TW201640660A - Back side illumination image sensor - Google Patents
Back side illumination image sensor Download PDFInfo
- Publication number
- TW201640660A TW201640660A TW104137906A TW104137906A TW201640660A TW 201640660 A TW201640660 A TW 201640660A TW 104137906 A TW104137906 A TW 104137906A TW 104137906 A TW104137906 A TW 104137906A TW 201640660 A TW201640660 A TW 201640660A
- Authority
- TW
- Taiwan
- Prior art keywords
- dielectric
- gate
- metal gate
- metal
- segment
- Prior art date
Links
- 238000005286 illumination Methods 0.000 title abstract description 3
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 239000004065 semiconductor Substances 0.000 claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims description 201
- 239000002184 metal Substances 0.000 claims description 201
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 220
- 230000005855 radiation Effects 0.000 description 28
- 238000000034 method Methods 0.000 description 27
- 230000003667 anti-reflective effect Effects 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- 238000000151 deposition Methods 0.000 description 15
- 230000008021 deposition Effects 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1464—Back illuminated imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本揭露係關於一種影像感測器,特別係關於一種背光影像感測器。 The present disclosure relates to an image sensor, and more particularly to a backlight image sensor.
許多現代電子裝置包含使用影像感測器之光學成像裝置(例如,數位攝影機)。影像感測器將光學影像轉換為可表示影像之數位資料。影像感測器可包含像素感測器及支援邏輯之陣列。像素感測器量測入射輻射(例如,光),而支援邏輯可利於讀出量測值。在光學成像裝置中常見的影像感測器之一為背光(back-side illumination;BSI)影像感測器。為了低成本、小尺寸和高產量,背光影像感測器的製造可整合至習知半導體製程中。另外,背光影像感測器具有低操作電壓、低功率消耗、高量子效率、低讀出雜訊,且允許隨機存取。 Many modern electronic devices include optical imaging devices (eg, digital cameras) that use image sensors. The image sensor converts the optical image into digital data that can represent the image. The image sensor can include an array of pixel sensors and support logic. The pixel sensor measures incident radiation (eg, light), and the support logic can facilitate reading the measured value. One of the image sensors commonly found in optical imaging devices is a back-side illumination (BSI) image sensor. For low cost, small size and high throughput, the manufacture of backlight image sensors can be integrated into conventional semiconductor processes. In addition, the backlight image sensor has low operating voltage, low power consumption, high quantum efficiency, low readout noise, and allows random access.
於部分實施方式中,一種背光影像感測器包含一像素感測器、一金屬柵段以及一介電柵段。像素感測器係設置於一半導體基板之內。金屬柵段係設置在像素感測器之上且具有一金屬柵開口於其中。金屬柵段具有一金屬柵高度。介電柵段係設置在金屬柵段之上且具有一介電柵開口於其中。介電柵段具有一介電柵高度。介電柵高度與金屬柵高度之一比值在約1.0至約8.0之間。 In some embodiments, a backlight image sensor includes a pixel sensor, a metal gate segment, and a dielectric grid segment. The pixel sensor is disposed within a semiconductor substrate. The metal grid is disposed above the pixel sensor and has a metal gate opening therein. The metal gate segment has a metal grid height. The dielectric gate segment is disposed over the metal gate segment and has a dielectric gate opening therein. The dielectric grid segment has a dielectric grid height. The ratio of the height of the dielectric grid to the height of the metal grid is between about 1.0 and about 8.0.
於部分實施方式中,一種背光影像感測器包含一像素感測器、一金屬柵段以及一介電柵段。像素感測器係設置於一半導體基板之內。金屬柵段係設置在像素感測器之上且具有一金屬柵開口於其中。金屬柵段具有一頂部金屬柵寬度。金屬柵開口具有一底部金屬柵開口寬度。介電柵段係設置在金屬柵段之上且具有一介電柵開口於其中。介電柵段具有一頂部介電柵寬度。背光影像感測器滿足以下中之至少一者:頂部介電柵寬度與頂部金屬柵寬度之一比值在約0.1至約2.0之間;及頂部介電柵寬度與底部金屬柵開口寬度之一比值在約0.1至約0.9之間。 In some embodiments, a backlight image sensor includes a pixel sensor, a metal gate segment, and a dielectric grid segment. The pixel sensor is disposed within a semiconductor substrate. The metal grid is disposed above the pixel sensor and has a metal gate opening therein. The metal gate segment has a top metal gate width. The metal gate opening has a bottom metal gate opening width. The dielectric gate segment is disposed over the metal gate segment and has a dielectric gate opening therein. The dielectric gate segment has a top dielectric gate width. The backlight image sensor satisfies at least one of: a ratio of a top dielectric gate width to a top metal gate width of between about 0.1 and about 2.0; and a ratio of a top dielectric gate width to a bottom metal gate opening width It is between about 0.1 and about 0.9.
於部分實施方式中,一種背光影像感測器包含一像素感測器、一金屬柵段以及一介電柵段。像素感測器係設置於一半導體基板之內。金屬柵段係設置在像素感測器之上且具有一金屬柵開口於其中。金屬柵開口具有一底部金屬柵開口寬度。介電柵段係設置在金屬柵段之上且具有一介電柵開口於其中。堆疊柵結構高度自半導體基板與金屬柵段之 間延伸至介電柵段之一上表面。堆疊柵結構高度與底部金屬柵開口寬度之一比值在約0.5至約2.0之間。 In some embodiments, a backlight image sensor includes a pixel sensor, a metal gate segment, and a dielectric grid segment. The pixel sensor is disposed within a semiconductor substrate. The metal grid is disposed above the pixel sensor and has a metal gate opening therein. The metal gate opening has a bottom metal gate opening width. The dielectric gate segment is disposed over the metal gate segment and has a dielectric gate opening therein. Stacked gate structure height from semiconductor substrate and metal gate It extends to the upper surface of one of the dielectric grid segments. The ratio of the height of the stacked gate structure to the width of the bottom metal gate opening is between about 0.5 and about 2.0.
於部分實施方式中,一種背光影像感測器包含一像素感測器、一金屬柵段以及一介電柵段。像素感測器係設置於一半導體基板之內。金屬柵段係設置於像素感測器之上且具有一金屬柵開口於其中。介電柵段係設置於金屬柵段之上且具有一介電柵開口於其中。介電柵段之一下表面與介電柵段之一側壁之間的一角度在約60度至小於約90度之間。 In some embodiments, a backlight image sensor includes a pixel sensor, a metal gate segment, and a dielectric grid segment. The pixel sensor is disposed within a semiconductor substrate. The metal gate is disposed above the pixel sensor and has a metal gate opening therein. The dielectric gate segment is disposed over the metal gate segment and has a dielectric gate opening therein. An angle between a lower surface of one of the dielectric grid segments and a sidewall of one of the dielectric grid segments is between about 60 degrees and less than about 90 degrees.
100A、100B、100C、500、600、700、800、900、1000、1100、1200A、1200B、1300A、1300B‧‧‧剖視圖 100A, 100B, 100C, 500, 600, 700, 800, 900, 1000, 1100, 1200A, 1200B, 1300A, 1300B‧‧
102‧‧‧半導體基板 102‧‧‧Semiconductor substrate
104‧‧‧像素感測器 104‧‧‧pixel sensor
106‧‧‧檢光器 106‧‧‧ Detector
108‧‧‧抗反射層 108‧‧‧Anti-reflective layer
110‧‧‧緩衝層 110‧‧‧buffer layer
112‧‧‧上表面 112‧‧‧ upper surface
113‧‧‧堆疊柵 113‧‧‧Stacking grid
114‧‧‧金屬柵 114‧‧‧Metal grid
116、116’‧‧‧介電柵 116, 116'‧‧‧ dielectric grid
118‧‧‧金屬柵開口 118‧‧‧Metal gate opening
120、120’‧‧‧介電柵開口 120, 120'‧‧‧ dielectric grid opening
120"、120A‧‧‧其餘介電柵開口 120", 120A‧‧‧ remaining dielectric grid openings
120B‧‧‧介電柵開口 120B‧‧‧ Dielectric grid opening
120C‧‧‧介電柵開口 120C‧‧‧ Dielectric grid opening
122‧‧‧下表面 122‧‧‧ lower surface
124‧‧‧彎曲下表面 124‧‧‧Bending the lower surface
124A‧‧‧凹入下表面 124A‧‧‧ recessed lower surface
124B‧‧‧凸出下表面 124B‧‧‧ protruding lower surface
124C‧‧‧下表面 124C‧‧‧ lower surface
126、126’‧‧‧金屬柵層 126, 126’‧‧‧metal gate
128、128’‧‧‧介電柵層 128, 128'‧‧‧ dielectric grid
130、130’‧‧‧蝕刻終止層 130, 130' ‧ ‧ etch stop layer
132、132’‧‧‧覆蓋層 132, 132’‧‧‧ Coverage
132”、132A、132B‧‧‧其餘覆蓋層 132”, 132A, 132B‧‧‧ remaining cover
132C‧‧‧覆蓋層 132C‧‧‧ Coverage
134、134A、134B、134C、136、136A、136B、136C、138、138A、138C‧‧‧彩色濾光器 134, 134A, 134B, 134C, 136, 136A, 136B, 136C, 138, 138A, 138C‧‧‧ color filters
140、142‧‧‧上表面 140, 142‧‧‧ upper surface
144‧‧‧微透鏡 144‧‧‧Microlens
146‧‧‧凸出上表面 146‧‧ ‧ protruding upper surface
148A、148B‧‧‧光線 148A, 148B‧‧‧ rays
152‧‧‧金屬柵段 152‧‧‧metal fence
154‧‧‧介電柵段 154‧‧‧Dielectric grid section
200A、200B‧‧‧射線圖 200A, 200B‧‧‧ray map
202‧‧‧彩色濾光器 202‧‧‧Color filter
204‧‧‧凹入下表面 204‧‧‧ recessed lower surface
206‧‧‧光線 206‧‧‧Light
208‧‧‧下層 208‧‧‧Under
210‧‧‧法向軸 210‧‧‧ normal axis
216‧‧‧彩色濾光器 216‧‧‧ color filter
218‧‧‧凸出下表面 218‧‧‧ protruding lower surface
220‧‧‧光線 220‧‧‧Light
222‧‧‧下層 222‧‧‧Under
224‧‧‧法向軸 224‧‧‧ normal axis
226‧‧‧焦點 226‧‧ ‧ focus
228‧‧‧焦平面 228‧‧‧ focal plane
300‧‧‧剖視圖 300‧‧‧section view
302‧‧‧積體電路 302‧‧‧Integrated circuit
304‧‧‧背側 304‧‧‧ Back side
306‧‧‧BEOL金屬堆疊 306‧‧‧BEOL metal stacking
308‧‧‧載體基板 308‧‧‧ Carrier substrate
310、312‧‧‧金屬層 310, 312‧‧‧ metal layer
314‧‧‧層間介電層 314‧‧‧Interlayer dielectric layer
316‧‧‧接觸點 316‧‧‧Contact points
318‧‧‧通孔 318‧‧‧through hole
400‧‧‧流程圖 400‧‧‧ Flowchart
402-422‧‧‧步驟 402-422‧‧‧Steps
702‧‧‧第一光阻劑層 702‧‧‧First photoresist layer
704‧‧‧蝕刻劑 704‧‧‧ etchant
1002‧‧‧第二光阻劑層 1002‧‧‧Second photoresist layer
1004、1202、1302‧‧‧蝕刻劑 1004, 1202, 1302‧‧‧ etchant
1400A、1400B、1400C‧‧‧圖形 1400A, 1400B, 1400C‧‧‧ graphics
θ 1 ‧‧‧入射角 θ 1 ‧‧‧ incident angle
θ 2‧‧‧折射角 θ 2 ‧‧ ‧ refraction angle
當與附圖一起閱讀本案之態樣時,本案之態樣將自以下詳細描述中最佳地理解。應將注意,根據本行業中之標準實作規範,各種特徵不必按比例繪製。事實上,為了論述清楚起見,可任意地增加或減小各種特徵之尺寸。 The aspects of the present invention will be best understood from the following detailed description when read in conjunction with the drawings. It should be noted that various features are not necessarily drawn to scale, according to the standard practice in the art. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion.
第1A圖繪示背光(BSI)影像感測器之一些實施例之剖視圖,影像感測器具有帶有凹入下表面之彩色濾光器。 1A is a cross-sectional view of some embodiments of a backlight (BSI) image sensor having a color filter with a concave lower surface.
第1B圖繪示背光影像感測器之一些實施例之剖視圖,影像感測器具有帶有凸出下表面之彩色濾光器。 FIG. 1B illustrates a cross-sectional view of some embodiments of a backlight image sensor having a color filter with a convex lower surface.
第1C圖繪示背光影像感測器之一些實施例之剖視圖,影像感測器具有帶有平面下表面之彩色濾光器。 FIG. 1C is a cross-sectional view showing some embodiments of a backlight image sensor having a color filter with a planar lower surface.
第2A圖繪示背光影像感測器之一些實施例之射線圖,影像感測器具有帶有凹入下表面之彩色濾光器。 FIG. 2A illustrates a ray diagram of some embodiments of a backlight image sensor having a color filter with a concave lower surface.
第2B圖繪示背光影像感測器之一些實施例之射線圖,影像感測器具有帶有凸出下表面之彩色濾光器。 FIG. 2B illustrates a ray diagram of some embodiments of a backlight image sensor having a color filter with a convex lower surface.
第3圖繪示背光影像感測器之一些實施例之剖視圖,影像感測器具有帶有彎曲下表面之彩色濾光器。 Figure 3 illustrates a cross-sectional view of some embodiments of a backlight image sensor having a color filter with a curved lower surface.
第4圖繪示用於製造背光影像感測器之方法之一些實施例的流程圖,影像感測器具有帶有彎曲下表面之彩色濾光器。 Figure 4 illustrates a flow diagram of some embodiments of a method for fabricating a backlight image sensor having a color filter with a curved lower surface.
第5圖至第11圖、第12A圖及第12B圖,以及第13A圖及第13B圖繪示在製造之不同階段的背光影像感測器之一些實施例之一系列剖視圖。 5 through 11 , 12A and 12B, and FIGS. 13A and 13B illustrate a series of cross-sectional views of some embodiments of a backlight image sensor at various stages of fabrication.
第14A圖至第14C圖繪示圖形之一些實施例,實施例展示對光學性能及阻隔性具有影響之設計參數。 Figures 14A through 14C illustrate some embodiments of the figures, the examples showing design parameters that have an impact on optical performance and barrier properties.
本案提供用於實施本案之不同特徵之許多不同實施例,或實例。在下文中描述元件及設置之特定實例以簡化本案。當然,特定實例僅為實例且不意欲作為限制。例如,在下文描述中之第一特徵位於或在第二特徵之上的結構可包含其中第一特徵及第二特徵直接接觸形成的實施例,且亦可包含其中額外特徵可形成在第一特徵與第二特徵之間,以使得第一特徵及第二特徵可不直接接觸之實施例。此外,本案可在各種實例中重複元件符號及/或字母。此重複係為了簡單且清晰之目的,且其本身不指定所論述之各種實施例及/或配置之間的關係。 This document provides many different embodiments, or examples, for implementing different features of the present invention. Specific examples of components and arrangements are described below to simplify the present case. Of course, the specific examples are merely examples and are not intended to be limiting. For example, a structure in which the first feature is located above or above the second feature can include embodiments in which the first feature and the second feature are formed in direct contact, and can also include wherein additional features can be formed in the first feature Between the second feature and the second feature, the first feature and the second feature may not be in direct contact with each other. Moreover, the present invention may repeat the component symbols and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and does not in itself dictate the relationship between the various embodiments and/or configurations discussed.
此外,諸如「在......之下(beneath)」、「在......下(below)」、「下部(lower)」、「在......上(above)」、「上部(upper)」等等之空間相對用語可在本文中為便於描述而使用,以描述一元件或特徵的相對於如附圖中所示之另一元件或特徵之關係。空間相對用語可用來包含除附圖中所示之方向之外的在使用或操作中之裝置之不同方向。裝置可另外地轉向(旋轉90度或為其他定向)且本文中使用之空間相對描述語言可同樣相應地解釋。 In addition, such as "beeath", "below", "lower", "above" Spatially relative terms such as "upper" and the like may be used herein to describe the relationship of one element or feature relative to another element or feature as shown in the drawings. Spatially relative terms may be used to encompass different orientations of the device in use or operation in addition to the orientation shown. The device may additionally be turned (rotated 90 degrees or other orientations) and the spatially relative description language used herein may be interpreted accordingly accordingly.
背光(BSI)影像感測器包含設置於積體電路之半導體基板之內的像素感測器。像素感測器係設置在積體電路之背側與積體電路之後段製程(back-end-of-line)的金屬堆疊之間。微透鏡及對應於像素感測器之彩色濾光器係堆疊在相應像素感測器之上的積體電路的背側上。彩色濾光器係設置以選擇性地傳輸指定波長之輻射至相應像素感測器,且微透鏡係設置以將入射輻射(例如,光子)聚焦至彩色濾光器上。 A backlight (BSI) image sensor includes a pixel sensor disposed within a semiconductor substrate of an integrated circuit. The pixel sensor is disposed between the back side of the integrated circuit and the metal stack of the back-end-of-line of the integrated circuit. The microlens and the color filter corresponding to the pixel sensor are stacked on the back side of the integrated circuit above the corresponding pixel sensor. A color filter is arranged to selectively transmit radiation of a specified wavelength to a respective pixel sensor, and the microlens is arranged to focus incident radiation (eg, photons) onto the color filter.
堆疊柵係設置在積體電路之背側上。堆疊柵包含金屬柵和覆蓋金屬柵之介電柵。金屬柵係橫向地設置在對應於像素感測器的金屬柵開口周圍。金屬柵開口係由覆蓋層填充,覆蓋層將介電柵與金屬柵垂直地間隔。介電柵係橫向地設置於介電柵開口周圍,介電柵開口對應於像素感測器且具有平坦下表面。介電柵開口填充有彩色濾光器。介電柵係設置以藉由全內反射朝向像素感測器導向或以其他方式聚焦輻射進入彩色濾光器。然而,在到達介電柵開口之平坦下 表面之後,輻射可(例如,藉由折射)發散。此發散可增加相鄰像素感測器之間的串擾(crosstalk)且降低光學性能。此外,堆疊柵的設計參數係謹慎地控制以達成適當的光學性能及阻隔性。 The stacked grid is disposed on the back side of the integrated circuit. The stacked gate includes a metal gate and a dielectric gate covering the metal gate. The metal grid is disposed laterally around the metal gate opening corresponding to the pixel sensor. The metal gate opening is filled by a cap layer that vertically spaces the dielectric gate from the metal gate. A dielectric grid is laterally disposed about the dielectric gate opening, the dielectric gate opening corresponding to the pixel sensor and having a flat lower surface. The dielectric gate opening is filled with a color filter. The dielectric grid is arranged to direct or otherwise focus the radiation into the color filter by total internal reflection towards the pixel sensor. However, after reaching the flatness of the dielectric gate opening After the surface, the radiation can diverge (eg, by refraction). This divergence can increase crosstalk between adjacent pixel sensors and reduce optical performance. In addition, the design parameters of the stacked grid are carefully controlled to achieve proper optical performance and barrier properties.
鑒於上文,本揭露係關於背光影像感測器及用於製造背光影像感測器之方法,背光影像感測器具有介電柵開口,介電柵開口具有用於聚焦輻射之彎曲下表面。在一些實施例中,背光影像感測器包含設置在半導體基板之內的像素感測器。金屬柵係設置在半導體基板之上,且介電柵係設置在金屬柵之上。金屬柵及介電柵分別定義了覆蓋在像素感測器之上的金屬柵開口之側壁及介電柵開口之側壁。覆蓋層係設置在金屬柵與介電柵之間,且填充金屬柵開口。此外,覆蓋層定義介電柵開口之彎曲下表面。彩色濾光器係設置在介電柵開口中,且微透鏡係設置在彩色濾光器之上。彩色濾光器之折射率不同於覆蓋層之折射率。 In view of the above, the present disclosure relates to a backlight image sensor having a dielectric gate opening and a method for fabricating a backlight image sensor having a curved lower surface for focusing radiation. In some embodiments, the backlit image sensor includes a pixel sensor disposed within the semiconductor substrate. The metal gate is disposed over the semiconductor substrate, and the dielectric gate is disposed over the metal gate. The metal gate and the dielectric gate define sidewalls of the metal gate opening and sidewalls of the dielectric gate opening respectively over the pixel sensor. The capping layer is disposed between the metal gate and the dielectric gate and fills the metal gate opening. In addition, the cover layer defines a curved lower surface of the dielectric gate opening. A color filter is disposed in the dielectric gate opening, and the microlens is disposed above the color filter. The refractive index of the color filter is different from the refractive index of the cover layer.
彩色濾光器與覆蓋層之不同折射率與介電柵開口之彎曲下表面,可將進入彩色濾光器之輻射聚焦,且將輻射朝向像素感測器照射於彎曲下表面上。在某種意義上,彎曲下表面可做為透鏡。藉由朝向像素感測器聚焦輻射,可降低在相鄰像素感測器之間的串擾且提升了光學性能。此外,藉由蝕刻製程的調校,可在無需額外處理步驟的情況下,形成彎曲下表面。 The different refractive indices of the color filter and the cover layer and the curved lower surface of the dielectric gate opening can focus the radiation entering the color filter and illuminate the radiation toward the curved lower surface toward the pixel sensor. In a sense, the curved lower surface can be used as a lens. By focusing the radiation toward the pixel sensor, crosstalk between adjacent pixel sensors can be reduced and optical performance improved. In addition, by aligning the etching process, a curved lower surface can be formed without additional processing steps.
進一步來說,本揭露係關於背光影像感測器,背光影像感測器具有用於提升光學性能及阻隔性之謹慎控 制的設計參數。在一些實施例中,背光影像感測器包含設置在半導體基板之內的像素感測器。金屬柵係設置在半導體基板之上,且介電柵係設置在金屬柵之上。介電柵高度與金屬柵高度之比值可例如在約1.0至約8.0之間。此外,介電柵下表面與介電柵側壁之間的角度可例如為約60度至約90度。在一些實施例中,介電柵下表面與介電柵側壁之間的角度可例如小於約90度。金屬柵及介電柵分別定義了覆蓋在像素感測器之上的金屬柵開口之側壁及介電柵開口之側壁。背光影像感測器可滿足以下至少一種情況:1頂部介電柵寬度與頂部金屬柵寬度之比值可例如在約0.1至約2.0之間;及2頂部介電柵寬度與金屬柵開口寬度之比值例如在約0.1至約0.9之間。覆蓋層係設置在金屬柵與介電柵之間,且定義介電柵開口之下表面。堆疊柵結構高度與金屬柵開口寬度之比值可例如為約0.5至約2.0,其中堆疊柵結構包含介電柵及金屬柵以及覆蓋層。 Further, the disclosure relates to a backlight image sensor, and the backlight image sensor has a careful control for improving optical performance and barrier properties. Design parameters. In some embodiments, the backlit image sensor includes a pixel sensor disposed within the semiconductor substrate. The metal gate is disposed over the semiconductor substrate, and the dielectric gate is disposed over the metal gate. The ratio of the height of the dielectric grid to the height of the metal grid can be, for example, between about 1.0 and about 8.0. Further, the angle between the lower surface of the dielectric grid and the sidewall of the dielectric gate may be, for example, about 60 degrees to about 90 degrees. In some embodiments, the angle between the lower surface of the dielectric grid and the sidewall of the dielectric gate can be, for example, less than about 90 degrees. The metal gate and the dielectric gate define sidewalls of the metal gate opening and sidewalls of the dielectric gate opening respectively over the pixel sensor. The backlight image sensor can satisfy at least one of the following cases: 1 the ratio of the top dielectric gate width to the top metal gate width can be, for example, between about 0.1 and about 2.0; and 2 the ratio of the top dielectric gate width to the metal gate opening width For example between about 0.1 and about 0.9. The capping layer is disposed between the metal gate and the dielectric gate and defines a lower surface of the dielectric gate opening. The ratio of the height of the stacked gate structure to the width of the metal gate opening can be, for example, from about 0.5 to about 2.0, wherein the stacked gate structure comprises a dielectric gate and a metal gate and a cap layer.
有利地,藉由控制設計參數,光學性能及光學阻隔性可得以提高。設計參數可包含,例如,堆疊柵結構高度、金屬柵高度、介電柵高度、金屬柵開口寬度、金屬柵寬度,及介電柵寬度中之一或多者。光學性能及光學阻隔性可藉由降低串擾、用於達成訊號雜訊比(signal-to-noise ratio;SNR)約為10(亦即,SNR-10)之最小亮度、量子效率(quantum efficiency;QE)等來提高。 Advantageously, optical performance and optical barrier properties can be improved by controlling design parameters. Design parameters may include, for example, one or more of stacked gate structure height, metal gate height, dielectric gate height, metal gate opening width, metal gate width, and dielectric gate width. Optical performance and optical barrier properties can be achieved by reducing crosstalk, achieving a minimum signal-to-noise ratio (SNR) of about 10 (ie, SNR-10), and quantum efficiency; QE) etc. to improve.
參閱第1A圖,提供了背光影像感測器之一些實施例之剖視圖100A。背光影像感測器包含半導體基板102 及像素感測器104,像素感測器104以列及/或行的形式設置於半導體基板102之內。像素感測器104係設置以將入射輻射(例如,光子)轉換為電訊號。像素感測器104包含相應的檢光器106,且在一些實施例中,像素感測器104包含相應的放大器(未繪示)。檢光器106可例如為光電二極體,且放大器可例如為電晶體。光電二極體可包含在半導體基板102之內的第一區域(未繪示),其具有第一摻雜類型(例如,n型摻雜),光電二極體亦可包含在半導體基板102內且覆蓋第一區域的相應第二區域(未繪示),其具有第二摻雜類型(例如,p型摻雜),第二摻雜類型不同於第一摻雜類型。 Referring to Figure 1A, a cross-sectional view 100A of some embodiments of a backlit image sensor is provided. The backlight image sensor includes a semiconductor substrate 102 And the pixel sensor 104, the pixel sensor 104 is disposed in the semiconductor substrate 102 in the form of columns and/or rows. Pixel sensor 104 is arranged to convert incident radiation (eg, photons) into electrical signals. The pixel sensor 104 includes a corresponding photodetector 106, and in some embodiments, the pixel sensor 104 includes a corresponding amplifier (not shown). The photodetector 106 can be, for example, a photodiode, and the amplifier can be, for example, a transistor. The photodiode may include a first region (not shown) within the semiconductor substrate 102 having a first doping type (eg, n-type doping), and the photodiode may also be included in the semiconductor substrate 102. And covering a corresponding second region of the first region (not shown) having a second doping type (eg, p-type doping), the second doping type being different from the first doping type.
抗反射層(antireflective coating;ARC)108及/或緩衝層110係沿著半導體基板102之上表面112設置在半導體基板102之上。在具有抗反射層108及緩衝層110兩者之實施例中,緩衝層110係設置在抗反射層108之上。抗反射層108可例如為有機聚合物或金屬氧化物。緩衝層110可例如為氧化物,諸如二氧化矽。抗反射層108及/或緩衝層110將半導體基板102與覆蓋半導體基板102之堆疊柵113垂直地間隔。 An antireflective coating (ARC) 108 and/or a buffer layer 110 are disposed over the semiconductor substrate 102 along the upper surface 112 of the semiconductor substrate 102. In embodiments having both anti-reflective layer 108 and buffer layer 110, buffer layer 110 is disposed over anti-reflective layer 108. The anti-reflective layer 108 can be, for example, an organic polymer or a metal oxide. The buffer layer 110 can be, for example, an oxide such as hafnium oxide. The anti-reflective layer 108 and/or the buffer layer 110 vertically space the semiconductor substrate 102 from the stacked gate 113 covering the semiconductor substrate 102.
堆疊柵113包含金屬柵114及覆蓋金屬柵114之介電柵116。金屬柵114及介電柵116分別定義了金屬柵開口118對應於像素感測器104之側壁、與介電柵開口120A對應於像素感測器104之側壁,且金屬柵114及介電柵116係設置以朝向像素感測器104圍束且導引進入開口118、120A之輻射。金屬及/或介電柵開口118、120A至少部分地覆蓋 相應像素感測器104。在一些實施例中,如圖所示,金屬柵開口118及/或介電柵開口120A之中心對齊於相應像素感測器104之中心之上。在替代實施例中,如圖所示,金屬柵開口118及/或介電柵開口120A之中心與相應像素感測器104之中心橫向地位移或偏移。金屬柵開口118具有大致上為平面的下表面122,下表面可藉由抗反射層108及/或緩衝層110定義。介電柵開口120A具有彎曲下表面。彎曲下表面具有一曲率,曲率取決於彩色濾光器(下文所述)及下方覆蓋層(下文所述)之折射率。例如,如第1A圖中所示,若彩色濾光器之折射率大於覆蓋層之折射率,則介電柵開口120A將具有凹入的下表面124A。 The stacked gate 113 includes a metal gate 114 and a dielectric gate 116 covering the metal gate 114. The metal gate 114 and the dielectric gate 116 respectively define a metal gate opening 118 corresponding to the sidewall of the pixel sensor 104, and the dielectric gate opening 120A corresponds to the sidewall of the pixel sensor 104, and the metal gate 114 and the dielectric gate 116 The arrangement is directed to encircle the pixel sensor 104 and direct the radiation entering the openings 118, 120A. The metal and/or dielectric gate openings 118, 120A are at least partially covered Corresponding pixel sensor 104. In some embodiments, as shown, the center of the metal gate opening 118 and/or the dielectric gate opening 120A is aligned above the center of the respective pixel sensor 104. In an alternate embodiment, as shown, the center of the metal gate opening 118 and/or the dielectric gate opening 120A is laterally displaced or offset from the center of the corresponding pixel sensor 104. Metal gate opening 118 has a generally planar lower surface 122 that may be defined by anti-reflective layer 108 and/or buffer layer 110. The dielectric gate opening 120A has a curved lower surface. The curved lower surface has a curvature that depends on the refractive index of the color filter (described below) and the underlying cover layer (described below). For example, as shown in FIG. 1A, if the refractive index of the color filter is greater than the refractive index of the cover layer, the dielectric gate opening 120A will have a concave lower surface 124A.
金屬柵114及介電柵116係分別設置在堆疊於放反射層108及/或緩衝層110之上的金屬及介電柵層126、128之內。金屬柵114係設置在覆蓋於抗反射層108及/或緩衝層110之上的金屬柵層126之內。金屬柵層126可例如為鎢、銅,或鋁銅。介電柵116係設置在堆疊於金屬柵層126之上的介電柵層128之內。在一些實施例中,介電柵116係進一步設置在蝕刻終止層130及/或介電柵層128下方之其他層(例如,一或多個額外介電柵層)之內。介電柵層128可例如為氧化物,諸如二氧化矽。蝕刻終止層130可例如為氮化物,諸如氮化矽。 The metal gate 114 and the dielectric gate 116 are respectively disposed within the metal and dielectric gate layers 126, 128 stacked on the reflective layer 108 and/or the buffer layer 110. The metal gate 114 is disposed within the metal gate layer 126 overlying the anti-reflective layer 108 and/or the buffer layer 110. Metal gate layer 126 can be, for example, tungsten, copper, or aluminum copper. Dielectric grid 116 is disposed within dielectric gate layer 128 stacked over metal gate layer 126. In some embodiments, the dielectric gates 116 are further disposed within other layers (eg, one or more additional dielectric gate layers) below the etch stop layer 130 and/or the dielectric gate layer 128. Dielectric gate layer 128 can be, for example, an oxide such as hafnium oxide. The etch stop layer 130 can be, for example, a nitride such as tantalum nitride.
覆蓋層132A係設置在金屬柵層126之上,且位於金屬柵層126與介電柵層128之間。覆蓋層132A將介電柵116與金屬柵114間隔且填充金屬柵開口118。此外,覆蓋 層132A定義介電柵開口120A之凹入下表面124A,且在一些實施例中,覆蓋層132A部分地定義介電柵開口120A之側壁。覆蓋層132A為介電質,諸如二氧化矽。在一些實施例中,覆蓋層132A為緩衝層110及/或介電柵層128,或包含與緩衝層110及/或介電柵層128相同之材料。例如,在無蝕刻終止層130之一些實施例中,覆蓋層132A及介電柵層128具有相同分子結構及/或對應於連續層(例如,由單次沉積形成之層)之不同區域。 The cap layer 132A is disposed over the metal gate layer 126 and between the metal gate layer 126 and the dielectric gate layer 128. The cap layer 132A spaces the dielectric gate 116 from the metal gate 114 and fills the metal gate opening 118. In addition, coverage Layer 132A defines a recessed lower surface 124A of dielectric gate opening 120A, and in some embodiments, cover layer 132A partially defines a sidewall of dielectric gate opening 120A. The cap layer 132A is a dielectric such as hafnium oxide. In some embodiments, the cap layer 132A is the buffer layer 110 and/or the dielectric gate layer 128 or comprises the same material as the buffer layer 110 and/or the dielectric gate layer 128. For example, in some embodiments without etch stop layer 130, cap layer 132A and dielectric gate layer 128 have the same molecular structure and/or different regions corresponding to successive layers (eg, layers formed by a single deposition).
對應於像素感測器104之彩色濾光器134A、136A、138A係設置在介電柵開口120A中,以填充介電柵開口120A。彩色濾光器134A、136A、138A具有平坦上表面140,上表面與介電柵層128之上表面142大致共面。彩色濾光器134A、136A、138A係相應於指定顏色或波長之輻射所設置,且係設置以傳輸對應於指定顏色或波長之輻射至相應像素感測器104。彩色濾光器134A、136A、138A可在紅色、綠色和藍色之間交替,以使得彩色濾光器134A、136A、138A包含紅色彩色濾光器134A、綠色彩色濾光器136A、藍色彩色濾光器138A。在一些實施例中,彩色濾光器係根據貝勒馬賽克(Bayer mosaic)在紅光、綠光及藍光之間交替。彩色濾光器134A、136A、138A為具有一折射率之第一材料,折射率大於第二材料的折射率,第二材料係鄰接位在介電柵開口120A之凹入下表面124A的第一材料。第二材料為覆蓋層132A及/或介電柵層128之材料。 Color filters 134A, 136A, 138A corresponding to pixel sensor 104 are disposed in dielectric gate opening 120A to fill dielectric gate opening 120A. Color filters 134A, 136A, 138A have a flat upper surface 140 that is substantially coplanar with upper surface 142 of dielectric gate layer 128. Color filters 134A, 136A, 138A are arranged corresponding to radiation of a specified color or wavelength and are arranged to transmit radiation corresponding to a specified color or wavelength to respective pixel sensor 104. Color filters 134A, 136A, 138A may alternate between red, green, and blue such that color filters 134A, 136A, 138A include red color filter 134A, green color filter 136A, blue color Filter 138A. In some embodiments, the color filter alternates between red, green, and blue light according to a Bayer mosaic. The color filters 134A, 136A, 138A are a first material having a refractive index greater than the refractive index of the second material, and the second material is adjacent to the first recessed surface 124A of the dielectric gate opening 120A. material. The second material is the material of the cap layer 132A and/or the dielectric gate layer 128.
對應於像素感測器104之微透鏡144係設置在彩色濾光器134A、136A、138A及像素感測器104之上。微透鏡144之中心與像素感測器104之中心對齊,但微透鏡144之中心可與像素感測器104之中心橫向移位或偏移。微透鏡144係設置以朝向像素感測器104聚焦入射輻射(例如,光)。在一些實施例中,微透鏡144具有凸出上表面146,凸出上表面146係設置以朝向彩色濾光器134A、136A、138A及/或像素感測器104聚焦輻射。 Microlenses 144 corresponding to pixel sensors 104 are disposed over color filters 134A, 136A, 138A and pixel sensor 104. The center of the microlens 144 is aligned with the center of the pixel sensor 104, but the center of the microlens 144 can be laterally shifted or offset from the center of the pixel sensor 104. Microlens 144 is arranged to focus incident radiation (eg, light) toward pixel sensor 104. In some embodiments, the microlens 144 has a convex upper surface 146 that is configured to focus radiation toward the color filters 134A, 136A, 138A and/or the pixel sensor 104.
在操作中,介電柵開口120A之凹入下表面124A可做為聚焦或集中輻射於相應像素感測器104上之透鏡。進入彩色濾光器134A、136A、138A且照射於介電柵開口120A之凹入下表面124A上之輻射可以大於入射角之折射角朝向金屬柵114折射。在照射於金屬柵114上之後,輻射可朝向像素感測器104反射。例如,假定光線148A進入彩色濾光器136A、離開彩色濾光器136A之側壁朝向相應介電柵開口之凹入下表面反射,且以入射角θ 1照射於凹入下表面上。此外,假定彩色濾光器136A具有折射率n 1,且覆蓋層132A具有折射率n 2。在此情況下,因為n 1大於n 2,所以θ 2大於θ 1 且可根據如下Snell定律計算θ 2。 In operation, the recessed lower surface 124A of the dielectric gate opening 120A can serve as a lens that focuses or concentrates radiation on the corresponding pixel sensor 104. Radiation entering the color filters 134A, 136A, 138A and illuminating the concave lower surface 124A of the dielectric gate opening 120A may be refracted toward the metal gate 114 by a refraction angle greater than the angle of incidence. After illuminating the metal grid 114, the radiation can be reflected toward the pixel sensor 104. For example, assume that light ray 148A enters color filter 136A, exits the sidewall of color filter 136A toward the concave lower surface of the respective dielectric gate opening, and illuminates the concave lower surface at an angle of incidence θ 1 . Further, it is assumed that the color filter 136A has a refractive index n 1 and the cover layer 132A has a refractive index n 2 . In this case, since n 1 is greater than n 2, so that θ 1 and θ 2 is larger than θ 2 may be calculated according to the following law of Snell.
參閱第1B圖,提供了背光影像感測器之其他實施例之剖視圖100B。背光影像感測器包含設置在覆蓋層 132B之上的介電柵116。介電柵116定義了覆蓋相應像素感測器104之介電柵開口120B的側壁,且覆蓋層132B定義介電柵開口120B之凸出下表面124B。對應於像素感測器104之彩色濾光器134B、136B、138B係設置在介電柵開口120B中,以填充介電柵開口120B。彩色濾光器134B、136B、138B為具有一折射率之第一材料,折射率小於第二材料之折射率,第二材料係鄰接位在介電柵開口120B之凸出下表面124B的第一材料。第二材料為覆蓋層132B及/或介電柵層128之材料。 Referring to Figure 1B, a cross-sectional view 100B of another embodiment of a backlit image sensor is provided. Backlit image sensor included in the overlay Dielectric grid 116 above 132B. The dielectric gate 116 defines a sidewall that covers the dielectric gate opening 120B of the corresponding pixel sensor 104, and the cover layer 132B defines a convex lower surface 124B of the dielectric gate opening 120B. Color filters 134B, 136B, 138B corresponding to pixel sensor 104 are disposed in dielectric gate opening 120B to fill dielectric gate opening 120B. The color filters 134B, 136B, and 138B are a first material having a refractive index lower than a refractive index of the second material, and the second material is adjacent to the first surface of the lower surface 124B of the dielectric gate opening 120B. material. The second material is the material of the cap layer 132B and/or the dielectric gate layer 128.
在操作中,介電柵開口120B之凸出下表面124B可做為聚焦或集中輻射於相應像素感測器104上之透鏡。進入彩色濾光器134B、136B、138B,且照射於介電柵開口120B之凸出下表面124B上之輻射可以小於入射角θ 1之折射角θ 2朝向像素感測器104折射。例如,假定光線148B進入彩色濾光器136B、離開彩色濾光器136B之側壁朝向相應介電柵開口之凸出下表面反射,且以入射角θ 1 照射於凸出下表面上。此外,假定彩色濾光器136B具有折射率n 1,且覆蓋層132B具有折射率n 2。在此情況下,因為n 1 小於n 2,所以θ 2小於θ 1 且可根據Snell定律計算θ 2。有利地,在像素感測器104上聚焦或集中輻射可降低相鄰像素感測器之間的串擾且提高光學性能。 In operation, the raised lower surface 124B of the dielectric gate opening 120B can serve as a lens that focuses or concentrates radiation on the corresponding pixel sensor 104. The color filters 134B, 136B, 138B are entered, and the radiation incident on the convex lower surface 124B of the dielectric gate opening 120B can be refracted toward the pixel sensor 104 by a refraction angle θ 2 that is smaller than the incident angle θ 1 . For example, it is assumed that the light ray 148B enters the color filter 136B, the side wall away from the color filter 136B is reflected toward the convex lower surface of the corresponding dielectric gate opening, and is incident on the convex lower surface at the incident angle θ 1 . Further, it is assumed that the color filter 136B has a refractive index n 1 and the cover layer 132B has a refractive index n 2 . In this case, since n 1 is less than n 2, so that less than θ 1 and θ 2 θ 2 may be calculated according to Snell's law. Advantageously, focusing or concentrating radiation on the pixel sensor 104 can reduce crosstalk between adjacent pixel sensors and improve optical performance.
上述實施例係關於具有彎曲下表面之介電柵開口。然而,在一些實施例中,介電柵開口具有平坦的下表面。在此實施例中,對設計參數之改良控制對於達成適當的光學 性能及光學阻隔性是重要的。設計參數可包含例如,柵高度、金屬柵開口寬度,及頂部寬度中之一或多者。 The above embodiments relate to a dielectric gate opening having a curved lower surface. However, in some embodiments, the dielectric grid opening has a flat lower surface. In this embodiment, improved control of design parameters is achieved for proper optics Performance and optical barrier properties are important. Design parameters may include, for example, one or more of gate height, metal gate opening width, and top width.
參閱第1C圖,提供了背光影像感測器之其他實施例之剖視圖100C。背光影像感測器包含覆蓋半導體基板102之堆疊柵結構150。堆疊柵結構150包含堆疊柵113,堆疊柵藉由抗反射層108及/或緩衝層110與半導體基板102垂直地間隔。抗反射層108及/或緩衝層110係設置在堆疊柵113與半導體基板102之間,通常緩衝層110在抗反射層108之上。堆疊柵結構150具有高度HSG,且在一些實施例中(如圖所示),堆疊柵結構150包含緩衝層110。 Referring to Figure 1C, a cross-sectional view 100C of another embodiment of a backlit image sensor is provided. The backlit image sensor includes a stacked gate structure 150 that covers the semiconductor substrate 102. The stacked gate structure 150 includes a stacked gate 113 that is vertically spaced from the semiconductor substrate 102 by the anti-reflective layer 108 and/or the buffer layer 110. The anti-reflective layer 108 and/or the buffer layer 110 are disposed between the stack gate 113 and the semiconductor substrate 102, typically the buffer layer 110 is over the anti-reflective layer 108. The stacked gate structure 150 has a height HSG , and in some embodiments (as shown), the stacked gate structure 150 includes a buffer layer 110.
堆疊柵113包含金屬柵114及覆蓋金屬柵114之介電柵116。金屬柵114具有高度HMG,且介電柵具有高度HDG。在一些實施例中,介電柵高度HDG與金屬柵高度HMG之比值(亦即,HDG/HMG)為約1.0至約8.0。例如,比值HDG/HMG可為約1.0至約3.0、約3.0至約6.0,或約6.0至8.0。金屬柵及介電柵114、116分別為對應於設置在半導體基板102中之像素感測器104之介電質及金屬柵開口118、120C定義側壁。金屬柵開口118具有下部寬度WMGO,且介電柵開口120C具有一般為平面的下表面124C。在一些實施例中,堆疊柵結構高度HSG與金屬柵開口寬度WMGO之比值(亦即,HSG/WMGO)為約0.5至約2.0。例如,比值HSG/WMGO可為約0.5至約1,或約1.0至約2.0。金屬及介電柵114、116係設置以朝向相應像素感測器104圍束且導引輻射進入金 屬及介電柵開口118、120C。金屬及介電柵114、116分別地係由複數個重疊介電及金屬柵段152、154組成。 The stacked gate 113 includes a metal gate 114 and a dielectric gate 116 covering the metal gate 114. The metal gate 114 has a height H MG and the dielectric grid has a height H DG . In some embodiments, the ratio of the dielectric grid height H DG to the metal grid height H MG (ie, H DG /H MG ) is from about 1.0 to about 8.0. For example, the ratio H DG /H MG can be from about 1.0 to about 3.0, from about 3.0 to about 6.0, or from about 6.0 to 8.0. The metal gates and dielectric gates 114, 116 define sidewalls corresponding to the dielectric and metal gate openings 118, 120C of the pixel sensor 104 disposed in the semiconductor substrate 102, respectively. The metal gate opening 118 has a lower width W MGO and the dielectric gate opening 120C has a generally planar lower surface 124C. In some embodiments, the height H SG stacked gate structure of the metal gate of the opening ratio of the width W MGO (i.e., H SG / W MGO) of from about 0.5 to about 2.0. For example, the ratio H SG /W MGO can be from about 0.5 to about 1, or from about 1.0 to about 2.0. The metal and dielectric gates 114, 116 are arranged to encircle the respective pixel sensor 104 and direct radiation into the metal and dielectric gate openings 118, 120C. The metal and dielectric gates 114, 116 are each comprised of a plurality of overlapping dielectric and metal gate segments 152, 154.
金屬及介電柵段152、154為環形,諸如正方形或矩形,且具有與相應下表面成角度θ、Φ傾斜的側壁。在一些實施例中,介電柵側壁角度θ為約60度至約90度。例如,介電柵側壁角度θ可為約70度至約80度。進一步,金屬及介電柵段152、154對應於金屬及介電柵開口118、120C,且橫向地圍繞相應的金屬及介電柵開口118、120C。金屬柵段152具有頂部寬度WMG,且介電柵段154具有頂部寬度WDG。頂部寬度WMG、WDG自相應柵段152、154之內側壁跨越至相應柵段152、154之外側壁(柵段152、154為環形)。在一些實施例中,介電柵段寬度WDG與金屬柵段寬度WMG之比值(亦即,WDG/WMG)為約0.1至約2.0。例如,比值WDG/WMG可為約0.1至約1.0,或約1.0至約2.0。進一步來說,在一些實施例中,介電柵段寬度WDG與金屬柵開口寬度WMGO之比值(亦即,WDG/WMGO)為約0.1至約0.9。例如,比值WDG/WMGO可為約0.1至約0.5,或約0.5至約0.9。 The metal and dielectric grid segments 152, 154 are annular, such as square or rectangular, and have sidewalls that are inclined at an angle θ , Φ from the respective lower surface. In some embodiments, the dielectric grid sidewall angle θ is from about 60 degrees to about 90 degrees. For example, the dielectric grid sidewall angle θ can be from about 70 degrees to about 80 degrees. Further, metal and dielectric gate segments 152, 154 correspond to metal and dielectric gate openings 118, 120C and laterally surround respective metal and dielectric gate openings 118, 120C. Metal gate segment 152 has a top width W MG and dielectric gate segment 154 has a top width W DG . The top widths W MG , W DG span from the inner sidewalls of the respective gate segments 152 , 154 to the outer sidewalls of the respective gate segments 152 , 154 (the gate segments 152 , 154 are annular). In some embodiments, the ratio of the dielectric gate width W DG to the metal gate width W MG (ie, W DG /W MG ) is from about 0.1 to about 2.0. For example, the ratio W DG /W MG can be from about 0.1 to about 1.0, or from about 1.0 to about 2.0. Further, in some embodiments, the ratio of the dielectric gate width W DG to the metal gate opening width W MGO (ie, W DG /W MGO ) is from about 0.1 to about 0.9. For example, the ratio W DG /W MGO can be from about 0.1 to about 0.5, or from about 0.5 to about 0.9.
堆疊柵結構150之覆蓋層132C係設置在金屬柵114與介電柵116之間,以定義介電柵開口120C之下表面124C。此外,對應於像素感測器104之彩色濾光器134C、136C、138C係設置於介電柵開口120C中,以至少部分地填充介電柵開口120C。彩色濾光器134C、136C、138C具有不同於介電柵116的折射率,且具有高度HCF。在一些實 施例中,介電柵高度HDG與彩色濾光器高度HCF之比值(亦即,HDG/HCF)為約0.1至約2.0。例如,比值HDG/HCF可為約0.1至約1.0,或約1.0至約2.0。 A cap layer 132C of the stacked gate structure 150 is disposed between the metal gate 114 and the dielectric gate 116 to define a lower surface 124C of the dielectric gate opening 120C. In addition, color filters 134C, 136C, 138C corresponding to pixel sensor 104 are disposed in dielectric gate opening 120C to at least partially fill dielectric gate opening 120C. The color filters 134C, 136C, 138C have a different refractive index than the dielectric grid 116 and have a height H CF . In some embodiments, the height H DG and the color filter CF of the ratio of the height H of the gate dielectric (i.e., H DG / H CF) is from about 0.1 to about 2.0. For example, the ratio H DG /H CF can be from about 0.1 to about 1.0, or from about 1.0 to about 2.0.
有利地,藉由控制設計參數,可提高光學性能及光學阻隔性(例如,藉由降低串擾、SNR-10,等等)。設計參數可包含,例如,堆疊柵結構高度HSG、金屬柵高度HMG、介電柵高度HDG、彩色濾光器高度HCF、金屬柵開口寬度WMGO、金屬柵段寬度WMG,及介電柵段寬度WDG中之一或多者。此外,雖然第1C圖涉及金屬柵開口寬度WMGO,但是應理解,像素間距(例如,相鄰像素感測器之中心之間的橫向距離)可代替金屬柵開口寬度WMGO,而用於各種比值。 Advantageously, optical performance and optical barrier properties can be improved by controlling design parameters (eg, by reducing crosstalk, SNR-10, etc.). Design parameters may include, for example, stacked gate structure height H SG , metal gate height H MG , dielectric gate height H DG , color filter height H CF , metal gate opening width W MGO , metal gate width W MG , and One or more of the dielectric gate widths W DG . In addition, although the 1Cth figure relates to the metal gate opening width W MGO , it should be understood that the pixel pitch (for example, the lateral distance between the centers of adjacent pixel sensors) may be used instead of the metal gate opening width W MGO . ratio.
參閱第14A圖,圖形1400A之一些實施例被提供以說明介電柵高度HDG與彩色濾光器高度HCF之比值(亦即,HDG/HCF)對光學性能之效應。橫軸對應於此比值,且自-0.1至約1.1。縱軸對應於正規化SNR-10或正規化靈敏度中之任一者,取決於縱軸係對應於圖形1400A之何側上。在圖形1400A之左側上,縱軸對應於正規化SNR-10且自約0.8至約1.15。在圖形1400A之右側上,縱軸對應於正規化靈敏度且自約0.88至約1.02。 Referring to Figure 14A, some embodiments of graph 1400A are provided to illustrate the effect of the ratio of dielectric grid height H DG to color filter height H CF (i.e., H DG /H CF ) on optical performance. The horizontal axis corresponds to this ratio and is from -0.1 to about 1.1. The vertical axis corresponds to either the normalized SNR-10 or the normalized sensitivity, depending on which side of the graphic 1400A the vertical axis corresponds to. On the left side of graph 1400A, the vertical axis corresponds to normalized SNR-10 and from about 0.8 to about 1.15. On the right side of graph 1400A, the vertical axis corresponds to normalization sensitivity and is from about 0.88 to about 1.02.
菱形標記及三角形標記係分別繪製於圖形1400A上,並分別用於標示正規化SNR-10及正規化靈敏度,且線條將標記互連以使趨勢更加清晰。對應於比值之已知值之標記係藉由虛線橢圓劃分。如圖所示,正規化 SNR-10隨著比值自約0.1增加至約2而有利地遞減。此外,正規化靈敏度隨著比值增加而有利地增加。介電柵高度HDG與金屬柵高度HMG之比值(亦即,HDG/HMG)可預期有類似的SNR-10及正規化靈敏度之趨勢。 Diamond marks and triangle marks are drawn on the graphic 1400A, respectively, and are used to mark the normalized SNR-10 and the normalized sensitivity, respectively, and the lines are interconnected to make the trend clearer. The mark corresponding to the known value of the ratio is divided by a broken line ellipse. As shown, the normalized SNR-10 is advantageously decremented as the ratio increases from about 0.1 to about 2. Furthermore, the normalization sensitivity is advantageously increased as the ratio increases. The ratio of the dielectric grid height H DG to the metal grid height H MG (i.e., H DG /H MG ) can be expected to have a similar trend of SNR-10 and normalization sensitivity.
參閱第14B圖,圖形1400B之一些實施例被提供以說明介電柵段寬度WDG與金屬柵開口寬度WMGO之比值(亦即,WDG/WMGO)對正規化SNR-10之效應。橫軸對應於此比值,且自約0.12至約0.16。縱軸對應於正規化SNR-10,且自約0.88至約1.00。 Referring to Figure 14B, some embodiments of pattern 1400B are provided to illustrate the effect of the ratio of dielectric gate width W DG to metal gate opening width W MGO (i.e., W DG /W MGO ) to normalized SNR-10. The horizontal axis corresponds to this ratio and is from about 0.12 to about 0.16. The vertical axis corresponds to the normalized SNR-10 and is from about 0.88 to about 1.00.
菱形標記及三角形標記係分別繪製於圖形1400B上,並分別用於標示介電柵高度HDG與彩色濾光器高度HCF之不同比值(如第14A圖所示),且最適線連接在標記之間以使趨勢更加清晰。菱形標記對應於為約1.00之介電柵高度HDG與彩色濾光器高度HCF之比值。三角形標記對應於為約0.56之介電柵高度HDG與彩色濾光器高度HCF之比值。如圖可知,隨著介電柵段寬度WDG與金屬柵開口寬度WMGO之比值自約0.125增加至約0.155,正規化SNR-10增加。如此是因為,隨著介電柵段寬度WDG增加,較少之光進入彩色濾光器134C、136C及138C,從而降低信號以及雜訊。介電柵段寬度WDG與金屬柵段寬度WMG之比值(亦即,WDG/WMG)可預期有類似之SNR-10趨勢。因此,介於0.1與0.9之範圍之間的介電柵段寬度WDG與金屬柵開口寬度WMGO之比值是較佳的。 The diamond mark and the triangle mark are respectively drawn on the graphic 1400B, and are respectively used to indicate different ratios of the dielectric gate height H DG and the color filter height H CF (as shown in FIG. 14A), and the optimum line is connected to the mark. Between to make the trend clearer. The diamond mark corresponds to a ratio of the dielectric grid height H DG of about 1.00 to the color filter height H CF . The triangular mark corresponds to a ratio of the dielectric grid height H DG of about 0.56 to the color filter height H CF . As can be seen, as the ratio of the dielectric gate width W DG to the metal gate opening width W MGO increases from about 0.125 to about 0.155, the normalized SNR-10 increases. This is because, as the dielectric gate width W DG increases, less light enters the color filters 134C, 136C, and 138C, thereby reducing signal and noise. A ratio of the dielectric gate width W DG to the metal gate width W MG (i.e., W DG /W MG ) can be expected to have a similar SNR-10 trend. Therefore, a ratio of the dielectric gate width W DG to the metal gate opening width W MGO between 0.1 and 0.9 is preferred.
參閱第14C圖,圖形1400C之一些實施例被提供以說明金屬柵開口寬度WMGO對光學性能之效應。橫軸對應於以微米(μm)計之金屬柵開口寬度WMGO。縱軸對應於光學QE(以百分比計)或平均串擾(以百分比計)中之任一者,取決於縱軸係對應於圖形1400C之何側。在圖形1400C之左側上,縱軸對應於光學QE且自約45%至約75%。在圖形1400C之右側上,縱軸對應於平均串擾且自約15%至約40%。 Referring to Figure 14C, some embodiments of graph 1400C are provided to illustrate the effect of metal gate opening width W MGO on optical performance. The horizontal axis corresponds to the metal gate opening width W MGO in micrometers (μm). The vertical axis corresponds to either optical QE (in percent) or average crosstalk (in percent), depending on which side of the graph 1400C the longitudinal axis corresponds to. On the left side of graph 1400C, the vertical axis corresponds to optical QE and is from about 45% to about 75%. On the right side of graph 1400C, the vertical axis corresponds to average crosstalk and is from about 15% to about 40%.
菱形標記及三角形標記係分別繪製於圖形1400C上,且分別用於平均串擾及光學QE,且線條將標記互連以使趨勢更加清晰。如圖可見,平均串擾隨著金屬柵開口寬度WMGO增加而減小。此外,光學QE隨著金屬柵開口寬度WMGO增加而增加。 Diamond marks and triangle marks are drawn on the pattern 1400C, respectively, and are used for average crosstalk and optical QE, respectively, and the lines interconnect the marks to make the trend clearer. As can be seen, the average width W MGO crosstalk decreases with increasing opening of the metal gate. Further, as the optical QE metal gate opening width W MGO increases.
參閱第2A圖,背光影像感測器之一些實施例之射線圖200A被提供,背光影像感測器具有彩色濾光器202,彩色濾光器202具有凹入下表面204。如圖所示,光線206進入彩色濾光器202且並行地照射於凹入下表面204上。因為彩色濾光器202具有第一折射率,且此第一折射率大於下方鄰接層208之第二折射率,所以光線206將折射離開相應法向軸210至接近於下層像素感測器之下層焦點212(類似於凸透鏡)。換言之,彩色濾光器202相對於下層208之較高折射率,可使得光線206具有大於相應入射角θ 1 之折射角θ 2,從而將光線206朝向下層像素感測器聚焦。不平行於光線206且進入彩色濾光器202之其他光線(未繪示) 如上述方式折射,且與焦平面214上的其他焦點相交,其中焦平面214包含焦點212。 Referring to FIG. 2A, a ray diagram 200A of some embodiments of a backlight image sensor is provided, the backlight image sensor having a color filter 202 having a concave lower surface 204. As shown, light 206 enters color filter 202 and is illuminated in parallel onto recessed lower surface 204. Because the color filter 202 has a first index of refraction and the first index of refraction is greater than the second index of refraction of the lower adjacent layer 208, the ray 206 will refract away from the corresponding normal axis 210 to be adjacent to the underlying pixel sensor. Focus 212 (similar to a convex lens). In other words, the higher refractive index of color filter 202 relative to lower layer 208 may cause light 206 to have a refraction angle θ 2 greater than the corresponding angle of incidence θ 1 to focus ray 206 toward the underlying pixel sensor. Other rays (not shown) that are not parallel to the ray 206 and that enter the color filter 202 are refracted as described above and intersect other points of focus on the focal plane 214, wherein the focal plane 214 includes the focus 212.
參閱第2B圖,背光影像感測器之一些實施例之射線圖200B被提供,背光影像感測器具有彩色濾光器216。此彩色濾光器216具有凸出下表面218。如圖所示,光線220進入彩色濾光器216且平行地照射於凸出下表面218上。因為彩色濾光器216具有第一折射率,且此第一折射率小於下方鄰接層222之第二折射率,所以光線220將朝向相應法向軸224折射至接近於下方像素感測器之下層焦點226(類似於凸透鏡)。換言之,彩色濾光器216相對於下層222之低折射率,可使得光線220具有小於相應入射角θ 1 之折射角θ 2,從而將光線220朝向下方像素感測器聚焦。不平行於光線220且進入彩色濾光器216之其他光線(未繪示)如上述方式折射,且與焦平面228上的其他焦點相交,其中焦平面228包含焦點226。 Referring to FIG. 2B, a ray diagram 200B of some embodiments of a backlight image sensor is provided, and the backlight image sensor has a color filter 216. This color filter 216 has a convex lower surface 218. As shown, light 220 enters color filter 216 and is incident on the convex lower surface 218 in parallel. Because the color filter 216 has a first index of refraction, and the first index of refraction is less than the second index of refraction of the lower adjacent layer 222, the ray 220 will refract toward the corresponding normal axis 224 to be close to the underlying pixel sensor. Focus 226 (similar to a convex lens). In other words, the low refractive index of color filter 216 relative to lower layer 222 may cause light 220 to have a refraction angle θ 2 that is less than the corresponding angle of incidence θ 1 , thereby focusing ray 220 toward the underlying pixel sensor. Other rays (not shown) that are not parallel to the ray 220 and that enter the color filter 216 are refracted as described above and intersect other points of focus on the focal plane 228, wherein the focal plane 228 includes the focus 226.
參閱第3圖,背光影像感測器之其他實施例之剖視圖300被提供。背光影像感測器包含以列及行的形式設置的像素感測器104陣列,此陣列係位於在積體電路302之背側304與積體電路302之BEOL金屬堆疊306之間,並位於積體電路302之半導體基板102中。像素感測器104包含相應的檢光器106,且在一些實施例中,像素感測器104包含放大器(未繪示)。檢光器106係設置以將入射輻射(例如,光子)轉換為電訊號,且檢光器106可為例如光電二極體。 Referring to Figure 3, a cross-sectional view 300 of another embodiment of a backlit image sensor is provided. The backlit image sensor includes an array of pixel sensors 104 arranged in columns and rows, the array being located between the back side 304 of the integrated circuit 302 and the BEOL metal stack 306 of the integrated circuit 302, and located in the product. In the semiconductor substrate 102 of the body circuit 302. The pixel sensor 104 includes a corresponding photodetector 106, and in some embodiments, the pixel sensor 104 includes an amplifier (not shown). The detector 106 is configured to convert incident radiation (e.g., photons) into electrical signals, and the optical detector 106 can be, for example, a photodiode.
BEOL金屬堆疊306位於半導體基板102之下且位於半導體基板102與載體基板308之間。BEOL金屬堆疊306包含堆疊於層間介電(interlayer dielectric;ILD)層314之內的複數個金屬層310、312。BEOL金屬堆疊306之一或多個接觸點316自金屬層310延伸至像素感測器104。此外,BEOL金屬堆疊306之一或多個通孔318在金屬層310、312之間延伸以將金屬層310、312互連。層間介電層314可例如為低k介電質(亦即,具有小於約3.9之介電常數之介電質)或氧化物。金屬層310及312、接觸點316,及通孔318可例如為如銅或鋁之金屬。 The BEOL metal stack 306 is located below the semiconductor substrate 102 and between the semiconductor substrate 102 and the carrier substrate 308. The BEOL metal stack 306 includes a plurality of metal layers 310, 312 stacked within an interlayer dielectric (ILD) layer 314. One or more contact points 316 of the BEOL metal stack 306 extend from the metal layer 310 to the pixel sensor 104. Additionally, one or more vias 318 of the BEOL metal stack 306 extend between the metal layers 310, 312 to interconnect the metal layers 310, 312. Interlayer dielectric layer 314 can be, for example, a low-k dielectric (i.e., a dielectric having a dielectric constant less than about 3.9) or an oxide. Metal layers 310 and 312, contact points 316, and vias 318 can be, for example, metals such as copper or aluminum.
抗反射層108及/或緩衝層110係沿著積體電路302之背側304設置,且堆疊柵113係設置在抗反射層108及/或緩衝層110之上。堆疊柵113包含金屬柵114及覆蓋金屬柵114之介電柵116。金屬柵114及介電柵116係分別設置在堆疊於抗反射層108及/或緩衝層110之上的金屬及介電柵層126、128之內。在一些實施例中,介電柵116係進一步設置在蝕刻終止層130之內,蝕刻終止層130係位於介電柵116之介電柵層128之下。此外,金屬柵114及介電柵116分別定義金屬柵開口118之對應像素感測器104的側壁及介電柵開口120之對應像素感測器104的側壁。金屬柵開口118具有大致上為平面的下表面122,下表面可藉由抗反射層108及/或緩衝層110定義;而介電柵開口120具有彎曲下表面124。彎曲下表面124可以是凹入的(例如,如圖所示,且如第1A圖中所繪)或凸出的(例如,如第1B圖中所繪)。 The anti-reflective layer 108 and/or the buffer layer 110 are disposed along the back side 304 of the integrated circuit 302, and the stacked gate 113 is disposed over the anti-reflective layer 108 and/or the buffer layer 110. The stacked gate 113 includes a metal gate 114 and a dielectric gate 116 covering the metal gate 114. The metal gate 114 and the dielectric gate 116 are respectively disposed within the metal and dielectric gate layers 126, 128 stacked on the anti-reflective layer 108 and/or the buffer layer 110. In some embodiments, the dielectric gate 116 is further disposed within the etch stop layer 130, and the etch stop layer 130 is under the dielectric gate layer 128 of the dielectric gate 116. In addition, the metal gate 114 and the dielectric gate 116 define sidewalls of the corresponding pixel sensor 104 of the metal gate opening 118 and sidewalls of the corresponding pixel sensor 104 of the dielectric gate opening 120, respectively. The metal gate opening 118 has a generally planar lower surface 122 that may be defined by the anti-reflective layer 108 and/or the buffer layer 110; and the dielectric gate opening 120 has a curved lower surface 124. The curved lower surface 124 can be concave (eg, as shown, and as depicted in FIG. 1A) or convex (eg, as depicted in FIG. 1B).
覆蓋層132係設置在金屬柵114之上,且位於金屬柵層126與介電柵層128之間。此外,對應於像素感測器104之彩色濾光器134、136、138及微透鏡144係在相應像素感測器104之上。彩色濾光器134、136、138填充介電柵開口120,且微透鏡144將彩色濾光器134、136、138遮罩以將光聚焦至彩色濾光器134、136、138中。 The cap layer 132 is disposed over the metal gate 114 and between the metal gate layer 126 and the dielectric gate layer 128. In addition, color filters 134, 136, 138 and microlenses 144 corresponding to pixel sensor 104 are above respective pixel sensors 104. Color filters 134, 136, 138 fill dielectric gate openings 120, and microlenses 144 mask color filters 134, 136, 138 to focus light into color filters 134, 136, 138.
參閱第4圖,此圖為用於製造背光影像感測器之方法之一些實施例的流程圖400,背光影像感測器具有彩色濾光器,且彩色濾光器具有彎曲下表面。 Referring to Figure 4, there is shown a flow diagram 400 of some embodiments of a method for fabricating a backlight image sensor having a color filter and a color filter having a curved lower surface.
在步驟402,具有像素感測器之積體電路被提供,像素感測器係設置在積體電路之半導體基板中且位於積體電路之背側與積體電路之BEOL金屬堆疊之間。 At step 402, an integrated circuit having a pixel sensor is provided, the pixel sensor being disposed in the semiconductor substrate of the integrated circuit and between the back side of the integrated circuit and the BEOL metal stack of the integrated circuit.
在步驟404,抗反射層係形成於背側之上,緩衝層係形成於抗反射層之上,且金屬柵層係形成於緩衝層之上。 In step 404, an anti-reflective layer is formed on the back side, a buffer layer is formed on the anti-reflective layer, and a metal gate layer is formed on the buffer layer.
在步驟406,執行第一蝕刻至金屬柵層中以形成金屬柵。金屬柵為對應於像素感測器之金屬柵開口定義側壁。 At step 406, a first etch is performed into the metal gate layer to form a metal gate. The metal grid defines sidewalls for the metal gate openings corresponding to the pixel sensors.
在步驟408,覆蓋層係形成於金屬柵之上且填充金屬柵開口。 At step 408, a capping layer is formed over the metal gate and fills the metal gate opening.
在步驟410,執行化學機械研磨(chemical mechanical polish;CMP)至覆蓋層中以平坦化覆蓋層之上表面。 At step 410, a chemical mechanical polish (CMP) is performed into the cover layer to planarize the upper surface of the cover layer.
在步驟412,在覆蓋層之上形成蝕刻終止層,且在蝕刻終止層之上形成介電柵層。 At step 412, an etch stop layer is formed over the cap layer and a dielectric gate layer is formed over the etch stop layer.
在步驟414,執行第二蝕刻至介電柵層中直至蝕刻終止層,以形成介電柵。介電柵定義對應於像素感測器之介電柵開口。 At step 414, a second etch is performed into the dielectric gate layer until the etch stop layer is formed to form a dielectric gate. The dielectric grid defines a dielectric gate opening corresponding to the pixel sensor.
在步驟416,執行第三蝕刻至蝕刻終止層中以移除介電柵開口中之蝕刻終止層之暴露區域。 At step 416, a third etch is performed into the etch stop layer to remove the exposed regions of the etch stop layer in the dielectric gate opening.
在步驟418,執行第四蝕刻至覆蓋層中以彎曲介電柵開口之下表面。 At step 418, a fourth etch is performed into the cap layer to bend the lower surface of the dielectric gate opening.
在步驟420,形成填充介電柵開口之彩色濾光器,彩色濾光器具有不同於覆蓋層之折射率之折射率。有利地,此不同折射率與介電柵開口之彎曲下表面將使得輻射朝向下方像素感測器聚焦。如此有利地減少了接近於介電柵之下表面之輻射的分散,且降低了相鄰像素感測器之間的串擾。此外,此舉有利地改良了光學性能。 At step 420, a color filter is formed that fills the opening of the dielectric gate, the color filter having a refractive index different from the refractive index of the cover layer. Advantageously, this different refractive index and the curved lower surface of the dielectric gate opening will cause the radiation to focus towards the lower pixel sensor. This advantageously reduces the dispersion of radiation close to the lower surface of the dielectric grid and reduces crosstalk between adjacent pixel sensors. Moreover, this advantageously improves optical performance.
在步驟422,微透鏡係形成於彩色濾光器之上。 At step 422, a microlens is formed over the color filter.
雖然流程圖400所述之方法在本文中係繪示且描述為一系列動作或事件,但是應將瞭解,動作或事件之次序並非限制的。例如,一些動作可以不同順序及/或與其他動作或事件(除本文所示及/或所述之動作或事件之外)並行地發生。此外,在一或多個實施例中,並非所有動作均為必需的,且本文所示之動作中之一或多者可以一或多個獨立的動作及/或階段進行。 Although the method of flowchart 400 is illustrated and described herein as a series of acts or events, the order of the acts, events, or events is not limited. For example, some acts may occur in a different order and/or in parallel with other acts or events (other than the acts or events shown and/or described herein). Moreover, not all of the acts are required in one or more embodiments, and one or more of the acts illustrated herein can be performed in one or more separate acts and/or stages.
在一些替代實施例中,可同時執行(例如,使用共用蝕刻劑)第二及第三蝕刻,及/或第三及第四蝕刻。此外,在一些實施例中,可省略蝕刻終止層及步驟416。在此實施例中,第二蝕刻可以是使用已知蝕刻速率之基於時間的蝕刻。此外,在一些替代實施例中,覆蓋層及介電柵層可對應於共用層之不同區域。在此實施例中,可省略步驟408、410、412。代替步驟408、410及412,共用層可形成(例如,以單次沉積)於金屬柵之上且填充金屬柵開口。進一步來說,可執行化學機械研磨至共用層中以平坦化共用層之上表面,且可執行步驟414至422。此外,在一些實施例中,可省略第四蝕刻。 In some alternative embodiments, the second and third etches, and/or the third and fourth etches may be performed simultaneously (eg, using a common etchant). Moreover, in some embodiments, the etch stop layer and step 416 can be omitted. In this embodiment, the second etch may be a time based etch using a known etch rate. Moreover, in some alternative embodiments, the capping layer and the dielectric gate layer may correspond to different regions of the common layer. In this embodiment, steps 408, 410, 412 may be omitted. Instead of steps 408, 410, and 412, a common layer can be formed (eg, in a single deposition) over the metal gate and filled with a metal gate opening. Further, chemical mechanical polishing can be performed into the common layer to planarize the upper surface of the common layer, and steps 414 to 422 can be performed. Moreover, in some embodiments, the fourth etch can be omitted.
參閱第5圖至第11圖、第12A圖及第12B圖、及第13A圖及第13B圖,在各製造階段之背光影像感測器的一些實施例之剖視圖被提供以說明第4圖之方法。儘管第5圖至第11圖、第12A圖及第12B圖、及第13A圖及第13B圖係關於上述方法,但是應瞭解,在第5圖至第11圖、第12A圖及第12B圖、及第13A圖及第13B圖中繪示之結構不限於此些方法,而是可取而代之地做為獨立於此些方法外的結構。同樣地,儘管第5圖至第11圖、第12A圖及第12B圖、及第13A圖及第13B圖係關於方法,但是應瞭解,方法不限於在第5圖至第11圖、第12A圖及第12B圖,及第13A圖及第13B圖中繪示之結構,而是可取而代之地做為獨立於在第5圖至第11圖、第12A圖及第12B圖、及第13A圖及第13B圖中公開之結構外的方法。 Referring to Figures 5 to 11, 12A and 12B, and 13A and 13B, cross-sectional views of some embodiments of backlight image sensors at various stages of fabrication are provided to illustrate Figure 4 method. Although Figures 5 to 11, 12A and 12B, and 13A and 13B relate to the above method, it should be understood that in Figures 5 to 11, 12A and 12B The structures illustrated in FIGS. 13A and 13B are not limited to such methods, but may alternatively be constructed independently of the methods. Similarly, although FIGS. 5 to 11 , 12A and 12B , and 13A and 13B relate to the method, it should be understood that the method is not limited to those in FIGS. 5 to 11 and 12A. And the structure shown in FIG. 12B and FIGS. 13A and 13B, but may alternatively be independent of FIGS. 5 to 11 , 12A and 12B, and 13A. And the method outside the structure disclosed in Fig. 13B.
第5圖繪示對應於步驟402之一些實施例之剖視圖500。如圖所示,半導體基板102被提供,其具有設置於半導體基板102之內的像素感測器104。在一些實施例中,半導體基板102為積體電路之一部分,且像素感測器104係設置於積體電路之背側(例如,半導體基板102之上表面112)與積體電路之BEOL金屬堆疊(未繪示)之間。像素感測器104包含檢光器106,諸如光電二極體。半導體基板102可例如為塊狀半導體基板或絕緣底矽(silicon-on-insulator;SOI)基板。 FIG. 5 depicts a cross-sectional view 500 corresponding to some embodiments of step 402. As shown, a semiconductor substrate 102 is provided having a pixel sensor 104 disposed within the semiconductor substrate 102. In some embodiments, the semiconductor substrate 102 is part of an integrated circuit, and the pixel sensor 104 is disposed on the back side of the integrated circuit (eg, the upper surface 112 of the semiconductor substrate 102) and the BEOL metal stack of the integrated circuit. Between (not shown). The pixel sensor 104 includes a photodetector 106, such as a photodiode. The semiconductor substrate 102 can be, for example, a bulk semiconductor substrate or a silicon-on-insulator (SOI) substrate.
第6圖繪示對應於步驟404之一些實施例之剖視圖600。如圖所示,抗反射層108及/或緩衝層110係依序堆疊於半導體基板102之上。此外,金屬柵層126’係形成於抗反射層108及/或緩衝層110之上。抗反射層108、緩衝層110,及金屬柵層126’可依序地藉由沉積技術形成,沉積技術可如旋塗或氣相沉積。抗反射層108可由例如有機聚合物或金屬氧化物形成。緩衝層110可由諸如二氧化矽之氧化物形成。金屬柵層126’可由例如,鎢、銅、鋁或鋁銅形成。 FIG. 6 depicts a cross-sectional view 600 corresponding to some embodiments of step 404. As shown, the anti-reflective layer 108 and/or the buffer layer 110 are sequentially stacked on the semiconductor substrate 102. Further, a metal gate layer 126' is formed over the anti-reflective layer 108 and/or the buffer layer 110. The anti-reflective layer 108, the buffer layer 110, and the metal gate layer 126' may be formed sequentially by deposition techniques such as spin coating or vapor deposition. The anti-reflective layer 108 may be formed of, for example, an organic polymer or a metal oxide. The buffer layer 110 may be formed of an oxide such as cerium oxide. The metal gate layer 126' may be formed of, for example, tungsten, copper, aluminum, or aluminum copper.
第7圖繪示對應於步驟406之一些實施例之剖視圖700。如圖所示,執行第一蝕刻至金屬柵層126’中,穿過覆蓋於像素感測器104之區域,直至抗反射層108及/或緩衝層110。第一蝕刻形成金屬柵114,金屬柵114為對應於像素感測器104之金屬柵開口118定義側壁。金屬柵開口118至少部分地覆蓋相應像素感測器104。 FIG. 7 depicts a cross-sectional view 700 corresponding to some embodiments of step 406. As shown, a first etch is performed into the metal gate layer 126', through the area overlying the pixel sensor 104, up to the anti-reflective layer 108 and/or the buffer layer 110. The first etch forms a metal gate 114 that defines a sidewall that corresponds to the metal gate opening 118 of the pixel sensor 104. Metal gate opening 118 at least partially covers respective pixel sensor 104.
用於執行第一蝕刻之製程可包含形成第一光阻劑層702,第一光阻劑層702遮罩對應於金屬柵114之金屬柵層126’之區域。蝕刻劑704可隨後根據第一光阻劑層702之圖案施加於金屬柵層126’,從而定義金屬柵114。蝕刻劑704可相對於抗反射層108及/或緩衝層110選擇金屬柵層126’。此外,蝕刻劑704可為例如乾蝕刻劑。在施加蝕刻劑704之後,可移除或以其他方式剝除第一光阻劑層702。 The process for performing the first etch may include forming a first photoresist layer 702 that masks a region of the metal gate layer 126' corresponding to the metal gate 114. Etchant 704 can then be applied to metal gate layer 126' according to the pattern of first photoresist layer 702 to define metal gate 114. Etchant 704 can select metal gate layer 126' relative to anti-reflective layer 108 and/or buffer layer 110. Additionally, etchant 704 can be, for example, a dry etchant. After the etchant 704 is applied, the first photoresist layer 702 can be removed or otherwise stripped.
第8圖繪示對應於步驟408之一些實施例之剖視圖800。如圖所示,覆蓋層132’係形成在金屬柵114及其餘金屬柵層126之上,並填充金屬柵開口118。覆蓋層132’可由例如諸如氧化物之介電質形成,及/或覆蓋層132’可由例如與緩衝層110相同之材料形成。此外,覆蓋層132’可使用諸如旋塗或氣相沉積之沉積方法形成。 FIG. 8 depicts a cross-sectional view 800 corresponding to some embodiments of step 408. As shown, a cap layer 132' is formed over the metal gate 114 and the remaining metal gate layer 126 and fills the metal gate opening 118. The cover layer 132' may be formed of, for example, a dielectric such as an oxide, and/or the cover layer 132' may be formed of, for example, the same material as the buffer layer 110. Further, the cover layer 132' may be formed using a deposition method such as spin coating or vapor deposition.
第9圖繪示對應於步驟410及412之一些實施例之剖視圖900。如圖所示,執行化學機械研磨至覆蓋層132’中至其餘金屬柵層126之上的一位置,從而產生大致上為平面的上表面902。亦如圖所示,蝕刻終止層130’及介電柵層128’係依序在其餘覆蓋層132”之上堆疊形成。蝕刻終止層130’及介電柵層128’可使用諸如氣相沉積之沉積方法形成。蝕刻終止層130’可由諸如氮化矽之氮化物形成。介電柵層128’可例如由二氧化矽形成,及/或介電柵層128’可例如由與其餘覆蓋層132”相同之材料形成。在替代實施例中,可省略蝕刻終止層130’。 FIG. 9 depicts a cross-sectional view 900 corresponding to some of the embodiments of steps 410 and 412. As shown, chemical mechanical polishing is performed to a location in the cap layer 132' over the remaining metal gate layer 126 to create a substantially planar upper surface 902. As also shown, the etch stop layer 130' and the dielectric gate layer 128' are sequentially stacked over the remaining cap layer 132". The etch stop layer 130' and the dielectric gate layer 128' can be used, for example, by vapor deposition. A deposition method is formed. The etch stop layer 130' may be formed of a nitride such as tantalum nitride. The dielectric gate layer 128' may be formed, for example, of hafnium oxide, and/or the dielectric gate layer 128' may be, for example, from the remaining cap layer 132" the same material is formed. In an alternate embodiment, the etch stop layer 130' may be omitted.
第10圖繪示對應於步驟414之一些實施例之剖視圖1000。如圖所示,執行第二蝕刻至介電柵層128’中,穿過覆蓋像素感測器104之區域,直至蝕刻終止層130’。第二蝕刻形成介電柵116’,介電柵116’為對應於像素感測器104之介電柵開口120’定義側壁。介電柵開口120’至少部分地覆蓋相應像素感測器104。 FIG. 10 depicts a cross-sectional view 1000 corresponding to some embodiments of step 414. As shown, a second etch is performed into the dielectric gate layer 128' through the area covering the pixel sensor 104 until the etch stop layer 130'. The second etch forms a dielectric gate 116' that defines a sidewall corresponding to the dielectric gate opening 120' of the pixel sensor 104. Dielectric grid opening 120' at least partially covers respective pixel sensor 104.
用於執行第二蝕刻之製程可包含形成第二光阻劑層1002,第二光阻劑層1002遮罩對應於介電柵116’之介電柵層128’之區域。蝕刻劑1004可隨後根據第二光阻劑層1002之圖案施加於介電柵層128’,從而定義介電柵116’。蝕刻劑1004可相對於蝕刻終止層130’對介電柵層128’具有選擇性。此外,蝕刻劑1004可為例如乾蝕刻劑。在施加蝕刻劑1004之後,可移除或以其他方式剝除第二光阻劑層1002。 The process for performing the second etch may include forming a second photoresist layer 1002 that masks a region of the dielectric gate layer 128' corresponding to the dielectric gate 116'. Etchant 1004 can then be applied to dielectric gate layer 128' in accordance with the pattern of second photoresist layer 1002 to define dielectric gate 116'. Etchant 1004 can be selective to dielectric gate layer 128' with respect to etch stop layer 130'. Further, the etchant 1004 can be, for example, a dry etchant. After the etchant 1004 is applied, the second photoresist layer 1002 can be removed or otherwise stripped.
第11圖繪示對應於步驟416之一些實施例之剖視圖1100。如圖所示,執行第三蝕刻至蝕刻終止層130’中,穿過介電柵開口120’中之暴露區域,直至其餘覆蓋層132”。第三蝕刻移除介電柵開口120’中之蝕刻終止層130’之區域。用於執行第三蝕刻之製程可包含例如施加蝕刻劑1102至蝕刻終止層130’。蝕刻劑1102可相對於介電柵層128及/或其餘覆蓋層132”對蝕刻終止層130’具有選擇性。此外,蝕刻劑1102可為例如濕蝕刻劑。 FIG. 11 depicts a cross-sectional view 1100 corresponding to some embodiments of step 416. As shown, a third etch is performed into the etch stop layer 130' through the exposed regions in the dielectric gate opening 120' until the remaining cap layer 132". The third etch removes the dielectric gate opening 120' The region of the etch stop layer 130'. The process for performing the third etch may include, for example, applying an etchant 1102 to an etch stop layer 130'. The etchant 1102 may be opposite the dielectric gate layer 128 and/or the remaining cap layer 132" The etch stop layer 130' is selective. Additionally, etchant 1102 can be, for example, a wet etchant.
第12A圖及第12B圖繪示對應於步驟418、420及422之一些實施例之剖視圖1200A、1200B。實施例係關於具有凹入下表面之介電柵開口。 12A and 12B illustrate cross-sectional views 1200A, 1200B corresponding to some embodiments of steps 418, 420, and 422. Embodiments relate to dielectric gate openings having recessed lower surfaces.
如由第12A圖所示,第四蝕刻係執行穿過其餘覆蓋層132”之暴露區域至其餘覆蓋層132”中,以形成其餘介電柵開口120”之凹入下表面124A。用於執行第四蝕刻之製程可包含,例如,施加一或多個蝕刻劑1202至其餘覆蓋層132”,此蝕刻劑的蝕刻參數(如蝕刻速率)係調校以定義凹入下表面124A。例如,蝕刻參數可調校以便其餘覆蓋層132”在其餘介電柵開口120”之中心處比在其餘介電柵開口120”之周邊蝕刻得更快。一或多個蝕刻劑1202可相對於其餘蝕刻終止層130對其餘覆蓋層132”具有選擇性,及/或一或多個蝕刻劑1202可例如為濕蝕刻劑或乾蝕刻劑。因為一或多個蝕刻劑1202係通過其餘介電柵開口120”施加,且其餘介電柵層128及其餘覆蓋層132”可為相同材料,所以一或多個蝕刻劑1202可腐蝕其餘介電柵開口120”之側壁。 As shown in FIG. 12A, a fourth etch is performed through the exposed regions of the remaining cap layer 132" into the remaining cap layer 132" to form a recessed lower surface 124A of the remaining dielectric gate opening 120". The fourth etch process can include, for example, applying one or more etchants 1202 to the remaining cap layer 132", the etch parameters of the etchant (eg, etch rate) being calibrated to define the recessed lower surface 124A. For example, the etch parameters are tuned such that the remaining cap layer 132" etches faster at the center of the remaining dielectric gate openings 120" than at the periphery of the remaining dielectric gate openings 120". One or more etchants 1202 can be opposed to The remaining etch stop layer 130 is selective to the remaining cap layer 132", and/or the one or more etchants 1202 can be, for example, a wet etchant or a dry etchant. Because one or more etchants 1202 are applied through the remaining dielectric gate openings 120", and the remaining dielectric gate layers 128 and the remaining cap layer 132" can be the same material, one or more etchants 1202 can erode the remaining dielectric The sidewall of the gate opening 120".
在替代實施例中,第四蝕刻可以另一方法替代以便形成凹入的下表面124A。在替代實施例之一者中,凹入下表面124A可藉由回流製程(例如,伺服控制之回流製程)形成。在替代實施例之他者中,凹入下表面124A可藉由沉積形成,其沉積參數(如沉積速率)可經調校以定義凹入下表面124A。例如,沉積參數可經調校以便沉積速率在其餘介電柵開口120”之中心處比在其餘介電柵開口120”之周 邊更慢。此沉積可理解為第二覆蓋層及/或其餘覆蓋層132”之延伸。 In an alternate embodiment, the fourth etch may be replaced by another method to form a recessed lower surface 124A. In one of the alternative embodiments, the recessed lower surface 124A can be formed by a reflow process (eg, a servo controlled reflow process). In other embodiments of the alternative embodiment, the recessed lower surface 124A can be formed by deposition, and its deposition parameters (e.g., deposition rate) can be adjusted to define the recessed lower surface 124A. For example, the deposition parameters can be tuned such that the deposition rate is at the center of the remaining dielectric gate openings 120" than at the periphery of the remaining dielectric gate openings 120" The side is slower. This deposition can be understood as an extension of the second cover layer and/or the remaining cover layer 132".
如第12B圖所示,對應於像素感測器104之彩色濾光器134A、136A、138A係形成於相應像素感測器104之其餘介電柵開口120A中,其中上表面140與其餘介電柵層128之上表面142大致齊平。彩色濾光器134A、136A、138A係對應指定顏色或波長之輻射(例如,根據Bayer filter mosaic)所設置,且其材料係設置以傳輸指定顏色或波長之輻射至相應像素感測器104。此外,彩色濾光器134A、136A、138A係用具有大於其餘覆蓋層132A之折射率之折射率的材料形成,及/或用鄰接且位於凹入下表面124A之下的任何其他材料形成。對於不同彩色濾光器的每一者,用於形成彩色濾光器134A、136A、138A之製程可包含形成彩色濾光器層且圖案化彩色濾光器層。彩色濾光器層可形成以便填充其餘介電柵開口120A且覆蓋其餘介電柵層128。在圖案化彩色濾光器層之前,可平坦化(例如,藉由化學機械研磨)及/或回蝕彩色濾光器層至約與其餘介電柵層128之上表面142齊平。 As shown in FIG. 12B, color filters 134A, 136A, 138A corresponding to the pixel sensor 104 are formed in the remaining dielectric gate openings 120A of the corresponding pixel sensors 104, wherein the upper surface 140 and the remaining dielectric are The upper surface 142 of the gate layer 128 is substantially flush. Color filters 134A, 136A, 138A are provided for radiation of a specified color or wavelength (e.g., according to a Bayer filter mosaic), and are provided with materials to transmit radiation of a specified color or wavelength to respective pixel sensors 104. In addition, color filters 134A, 136A, 138A are formed from a material having a refractive index greater than the refractive index of the remaining cover layer 132A, and/or formed from any other material that is adjacent and located below the recessed lower surface 124A. For each of the different color filters, the process for forming color filters 134A, 136A, 138A can include forming a color filter layer and patterning the color filter layers. A color filter layer can be formed to fill the remaining dielectric gate openings 120A and cover the remaining dielectric gate layers 128. Prior to patterning the color filter layer, the color filter layer may be planarized (e.g., by chemical mechanical polishing) and/or etched back to approximately flush with the upper surface 142 of the remaining dielectric gate layer 128.
亦如由第12B圖所示,對應於像素感測器104之微透鏡144係形成於相應像素感測器104之彩色濾光器134A、136A、138A之上。用於形成微透鏡144之製程可包含(例如,藉由旋塗法或沉積製程)於彩色濾光器134A、136A、138A之上形成微透鏡層。此外,可在微透鏡層之上 圖案化具有彎曲上表面之微透鏡模板。微透鏡層可隨後根據微透鏡模板選擇性地蝕刻以形成微透鏡144。 As also shown in FIG. 12B, microlenses 144 corresponding to pixel sensors 104 are formed over color filters 134A, 136A, 138A of respective pixel sensors 104. The process for forming microlenses 144 can include forming a microlens layer over color filters 134A, 136A, 138A (e.g., by spin coating or deposition processes). In addition, it can be above the microlens layer A microlens template having a curved upper surface is patterned. The microlens layer can then be selectively etched according to the microlens template to form microlenses 144.
第13A圖及第13B圖繪示對應於步驟418、420及422之其他實施例之剖視圖1300A、1300B。實施例係關於具有凸出下表面之介電柵開口。 FIGS. 13A and 13B illustrate cross-sectional views 1300A, 1300B corresponding to other embodiments of steps 418, 420, and 422. Embodiments relate to a dielectric gate opening having a convex lower surface.
如第13A圖所示,第四蝕刻係執行穿過其餘覆蓋層132”之暴露區域至其餘覆蓋層132”中,以形成其餘介電柵開口120”之凸出下表面124B。用於執行第四蝕刻之製程可包含,例如,施加一或多個蝕刻劑1302至其餘覆蓋層132”,其蝕刻參數可經調校以定義凸出下表面124B。例如,蝕刻參數可經調校以便其餘覆蓋層132”在其餘介電柵開口120”之周邊比在其餘介電柵開口120”之中心處蝕刻得更快。一或多個蝕刻劑1302可相對於其餘蝕刻終止層130對其餘覆蓋層132”具有選擇性,及/或一或多個蝕刻劑1302可例如為濕蝕刻劑或乾蝕刻劑。 As shown in FIG. 13A, a fourth etch is performed through the exposed regions of the remaining cap layer 132" into the remaining cap layer 132" to form the raised lower surface 124B of the remaining dielectric gate opening 120". The four etch process can include, for example, applying one or more etchants 1302 to the remaining cap layer 132", the etch parameters of which can be tuned to define the raised lower surface 124B. For example, the etch parameters can be tuned such that the remaining cap layer 132" etches faster at the periphery of the remaining dielectric gate openings 120" than at the center of the remaining dielectric gate openings 120". One or more etchants 1302 can be opposite The remaining etch stop layer 130 is selective to the remaining cap layer 132", and/or the one or more etchants 1302 can be, for example, a wet etchant or a dry etchant.
在替代實施例中,第四蝕刻可能以另一方法替代以便形成凸出的下表面124B。在替代實施例之一者中,凸出下表面124B可藉由回流製程形成。在替代實施例之他者中,凸出下表面124B可藉由沉積製程所形成,其沉積參數可經調校以定義凸出下表面124B。例如,沉積參數可經調校以便沉積速率在其餘介電柵開口120”之周邊比在其餘介電柵開口120”之中心處更慢。此沉積可理解為第二覆蓋層及/或其餘覆蓋層132”之延伸。 In an alternate embodiment, the fourth etch may be replaced by another method to form a convex lower surface 124B. In one of the alternative embodiments, the raised lower surface 124B can be formed by a reflow process. In the alternative embodiment, the convex lower surface 124B may be formed by a deposition process whose deposition parameters may be calibrated to define a convex lower surface 124B. For example, the deposition parameters can be tuned such that the deposition rate is slower at the periphery of the remaining dielectric gate openings 120" than at the center of the remaining dielectric gate openings 120". This deposition can be understood as an extension of the second cover layer and/or the remaining cover layer 132".
如第13B圖所示,對應於像素感測器104之彩色濾光器134B、136B、138B係形成於相應像素感測器104之其餘介電柵開口120A中,其中上表面140與其餘介電柵層128之上表面142大致齊平。此外,彩色濾光器134B、136B、138B係用具有小於其餘覆蓋層132B之折射率之折射率的材料形成,及/或用鄰接且位於凸出下表面124A之下的任何其他材料形成。 As shown in FIG. 13B, the color filters 134B, 136B, 138B corresponding to the pixel sensor 104 are formed in the remaining dielectric gate openings 120A of the corresponding pixel sensors 104, wherein the upper surface 140 and the remaining dielectric The upper surface 142 of the gate layer 128 is substantially flush. In addition, color filters 134B, 136B, 138B are formed from a material having a refractive index that is less than the refractive index of the remaining cover layer 132B, and/or formed from any other material that is adjacent and located below the convex lower surface 124A.
亦如第13B圖所示,對應於像素感測器104之微透鏡144係形成於相應像素感測器104之彩色濾光器134B、136B、138B之上。 As also shown in FIG. 13B, microlenses 144 corresponding to pixel sensors 104 are formed over color filters 134B, 136B, 138B of respective pixel sensors 104.
上文概括了若干實施例之特徵以便熟習此項技術者可較好地瞭解本案之態樣。熟習此項技術者將瞭解,熟習此項技術者可容易地使用本案作為用於設計或改變其他製程及結構之基礎,其他製程及結構用於進行本文引入之實施例之相同目的及/或達成本文引入之實施例之相同優點。熟習此項技術者亦應認識到,同等構造不背離本案之精神及範疇;且應認識到,同等構造可在本文中進行各種變化、替換和變更,而不背離本案之精神及範疇。 The features of several embodiments are summarized above so that those skilled in the art can better understand the aspects of the present invention. Those skilled in the art will appreciate that the skilled artisan can readily use the present invention as a basis for designing or altering other processes and structures. Other processes and structures are used for the same purpose and/or achievement of the embodiments introduced herein. The same advantages of the embodiments introduced herein. Those skilled in the art should also appreciate that the equivalent constructions do not depart from the spirit and scope of the present invention. It should be understood that the equivalent constructions may be variously changed, substituted and changed without departing from the spirit and scope of the present invention.
100A‧‧‧剖視圖 100A‧‧‧section view
102‧‧‧半導體基板 102‧‧‧Semiconductor substrate
104‧‧‧像素感測器 104‧‧‧pixel sensor
106‧‧‧檢光器 106‧‧‧ Detector
108‧‧‧抗反射層 108‧‧‧Anti-reflective layer
110‧‧‧緩衝層 110‧‧‧buffer layer
112‧‧‧上表面 112‧‧‧ upper surface
114‧‧‧金屬柵 114‧‧‧Metal grid
113‧‧‧堆疊柵 113‧‧‧Stacking grid
116‧‧‧介電柵 116‧‧‧ dielectric grid
118‧‧‧金屬柵開口 118‧‧‧Metal gate opening
120A‧‧‧其餘介電柵開口 120A‧‧‧Other dielectric gate openings
122‧‧‧下表面 122‧‧‧ lower surface
124A‧‧‧凹入下表面 124A‧‧‧ recessed lower surface
126‧‧‧金屬柵層 126‧‧‧metal gate
128‧‧‧介電柵層 128‧‧‧Dielectric gate layer
130‧‧‧蝕刻終止層 130‧‧‧etch stop layer
132A‧‧‧其餘覆蓋層 132A‧‧‧ remaining cover
134A‧‧‧彩色濾光器 134A‧‧ color filter
136A‧‧‧彩色濾光器 136A‧‧‧Color Filter
138A‧‧‧彩色濾光器 138A‧‧ color filter
140‧‧‧上表面 140‧‧‧ upper surface
142‧‧‧上表面 142‧‧‧ upper surface
144‧‧‧微透鏡 144‧‧‧Microlens
146‧‧‧凸出上表面 146‧‧ ‧ protruding upper surface
148A‧‧‧光線 148A‧‧‧Light
θ 1‧‧‧入射角 θ 1 ‧‧‧ incident angle
θ 2‧‧‧折射角 θ 2 ‧‧ ‧ refraction angle
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/713,172 US9991307B2 (en) | 2015-04-16 | 2015-05-15 | Stacked grid design for improved optical performance and isolation |
US14/713,172 | 2015-05-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201640660A true TW201640660A (en) | 2016-11-16 |
TWI662693B TWI662693B (en) | 2019-06-11 |
Family
ID=57348242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104137906A TWI662693B (en) | 2015-05-15 | 2015-11-17 | Back side illumination image sensor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106158891B (en) |
TW (1) | TWI662693B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI751867B (en) * | 2020-12-29 | 2022-01-01 | 李學能 | Semiconductor device |
US11398512B2 (en) | 2019-12-19 | 2022-07-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photo-sensing device and manufacturing method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109427826B (en) * | 2017-08-22 | 2020-10-30 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing image sensor |
KR20220020587A (en) | 2020-08-12 | 2022-02-21 | 에스케이하이닉스 주식회사 | Image sensing device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050274871A1 (en) * | 2004-06-10 | 2005-12-15 | Jin Li | Method and apparatus for collecting photons in a solid state imaging sensor |
KR100907156B1 (en) * | 2007-10-22 | 2009-07-09 | 주식회사 동부하이텍 | Image Sensor and Method for Manufacturing Thereof |
US7759755B2 (en) * | 2008-05-14 | 2010-07-20 | International Business Machines Corporation | Anti-reflection structures for CMOS image sensors |
US8222710B2 (en) * | 2008-06-13 | 2012-07-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Sensor structure for optical performance enhancement |
WO2011142065A1 (en) * | 2010-05-14 | 2011-11-17 | パナソニック株式会社 | Solid-state image pickup device and method for manufacturing same |
JP4880794B1 (en) * | 2011-04-22 | 2012-02-22 | パナソニック株式会社 | Solid-state imaging device and manufacturing method thereof |
US9093579B2 (en) * | 2011-04-28 | 2015-07-28 | Semiconductor Components Industries, Llc | Dielectric barriers for pixel arrays |
US20140339606A1 (en) * | 2013-05-16 | 2014-11-20 | Visera Technologies Company Limited | Bsi cmos image sensor |
US20140339615A1 (en) * | 2013-05-16 | 2014-11-20 | ViaEra Technologies Company Limited | Bsi cmos image sensor |
-
2015
- 2015-11-11 CN CN201510765521.0A patent/CN106158891B/en active Active
- 2015-11-17 TW TW104137906A patent/TWI662693B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11398512B2 (en) | 2019-12-19 | 2022-07-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photo-sensing device and manufacturing method thereof |
TWI800713B (en) * | 2019-12-19 | 2023-05-01 | 台灣積體電路製造股份有限公司 | Photo-sensing device and manufacturing method thereof |
TWI751867B (en) * | 2020-12-29 | 2022-01-01 | 李學能 | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN106158891B (en) | 2019-07-05 |
CN106158891A (en) | 2016-11-23 |
TWI662693B (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11735618B2 (en) | Stacked grid design for improved optical performance and isolation | |
US11699718B2 (en) | Semiconductor image sensor | |
US11158664B2 (en) | Band-pass filter for stacked sensor | |
TWI623090B (en) | Back-side illuminated image sensor and method of forming the same | |
KR102278324B1 (en) | Semiconductor image sensor | |
CN105990383B (en) | Composite grid structure for reducing crosstalk in backside illuminated image sensors | |
US9905605B2 (en) | Phase detection autofocus techniques | |
US9853076B2 (en) | Stacked grid for more uniform optical input | |
KR102300877B1 (en) | Method of forming self aligned grids in bsi image sensor | |
US20200098801A1 (en) | Semiconductor image sensor | |
TW201719875A (en) | A microlens for a phase detection auto focus (PDAF) pixel of a composite grid structure and method for forming the same | |
US9991303B2 (en) | Image sensor device structure | |
US10510794B2 (en) | Semiconductor image sensor | |
KR20190055766A (en) | Light blocking layer for image sensor device | |
US20240170506A1 (en) | Image sensor with improved near-infrared (nir) radiation phase-detection autofocus (pdaf) performance | |
TWI662693B (en) | Back side illumination image sensor | |
US11764248B2 (en) | Band-pass filter for stacked sensor | |
US9721983B2 (en) | Semiconductor device and manufacturing method thereof | |
CN109560093B (en) | Semiconductor image sensor having a plurality of pixels | |
US20240021644A1 (en) | Trench isolation structure for image sensors | |
KR20210053264A (en) | Light blocking layer for image sensor device | |
KR100859483B1 (en) | Method of Manufacturing Image Sensor |