TWI692196B - 太陽能光電故障檢測系統及方法 - Google Patents

太陽能光電故障檢測系統及方法 Download PDF

Info

Publication number
TWI692196B
TWI692196B TW107128007A TW107128007A TWI692196B TW I692196 B TWI692196 B TW I692196B TW 107128007 A TW107128007 A TW 107128007A TW 107128007 A TW107128007 A TW 107128007A TW I692196 B TWI692196 B TW I692196B
Authority
TW
Taiwan
Prior art keywords
solar photovoltaic
fault
module
information
model
Prior art date
Application number
TW107128007A
Other languages
English (en)
Other versions
TW202010243A (zh
Inventor
魏榮宗
高偉
Original Assignee
魏榮宗
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 魏榮宗 filed Critical 魏榮宗
Priority to TW107128007A priority Critical patent/TWI692196B/zh
Publication of TW202010243A publication Critical patent/TW202010243A/zh
Application granted granted Critical
Publication of TWI692196B publication Critical patent/TWI692196B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本發明公開一種基於機器學習的太陽能光電故障檢測系統及方法,系統包括智慧型故障診斷模塊及資料視覺化模塊。智慧型故障診斷模塊,通過機器學習演算法智慧診斷太陽光電模組是否出現故障,其包括太陽光電數值模型創建模組、太陽光電實測數據擷取模組、太陽光電數值模型校準模組、太陽光電診斷模型訓練模組及太陽光電故障診斷模組。

Description

太陽能光電故障檢測系統及方法
本發明涉及一種太陽能光電故障檢測系統及方法,特別是涉及一種基於機器學習的太陽能光電故障檢測系統及方法。
太陽能是一種相當環保的綠色能源,因此各國均投入了大量資源積極開發與建設大型太陽能發電廠,以期降低對於核能與石化燃料的需求。目前的太陽能發電廠建設時,通常會將多個太陽能模組串聯以構成一個太陽能模組串列,然後將一或多個太陽能模組串列電連接於逆變器,可將該等太陽能模組串列產生之直流電轉變成交流電輸出,可用以驅動負載,或者是輸入市電系統以轉賣給售電單位。
然而,當故障導致逆變器輸出之電力驟降時,例如某一太陽能模組串列的某一個太陽能模組故障,以致於該太陽能模組串列無電力輸出或輸出電力驟降。此時,維修人員得要先費時從數量龐大的太陽能模組串列中找出故障的太陽能串列,再以電錶逐個量測檢查每一個太陽能模組是否正常輸出電力,藉以找出故障之太陽能模組或電力迴路之斷路故障點,非常費時且不便。
因此,急需一種能夠進行自動故障診斷、自我學習、智慧辨識、診斷模型的自我更新及進化的太陽能光電故障檢測系統及方法。
本發明所要解決的技術問題在於,針對現有技術的不足提供一種基於機器學習的太陽光電數值模擬實境故障檢測系統及方法。
為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種太陽能光電故障檢測系統,適用於檢測太陽能光電系統,其包括智慧型故障診斷模組。智慧型故障診斷模組包括太陽光電數值模型創建模組、太陽光電實測數據擷取模組、太陽光電數值模型校正模組、太陽光電故障模型訓練模組以及太陽光電故障診斷模組。太陽光電數值模型創建模組依據太陽光電系統的基礎數據資訊及安裝資料,建立太陽光電數值仿真模型,且透過太陽光電數值仿真模型生成太陽光電故障樣本。太陽光電實測數據擷取模組接收並儲存環境資訊感測器所回傳的環境資訊,並對太陽光電系統執行電性掃描功能,以記錄太陽光電系統的外部特徵參數資訊。太陽光電數值模型校正模組利用太陽光電數據對太陽光電數值仿真模型進行訓練,調整太陽光電數值仿真模型的參數以產生校正後太陽光電數值仿真模型。太陽光電故障模型訓練模組,利用校正後太陽光電數值仿真模型生成不同類型的多個太陽光電故障樣本,通過特徵擷取演算法擷取太陽光電系統的故障特徵資訊,並利用機器學習演算法建立用於辨識多個故障的多個診斷模型。太陽光電故障診斷模組,依據所訓練的多個診斷模型對太陽光電系統進行故障檢測,並產生故障資訊。
為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種太陽能光電故障檢測方法,適用於檢測一太陽能光電系統,其包括:配置太陽光電數值模型創建模組,以依據該太陽光電系統的基礎數據資訊及安裝資料,建立太陽光電數值仿真模型,且透過該太陽光電數值仿真模型生成太陽光電故障樣本;配置太陽光電實測數據擷取模組,以接收並儲存環境資訊感測器 所回傳的環境資訊,並對太陽光電系統執行電性掃描功能,以記錄太陽光電系統的外部特徵參數資訊;配置太陽光電數值模型校正模組,以利用太陽光電數據對太陽光電數值仿真模型進行訓練,並調整太陽光電數值仿真模型的參數以產生校正後太陽光電數值仿真模型;配置太陽光電故障模型訓練模組,以利用該校正後太陽光電數值仿真模型生成不同類型的多個太陽光電故障樣本,通過特徵擷取演算法擷取該太陽光電系統的故障特徵資訊,並利用機器學習演算法建立用於辨識多個故障狀態的多個診斷模型;以及配置太陽光電故障診斷模組,以依據多個該診斷模型對該太陽光電系統進行故障檢測,並產生故障資訊。
本發明的其中一有益效果在於,本發明所提供的太陽能光電故障檢測系統及方法,可對現有的逆變器增加智慧型故障診斷模組和資料視覺化模組,使之實現太陽光電故障的自我學習及智慧辨識。智慧型故障診斷模組內嵌於普通的逆變器軟體中,使之變成智慧型的逆變器,資料視覺化模組位於雲端,提供數據收集和資料的視覺化展示,並增加智慧型排程,輔助智慧型逆變器實現診斷模型的自我更新和進化。
此外,可由實境發電系統的製造廠商提供的基礎數據和安裝資料,來建立太陽光電數值仿真模型,透過此模型,可生成太陽光電發電系統在實境下的故障樣本,以改善太陽光電歷史資料故障狀況未標識化之缺憾及減少對未來發電系統感測器大量佈建之需求。
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。
1:太陽能光電故障檢測系統
10:智慧型故障診斷模組
100:太陽光電數值模型創建模組
102:太陽光電實測數據擷取模組
104:太陽光電數值模型校正模組
106:太陽光電故障模型訓練模組
108:太陽光電故障診斷模組
12:資料視覺化模組
120:通訊單元
122:輸入介面
124:故障樣本資料庫
126:遠端模型訓練控制模組
128:智慧訓練控制模組
A1:太陽光電仿真模型
A11:太陽光電模組
A12:短路模組
A13:老化模組
A14:接地模組
A15:開路模組
A16:光照及溫度模組
A17:光伏特性抽取模組
PV:太陽能光電系統
INV:逆變器
SR:環境資訊感測器
SV:雲端伺服器
NET:網路
UE:使用者裝置
圖1為本發明一實施例的太陽能光電系統故障檢測系統的方 塊圖。
圖2為本發明一實施例的太陽能光電故障檢測方法的流程圖。
圖3A及3B為本發明其中一實施例及另一實施例的資料視覺化模組的方塊圖。
圖4為本發明一實施例的資料視覺化流程的流程圖。
圖5為本發明一實施例的智慧型故障診斷模型創建的第一流程圖。
圖6為本發明一實施例的創建數值仿真模型流程的流程圖。
圖7為本發明一實施例的太陽光電仿真模型的方塊圖。
圖8為本發明一實施例的太陽光電實測數據擷取流程的流程圖。
圖9為本發明一實施例的太陽光電數值模型校正流程的流程圖。
圖10為本發明一實施例的診斷模型訓練流程的流程圖。
圖11為本發明一實施例的太陽光電故障診斷流程的流程圖。
以下是通過特定的具體實施例來說明本發明所公開有關“太陽能光電故障檢測系統及方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。
應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一 元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。
為了解釋清楚,在一些情況下,本技術可被呈現為包括包含功能塊的獨立功能塊,其包含裝置、裝置元件、軟體中實施的方法中的步驟或路由,或硬體及軟體的組合。
在一些實施方式中,電腦可讀儲存裝置、介質和記憶體可以包括電纜或含有位元流等的無線信號。然而,當提及時,非臨時性電腦可讀儲存介質明確地排除諸如能量、載波信號、電磁波及信號本身的介質。
使用儲存或以其他方式可從電腦可讀介質取得的電腦執行指令來實現根據上述實施例的方法。這樣的指令可包括,例如,引起或以其他方式配置通用目的電腦、專用目的電腦,或專用目的處理裝置執行某一功能或功能組的指令和數據。所使用電腦資源的部分可以透過網路進行存取。該電腦可執行指令可以是,例如二進制,中間格式指令,諸如組合語言(assembly language)、韌體、或源代碼(source code)。可用來儲存根據所描述實施例中的方法期間的指令、所使用的資訊、及/或所創造的資訊的電腦可讀介質的實例包括磁碟或光碟、快閃記憶體、設置有非易失性記憶體的USB裝置、聯網的儲存裝置等等。
實施根據這些揭露方法的裝置可以包括硬體、韌體及/或軟體,且可以採取任何各種形體。這種形體的典型例子包括筆記型電腦、智慧型電話、小型個人電腦、個人數位助理等等。本文描述的功能也可以實施於週邊設備或內置卡。透過進一步舉例,這種功能也可以實施在不同晶片或在單個裝置上執行的不同程序的電路板。
該指令、用於傳送這樣的指令的介質、用於執行其的計算資源或用於支持這樣的計算資源的其他結構,為用於提供在這些公 開中所述的功能的手段。
參閱圖1至圖2所示,圖1為本發明一實施例的太陽能光電故障檢測系統的方塊圖,圖2為本發明一實施例的太陽能光電故障檢測方法的流程圖。本發明一實施例提供太陽能光電故障檢測系統1,適用於檢測太陽能光電系統PV,其包括:智慧型故障診斷模組10,可包括於逆變器INV儲存的應用程式中,並可由逆變器INV或通過雲端來執行。智慧型故障診斷模組10包括太陽光電數值模型創建模組100、太陽光電實測數據擷取模組102、太陽光電數值模型校正模組104、太陽光電故障模型訓練模組106及太陽光電故障診斷模組108。
以下將概略說明各模組的作用,並於後續實施例中針對各模組做更詳細的說明。詳細而言,太陽光電數值模型創建模組100依據太陽光電系統PV的基礎數據資訊及安裝資料,建立太陽光電數值仿真模型,且透過太陽光電數值仿真模型生成太陽光電故障樣本。例如,可由實境發電系統的製造廠商提供基礎數據和安裝資料,來建立太陽光電數值仿真模型,透過此模型,可生成太陽光電發電系統在實境下的故障樣本,以改善太陽光電歷史資料故障狀況未標識化之缺憾及減少對未來發電系統感測器大量佈建之需求。
太陽光電實測數據擷取模組102,可用於接收並儲存環境資訊感測器SR所回傳的環境資訊,並通過逆變器INV對太陽光電系統PV執行電性掃描功能,以記錄太陽光電系統PV的外部特徵參數資訊。舉例而言,太陽光電實測數據擷取模組102,可依據所回傳的環境資訊,以及對太陽光電系統PV執行電流-電壓(I-V)掃描功能,生成在不同溫度及照度下,太陽光電系統PV的電流-電壓(I-V)以及功率-電壓(P-V)特性曲線,同時記錄該曲線上關鍵點的資訊。
太陽光電數值模型校正模組104,利用太陽光電數據對太陽光電數值仿真模型進行訓練,調整太陽光電數值仿真模型的參數以產生校正後太陽光電數值仿真模型。舉例而言,太陽光電數值模型校正模組104可利用實測數據自動訓練,調整太陽光電數值模型的參數,使得所建立的模型和實境模型相一致。
太陽光電故障模型訓練模組106,利用校正後太陽光電數值仿真模型生成不同故障類型的多個太陽光電故障樣本,透過機器學習演算法辨識多個該太陽光電故障樣本的多個故障狀態,以數值模擬實境太陽光電數據,並以特徵擷取演算法擷取太陽光電系統的故障特徵資訊,以建立多個診斷模型。換言之,通過利用已經校準過的太陽光電數值模型,可進一步生成大量不同類型的太陽光電故障樣本,並擷取關鍵故障特徵資訊,再通過機器學習演算法建立用於辨識多個故障狀態的多個診斷模型。
太陽光電故障診斷模組108用於依據所訓練的多個診斷模型,對太陽光電系統PV進行故障檢測,並產生故障資訊。太陽光電故障診斷模組108透過太陽光電故障模型訓練模組106所建立的診斷模型,來精確判斷太陽光電系統PV發生異常情形之原因,進而可提供適當的故障排除建議和資料,同時將必要的資料傳送給使用者裝置的應用程式中,以實現相關資訊顯示、通知以及建議功能。
此外,太陽能光電系統故障檢測系統1還包括資料視覺化模組12,主要用於將太陽光電故障診斷模組108回傳的資料進行資料視覺化,同時透過直覺性的介面呈現資料,協助電廠維護人員快速排除太陽光電系統的故障原因。資料視覺化模組12還可基於給定的優化排程下達故障模型學習命令,實現模型的自我更新和進化,提高故障判別的精準度。
本發明主旨在對現有的逆變器增加智慧型故障診斷模組10和資料視覺化模組12,使之實現太陽光電故障的自我學習及智慧辨識。智慧型故障診斷模組10可內嵌於現有的逆變器軟體中,使逆 變器智慧化,但不限於此。資料視覺化模組12還可位於雲端,提供數據收集和資料的視覺化展示,並增加智慧型排程,輔助智慧型逆變器實現診斷模型的自我更新和進化。
現將參閱圖2針對本發明的太陽能光電系統故障檢測方法進行說明。如圖所示,太陽能光電系統故障檢測方法包括下列步驟:步驟S101:首先進行上電自檢。上電自檢功能包括逆變器硬體功能模組檢測、太陽光電模組接入檢測、洩漏電流檢測、接地電阻檢測、直流側電壓過高和過低檢測、交流側電壓的過高和過低檢測、是否併入市電電網的檢測等。
步驟S102:執行功率調節操作。具體而言,此功率調節操作是配置逆變器INV以對於太陽光電系統PV執行最大功率點追蹤調節,以獲取最大輸出功率。
虛線框S1對應於配置智慧型故障診斷模組10而產生的智慧型故障診斷流程,可實現太陽光電系統PV的直流側故障的自動偵測和辨識。故障類型可包括但不限於,短路故障、開路故障、直接接地故障、電阻性接地故障(含小電阻和中電阻)、串聯電阻的異常老化故障、不完全遮蔭故障及完全遮蔭故障。
步驟S103:判斷是否創建診斷模型。此步驟可通過提供一個訊息標誌位元(message flag bit)來判別,此訊息標誌位元可以由逆變器INV以按鍵進行指令下達,或者通過雲端或使用者裝置上的應用程式下發控制命令來進行設定。當檢測到訊息標誌位元為“1”(代表是)時,執行步驟S104,若否,則執行步驟S105。
步驟S104:執行創建太陽光電診斷模型之功能,執行完畢後跳轉至步驟S105,針對此功能將於下文中進一步說明。
步驟S105:判斷是否接收到故障診斷命令。類似的,此故障診斷命令亦為一個訊息標誌位元,同樣可以通過逆變器INV以按鍵進行設定,或者通過雲端或使用者裝置上的應用程式下發控制命令來進行設定。當檢測到該標誌位元為“1”時,執行S107,說 明要強制執行一次故障診斷,否則執行步驟S106。
步驟S106:判斷系統是否設置了故障自動診斷功能,類似的,可通過一個訊息標誌位元進行判定是否開啟此功能,同樣可以通過逆變器INV以按鍵進行設定,或者通過雲端或使用者裝置上的應用程式下發控制命令來進行設定。當檢測到該標誌位元為“1”時,執行步驟S107,說明要進行自動故障診斷,否則退出故障診斷功能,回到步驟S102。
步驟S107:判斷是否滿足診斷排程。故障自動診斷可依據所設定的排程來執行,亦可為智慧型排程。此智慧型排程可包括且不限於:定時排程,故障率優先排程,環境優先排程等。其中,定時排程的判定依據可包括判斷當前時間T c 減去上次執行時間T p 是否大於或等於預定時間K 0 ,若是,則執行自動診斷。故障優先排程可通過設定預定故障率K 1 ,判斷故障率是否超越預定故障率K 1 ,若是,則進一步判斷故障率大小。若故障率越高,則設定自動診斷的時間越短,若故障率沒有超過預定故障率K 1 ,則執行定時排程。環境優先排程可包括設定預定環境惡劣度K 2 ,並判斷環境惡劣度是否超過預定環境惡劣度K 2 。若是,則進一步判定環境惡劣度的大小,若其值越高表示環境越惡劣,進一步縮短自動診斷時間。環境惡劣度可由環境因素來決定,其包括且不限於,環境溫度、環境濕度、經緯度、季節等。若環境惡劣度並未超過預定環境惡劣度,則執行定時排程。
若判斷滿足診斷排程,亦即,達到上述排程的條件,則執行步驟S108,否則退出故障診斷功能,回到步驟S102。
步驟S108:以太陽光電實測數據擷取模組進行太陽光電數據擷取。
步驟S109:以太陽光電故障診斷模組進行太陽光電故障診斷。
步驟S110:判斷是否出現故障,如果沒有出現故障,退出故障診斷功能,回到步驟S102,如果出現故障,執行步驟S111。
步驟S111:將故障資訊,包括且不限於,太陽光電的電流-電壓(I-V)特性曲線、功率-電壓特性曲線(P-V)、太陽光電的外部特徵參數、環境溫度、輻照度、風速等以及故障類型等故障資訊上傳到雲端或行動裝置的應用程式中,然後退出故障診斷功能,回到步驟S102。
參閱圖3A、3B及圖4所示,圖3A、3B為本發明其中一實施例及另一實施例的資料視覺化模組的方塊圖,圖4為本發明一實施例的資料視覺化流程的流程圖。
如圖3A所示,資料視覺化模組12可嵌入在雲端軟體中,主要功能故障訊息的視覺化展示以及故障模型自我更新排程。詳細而言,資料視覺化模組12可包括通訊單元120、輸入介面122、故障樣本資料庫124、遠端模型訓練控制模組126及智慧訓練控制模組128。通訊單元120與太陽光電系統PV的逆變器INV進行通訊,經配置以接收故障資訊,資料視覺化模組12可依據故障資訊判斷是否發生故障,若是,則將該故障資訊進行資料視覺化,並產生故障診斷資訊及故障警報。舉例而言,在資料視覺化模組12接收到逆變器INV上傳的故障資訊後,資料視覺化模組12可按照通訊協定進行故障資訊的解析,轉換成可以判讀的數據。獲得可判讀數據後,資料視覺化模組12可根據解析後的資料數據,判斷是否出現故障。若出現故障,則資料視覺化模組12可將故障警報等訊息轉換為文字、圖片、音訊、視訊、彈出視窗等訊息,並通過簡訊或手機推送的方式告知使用者。
輸入介面122用於提供使用者將故障結果輸入,並儲存於故障樣本資料庫中,其中,故障結果用於顯示故障診斷資訊是否正確。換言之,在工作人員收到故障警報後,可進行現場確認、故障排查後,對故障警報進行確認,告知軟體故障診斷正確與否,並且將所判讀的故障結果通過輸入介面122輸入故障樣本資料庫124。
另外,遠端模型訓練控制模組126可用於執行太陽光電數值模型及診斷模型的重新訓練或診斷模型的重新訓練。舉例來說,可以通過使用者裝置的應用程式,或者雲端軟體遠端控制模型的訓練,模型的訓練包括(1)太陽光電數值模型及診斷模型的重新訓練以及(2)診斷模型的重新訓練。其中(1)相當於設備初始化,所有模型重新訓練,而(2)而是用於更新故障樣本資料庫124。
智慧訓練控制模組128用於啟動智慧故障訓練功能。其包括定時訓練排程、定量訓練優先排程及誤判率優先排程。
另一方面,智慧型故障診斷模組10除可內嵌於逆變器INV中之外,如圖3B所示,逆變器INV亦可通過網路NET連接於雲端伺服器SV,以執行智慧型故障診斷模組10的所有功能。而使用者裝置UE,例如可為智慧型行動裝置或個人電腦,可用於執行資料視覺化模組124的所有功能,亦可通過網路NET連接於雲端伺服器SV,以使與智慧型故障診斷模組10交互執行相關操作。
智慧型故障診斷模組10及資料視覺化模組12的功能可藉由使用逆變器INV、雲端伺服器SV及/或使用者裝置UE中的一或多個處理器而執行並實施。處理器可為可程式化單元,諸如微處理器、微控制器、數位信號處理器(digital signal processor;DSP)晶片、場可程式化閘陣列(field-programmable gate array;FPGA)等。處理器的功能亦可藉由一個或若干個電子裝置或IC實施。換言之,藉由處理器執行的功能可實施於硬體域或軟體域或硬體域與軟體域的組合內。
現將參閱圖4在以下進一步說明資料視覺化流程,其至少包括下列幾個步驟:
步驟S200:通過通訊單元120與逆變器INV進行通訊,包括接收資訊及下發資訊等功能。
步驟S201:進行數據解析。當接收到逆變器INV上傳的通訊報告,按照通訊協定進行資訊的解析,轉換成可以判讀的數據。
步驟S202:根據解析後的資料數據,判斷是否出現故障。如果出現故障,轉至步驟S204,否則進入步驟S203,結束此流程。
步驟S204:進行資料視覺化,將訊息轉換為文字、圖片、音訊、視訊、彈窗等訊息,並通過簡訊或手機推送的方式告知使用者。
步驟S205:在工作人員進行現場確認、故障排查後,對故障訊息進行確認,告知軟體故障診斷正確與否,並且將所判讀的故障結果通過輸入介面122輸入故障樣本資料庫124。
步驟S206:將故障結果以及上傳的故障數據等故障資料存入故障樣本資料庫124。
步驟S207:較佳的,可以通過使用者裝置的應用程式或者雲端軟體遠端控制診斷模型的訓練,模型的訓練包括(1)太陽光電數值模型及診斷模型的重新訓練和(2)診斷模型的重新訓練。其中(1)相當於設備初始化,所有模型重新訓練,而(2)用於更新故障樣本資料庫124,訓練診斷模型。接著執行步驟S208。
步驟S210:啟動智慧故障訓練功能。此步驟可通過提供一功能標誌位元(function flag bit),當啟用該功能時,可依據此功能標誌位元啟動智慧故障訓練功能,進一步調用故障訓練排程。
其中,故障訓練排程包括且不限於:定時訓練排程,定量訓練優先排程,誤判率優先排程等。定時訓練排程可包括判斷當前時間T c 減去上次執行時間T p 是否大於等於預定訓練時間M 0 ,若是,則產生並傳送訓練診斷模型命令。定量訓練優先排程可包括判斷故障樣本資料庫124中的故障樣本數量是否大於等於預定故障樣本數量M 1 ,若是,則產生並傳送訓練診斷模型命令,若故障樣本數量沒有超過預定故障樣本數量M 1 ,則執行定時訓練排程。誤判率優先排程可包括判斷誤判率是否大於或等於第一預定誤判率M 2 ,若是,則產生並傳送訓練診斷模型命令,並進一步判斷誤判率是否大於或等於第二預定誤判率M 3 。若是,則產生並傳送訓 練太陽光電數值模型及診斷模型命令。其中,第二預定誤判率M 3 大於第一預定誤判率M 2 。若誤判率沒有超過第一預定誤判率M 2 ,則執行定量訓練優先排程。
當滿足上述產生並傳送訓練命令的條件時,執行步驟S108,否則回到步驟S210,直到滿足排程條件為止。
步驟S208:如果接收到訓練命令,或步驟S207中有啟用遠端控制訓練,則從故障樣本資料庫124中抓取特定數量的故障樣本,並執行步驟S209。
步驟S209:依據所收到的訓練命令指示所要進行的訓練類型(部分訓練還是全部訓練),將故障樣本按照通訊協定封裝成一定格式的訊號,並執行步驟S200,通過通訊單元120將此訊號傳送給逆變器INV。
圖5為本發明一實施例的智慧型故障診斷模型創建的第一流程圖。現將參閱圖5在以下進一步說明智慧型訓練故障診斷流程的第一部份,其主要接續於前述實施例的步驟S104之後,並至少包括下列幾個步驟:
步驟S300:判斷是否要重建數值仿真模型。詳細而言,可通過判斷來自資料視覺化模組12的命令,來決定是否要重建。舉例來說,此命令可為一個訊息標誌位元,且可以是由資料視覺化模組12下發的全部訓練命令,且其之標誌位元可例如為“1”。或者,也可以通過逆變器INV的按鍵下達命令,或通過使用者裝置上的應用程式來下達命令。如果判斷需要重建,則執行步驟S301,否則執行步驟S105。
步驟S301:以太陽光電數值模型創建模組100創建太陽光電模型。
步驟S302:以太陽光電實測數據擷取模組102進行太陽光電實測數據擷取。
步驟S303:以太陽光電數值模型校正模組104進行太陽光電 數值模型校正。
步驟S304:以太陽光電故障模型訓練模組106進行太陽光電診斷模型訓練,之後進入步驟S105。
圖6為本發明一實施例的創建數值仿真模型流程的流程圖。現將參閱圖6在以下進一步說明創建數值仿真模型流程,其主要接續於前述實施例的步驟S301之後,並至少包括下列幾個步驟:
步驟S400:導入太陽光電系統PV的基礎數據資訊及安裝資料。此資訊可以通過使用者裝置的應用程式、雲端系統進行傳送,基礎數據資訊及安裝資料包括太陽光電系統PV的數據訊息,包括且不限於標準測試條件(Standard Test Condition,STC)下的開路電壓、短路電流、最大功率點的電壓、電流、模組的電池數量,發電系統含有的串並聯模組個數,各種溫升係數等。
步驟S401:自動計算太陽光電仿真模型參數,並與太陽光電系統PV的實際參數進行匹配。請參閱圖7,其為本發明一實施例的太陽光電仿真模型的方塊圖。如圖所示,太陽光電仿真模型A1包括太陽光電模組A11、短路模組A12、老化模組A13、接地模組A14、開路模組A15、光照及溫度模組A16以及光伏特性抽取模組A17。根據太陽光電系統PV的基礎數據資訊及安裝資料,例如標準測試條件(STC)下的開路電壓、短路電流、最大功率點電壓、電流、模組的電池數量、各種溫升系統,來設置太陽光電模組A11的參數。此外,可根據太陽光電系統PV的串並聯模組個數,計算太陽光電模組A11的個數、短路模組A12的個數、老化模組A13的參數、接地模組A14的位置以及開路模組A15的位置。
另一方面,光照及溫度模組A16的數據可採用預設值,其中,光照強度從G 1 G 2 變化,比如G 1 =1100W/m2G 2 =100W/m2,面板溫度從T 1 T 2 變化,比如T 1 =70℃,T 2 =25℃。光照強度及溫度的組合可以是同步線性變化的,也可以是彼此獨立並隨機變化的。
光伏特性抽取模組A17包括針對功率-電壓(P-V)及電流-電壓 (I-V)曲線的抽取,電壓從0變化至太陽光電系統PV的開路電壓V oc ,記錄電流值,計算功率值,並生成P-VI-V關係曲線。
步驟S402:根據步驟S401計算出的太陽光電仿真模型A1的參數,生成對應的仿真模型代碼,以完成太陽光電數值仿真模型A1的建立。
圖8為本發明一實施例的太陽光電實測數據擷取流程的流程圖。現將參閱圖8在以下進一步說明太陽光電實測數據擷取流程,其中,通過配置太陽光電實測數據擷取模組,可用於執行前述實施例的步驟S302或步驟S108,並至少包括下列幾個步驟:
步驟S500:選擇數據擷取的數量nn可由手動預先設置,可以是預設的,亦可以通過使用者裝置的應用程式、雲端或者逆變器INV面板進行修改,並且儲存在記憶單元中,例如EEPROM(掉電保持記憶體)中。n可為至少兩組或多組設定值,其中一組用於步驟S302,另一組用於步驟S108,兩組設定值可以相同,也可以不同。
步驟S501:判斷太陽光電系統PV的設備是否運行正常,主要是根據前述的上電自檢步驟S101中產生的上電自檢訊號進行識別。若是,則進入步驟S502,若否,則退出此流程。
步驟S502:判斷逆變器INV的設備是否接入太陽光電系統PV。舉例而言,可檢測是否有直流電流輸入進行判斷。若是,則進入步驟S503,若否,則退出此流程。
步驟S503:判斷輻照度是否大於設定值G 5 ,其中,G5
Figure 107128007-A0305-02-0017-15
(G 2 ,G 1 ),可以將設定值G 5 設置在高輻照度下,使測量數據更加準確。若是,則進入步驟S504,若否,則退出此流程。
步驟S504:判斷當前輻照度是否不等於前次測量的輻照度。詳細而言,僅有輻照度產生變化時,方能確保所測量的數據為不同情況下測量的數據。若否,則等待輻照度發生變化,若是,則進入步驟S505。
步驟S505:以功率調節器執行獲取功率-電壓(P-V)及電流-電壓(I-V)曲線的命令。詳細而言,功率調節器一般作為逆變器INV中的功率調節單元,其用於在盡可能短的時間內,通過控制電壓從0至開路電壓V oc 變化,同時輸出電流值,進入步驟S506。
步驟S506:記錄並計算電流及功率資訊,以產生功率-電壓(P-V)及電流-電壓(I-V)曲線。將I-V&P-V曲線訊息以及從I-V&P-V曲線中所擷取的外特徵參數信息,諸如:開路電壓V oc 、短路電流I sc 、最大功率點電壓V m 、最大功率點電流Im、開路點阻抗R oc 、短路點阻抗R sc 以及從環境感測器測量的輻照度、溫度、風速訊息和執行時刻訊息儲存於微處理器的記憶單元中,並進入步驟S507。
步驟S507:判斷是否完成所設定的n筆資料的擷取。詳細而言,可通過計數器對擷取次數進行計次,每當完成數據擷取,則將擷取次數加1,並進一步判斷擷取次數是否大於數據擷取的數量n。若是,則進入步驟S303或步驟S109,若否,則回到步驟S504,繼續進行數據擷取。
由於太陽光電數值模型是根據出廠數據進行建模的,模型參數是理想值,而實際的太陽光電發電廠由於存在污染、老化、性能衰退、照度感測器、溫度感測器安裝位置不對等因素,導致數值模型和實際模型存在較大的誤差,需要進行適當的校正。
進一步,請參閱圖9,其為本發明一實施例的太陽光電數值模型校正流程的流程圖。現將參閱圖9在以下進一步說明太陽光電數值模型校正流程,其中,通過配置太陽光電數值模型校正模組104,可接續於前述實施例的步驟S303之後執行,並至少包括下列幾個步驟:
步驟S600:讀取太陽光電系統PV採集的n筆無故障實測數據,將其分成n 1 等份。因此,每一等份有n/n 1 筆數據,並設置計數器從計數值i=1開始計數。其中,n 1
Figure 107128007-A0305-02-0018-16
(1,n),其目的是實現數據的分批訓練。舉例而言,當n 1 =1時,每次訓練1筆數據,當n 1 =n 時,一次訓練n筆數據。其中,n 1 須為能整除n的整數。
步驟S601:擷取第i份量測數據。
步驟S602:將第i份量測數據中的資訊,包括溫度、輻照度、風速等訊息輸入太陽光電數值仿真模型A1中。
步驟S603:根據步驟S602傳入的資訊,計算輸出電壓、電流、功率資訊,並紀錄為期望值。
步驟S604:判斷Σ|期望值-實測值|是否小於<偏差值ε,若是,則說明數值模型可以使用,進入步驟S606,若否,則代表數值模型需要調整,進入步驟S605。偏差值ε可由設計者修改。
步驟S605:透過機器學習演算法調整校正參數。其中,機器學習演算法可包括且不限於,粒子群算法、模糊理論、類神經網路、深度學習神經網路(DNN)等。執行完畢後,進入步驟S602,重新計算期望值。
步驟S606:當判斷數值模型可以使用,則計數器將計數值i增加1,亦即使i=i+1;
步驟S607:判斷計數值i是否小於n 1 ,亦即,判斷是否n筆實測數據都處理完畢,若是,代表未完成,則返回執行步驟S601,若否,則執行步驟S608。
步驟S608:根據參數調整結果獲得太陽光電數值仿真模型A2,進入步驟S304。
進一步,請參閱圖10,其為本發明一實施例的診斷模型訓練流程的流程圖。現將參閱圖10在以下進一步說明診斷模型訓練流程,其中,通過配置太陽光電故障模型訓練模組106,可接續於前述實施例的步驟S304及步驟S105之後執行,並至少包括下列幾個步驟:接續於前述實施例的步驟S304後,進入步驟S700:設定數值模擬故障樣本數及故障類型的比例,含預設值及可修改值,預設值內建在程式中,不可修改,可修改值允許通過使用者裝置的 應用程式或雲端進行修改後傳送到太陽光電故障模型訓練模組106。
步驟S701:依照步驟S700設定的參數控制太陽光電數值仿真模型A2生成不同類型的故障樣本,且包括非故障樣本。
接續於前述實施例的步驟S105後,進入步驟S702:接收到重新訓練命令及數據樣本。
步驟S703:將同類型仿真數據樣本等比例替換成實測數據樣本。
步驟S704:將仿真樣本和實測樣本進行混合,同時以亂數將兩者排序。
步驟S705:利用特徵擷取演算法,從樣本中抽取故障特徵量。
具體而言,在步驟S705中,可根據測量到的輻照度和溫度,以及太陽光電系統PV的製造商提供的基礎數據資訊及安裝資料,通過特徵擷取演算法計算當前運行狀態(OPC)下期望的外部特徵參數,包括且不限於I sc_e V oc_e I m_e V m_e 。上述外部特徵參數分別為:I sc_e :短路電流期望值。
V oc_e :開路電壓期望值。
I m_e ;最大功率點的電流期望值。
V m_e :最大功率點的電壓期望值。
進一步,將離線測量的外部特徵參數(包括I sc_m V oc_m I m_m V m_m R oc R sc )對各自期望值進行規範化,以規範化的值作為故障辨識的特徵量,即獲得六個特徵值。
I sc '=I sc_m /I sc_e 式(1)
V oc '=V oc_m /V oc_e 式(2)
I m '=I m_m /I m_e 式(3)
V m '=V m_m /V m_e 式(4)
Figure 107128007-A0305-02-0021-2
Figure 107128007-A0305-02-0021-3
離線測量的外部特徵參數分別為:I sc_m :短路電流測量值。
V oc_m :開路電壓測量值。
I m_m :最大功率點的電流測量值。
V m_m :最大功率點的電壓測量值。
I sc ':規範後的短路電流,無單位。
V oc ':規範化後的開路電壓,無單位。
I m ':規範化後的最大功率點的電流,無單位。
V m ':規範化後的最大功率點的電壓,無單位。
R oc :規範化後的開路點阻抗斜率。
R sc :規範化後的短路點阻抗斜率。
R oc 中,V 2 =V oc V 1 為與V 2 相鄰採樣點的電壓,I 2 是對應於V 2 產生的電流,I 1 是對應於V 1 產生的電流。
R sc 中,I 1 =I sc I 2 是與I 1 相鄰採樣點的電流,V 2 I 2 對應的電壓,V 1 I 1 對應的電壓。
G stc :STC條件下的輻照度,設定為1000W/m2
G:當前測量點的輻照度。
Tstc:STC條件下的溫度,等於25℃。
k v :電壓溫升係數。
r:補償系統,等於0.0002。
k i :電流溫升係數。
e:數學常數,等於2.71828。
對於式(1)-式(4)中的期望外部特徵參數,可通過(7)、(8)、(9)、(10)式計算獲得:
Figure 107128007-A0305-02-0022-5
其中k i 是電流溫升係數,I sc_stc 是STC條件下的短路電流,T stc =25℃,G stc =1000W/m2
V oc_e =V oc_STC (1+k v (T-T STC ))×ln(γ(G-G STC )+e) 式(8)
其中k v 是電壓溫升係數,γ=0.0002,V oc_STC 是STC條件下的開路電壓。
Figure 107128007-A0305-02-0022-7
I m_STC 是STC條件下的最大功率點的電流。
V m_e =V m_STC (1+k v (T-T STC ))×ln(γ(G-G STC )+e) 式(10)
V m_STC 是STC條件下的最大功率點的電壓。
所提取的特徵參數已經經過規範化處理,不含單位,可以泛化到不同太陽光電模組以及不同太陽光電參數的發電系統。以上期望值計算公式引用自文獻Singer S,Rozenshtein B,Surazi S.Characterization of PV array output using a small number of measured parameters[J].Solar Energy,1984,32(5):603-607.
對於不同的故障類型,上述所提取的特徵量I sc_m V oc_m I m_m V m_m R oc R sc ,會呈現不同的變化規律,且對於相同的故障類型,變化特徵具有一致性,所以可用上述特徵訓練機器學習模型,用於辨識故障。
續言之,進入步驟S706:將樣本分成訓練集:測試集為mn2,其中訓練集中又有x比例的樣本用於交叉驗證。將訓練集送入機器學習模型進行訓練,機器學習模型包括且不限於:SVM(支援 向量機)、決策樹、模糊神經網路、深度學習神經網路等。
步驟S707:於模型訓練完成後,進行交叉驗證,繼續調整參數。
步驟S708:將測試集送入已經訓練好的模型,測試模型的識別準確率。
步驟S709:判斷準確率是否大於設定值α,若是,則進入步驟S710,若否,則進入步驟S711。
步驟S710:生成測試模型代碼,模型訓練完成。結束。
步驟S711:模型訓練失敗,設置訓練失敗標誌位元以通知雲端軟體,以便於重新進行訓練。
進一步,太陽光電故障診斷模組108可用於對實測數據的故障診斷,可以對一或多筆數據進行診斷,同時進行投票,得票率高的為最終結果,以提高預測精度。
太陽光電故障診斷模組108可將樣本輸入到已經訓練好的機器學習模型,對樣本進行辨識,並輸出最終的識別結果。機器學習模型包括且不限於,支援向量機(SVM)、決策樹、模糊神經網路、深度學習神經網路等。
下面以SVM(支援向量機)為例,由於該模型是二分類,每次只分出兩類,其分類流程如圖11所示,其為本發明一實施例的太陽光電故障診斷流程的流程圖。
步驟S800:將特徵向量輸入辨識,當辨識結果為1時轉入步驟S801,為-1時轉入步驟S802。
步驟S801表示樣本屬於短路、遮蔭、異常老化類型。
步驟S802表示樣本屬於正常和接地。
步驟S803:繼續放入模型辨識,辨識結果為1時轉入步驟S804,為-1轉入步驟S805。
步驟S805表示樣本屬於不完全遮蔭。
步驟S804表示樣本屬於短路、異常老化、完全遮蔭。
步驟S806:繼續放入模型辨識,辨識結果為1時轉步驟S807,為-1轉入步驟S808。
步驟S808表示樣本屬於短路。
步驟S807表示樣本屬於異常老化或完全遮蔭。
步驟S809:繼續放入模型辨識,辨識結果為1時轉步驟S810,為-1轉入步驟S811。
步驟S810表示樣本屬於異常老化。
步驟S811表示樣本屬於完全遮蔭。
步驟S802歸屬於正常及接地故障,進入步驟S812:將樣本放入模型辨識,辨識結果為1時轉步驟S813,為-1轉入步驟S814。
步驟S813表示樣本屬於正常狀態。
步驟S814表示樣本屬於接地故障。
步驟S815:繼續放入模型辨識,辨識結果為1時轉步驟S816,為-1轉入步驟S817。
步驟S817表示屬於中電阻接地故障。
步驟S816表示樣本屬於直接或小電阻接地故障。
本發明主旨在對現有的逆變器增加智慧型故障診斷模組和資料視覺化模組,使之實現太陽光電故障的自我學習及智慧辨識。智慧型故障診斷模組內嵌於普通的逆變器軟體中,使之變成智慧型的逆變器,資料視覺化模組位於雲端,提供數據收集和資料的視覺化展示,並增加智慧型排程,輔助智慧型逆變器實現診斷模型的自我更新和進化。
此外,可由實境發電系統的製造廠商提供基礎數據和安裝資料,來建立太陽光電數值仿真模型,透過此模型,可生成太陽光電發電系統在實境下的故障樣本,以改善太陽光電歷史資料故障狀況未標識化之缺憾及減少對未來發電系統感測器大量佈建之需求。
以上所公開的內容僅為本發明的優選可行實施例,並非因此 侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。
指定代表圖為流程圖,故無符號簡單說明

Claims (20)

  1. 一種太陽能光電故障檢測系統,適用於檢測一太陽能光電系統,其包括:一智慧型故障診斷模組,係包括:一太陽光電數值模型創建模組,依據該太陽光電系統的基礎數據資訊及安裝資料,建立一太陽光電數值仿真模型,且透過該太陽光電數值仿真模型生成一太陽光電故障樣本;一太陽光電實測數據擷取模組,接收並儲存一環境資訊感測器所回傳的一環境資訊,並對該太陽光電系統執行電性掃描功能,以記錄該太陽光電系統的一外部特徵參數資訊;一太陽光電數值模型校正模組,利用該太陽光電數據對該太陽光電數值仿真模型進行訓練,調整該太陽光電數值仿真模型的參數以產生一校正後太陽光電數值仿真模型;一太陽光電故障模型訓練模組,利用該校正後太陽光電數值仿真模型生成不同類型的多個太陽光電故障樣本,通過特徵擷取演算法擷取該太陽光電系統的故障特徵資訊,並利用機器學習演算法建立用於辨識多個故障狀態的多個診斷模型;以及一太陽光電故障診斷模組,依據所訓練的多個該診斷模型對該太陽光電系統進行故障檢測,並產生一故障資訊。
  2. 如請求項1所述的太陽能光電故障檢測系統,更包括一資料視覺化模組,經配置以接收該故障資訊並進行資料視覺化。
  3. 如請求項2所述的太陽能光電故障檢測系統,其中該資料視覺化模組更包括一通訊單元,與該太陽光電系統的一逆變器進行通訊,經配置以接收該故障資訊,並依據該故障資訊判斷是否發生故障,若是,則將該故障資訊進行資料視覺化,並產生一故障診斷資訊及一故障警報。
  4. 如請求項3所述的太陽能光電故障檢測系統,其中該資料視覺化模組更包括一輸入介面及一故障樣本資料庫,其中該輸入介面用於提供使用者將一故障結果輸入,並儲存於該故障樣本資料庫中,其中該故障結果用於顯示該故障診斷資訊是否正確。
  5. 如請求項2所述的太陽能光電故障檢測系統,其中該資料視覺化模組更包括一遠端模型訓練控制模組,經配置以執行該太陽光電數值仿真模型及多個該診斷模型的重新訓練或多個該診斷模型的重新訓練。
  6. 如請求項2所述的太陽能光電故障檢測系統,其中該資料視覺化模組更包括一智慧型訓練控制模組,經配置以啟動一智慧故障訓練功能,其包括定時訓練排程、定量訓練優先排程及誤判率優先排程。
  7. 如請求項1所述的太陽能光電故障檢測系統,其中該基礎數據資訊包括該太陽光電系統於標準測試條件(Standard Test Condition,STC)下的開路電壓、短路電流、最大功率點電壓、最大功率點電流、電池數量、串並聯模組個數及溫升係數。
  8. 如請求項1所述的太陽能光電故障檢測系統,其中該太陽光電數值仿真模型包括太陽光電模組、短路模組、老化模組、接地模組、開路模組、光照及溫度模組,以及光伏特性抽取模組。
  9. 如請求項1所述的太陽能光電故障檢測系統,其中該太陽光電實測數據擷取模組經配置以判斷相鄰兩次擷取的該太陽光電數據是否相同,若否,則等待到相鄰兩次擷取的該太陽光電數據不同時再進行擷取。
  10. 如請求項1所述的太陽能光電故障檢測系統,其中機器學習演算法包括粒子群算法、模糊理論、類神經網路、深度學習神經網路(DNN)。
  11. 一種太陽能光電故障檢測方法,適用於檢測一太陽能光電系統,其包括: 配置一太陽光電數值模型創建模組,以依據該太陽光電系統的基礎數據資訊及安裝資料,建立一太陽光電數值仿真模型,且透過該太陽光電數值仿真模型生成一太陽光電故障樣本;配置一太陽光電實測數據擷取模組,以接收並儲存一環境資訊感測器所回傳的一環境資訊,並對該太陽光電系統執行電性掃描功能,以記錄該太陽光電系統的一外部特徵參數資訊;配置一太陽光電數值模型校正模組,以利用該太陽光電數據對該太陽光電數值仿真模型進行訓練,並調整該太陽光電數值仿真模型的參數以產生一校正後太陽光電數值仿真模型;配置一太陽光電故障模型訓練模組,以利用該校正後太陽光電數值仿真模型生成不同類型的多個太陽光電故障樣本,通過特徵擷取演算法擷取該太陽光電系統的故障特徵資訊,並利用機器學習演算法建立用於辨識多個故障狀態的多個診斷模型;以及配置一太陽光電故障診斷模組,以依據所訓練的多個該診斷模型對該太陽光電系統進行故障檢測,並產生一故障資訊。
  12. 如請求項11所述的太陽能光電故障檢測方法,更包括配置一資料視覺化模組以接收該故障資訊並進行資料視覺化。
  13. 如請求項12所述的太陽能光電故障檢測方法,更包括:配置一通訊單元與該太陽光電系統的一逆變器進行通訊;配置該通訊單元接收該故障資訊;以及配置該資料視覺化模組依據該故障資訊判斷是否發生故障,若是,則將該故障資訊進行資料視覺化,並產生一故障診斷資訊及一故障警報。
  14. 如請求項13所述的太陽能光電故障檢測方法,更包括:通過一輸入介面將一故障結果輸入;以及將該故障結果儲存於一故障樣本資料庫中,其中該故障結果用於顯示該故障診斷資訊是否正確。
  15. 如請求項11所述的太陽能光電故障檢測方法,更包括配置一遠端模型訓練控制模組以執行該太陽光電數值仿真模型及多個該診斷模型的重新訓練或多個該診斷模型的重新訓練。
  16. 如請求項11所述的太陽能光電故障檢測方法,更包括配置一智慧型訓練控制模組以啟動一智慧故障訓練功能,其包括定時訓練排程、定量訓練優先排程及誤判率優先排程。
  17. 如請求項11所述的太陽能光電故障檢測方法,其中該基礎數據資訊包括該太陽光電系統於標準測試條件(Standard Test Condition,STC)下的開路電壓、短路電流、最大功率點電壓、最大功率點電流、電池數量、串並聯模組個數及溫升係數。
  18. 如請求項11所述的太陽能光電故障檢測方法,其中該太陽光電數值仿真模型包括太陽光電模組、短路模組、老化模組、接地模組、開路模組、光照及溫度模組,以及光伏特性抽取模組。
  19. 如請求項11所述的太陽能光電故障檢測方法,更包括配置該太陽光電實測數據擷取模組以判斷相鄰兩次擷取的該太陽光電數據是否相同,若否,則等待到相鄰兩次擷取的該太陽光電數據不同時再進行擷取。
  20. 如請求項11所述的太陽能光電故障檢測方法,其中該機器學習演算法包括粒子群算法、模糊理論、類神經網路、深度學習神經網路(DNN)。
TW107128007A 2018-08-10 2018-08-10 太陽能光電故障檢測系統及方法 TWI692196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107128007A TWI692196B (zh) 2018-08-10 2018-08-10 太陽能光電故障檢測系統及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107128007A TWI692196B (zh) 2018-08-10 2018-08-10 太陽能光電故障檢測系統及方法

Publications (2)

Publication Number Publication Date
TW202010243A TW202010243A (zh) 2020-03-01
TWI692196B true TWI692196B (zh) 2020-04-21

Family

ID=70766567

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128007A TWI692196B (zh) 2018-08-10 2018-08-10 太陽能光電故障檢測系統及方法

Country Status (1)

Country Link
TW (1) TWI692196B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775196B (zh) * 2020-03-23 2022-08-21 日商東芝股份有限公司 壓接判定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111444615B (zh) * 2020-03-27 2022-09-23 河海大学常州校区 一种基于k近邻和iv曲线的光伏阵列故障诊断方法
TWI721864B (zh) * 2020-04-15 2021-03-11 國立勤益科技大學 太陽光電裝置及使用粒子群最佳化演算法之最大功率追蹤方法
TWI730796B (zh) * 2020-06-03 2021-06-11 友達光電股份有限公司 太陽能發電方法
TWI741727B (zh) * 2020-08-07 2021-10-01 國立臺灣科技大學 基於電性時序波形的光伏陣列故障診斷方法
WO2023044907A1 (en) * 2021-09-27 2023-03-30 Siemens Aktiengesellschaft Method and device for monitoring equipment health and computer readable storage medium
TWI781872B (zh) * 2022-01-18 2022-10-21 崑山科技大學 具遮陰效應太陽能發電預測方法
TWI830330B (zh) * 2022-08-11 2024-01-21 國立勤益科技大學 太陽能發電之遠端故障監測系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207543A1 (en) * 2008-02-14 2009-08-20 Independent Power Systems, Inc. System and method for fault detection and hazard prevention in photovoltaic source and output circuits
WO2013018795A1 (ja) * 2011-08-01 2013-02-07 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム
US9059604B2 (en) * 2011-06-27 2015-06-16 Sunpower Corporation Methods and apparatus for controlling operation of photovoltaic power plants
US9413288B2 (en) * 2010-03-10 2016-08-09 Sunpower Corporation Photovoltaic system with managed output and method of managing variability of output from a photovoltaic system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207543A1 (en) * 2008-02-14 2009-08-20 Independent Power Systems, Inc. System and method for fault detection and hazard prevention in photovoltaic source and output circuits
US9413288B2 (en) * 2010-03-10 2016-08-09 Sunpower Corporation Photovoltaic system with managed output and method of managing variability of output from a photovoltaic system
US9059604B2 (en) * 2011-06-27 2015-06-16 Sunpower Corporation Methods and apparatus for controlling operation of photovoltaic power plants
WO2013018795A1 (ja) * 2011-08-01 2013-02-07 Jx日鉱日石エネルギー株式会社 地絡検出装置、地絡検出方法、太陽光発電システム、及び地絡検出プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Singer S. etc., " Characterization of PV array output using a small number of measured parameters," solar energy, 1984 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775196B (zh) * 2020-03-23 2022-08-21 日商東芝股份有限公司 壓接判定方法

Also Published As

Publication number Publication date
TW202010243A (zh) 2020-03-01

Similar Documents

Publication Publication Date Title
TWI692196B (zh) 太陽能光電故障檢測系統及方法
US11621668B2 (en) Solar array fault detection, classification, and localization using deep neural nets
Dhimish et al. Simultaneous fault detection algorithm for grid‐connected photovoltaic plants
CN107807860B (zh) 一种基于矩阵分解的电力故障分析方法及系统
CN105141255A (zh) 一种光伏阵列故障诊断方法
Sairam et al. Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes
Yurtseven et al. Sensorless fault detection method for photovoltaic systems through mapping the inherent characteristics of PV plant site: Simple and practical
EP4216395A1 (en) Dynamic hosting capacity analysis framework for distribution system planning
JP6697116B2 (ja) 太陽電池の検査装置、検査システム、検査方法及びプログラム
He et al. Compound fault diagnosis for photovoltaic arrays based on multi-label learning considering multiple faults coupling
Cortes-Robles et al. Fast-training feedforward neural network for multi-scale power quality monitoring in power systems with distributed generation sources
Amiri et al. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier
Wang et al. Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression
Siddikov et al. Modeling of monitoring systems of solar power stations for telecommunication facilities based on wireless nets
Liu et al. Experiment‐based supervised learning approach toward condition monitoring of PV array mismatch
Serrano-Luján et al. Case of study: Photovoltaic faults recognition method based on data mining techniques
TWI684927B (zh) 太陽光電發電預測系統及方法
CN117113157B (zh) 一种基于人工智能的台区用电故障检测系统
Gnetchejo et al. Faults diagnosis in a photovoltaic system based on multivariate statistical analysis
CN111476400A (zh) 电路故障预测方法、装置、设备及计算机可读介质
US20240044988A1 (en) Abnormality detection device, abnormality detection method, and computer program
KR102521645B1 (ko) 태양광 발전소 모니터링 방법
Ragul et al. Cloud Computing and Machine Learning-based Electrical Fault Detection in the PV System
Adhya et al. Diagnosis of PV array faults using RUSBoost
CN107179438A (zh) 基于菊花链拓扑的智能识别监测系统