keep the light signal reaching the bottom of the light-transmitting layer (connecting the pixel units) to a certain appropriate The intensity actually helps to maintain the light receiving effect of the pixel unit. In addition, the present invention adopts a step-by-step process step to gradually increase the thickness of the light-transmitting layer. This method can avoid the excessively thick light-transmitting layer made by the one-time process in the subsequent processes (such as various deposition methods and chemical mechanical polishing ( CMP)) may cause the structure to fall over.

為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下。 In order to make the above objects, features and advantages of the present invention more comprehensible, a preferred embodiment is described below in conjunction with the accompanying drawings, which are described in detail below.

10‧‧‧光學元件 10‧‧‧Optical components

12‧‧‧基板 12‧‧‧ substrate

14‧‧‧介電層 14‧‧‧dielectric layer

16、160‧‧‧圖案化透光層 16, 160‧‧‧ Patterned light-transmitting layer

18、180‧‧‧連續遮光層 18. 180‧‧‧Continuous shading layer

20‧‧‧畫素單元 20‧‧‧Pixel unit

22、220‧‧‧垂直基板的方向 22, 220‧‧‧Direction of vertical substrate

24、240‧‧‧氧化層 24, 240 ‧‧‧ oxide layer

25、250‧‧‧阻障層 25, 250‧‧‧ barrier layer

26、260‧‧‧遮光材料層 26, 260‧‧‧ shading material layer

28‧‧‧觸控玻璃 28‧‧‧Touch glass

30、300‧‧‧圖案化透光層間的區域 30, 300‧‧‧ Patterned areas between light-transmitting layers

32、320‧‧‧平坦化步驟 32, 320‧‧‧ flattening steps

34、340‧‧‧光學結構 34、340‧‧‧Optical structure

P‧‧‧畫素單元的寬度 P‧‧‧ Width of pixel unit

t‧‧‧遮光材料層的厚度 t‧‧‧ Thickness of shading material layer

T‧‧‧圖案化透光層的厚度 T‧‧‧thickness of patterned light-transmitting layer

W‧‧‧圖案化透光層的寬度 W‧‧‧Width of patterned light-transmitting layer

第1圖係根據本發明的一實施例,一種光學元件的剖面示意圖;第2A-2E圖係根據本發明的一實施例,一種光學元件製造方法的剖面示意圖;第3A-3E圖係根據本發明的一實施例,一種光學元件製造方法的剖面示意圖。 Figure 1 is a schematic cross-sectional view of an optical element according to an embodiment of the present invention; Figures 2A-2E are schematic cross-sectional views of a method of manufacturing an optical element according to an embodiment of the present invention; Figures 3A-3E are based on this An embodiment of the invention is a schematic cross-sectional view of a method for manufacturing an optical element.

請參閱第1圖,根據本發明的一實施例,提供一種光學元件10。第1圖為光學元件10的剖面示意圖。 Please refer to FIG. 1, according to an embodiment of the present invention, an optical element 10 is provided. FIG. 1 is a schematic cross-sectional view of the optical element 10.

如第1圖所示,在本實施例中,光學元件10包括一基板12、一介電層14、一圖案化透光層16、以及複數個連續遮光層18。基板12包括複數個畫素單元20。介電層14設置於基板12上。圖案化透光層16設置於介電層14上,並對應畫素單元20。連續遮光層18設置於介電層14上,並位於圖案化透光層16的兩側。 As shown in FIG. 1, in this embodiment, the optical element 10 includes a substrate 12, a dielectric layer 14, a patterned light-transmitting layer 16, and a plurality of continuous light-shielding layers 18. The substrate 12 includes a plurality of pixel units 20. The dielectric layer 14 is disposed on the substrate 12. The patterned light-transmitting layer 16 is disposed on the dielectric layer 14 and corresponds to the pixel unit 20. The continuous light-shielding layer 18 is disposed on the dielectric layer 14 and is located on both sides of the patterned light-transmitting layer 16.

在部分實施例中,基板12可包括矽基板或任何適 當的基板材料。 In some embodiments, the substrate 12 may include a silicon substrate or any suitable substrate material.

在部分實施例中,介電層14可包括氧化物、氮化物、氮氧化物或任何適當的介電材料。 In some embodiments, the dielectric layer 14 may include oxide, nitride, oxynitride, or any suitable dielectric material.

在部分實施例中,圖案化透光層16可包括透光度90%以上的有機材料,例如透光度90%以上的環氧樹脂或類光阻材料。 In some embodiments, the patterned light-transmitting layer 16 may include an organic material with a transmittance of more than 90%, such as an epoxy resin or a photoresist-like material with a transmittance of more than 90%.

在部分實施例中,圖案化透光層16可對波長大於550奈米的光線透光,例如對綠光或其他可見光或非可見光透光。 In some embodiments, the patterned light-transmitting layer 16 can transmit light with a wavelength greater than 550 nanometers, such as green light or other visible light or non-visible light.

在部分實施例中,圖案化透光層16的厚度T與寬度W的比例大約介於5:1至15:1。 In some embodiments, the ratio of the thickness T and the width W of the patterned light-transmitting layer 16 is approximately 5:1 to 15:1.

在部分實施例中,圖案化透光層16的厚度T與寬度W的比例大約為10:1。 In some embodiments, the ratio of the thickness T to the width W of the patterned light-transmitting layer 16 is approximately 10:1.

在部分實施例中,圖案化透光層16的寬度W與畫素單元20的寬度P的比例大約介於0.5:1至0.75:1。 In some embodiments, the ratio of the width W of the patterned light-transmitting layer 16 to the width P of the pixel unit 20 is approximately 0.5:1 to 0.75:1.

在部分實施例中,圖案化透光層16的寬度W與畫素單元20的寬度P的比例大約為0.5:1。 In some embodiments, the ratio of the width W of the patterned light-transmitting layer 16 to the width P of the pixel unit 20 is approximately 0.5:1.

在部分實施例中,遮光層18可為縱向連續。此處的縱向是指垂直基板12的方向22,即遮光層18沿方向22延伸形成連續態樣。 In some embodiments, the light shielding layer 18 may be longitudinally continuous. The longitudinal direction here refers to a direction 22 perpendicular to the substrate 12, that is, the light shielding layer 18 extends along the direction 22 to form a continuous state.

在部分實施例中,遮光層18包括一氧化層24與一遮光材料層26,且遮光材料層26包圍氧化層24。 In some embodiments, the light shielding layer 18 includes an oxide layer 24 and a light shielding material layer 26, and the light shielding material layer 26 surrounds the oxide layer 24.

在部分實施例中,氧化層24可包括高密度電漿(HDP)氧化物層或旋塗玻璃(SOG)氧化物層。 In some embodiments, the oxide layer 24 may include a high density plasma (HDP) oxide layer or a spin on glass (SOG) oxide layer.

在部分實施例中,遮光材料層26可包括氮化鈦、鈦鎢合金、鎢金屬、或其他遮光性佳的金屬材料。 In some embodiments, the light-shielding material layer 26 may include titanium nitride, titanium-tungsten alloy, tungsten metal, or other metal materials with good light-shielding properties.

在部分實施例中,遮光材料層26的厚度t大約介於300至1,500埃。 In some embodiments, the thickness t of the light-shielding material layer 26 is approximately 300 to 1,500 angstroms.

在部分實施例中,於遮光材料層26與圖案化透光層16之間,更包括設置有一阻障層(未圖示),以促進遮光材料層26與圖案化透光層16的黏著。 In some embodiments, a barrier layer (not shown) is provided between the light-shielding material layer 26 and the patterned light-transmitting layer 16 to promote adhesion of the light-shielding material layer 26 and the patterned light-transmitting layer 16.

在部分實施例中,上述阻障層可為氧化層,其厚度大約介於800至1,000埃。 In some embodiments, the above-mentioned barrier layer may be an oxide layer with a thickness of approximately 800 to 1,000 angstroms.

在部分實施例中,本發明光學元件10更包括一觸控玻璃28,設置於圖案化透光層16與連續遮光層18上。 In some embodiments, the optical element 10 of the present invention further includes a touch glass 28 disposed on the patterned light-transmitting layer 16 and the continuous light-shielding layer 18.

本發明光學元件10可廣泛應用於光學辨識的領域,例如指紋辨識。 The optical element 10 of the present invention can be widely used in the field of optical identification, such as fingerprint identification.

請參閱第2A-2E圖,根據本揭露的一實施例,提供一種光學元件10的製造方法。第2A-2E圖為光學元件10製造方法的剖面示意圖。 Please refer to FIGS. 2A-2E. According to an embodiment of the present disclosure, a method for manufacturing an optical element 10 is provided. 2A-2E are schematic cross-sectional views of the method of manufacturing the optical element 10.

如第2A圖所示,提供一基板12。基板12包括複數個畫素單元20。 As shown in FIG. 2A, a substrate 12 is provided. The substrate 12 includes a plurality of pixel units 20.

在部分實施例中,基板12可包括矽基板或任何適當的基板材料。 In some embodiments, the substrate 12 may include a silicon substrate or any suitable substrate material.

之後,形成一介電層14於基板12上。 After that, a dielectric layer 14 is formed on the substrate 12.

在部分實施例中,介電層14可包括氧化物、氮化物、氮氧化物或任何適當的介電材料。 In some embodiments, the dielectric layer 14 may include oxide, nitride, oxynitride, or any suitable dielectric material.

之後,形成一透光層(未圖示)於介電層14上。接著, 形成一圖案化光阻層(未圖示)於上述透光層上。之後,以上述圖案化光阻層為一罩幕,實施一微影製程,以形成圖案化透光層16。 After that, a light-transmitting layer (not shown) is formed on the dielectric layer 14. Next, a patterned photoresist layer (not shown) is formed on the transparent layer. After that, using the patterned photoresist layer as a mask, a lithography process is performed to form the patterned light-transmitting layer 16.

值得注意的是,圖案化透光層16對應畫素單元20。 It is worth noting that the patterned light-transmitting layer 16 corresponds to the pixel unit 20.

在部分實施例中,圖案化透光層16可包括透光度90%以上的有機材料,例如透光度90%以上的環氧樹脂或類光阻材料。 In some embodiments, the patterned light-transmitting layer 16 may include an organic material with a transmittance of more than 90%, such as an epoxy resin or a photoresist-like material with a transmittance of more than 90%.

在部分實施例中,圖案化透光層16可對波長大於550奈米的光線透光,例如對綠光或其他可見光或非可見光透光。 In some embodiments, the patterned light-transmitting layer 16 can transmit light with a wavelength greater than 550 nanometers, such as green light or other visible light or non-visible light.

在部分實施例中,圖案化透光層16的厚度T與寬度W的比例大約介於5:1至15:1。 In some embodiments, the ratio of the thickness T and the width W of the patterned light-transmitting layer 16 is approximately 5:1 to 15:1.

在部分實施例中,圖案化透光層16的厚度T與寬度W的比例大約為10:1。 In some embodiments, the ratio of the thickness T to the width W of the patterned light-transmitting layer 16 is approximately 10:1.

在部分實施例中,圖案化透光層16的寬度W與畫素單元20的寬度P的比例大約介於0.5:1至0.75:1。 In some embodiments, the ratio of the width W of the patterned light-transmitting layer 16 to the width P of the pixel unit 20 is approximately 0.5:1 to 0.75:1.

在部分實施例中,圖案化透光層16的寬度W與畫素單元20的寬度P的比例大約為0.5:1。 In some embodiments, the ratio of the width W of the patterned light-transmitting layer 16 to the width P of the pixel unit 20 is approximately 0.5:1.

之後,如第2B圖所示,藉由適當的沉積法坦覆性地形成一阻障層25於圖案化透光層16上以及圖案化透光層16間的介電層14上。 After that, as shown in FIG. 2B, a barrier layer 25 is formed on the patterned light-transmitting layer 16 and the dielectric layer 14 between the patterned light-transmitting layers 16 by a suitable deposition method.

在部分實施例中,阻障層25可為氧化層,其厚度大約介於800至1,000埃。 In some embodiments, the barrier layer 25 may be an oxide layer with a thickness of approximately 800 to 1,000 angstroms.

之後,如第2C圖所示,藉由例如化學氣相沉積(CVD)、物理氣相沉積(PVD)或濺鍍法坦覆性地形成一遮光材料層26於阻障層25上。 Thereafter, as shown in FIG. 2C, a light-shielding material layer 26 is formed on the barrier layer 25 by, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or sputtering.

在部分實施例中,遮光材料層26可包括氮化鈦、鈦鎢合金、鎢金屬、或其他遮光性佳的金屬材料。 In some embodiments, the light-shielding material layer 26 may include titanium nitride, titanium-tungsten alloy, tungsten metal, or other metal materials with good light-shielding properties.

在部分實施例中,遮光材料層26的厚度t大約介於300至1,500埃。 In some embodiments, the thickness t of the light-shielding material layer 26 is approximately 300 to 1,500 angstroms.

之後,藉由例如高密度電漿(HDP)或旋塗玻璃(SOG)製程,形成一氧化層24於遮光材料層26上,並填入圖案化透光層16間的區域30,如第2D圖所示。 After that, an oxide layer 24 is formed on the light-shielding material layer 26 by, for example, a high-density plasma (HDP) or spin-on-glass (SOG) process, and fills the area 30 between the patterned light-transmitting layers 16, as shown in 2D The picture shows.

之後,如第2E圖所示,藉由例如回蝕刻(etch back)或化學機械研磨(CMP)製程,進行平坦化步驟32,以於圖案化透光層16的兩側,形成連續遮光層18,至此,即完成光學結構34的製作。 After that, as shown in FIG. 2E, a planarization step 32 is performed by, for example, an etch back or chemical mechanical polishing (CMP) process to form a continuous light-shielding layer 18 on both sides of the patterned transparent layer 16 At this point, the fabrication of the optical structure 34 is completed.

在部分實施例中,遮光層18可為縱向連續。此處的縱向是指垂直基板12的方向22,即遮光層18沿方向22延伸形成連續態樣。 In some embodiments, the light shielding layer 18 may be longitudinally continuous. The longitudinal direction here refers to a direction 22 perpendicular to the substrate 12, that is, the light shielding layer 18 extends along the direction 22 to form a continuous state.

在部分實施例中,更包括設置一觸控玻璃(未圖示)於圖案化透光層16與連續遮光層18上。 In some embodiments, a touch glass (not shown) is further disposed on the patterned light-transmitting layer 16 and the continuous light-shielding layer 18.

請參閱第3A-3E圖,根據本揭露的一實施例,提供一種光學元件10的製造方法。第3A-3E圖為光學元件10製造方法的剖面示意圖。 Please refer to FIGS. 3A-3E. According to an embodiment of the present disclosure, a method for manufacturing an optical element 10 is provided. 3A-3E are schematic cross-sectional views of the method of manufacturing the optical element 10.

如第3A圖所示,提供如第2E圖所示的光學結構34。 As shown in FIG. 3A, the optical structure 34 shown in FIG. 2E is provided.

之後,形成一透光層(未圖示)於光學結構34上。接著,形成一圖案化光阻層(未圖示)於上述透光層上。之後,以上述圖案化光阻層為一罩幕,實施一微影製程,以形成圖案化透光層160。 After that, a light-transmitting layer (not shown) is formed on the optical structure 34. Next, a patterned photoresist layer (not shown) is formed on the transparent layer. Then, using the patterned photoresist layer as a mask, a lithography process is performed to form the patterned light-transmitting layer 160.

值得注意的是,圖案化透光層160對應圖案化透光層16以及畫素單元20。 It is worth noting that the patterned transparent layer 160 corresponds to the patterned transparent layer 16 and the pixel unit 20.

在部分實施例中,圖案化透光層160可包括透光度90%以上的有機材料,例如透光度90%以上的環氧樹脂或類光阻材料。 In some embodiments, the patterned light-transmitting layer 160 may include an organic material with a transmittance of more than 90%, such as an epoxy resin or a photoresist-like material with a transmittance of more than 90%.

在部分實施例中,圖案化透光層160可對波長大於550奈米的光線透光,例如對綠光或其他可見光或非可見光透光。 In some embodiments, the patterned light-transmitting layer 160 can transmit light with a wavelength greater than 550 nanometers, such as green light or other visible light or non-visible light.

在部分實施例中,圖案化透光層160的厚度T與寬度W的比例大約介於5:1至15:1。 In some embodiments, the ratio of the thickness T and the width W of the patterned light-transmitting layer 160 is approximately 5:1 to 15:1.

在部分實施例中,圖案化透光層160的厚度T與寬度W的比例大約為10:1。 In some embodiments, the ratio of the thickness T to the width W of the patterned light-transmitting layer 160 is approximately 10:1.

在部分實施例中,圖案化透光層160的寬度W與畫素單元20的寬度P的比例大約介於0.5:1至0.75:1。 In some embodiments, the ratio of the width W of the patterned light-transmitting layer 160 to the width P of the pixel unit 20 is approximately 0.5:1 to 0.75:1.

在部分實施例中,圖案化透光層160的寬度W與畫素單元20的寬度P的比例大約為0.5:1。 In some embodiments, the ratio of the width W of the patterned light-transmitting layer 160 to the width P of the pixel unit 20 is approximately 0.5:1.

之後,如第3B圖所示,藉由適當的沉積法坦覆性地形成一阻障層250於圖案化透光層160上以及圖案化透光層160間的遮光層18上。 Then, as shown in FIG. 3B, a barrier layer 250 is formed on the patterned light-transmitting layer 160 and the light-shielding layer 18 between the patterned light-transmitting layer 160 by a suitable deposition method.

在部分實施例中,阻障層250可為氧化層,其厚度 大約介於800至1,000埃。 In some embodiments, the barrier layer 250 may be an oxide layer with a thickness of about 800 to 1,000 angstroms.

之後,如第3C圖所示,藉由例如化學氣相沉積(CVD)、物理氣相沉積(PVD)或濺鍍法坦覆性地形成一遮光材料層260於阻障層250上。 Thereafter, as shown in FIG. 3C, a light-shielding material layer 260 is formed on the barrier layer 250 by, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or sputtering.

在部分實施例中,遮光材料層260可包括氮化鈦、鈦鎢合金、鎢金屬、或其他遮光性佳的金屬材料。 In some embodiments, the light-shielding material layer 260 may include titanium nitride, titanium-tungsten alloy, tungsten metal, or other metal materials with good light-shielding properties.

在部分實施例中,遮光材料層260的厚度t大約介於300至1,500埃。 In some embodiments, the thickness t of the light-shielding material layer 260 is about 300 to 1,500 angstroms.

之後,藉由例如高密度電漿(HDP)或旋塗玻璃(SOG)製程,形成一氧化層240於遮光材料層260上,並填入圖案化透光層160間的區域300,如第3D圖所示。 After that, an oxide layer 240 is formed on the light-shielding material layer 260 by, for example, a high-density plasma (HDP) or spin-on-glass (SOG) process, and fills the area 300 between the patterned light-transmitting layers 160, as shown in 3D The picture shows.

之後,如第3E圖所示,藉由例如回蝕刻或化學機械研磨(CMP)製程,進行平坦化步驟320,以於圖案化透光層160的兩側,形成連續遮光層180,至此,即完成光學結構340的製作。 Then, as shown in FIG. 3E, a planarization step 320 is performed by, for example, an etch-back or chemical mechanical polishing (CMP) process to form a continuous light-shielding layer 180 on both sides of the patterned transparent layer 160, and thus, The optical structure 340 is completed.

在部分實施例中,遮光層180可為縱向連續。此處的縱向是指垂直基板12的方向220,即遮光層180沿方向220延伸形成連續態樣。 In some embodiments, the light shielding layer 180 may be continuous in the longitudinal direction. The longitudinal direction here refers to a direction 220 perpendicular to the substrate 12, that is, the light shielding layer 180 extends along the direction 220 to form a continuous state.

在部分實施例中,更包括設置一觸控玻璃(未圖示)於圖案化透光層160與連續遮光層180上。 In some embodiments, a touch glass (not shown) is further disposed on the patterned transparent layer 160 and the continuous light-shielding layer 180.

本發明可藉由重複實施上述製程步驟來調整光學元件的厚度,即透光層(準直器)的厚度。 In the present invention, the thickness of the optical element, that is, the thickness of the light-transmitting layer (collimator) can be adjusted by repeatedly performing the above process steps.

在本發明中,設置於透光層(準直器)兩側的遮光層係為縱向連續式的遮光層,即遮光層沿垂直基板的方向延伸形 成連續態樣,在遮光層中並未存在任何使光線穿透的間隙,因此,當光線進入透光層時,此入射光線並不會從透光層兩側的遮光層洩漏至鄰近的畫素單元,如此,使得各種角度的入射光線均能更加集中地進入下方所對應的畫素單元,有效改善相鄰畫素間彼此有可能產生的串音(cross-talk)現象。此外,本發明所定義的透光層的厚度與寬度的比例(例如介於5:1至15:1)以及透光層的寬度與畫素單元的寬度的比例(例如介於0.5:1至0.75:1)均為特定適當的比例範圍,此結構間的特定尺寸比例關係不但能維持光準直效果,又能使到達透光層底部(連接畫素單元)的光線訊號維持在一定的適當強度,實有助於維持畫素單元的收光效果。再者,本發明採用分段式的製程步驟逐步墊高透光層的厚度,此方式可避免一次性製程所製作厚度過高的透光層在後續製程(例如各種沉積法及化學機械研磨(CMP))中可能造成結構傾倒的現象。 In the present invention, the light-shielding layers provided on both sides of the light-transmitting layer (collimator) are longitudinally continuous light-shielding layers, that is, the light-shielding layer extends in a direction perpendicular to the substrate to form a continuous shape, and does not exist in the light-shielding layer Any gap through which light penetrates. Therefore, when light enters the light-transmitting layer, the incident light will not leak from the light-shielding layers on both sides of the light-transmitting layer to the adjacent pixel units. It can enter the pixel units corresponding to the lower part more intensively, effectively improving the cross-talk phenomenon that may occur between adjacent pixels. In addition, the ratio of the thickness to the width of the light-transmitting layer defined in the present invention (for example, between 5:1 to 15:1) and the ratio of the width of the light-transmitting layer to the width of the pixel unit (for example, between 0.5:1 to 0.75:1) are all specific and appropriate ratio range, the specific size ratio relationship between this structure can not only maintain the light collimation effect, but also keep the light signal reaching the bottom of the light-transmitting layer (connecting the pixel units) to a certain appropriate The intensity actually helps to maintain the light receiving effect of the pixel unit. Furthermore, the present invention adopts a step-by-step process step to gradually increase the thickness of the light-transmitting layer. This method can avoid the excessively thick light-transmitting layer produced in the one-time process in the subsequent processes (such as various deposition methods and chemical mechanical polishing ( CMP)) may cause the structure to fall over.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in several preferred embodiments as above, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make any changes without departing from the spirit and scope of the present invention. And retouching, therefore, the scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

10‧‧‧光學元件 10‧‧‧Optical components

12‧‧‧基板 12‧‧‧ substrate

14‧‧‧介電層 14‧‧‧dielectric layer

16‧‧‧圖案化透光層 16‧‧‧patterned transparent layer

18‧‧‧連續遮光層 18‧‧‧Continuous shading layer

20‧‧‧畫素單元 20‧‧‧Pixel unit

22‧‧‧垂直基板的方向 22‧‧‧Vertical substrate direction

24‧‧‧氧化層 24‧‧‧Oxide layer

26‧‧‧遮光材料層 26‧‧‧Light-shielding material layer

28‧‧‧觸控玻璃 28‧‧‧Touch glass

P‧‧‧畫素單元的寬度 P‧‧‧Width of pixel unit

t‧‧‧遮光材料層的厚度 t‧‧‧ Thickness of shading material layer

T‧‧‧圖案化透光層的厚度 T‧‧‧thickness of patterned light-transmitting layer

W‧‧‧圖案化透光層的寬度 W‧‧‧Width of patterned light-transmitting layer

Claims (13)

一種光學元件,包括:一基板,包括複數個畫素單元;一介電層,設置於該基板上;一圖案化透光層,設置於該介電層上,並對應該等畫素單元,其中該圖案化透光層的厚度與寬度的比例介於5:1至15:1,以及該圖案化透光層的寬度與該畫素單元的寬度的比例介於0.5:1至0.75:1;以及複數個連續遮光層,設置於該介電層上,並位於該圖案化透光層的兩側,其中該等遮光層包括一氧化層與一遮光材料層,該遮光材料層包圍該氧化層,且該遮光材料層包括氮化鈦、鈦鎢合金或鎢金屬。 An optical element includes: a substrate including a plurality of pixel units; a dielectric layer disposed on the substrate; a patterned light-transmitting layer disposed on the dielectric layer and corresponding to the pixel units, The ratio of the thickness of the patterned transparent layer to the width is from 5:1 to 15:1, and the ratio of the width of the patterned transparent layer to the width of the pixel unit is from 0.5:1 to 0.75:1 And a plurality of continuous light-shielding layers disposed on the dielectric layer and located on both sides of the patterned light-transmitting layer, wherein the light-shielding layers include an oxide layer and a light-shielding material layer, the light-shielding material layer surrounding the oxide Layer, and the light-shielding material layer includes titanium nitride, titanium-tungsten alloy, or tungsten metal. 如申請專利範圍第1項所述的光學元件,其中該圖案化透光層包括透光度90%以上的有機材料。 The optical element as described in item 1 of the patent application range, wherein the patterned light-transmitting layer includes an organic material having a light transmittance of 90% or more. 如申請專利範圍第1項所述的光學元件,其中該圖案化透光層對波長大於550奈米的光線透光。 The optical element as described in item 1 of the patent application range, wherein the patterned light-transmitting layer transmits light with a wavelength greater than 550 nm. 如申請專利範圍第1項所述的光學元件,其中該等遮光層為縱向連續。 The optical element as described in item 1 of the patent application scope, wherein the light-shielding layers are longitudinally continuous. 如申請專利範圍第1項所述的光學元件,其中該遮光材料層的厚度介於300至1,500埃。 The optical element as described in item 1 of the patent application range, wherein the thickness of the light-shielding material layer is between 300 and 1,500 angstroms. 如申請專利範圍第1項所述的光學元件,更包括一觸控玻璃,設置於該圖案化透光層與該等連續遮光層上。 The optical element as described in item 1 of the patent application scope further includes a touch glass disposed on the patterned light-transmitting layer and the continuous light-shielding layers. 一種光學元件的製造方法,包括:提供一基板,包括複數個畫素單元; 形成一介電層於該基板上;形成一圖案化透光層於該介電層上,並對應該等畫素單元,其中該圖案化透光層的厚度與寬度的比例介於5:1至15:1,以及該圖案化透光層的寬度與該畫素單元的寬度的比例介於0.5:1至0.75:1;坦覆性地形成一遮光材料層於該圖案化透光層間的區域,其中該遮光材料層包括氮化鈦、鈦鎢合金或鎢金屬;以及形成一氧化層於該遮光材料層上,以於該圖案化透光層的兩側,形成複數個連續遮光層。 An optical element manufacturing method includes: providing a substrate including a plurality of pixel units; Forming a dielectric layer on the substrate; forming a patterned light-transmitting layer on the dielectric layer and corresponding to the pixel unit, wherein the ratio of the thickness and width of the patterned light-transmitting layer is between 5:1 To 15:1, and the ratio of the width of the patterned light-transmitting layer to the width of the pixel unit is between 0.5:1 and 0.75:1; frankly forming a light-shielding material layer between the patterned light-transmitting layer Area, wherein the light-shielding material layer includes titanium nitride, titanium-tungsten alloy, or tungsten metal; and an oxide layer is formed on the light-shielding material layer to form a plurality of continuous light-shielding layers on both sides of the patterned light-transmitting layer. 如申請專利範圍第7項所述的光學元件的製造方法,其中該圖案化透光層包括透光度90%以上的有機材料,其對波長大於550奈米的光線透光。 The method for manufacturing an optical element as described in item 7 of the patent application range, wherein the patterned light-transmitting layer includes an organic material with a transmittance of 90% or more, which transmits light with a wavelength greater than 550 nm. 如申請專利範圍第7項所述的光學元件的製造方法,其中藉由化學氣相沉積(CVD)、物理氣相沉積(PVD)或濺鍍法形成該遮光材料層於該圖案化透光層間的區域。 The method for manufacturing an optical element as described in item 7 of the patent application range, wherein the light-shielding material layer is formed between the patterned light-transmitting layers by chemical vapor deposition (CVD), physical vapor deposition (PVD) or sputtering Area. 如申請專利範圍第7項所述的光學元件的製造方法,其中該遮光材料層的厚度介於300至1,500埃。 The method for manufacturing an optical element as described in item 7 of the patent application range, wherein the thickness of the light-shielding material layer is between 300 and 1,500 angstroms. 如申請專利範圍第7項所述的光學元件的製造方法,於形成該遮光材料層之前,更包括坦覆性地形成一阻障層於該圖案化透光層間的區域。 According to the method for manufacturing an optical element described in Item 7 of the patent application scope, before forming the light-shielding material layer, it further includes forming a barrier layer overly the region between the patterned light-transmitting layers. 如申請專利範圍第7項所述的光學元件的製造方法,於形成該氧化層之後,更包括實施一回蝕刻或一化學機械研磨製程,以於該圖案化透光層的兩側,形成該等連續遮光層。 The method for manufacturing an optical element as described in item 7 of the patent application scope, after forming the oxide layer, further includes performing an etch back or a chemical mechanical polishing process to form the pattern on both sides of the patterned transparent layer Wait for a continuous shading layer. 如申請專利範圍第7項所述的光學元件的製造方法,其中該等遮光層為縱向連續。 The method for manufacturing an optical element as described in item 7 of the patent application range, wherein the light-shielding layers are longitudinally continuous.
TW107112558A 2018-04-12 2018-04-12 Optical devices and fabrication method thereof TWI692651B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107112558A TWI692651B (en) 2018-04-12 2018-04-12 Optical devices and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107112558A TWI692651B (en) 2018-04-12 2018-04-12 Optical devices and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201944123A TW201944123A (en) 2019-11-16
TWI692651B true TWI692651B (en) 2020-05-01

Family

ID=69184726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107112558A TWI692651B (en) 2018-04-12 2018-04-12 Optical devices and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI692651B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921577B (en) * 2021-09-30 2022-07-08 惠科股份有限公司 Array substrate, manufacturing method of array substrate and display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073629A1 (en) * 2003-03-12 2006-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Light guide for image sensor
US20100144084A1 (en) * 2008-12-05 2010-06-10 Doan Hung Q Optical waveguide structures for an image sensor
US20130200251A1 (en) * 2012-02-07 2013-08-08 Aptina Imaging Corporation Imaging sensors with optical cavity pixels
WO2016074638A1 (en) * 2014-11-12 2016-05-19 Shenzhen Huiding Technology Co., Ltd. Fingerprint sensors having in-pixel optical sensors
US20170125462A1 (en) * 2015-08-06 2017-05-04 United Microelectronics Corp. Image sensor and method for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073629A1 (en) * 2003-03-12 2006-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Light guide for image sensor
US20100144084A1 (en) * 2008-12-05 2010-06-10 Doan Hung Q Optical waveguide structures for an image sensor
US20130200251A1 (en) * 2012-02-07 2013-08-08 Aptina Imaging Corporation Imaging sensors with optical cavity pixels
WO2016074638A1 (en) * 2014-11-12 2016-05-19 Shenzhen Huiding Technology Co., Ltd. Fingerprint sensors having in-pixel optical sensors
US20170125462A1 (en) * 2015-08-06 2017-05-04 United Microelectronics Corp. Image sensor and method for fabricating the same

Also Published As

Publication number Publication date
TW201944123A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
JP5013391B2 (en) CMOS image sensor and manufacturing method thereof
JP6166640B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
US7595215B2 (en) CMOS image sensor and method for manufacturing the same
US9362331B2 (en) Method and system for image sensor and lens on a silicon back plane wafer
TW201639137A (en) Back-side illuminated image sensor and method of forming the same
US9978790B2 (en) Image sensor and method for manufacturing thereof
US20140055655A1 (en) Solid-state imaging element, solid-state imaging device and method of manufacturing the same
WO2013054535A1 (en) Solid-state imaging device and manufacturing method therefor
KR100720524B1 (en) Cmos image sensor and method for manufacturing the same
TWI692651B (en) Optical devices and fabrication method thereof
US9391227B2 (en) Manufacturing method of semiconductor device
US20090305453A1 (en) Method of fabricating image sensor device
US7785909B2 (en) Image sensor and method for manufacturing the same
TW201640660A (en) Back side illumination image sensor
US10572070B2 (en) Optical devices and fabrication method thereof
JP2001133811A (en) Method for treating electrically conductive layer structure and device containing such electrically conductive layer structure
US8076743B2 (en) Image sensor
US20090101950A1 (en) Cmos image sensor and method for fabricating the same
CN110391268B (en) Optical assembly and method of manufacturing the same
US20080036026A1 (en) Metal line of image sensor
KR20070070430A (en) Cmos image sensor with air gap gaurd ring and method for manufacturing the same
US20050161585A1 (en) Solid-state imaging device
CN103000647A (en) Optical enhancement structure of CMOS (complementary metal oxide semiconductor transistor) image sensor and method for manufacturing optical enhancement structure
US11760046B2 (en) Multi-layered microlens systems and related methods
KR100730471B1 (en) Cmos image sensor and method for manufacturing the same