TWI692121B - Light-emitting device and the manufacturing method thereof - Google Patents

Light-emitting device and the manufacturing method thereof Download PDF

Info

Publication number
TWI692121B
TWI692121B TW106121372A TW106121372A TWI692121B TW I692121 B TWI692121 B TW I692121B TW 106121372 A TW106121372 A TW 106121372A TW 106121372 A TW106121372 A TW 106121372A TW I692121 B TWI692121 B TW I692121B
Authority
TW
Taiwan
Prior art keywords
layer
light
metal
diffusion region
transparent conductive
Prior art date
Application number
TW106121372A
Other languages
Chinese (zh)
Other versions
TW201733162A (en
Inventor
柯竣騰
郭得山
塗均祥
邱柏順
鍾健凱
葉慧君
蔡旻諺
柯淙凱
陳俊揚
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/861,449 external-priority patent/US9231164B2/en
Priority claimed from US14/013,166 external-priority patent/US9508901B2/en
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Publication of TW201733162A publication Critical patent/TW201733162A/en
Application granted granted Critical
Publication of TWI692121B publication Critical patent/TWI692121B/en

Links

Images

Abstract

A light-emitting device comprises a first semiconductor layer; and a transparent conductive oxide layer comprising a diffusion region having a first metal material and a non-diffusion region devoid of the first metal material, wherein the non-diffusion region is closer to the first semiconductor layer than the diffusion region.

Description

發光元件及其製造方法Light emitting element and its manufacturing method

本發明係關於一發光元件及其製造方法,尤其是關於一具有一擴散區域及一非擴散區域之一透明導電氧化層之發光元件及其製造方法。The invention relates to a light-emitting element and a method for manufacturing the same, in particular to a light-emitting element having a transparent conductive oxide layer with a diffusion area and a non-diffusion area and a method for manufacturing the same.

發光二極體(LED)是一種固態半導體元件,發光二極體(LED)之結構包含一p型半導體層、一n型半導體層與一發光層,其中發光層形成於p型半導體層與n型半導體層之間。LED的結構包含由Ⅲ-Ⅴ族元素組成的化合物半導體,例如磷化鎵(GaP)、砷化鎵(GaAs)、氮化鎵(GaN),其發光原理是在一外加電場作用下,利用n型半導體層所提供的電子與p型半導體層所提供的電洞在發光層的p-n接面附近複合,將電能轉換成光能。A light emitting diode (LED) is a solid-state semiconductor device. The structure of the light emitting diode (LED) includes a p-type semiconductor layer, an n-type semiconductor layer, and a light-emitting layer, wherein the light-emitting layer is formed on the p-type semiconductor layer and n Type semiconductor layer. The structure of the LED includes compound semiconductors composed of group III-Ⅴ elements, such as gallium phosphide (GaP), gallium arsenide (GaAs), and gallium nitride (GaN). The principle of light emission is to use n under an external electric field. The electrons provided by the p-type semiconductor layer and the holes provided by the p-type semiconductor layer recombine near the pn junction of the light-emitting layer to convert electrical energy into light energy.

一發光元件,包含一第一半導體層;以及一透明導電氧化層,其包含一具有一第一金屬材料之擴散區域及一不具有第一金屬材料之非擴散區域,其中非擴散區域比擴散區域更靠近第一半導體層。A light-emitting device including a first semiconductor layer; and a transparent conductive oxide layer including a diffusion region having a first metal material and a non-diffusion region not having a first metal material, wherein the non-diffusion region is larger than the diffusion region Closer to the first semiconductor layer.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。在圖式或說明中,相似或相同之部份係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows. In the drawings or descriptions, similar or identical parts are given the same reference numerals, and in the drawings, the shape or thickness of the elements may be enlarged or reduced. It should be noted that the elements not shown or described in the figure may be in a form known to those skilled in the art.

圖1A-1C係本發明第一實施例之一發光元件1之製造方法。製造方法包含如下步驟:1A-1C are a method of manufacturing a light-emitting device 1 according to a first embodiment of the present invention. The manufacturing method includes the following steps:

第一步驟:The first step:

提供一基板10,例如藍寶石基板。一半導體疊層20包含一具有一第一極性之第一半導體層13,一具有一第二極性之第二半導體層11,以及一主動層12,形成於基板10上。主動層12具有一結構,例如以銦鎵氮為主的多重量子井(MQW)結構,形成於第一半導體層13以及第二半導體層11之間。A substrate 10 is provided, such as a sapphire substrate. A semiconductor stack 20 includes a first semiconductor layer 13 having a first polarity, a second semiconductor layer 11 having a second polarity, and an active layer 12 formed on the substrate 10. The active layer 12 has a structure, such as a multiple quantum well (MQW) structure mainly composed of indium gallium nitrogen, formed between the first semiconductor layer 13 and the second semiconductor layer 11.

於本實施例之一例中,第一半導體層13可為一n型氮化鎵(GaN)層,第二半導體層11可為一p型氮化鎵(GaN)層。In an example of this embodiment, the first semiconductor layer 13 may be an n-type gallium nitride (GaN) layer, and the second semiconductor layer 11 may be a p-type gallium nitride (GaN) layer.

藉由一磊晶方法,例如有機金屬化學氣相沉積法(MOCVD),分子束磊晶(MBE),或是氫化物氣相沉積法(HVPE),以形成第一半導體層13,第二半導體層11,或主動層12。The first semiconductor layer 13 and the second semiconductor are formed by an epitaxial method, such as organic metal chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or hydride vapor deposition (HVPE) Layer 11, or active layer 12.

第二步驟:The second step:

於第二步驟中,一透明導電氧化層14形成於半導體疊層20上。In the second step, a transparent conductive oxide layer 14 is formed on the semiconductor stack 20.

接下來,於透明導電氧化層14形成於半導體疊層20上之後,一金屬層15形成於透明導電氧化層14的一上表面S1上。Next, after the transparent conductive oxide layer 14 is formed on the semiconductor stack 20, a metal layer 15 is formed on an upper surface S1 of the transparent conductive oxide layer 14.

金屬層15包含一第一金屬材料,其包含一元素選自於IIA族及IIIA族所構成之群組。金屬層15可藉由蒸鍍沉積之方法,於接近室溫及壓力在1×10-5托(Torr)及1×10-7托(Torr)之間,較佳為接近2.9×10-6托(Torr)之腔體環境下,以一預定之厚度形成,例如小於500埃(Å)。The metal layer 15 includes a first metal material including an element selected from the group consisting of Group IIA and Group IIIA. The metal layer 15 can be deposited by vapor deposition at a temperature close to room temperature and a pressure between 1×10-5 Torr and 1×10-7 Torr, preferably close to 2.9×10-6 Under the cavity environment of Torr, it is formed with a predetermined thickness, for example, less than 500 Angstroms (Å).

透明導電氧化層14,包含一第二金屬材料,其包含一或多種元素選自於過渡金屬,IIIA族及IVA族所構成之群組,例如氧化銦錫 (ITO)。透明導電氧化層14可藉由蒸鍍沉積之方法,於接近室溫,氮氣環境及壓力在1×10-4托(Torr)及1×10-2托(Torr)之間,較佳為接近5×10-3托(Torr)之腔體環境下,以一預定之厚度形成,例如小於3000埃(Å)。The transparent conductive oxide layer 14 includes a second metal material including one or more elements selected from the group consisting of transition metals, group IIIA and group IVA, such as indium tin oxide (ITO). The transparent conductive oxide layer 14 can be deposited by vapor deposition at a temperature close to room temperature, with a nitrogen atmosphere and pressure between 1×10-4 Torr and 1×10-2 Torr, preferably close to Under the cavity environment of 5×10-3 Torr, it is formed with a predetermined thickness, for example, less than 3000 Angstroms (Å).

金屬層15之第一金屬材料與透明導電氧化層14之第二金屬材料不同。於本實施例之一例中,第一金屬材料包含鋁(Al)、鈮(Nb)、鉭(Ta)、釔(Y)或上述之組合。第二金屬材料包含銦(In)或錫(Sn)。第一金屬材料比第二金屬材料容易與氧反應。The first metal material of the metal layer 15 is different from the second metal material of the transparent conductive oxide layer 14. In an example of this embodiment, the first metal material includes aluminum (Al), niobium (Nb), tantalum (Ta), yttrium (Y), or a combination thereof. The second metal material includes indium (In) or tin (Sn). The first metal material is easier to react with oxygen than the second metal material.

第三步驟:The third step:

於溫度介於200℃及700℃之間,較佳介於500℃~600℃之間,實質上無氧之環境,例如氮氣環境下,熱處理透明導電氧化層14及金屬層15,使金屬層15中的第一金屬材料擴散進入到透明導電氧化層14以形成一擴散區域151,如圖1B所示,其中透明導電氧化層14包含具有第一金屬材料之擴散區域151及一實質上不具有第一金屬材料之非擴散區域141,如圖1B所示。具體而言,擴散區域151及非擴散區域141的劃分可以藉由元素分析的方式來定義,舉例來說”實質上不具有第一金屬材料之非擴散區域141”可指於非擴散區域141的第一金屬材料濃度低於歐傑電子能譜儀所能量測到第一金屬元素訊號的極限。第一金屬材料可與透明導電氧化層14中的氧反應形成一金屬氧化物,例如五氧化二鉭(Ta2O5)、氧化鋁(Al2O3)、五氧化二鈮(Nd2O5)、氧化釔(Y2O3)、或上述之組合,其可於透明導電氧化層14 、透明導電氧化層14 之上表面S1、及/或透明導電氧化層14 與第二半導體層11之間的介面被偵測到。因為透明導電氧化層14 中的氧被提供給第一金屬材料,因此有較多的金屬離子存在於透明導電氧化層14 中,可提升透明導電氧化層14的導電率。At a temperature between 200°C and 700°C, preferably between 500°C and 600°C, in a substantially oxygen-free environment, such as a nitrogen environment, heat-treating the transparent conductive oxide layer 14 and the metal layer 15 to make the metal layer 15 The first metal material in the diffusion into the transparent conductive oxide layer 14 to form a diffusion region 151, as shown in FIG. 1B, wherein the transparent conductive oxide layer 14 includes a diffusion region 151 with a first metal material and a substantially no A non-diffusion region 141 of metal material, as shown in FIG. 1B. Specifically, the division of the diffusion region 151 and the non-diffusion region 141 can be defined by element analysis. For example, “the non-diffusion region 141 substantially without the first metal material” can refer to the The concentration of the first metal material is lower than the limit of the signal of the first metal element measured by the energy of the OJ electronic spectrometer. The first metal material can react with the oxygen in the transparent conductive oxide layer 14 to form a metal oxide, such as tantalum pentoxide (Ta2O5), aluminum oxide (Al2O3), niobium pentoxide (Nd2O5), yttrium oxide (Y2O3), Or a combination of the above, it can be detected on the transparent conductive oxide layer 14, the upper surface S1 of the transparent conductive oxide layer 14, and/or the interface between the transparent conductive oxide layer 14 and the second semiconductor layer 11. Since the oxygen in the transparent conductive oxide layer 14 is supplied to the first metal material, more metal ions are present in the transparent conductive oxide layer 14, which can improve the conductivity of the transparent conductive oxide layer 14.

第四步驟:The fourth step:

利用感應耦合電漿蝕刻之方式形成一平台30以露出第二半導體層11的一上表面S2,如圖1C所示。A platform 30 is formed by inductively coupled plasma etching to expose an upper surface S2 of the second semiconductor layer 11, as shown in FIG. 1C.

第五步驟:The fifth step:

一第一電極61形成於第二半導體層11的上表面S2上及一第二電極62形成於透明導電氧化層14 的上表面S1上以形成一水平式的發光元件1,如圖1C所示。A first electrode 61 is formed on the upper surface S2 of the second semiconductor layer 11 and a second electrode 62 is formed on the upper surface S1 of the transparent conductive oxide layer 14 to form a horizontal light-emitting device 1, as shown in FIG. 1C .

基板10可為一絕緣基板,例如藍寶石基板。圖1D係本發明另一實施例之一垂直式發光元件2。發光元件2包含一導電基板21,其包含一導電材料,例如金屬或半導體。垂直式發光元件2之製造方法包含了上述相似之步驟,例如第一步驟到第三步驟,其中基板10被置換成導電基板21。與發光元件1不同之步驟在於導電基板21之相對側形成一第一電極63及一第二電極62。The substrate 10 may be an insulating substrate, such as a sapphire substrate. FIG. 1D is a vertical light-emitting device 2 according to another embodiment of the invention. The light-emitting element 2 includes a conductive substrate 21 that includes a conductive material, such as metal or semiconductor. The manufacturing method of the vertical light emitting element 2 includes similar steps as described above, such as the first step to the third step, in which the substrate 10 is replaced with the conductive substrate 21. The step different from the light-emitting element 1 is that a first electrode 63 and a second electrode 62 are formed on opposite sides of the conductive substrate 21.

第一半導體層13,主動層12,以及第二半導體層11之材料包含一元素選自於Ⅲ-Ⅴ族半導體材料,例如砷(As)、鎵(Ga)、鋁(Al)、銦(In)、磷(P)、或氮(N)。The materials of the first semiconductor layer 13, the active layer 12, and the second semiconductor layer 11 include an element selected from group III-V semiconductor materials, such as arsenic (As), gallium (Ga), aluminum (Al), and indium (In ), phosphorus (P), or nitrogen (N).

透明導電氧化層14 的材料包含透明導電氧化材料,例如氧化銦錫(ITO)、鎘錫氧化物(CTO)、銻氧化錫、氧化銦鋅、氧化鋅鋁、氧化鋅或鋅錫氧化物。The material of the transparent conductive oxide layer 14 includes a transparent conductive oxide material, such as indium tin oxide (ITO), cadmium tin oxide (CTO), antimony tin oxide, indium zinc oxide, zinc aluminum oxide, zinc oxide, or zinc tin oxide.

依據圖1A-1C所述之第一實施例,金屬層15於熱處理前為一厚度小於500埃(Å)之薄層,且為一不連續層,其具有複數個金屬晶粒個別地分佈於透明導電氧化層14上。金屬層15於熱處理後則完全擴散進入透明導電氧化層14 以形成擴散區域151。According to the first embodiment described in FIGS. 1A-1C, before the heat treatment, the metal layer 15 is a thin layer with a thickness less than 500 Angstroms (Å), and is a discontinuous layer, which has a plurality of metal grains individually distributed in On the transparent conductive oxide layer 14. After the heat treatment, the metal layer 15 completely diffuses into the transparent conductive oxide layer 14 to form the diffusion region 151.

於圖2所示第一實施例之一變化例中,金屬層15之第一金屬材料係藉由熱處理部份擴散進入到透明導電氧化層14中以形成一擴散區域152,其中透明導電氧化層14包含具有第一金屬材料之擴散區域152及一實質上不具有第一金屬材料之非擴散區域142。一餘留金屬層153具有一縮減之尺寸餘留於透明導電氧化層14的上表面S1上。餘留金屬層153之厚度較佳為小於100埃(Å),以使來自於主動層12之光線可以穿透。擴散區域152之厚度較佳大於50埃(Å)。In a variation of the first embodiment shown in FIG. 2, the first metal material of the metal layer 15 is diffused into the transparent conductive oxide layer 14 by heat treatment to form a diffusion region 152, in which the transparent conductive oxide layer 14 includes a diffusion region 152 with a first metal material and a non-diffusion region 142 that does not substantially have a first metal material. A remaining metal layer 153 has a reduced size remaining on the upper surface S1 of the transparent conductive oxide layer 14. The thickness of the remaining metal layer 153 is preferably less than 100 Angstroms (Å), so that the light from the active layer 12 can penetrate. The thickness of the diffusion region 152 is preferably greater than 50 Angstroms (Å).

圖3A-3C係本發明之第二實施例。以一金屬層25對比於第一實施例中的金屬層15,第一實施例與本實施例之間的差異處在於金屬層25為一厚度小於500埃(Å)之連續層,金屬層25於熱處理前實質上完全覆蓋於透明導電氧化層14的上表面S1上。金屬層25之第一金屬材料藉由熱處理完全擴散進入到透明導電氧化層14中以形成一擴散區域251,其中透明導電氧化層14包含具有第一金屬材料之擴散區域251及一實質上不具有第一金屬材料之非擴散區域241,如圖3B所示。具體而言,擴散區域251及非擴散區域241的劃分可以藉由元素分析的方式來定義,舉例來說”實質上不具有第一金屬材料之非擴散區域241”可指於非擴散區域241的第一金屬材料濃度低於歐傑電子能譜儀所能量測到第一金屬元素訊號的極限。於本實施例之另一例中,金屬層25之第一金屬材料係藉由熱處理部份擴散進入到透明導電氧化層14中以形成一擴散區域252,其中透明導電氧化層14包含具有第一金屬材料之擴散區域252及一實質上不具有第一金屬材料之非擴散區域242,如圖3C所示。一餘留金屬層253具有一縮減之尺寸餘留於透明導電氧化層14的上表面S1上。餘留金屬層253之厚度較佳為小於100埃(Å),以使來自於主動層12之光線可以穿透。擴散區域252之厚度較佳大於50埃(Å)。3A-3C are the second embodiment of the present invention. A metal layer 25 is compared with the metal layer 15 in the first embodiment. The difference between the first embodiment and this embodiment is that the metal layer 25 is a continuous layer with a thickness less than 500 Angstroms (Å). The metal layer 25 The upper surface S1 of the transparent conductive oxide layer 14 is substantially completely covered before the heat treatment. The first metal material of the metal layer 25 is completely diffused into the transparent conductive oxide layer 14 by heat treatment to form a diffusion region 251, wherein the transparent conductive oxide layer 14 includes the diffusion region 251 with the first metal material and a substantially no The non-diffusion region 241 of the first metal material is shown in FIG. 3B. Specifically, the division of the diffusion region 251 and the non-diffusion region 241 can be defined by element analysis. For example, “the non-diffusion region 241 that does not substantially have the first metal material” can refer to the The concentration of the first metal material is lower than the limit of the signal of the first metal element measured by the energy of the Aojie electronic spectrometer. In another example of this embodiment, the first metal material of the metal layer 25 is diffused into the transparent conductive oxide layer 14 by heat treatment to form a diffusion region 252, wherein the transparent conductive oxide layer 14 includes a first metal The material diffusion region 252 and a non-diffusion region 242 that does not substantially have the first metal material, as shown in FIG. 3C. A remaining metal layer 253 has a reduced size remaining on the upper surface S1 of the transparent conductive oxide layer 14. The thickness of the remaining metal layer 253 is preferably less than 100 Angstroms (Å), so that the light from the active layer 12 can penetrate. The thickness of the diffusion region 252 is preferably greater than 50 Angstroms (Å).

圖4係本發明之第三實施例。第三實施例與上述實施例之間的差異處在於第一半導體層33的一上表面S3為一粗糙面,一透明導電氧化層34及一金屬層35於熱處理前係順應地(conformably)形成於第一半導體層33上。Fig. 4 is a third embodiment of the present invention. The difference between the third embodiment and the above embodiments is that an upper surface S3 of the first semiconductor layer 33 is a rough surface, a transparent conductive oxide layer 34 and a metal layer 35 are conformally formed before heat treatment On the first semiconductor layer 33.

圖5係本發明之第四實施例。透明導電氧化層44係形成於半導體疊層40上方,一基板43係形成於半導體疊層40下方。第四實施例與上述實施例之間的差異處在於金屬層45於熱處理前係以一圖案形成於透明導電氧化層44上,且金屬層45之圖案可被設計成對應於發光元件400之電極佈局,例如形狀或分佈等,但是發光元件400之電極佈局不限於本實施例所舉。金屬層45可包含一第一金屬材料,其包含錫(Sn)、銀(Ag)、鎳(Ni)、其他金屬、或上述組合或其合金。金屬層45之厚度小於50奈米(nm),於本實施例中,金屬層45之厚度可約為70埃(Å)。於本實施例中,金屬層45可包含格狀或網狀之圖案。金屬層格狀或網狀圖案之線寬小於200奈米(nm),於本實施例中,線寬大約為100奈米(nm)。發光元件400可包含一第一電極402形成於透明導電氧化層44上以及一第二電極404。第一電極402及第二電極404係分別電連接至如第一實施例及圖1A中所述之一第一半導體層13及一第二半導體層11。第一電極402包含一第一電極墊402a及一第一延伸電極402b,第二電極404包含一第二電極墊404a及一第二延伸電極404b。第一電極墊402a設置於靠近發光元件400之一第一邊400a,第二電極墊404a設置於靠近發光元件400之一第二邊400b。第一延伸電極402b延伸自第一電極墊402a,為一圖案式分佈,於透明導電氧化層44之一水平面上定義出一具有一開口401a之第一區域401以及第一區域401以外之一第二區域403。第二延伸電極404b延伸自第二電極墊404a,且第二電極墊404a係位於第一區域401。金屬層45格狀或網狀圖案之密度於低電流密度之區域較密集,於高電流密度之區域較稀疏。於本實施例中,金屬層45之格狀或網狀圖案密度於第二區域403可以比第一區域401密集。具體而言,對應於第一區域401之金屬層45的格狀圖案可由複數個區塊451組成,每一區塊451具有1μm x 1μm之尺寸大小,對應於第二區域403之金屬層45的格狀圖案可由複數個區塊452組成,每一區塊452具有0.5μm x 0.5μm之尺寸大小,複數個區塊452於第二區域403之圖案密度比複數個區塊451於第一區域401之圖案密度密集。Fig. 5 is a fourth embodiment of the present invention. The transparent conductive oxide layer 44 is formed above the semiconductor stack 40, and a substrate 43 is formed below the semiconductor stack 40. The difference between the fourth embodiment and the above embodiments is that the metal layer 45 is formed on the transparent conductive oxide layer 44 in a pattern before heat treatment, and the pattern of the metal layer 45 can be designed to correspond to the electrode of the light emitting element 400 Layout, such as shape or distribution, etc., but the electrode layout of the light emitting element 400 is not limited to that described in this embodiment. The metal layer 45 may include a first metal material including tin (Sn), silver (Ag), nickel (Ni), other metals, or a combination thereof or an alloy thereof. The thickness of the metal layer 45 is less than 50 nanometers (nm). In this embodiment, the thickness of the metal layer 45 may be about 70 Angstroms (Å). In this embodiment, the metal layer 45 may include a grid or mesh pattern. The line width of the grid or mesh pattern of the metal layer is less than 200 nanometers (nm). In this embodiment, the line width is about 100 nanometers (nm). The light emitting device 400 may include a first electrode 402 formed on the transparent conductive oxide layer 44 and a second electrode 404. The first electrode 402 and the second electrode 404 are electrically connected to a first semiconductor layer 13 and a second semiconductor layer 11 as described in the first embodiment and FIG. 1A, respectively. The first electrode 402 includes a first electrode pad 402a and a first extension electrode 402b, and the second electrode 404 includes a second electrode pad 404a and a second extension electrode 404b. The first electrode pad 402a is disposed near a first side 400a of the light emitting element 400, and the second electrode pad 404a is disposed near a second side 400b of the light emitting element 400. The first extension electrode 402b extends from the first electrode pad 402a in a pattern distribution, and defines a first area 401 having an opening 401a and a first area other than the first area 401 on a horizontal plane of the transparent conductive oxide layer 44二区403. The second extension electrode 404b extends from the second electrode pad 404a, and the second electrode pad 404a is located in the first region 401. The density of the 45 grid or mesh pattern of the metal layer is denser in areas with low current density and sparse in areas with high current density. In this embodiment, the grid or mesh pattern density of the metal layer 45 in the second region 403 may be denser than the first region 401. Specifically, the grid pattern corresponding to the metal layer 45 of the first region 401 may be composed of a plurality of blocks 451, each block 451 has a size of 1 μm x 1 μm, corresponding to the metal layer 45 of the second region 403 The grid pattern may be composed of a plurality of blocks 452, and each block 452 has a size of 0.5 μm x 0.5 μm. The pattern density of the plurality of blocks 452 in the second area 403 is greater than that of the plurality of blocks 451 in the first area 401 The pattern density is dense.

於本發明之實施例中,擴散區域之第一金屬材料濃度自透明導電氧化層的上表面往透明導電氧化層內部逐漸遞減,或是擴散區域之第一金屬材料濃度隨著一距離遠離於透明導電氧化層上表面而逐漸遞減。於熱處理透明導電氧化層及金屬層之過程中,金屬層中的第一金屬材料,例如鋁,可能會與存在於透明導電氧化層中的氧反應而形成第一金屬材料之氧化物,例如氧化鋁。熱處理過程中的惰性環境,例如氮氣環境,會鈍化並保護透明導電氧化層14,使其於接續的製程中,例如感應耦合電漿蝕刻,不被損害。為了防止第一半導體層與金屬層之間的交互擴散,因而損害第一半導體層的磊晶品質,金屬層較佳地係形成於透明導電氧化層與第一半導體層相接處的對面,以得到較佳的發光性能,本發明之發光元件可以具有較低的順向電壓,較低的片阻值,及較高的光取出效率。In the embodiment of the present invention, the concentration of the first metal material in the diffusion area gradually decreases from the upper surface of the transparent conductive oxide layer to the inside of the transparent conductive oxide layer, or the concentration of the first metal material in the diffusion area moves away from the transparency with a distance The upper surface of the conductive oxide layer gradually decreases. During the heat treatment of the transparent conductive oxide layer and the metal layer, the first metal material in the metal layer, such as aluminum, may react with the oxygen present in the transparent conductive oxide layer to form an oxide of the first metal material, such as oxidation aluminum. An inert environment during the heat treatment process, such as a nitrogen environment, will passivate and protect the transparent conductive oxide layer 14 so that it will not be damaged during subsequent processes, such as inductively coupled plasma etching. In order to prevent the interdiffusion between the first semiconductor layer and the metal layer, thereby damaging the epitaxial quality of the first semiconductor layer, the metal layer is preferably formed opposite the junction of the transparent conductive oxide layer and the first semiconductor layer, To obtain better light-emitting performance, the light-emitting device of the present invention can have a lower forward voltage, a lower sheet resistance, and a higher light extraction efficiency.

上述所提及之實施例係使用描述技術內容及發明特徵,而使習知此技藝者可了解本發明之內容並據以實施,其並非用以限制本發明之範圍。亦即,任何人對本發明所作之任何顯而易見之修飾或變更皆不脫離本發明之精神與範圍。例如,電連接方式不限於串聯連接。需了解的是,本發明中上述之實施例在適當的情況下,是可互相組合或替換,而非僅限於所描述之特定實施例。The above-mentioned embodiments are used to describe the technical content and features of the invention, so that those skilled in the art can understand and implement the content of the present invention, and it is not intended to limit the scope of the present invention. That is to say, any obvious modifications or changes made by anyone to the present invention do not depart from the spirit and scope of the present invention. For example, the electrical connection method is not limited to series connection. It should be understood that the above-mentioned embodiments of the present invention can be combined or replaced with each other under appropriate circumstances, rather than being limited to the specific embodiments described.

可理解的是,對於熟習此項技藝者,不同修飾或變更皆可應用於本發明中且不脫離本發明之精神與範圍。前述之描述,目的在於涵蓋本發明之修飾或變更的揭露皆落於本發明之專利範圍內且與其均等。Understandably, for those skilled in the art, different modifications or changes can be applied to the present invention without departing from the spirit and scope of the present invention. The foregoing description is intended to cover the modifications or alterations of the present invention, all of which fall within the patent scope of the present invention and are equal to them.

1、2、400‧‧‧發光元件1, 2, 400 ‧‧‧ light emitting element

10、43‧‧‧基板10, 43‧‧‧ substrate

20、40‧‧‧半導體疊層20, 40‧‧‧ semiconductor stack

13、33‧‧‧第一半導體層13, 33‧‧‧‧The first semiconductor layer

11‧‧‧第二半導體層11‧‧‧Second semiconductor layer

12‧‧‧主動層12‧‧‧Active layer

14、34、44‧‧‧透明導電氧化層14, 34, 44 ‧‧‧ transparent conductive oxide layer

20‧‧‧半導體疊層20‧‧‧ semiconductor stack

15、25、35、45‧‧‧金屬層15, 25, 35, 45 ‧‧‧ metal layer

S1、S2、S3‧‧‧上表面S1, S2, S3 ‧‧‧ upper surface

151、152、251、252‧‧‧擴散區域151, 152, 251, 252

141、142、241、242‧‧‧非擴散區域141, 142, 241, 242

21‧‧‧導電基板21‧‧‧Conductive substrate

63、402‧‧‧第一電極63、402‧‧‧First electrode

62、404‧‧‧第二電極62、404‧‧‧Second electrode

402a‧‧‧第一電極墊402a‧‧‧First electrode pad

404a‧‧‧第二電極墊404a‧‧‧Second electrode pad

402b‧‧‧第一延伸電極402b‧‧‧First extended electrode

404b‧‧‧第二延伸電極404b‧‧‧Second extension electrode

400a‧‧‧第一邊400a‧‧‧First side

400b‧‧‧第二邊400b‧‧‧Second side

401‧‧‧第一區域401‧‧‧The first area

403‧‧‧第二區域403‧‧‧Second area

153、253‧‧‧餘留金屬層153, 253‧‧‧ remaining metal layer

圖1A-1C係本發明一實施例之一發光元件之製造方法。1A-1C are a method of manufacturing a light-emitting device according to an embodiment of the invention.

圖1D係本發明另一實施例之一發光元件之剖面圖。1D is a cross-sectional view of a light-emitting device according to another embodiment of the invention.

圖2係本發明一實施例之一發光元件之製造方法之一步驟。2 is a step of a method for manufacturing a light-emitting device according to an embodiment of the invention.

圖3A-3C係本發明一實施例之一發光元件之製造方法之步驟。3A-3C are steps of a method for manufacturing a light-emitting device according to an embodiment of the invention.

圖4係本發明一實施例之一發光元件之放大剖面圖。4 is an enlarged cross-sectional view of a light-emitting device according to an embodiment of the invention.

圖5係本發明一實施例之一發光元件。5 is a light-emitting device according to an embodiment of the invention.

10‧‧‧基板 10‧‧‧ substrate

20‧‧‧半導體疊層 20‧‧‧ semiconductor stack

11‧‧‧第二半導體層 11‧‧‧Second semiconductor layer

12‧‧‧主動層 12‧‧‧Active layer

13‧‧‧第一半導體層 13‧‧‧First semiconductor layer

14‧‧‧透明導電氧化層 14‧‧‧Transparent conductive oxide layer

141‧‧‧非擴散區域 141‧‧‧Non-proliferation area

151‧‧‧擴散區域 151‧‧‧Diffusion area

S1‧‧‧上表面 S1‧‧‧Top surface

Claims (10)

一發光元件,包含:一第一半導體層;一第二半導體層;一主動層形成於該第一半導體層以及該第二半導體層之間,其中該主動層可發出一光線;一透明導電層位於該第一半導體層上,其中該透明導電層內包含一擴散區域以及一非擴散區域,其中該非擴散區域比該擴散區域更靠近該第一半導體層,其中該擴散區域包含一第一金屬材料及一導電氧化材料,該第一金屬材料分佈於該導電氧化材料中,該非擴散區域包含該導電氧化材料,且不包含該第一金屬材料;一電極位於該透明導電層之上;以及一金屬層包含該第一金屬材料位於該透明導電層及該電極之間,其中來自於該主動層之該光線可以穿透該金屬層,該金屬層包含一厚度小於100埃(Å),且該金屬層包含不同的厚度。 A light-emitting device, comprising: a first semiconductor layer; a second semiconductor layer; an active layer formed between the first semiconductor layer and the second semiconductor layer, wherein the active layer can emit a light; a transparent conductive layer Located on the first semiconductor layer, wherein the transparent conductive layer includes a diffusion region and a non-diffusion region, wherein the non-diffusion region is closer to the first semiconductor layer than the diffusion region, wherein the diffusion region includes a first metal material And a conductive oxide material, the first metal material is distributed in the conductive oxide material, the non-diffusion region includes the conductive oxide material and does not include the first metal material; an electrode is located on the transparent conductive layer; and a metal The layer includes the first metal material between the transparent conductive layer and the electrode, wherein the light from the active layer can penetrate the metal layer, the metal layer includes a thickness less than 100 Angstroms (Å), and the metal The layers contain different thicknesses. 如申請專利範圍第1項所述的發光元件,其中該擴散區域包含一厚度大於50埃(Å)。 The light-emitting element as described in item 1 of the patent application range, wherein the diffusion region includes a thickness greater than 50 Angstroms (Å). 如申請專利範圍第1項所述的發光元件,其中該導電氧化材料包含氧化銦錫(ITO)、鎘錫氧化物(CTO)、銻氧化錫、氧化銦鋅、氧化鋅鋁、氧化鋅或鋅錫氧化物。 The light-emitting element as described in item 1 of the patent application range, wherein the conductive oxide material includes indium tin oxide (ITO), cadmium tin oxide (CTO), antimony tin oxide, indium zinc oxide, zinc aluminum oxide, zinc oxide, or zinc Tin oxide. 如申請專利範圍第1項所述的發光元件,其中於該擴散區域中的該第一金屬材料之濃度於朝向該第一半導體層之方向上係逐步遞減。 The light-emitting element as described in item 1 of the patent application range, wherein the concentration of the first metal material in the diffusion region gradually decreases toward the first semiconductor layer. 如申請專利範圍第1項所述的發光元件,其中該第一金屬材料包含一元素選自於IIA族元素及IIIA族元素所構成之群組。 The light-emitting element as described in item 1 of the patent application range, wherein the first metal material includes an element selected from the group consisting of group IIA elements and group IIIA elements. 如申請專利範圍第1項所述的發光元件,其中該金屬層包含複數個不連續層彼此分離以露出該透明導電層。 The light-emitting element as described in item 1 of the patent application range, wherein the metal layer includes a plurality of discontinuous layers separated from each other to expose the transparent conductive layer. 如申請專利範圍第1項所述的發光元件,其中該導電氧化材料包含一不同於該第一金屬材料的第二金屬材料。 The light-emitting element as described in item 1 of the patent application range, wherein the conductive oxide material includes a second metal material different from the first metal material. 如申請專利範圍第1項所述的發光元件,其中該電極具有一佈局或一形狀,且電連接至該第一半導體層及該第二半導體層。 The light-emitting element according to item 1 of the patent application range, wherein the electrode has a layout or a shape, and is electrically connected to the first semiconductor layer and the second semiconductor layer. 如申請專利範圍第8項所述的發光元件,其中該金屬層包含一圖案對應於該電極之該佈局或該形狀。 The light-emitting element as recited in item 8 of the patent application range, wherein the metal layer includes a pattern corresponding to the layout or the shape of the electrode. 如申請專利範圍第1項所述的發光元件,其中該透明導電層的一厚度大於該金屬層的一厚度。 The light-emitting element as described in item 1 of the patent application range, wherein a thickness of the transparent conductive layer is greater than a thickness of the metal layer.
TW106121372A 2012-11-02 2013-10-24 Light-emitting device and the manufacturing method thereof TWI692121B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261721737P 2012-11-02 2012-11-02
US61/721,737 2012-11-02
US13/861,449 US9231164B2 (en) 2012-11-02 2013-04-12 Light-emitting device
US13/861,449 2013-04-12
US14/013,166 US9508901B2 (en) 2013-08-29 2013-08-29 Light-emitting device and the manufacturing method thereof
US14/013,166 2013-08-29

Publications (2)

Publication Number Publication Date
TW201733162A TW201733162A (en) 2017-09-16
TWI692121B true TWI692121B (en) 2020-04-21

Family

ID=60479847

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109109082A TWI740418B (en) 2012-11-02 2013-10-24 Light-emitting device and the manufacturing method thereof
TW106121372A TWI692121B (en) 2012-11-02 2013-10-24 Light-emitting device and the manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109109082A TWI740418B (en) 2012-11-02 2013-10-24 Light-emitting device and the manufacturing method thereof

Country Status (1)

Country Link
TW (2) TWI740418B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067623A1 (en) * 2003-09-30 2005-03-31 Jun-Seok Ha Semiconductor light emitting device and fabrication method thereof
US20080121914A1 (en) * 2004-07-12 2008-05-29 Seong Tae-Yeon Flip-Chip Light Emitting Diodes and Method of Manufacturing Thereof
US20100123166A1 (en) * 2008-11-18 2010-05-20 Bae Jung Hyeok Semiconductor light-emitting device
US20100272142A1 (en) * 2009-04-27 2010-10-28 Nec Electronics Corporation Nitride semiconductor optical element and method of manufacturing the same
TW201210072A (en) * 2010-07-20 2012-03-01 Sharp Kk Semiconductor light-emitting device and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067623A1 (en) * 2003-09-30 2005-03-31 Jun-Seok Ha Semiconductor light emitting device and fabrication method thereof
US20080121914A1 (en) * 2004-07-12 2008-05-29 Seong Tae-Yeon Flip-Chip Light Emitting Diodes and Method of Manufacturing Thereof
US20100123166A1 (en) * 2008-11-18 2010-05-20 Bae Jung Hyeok Semiconductor light-emitting device
US20100272142A1 (en) * 2009-04-27 2010-10-28 Nec Electronics Corporation Nitride semiconductor optical element and method of manufacturing the same
TW201210072A (en) * 2010-07-20 2012-03-01 Sharp Kk Semiconductor light-emitting device and method of producing the same

Also Published As

Publication number Publication date
TW201733162A (en) 2017-09-16
TWI740418B (en) 2021-09-21
TW202025517A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
EP1810351B1 (en) Gan compound semiconductor light emitting element
US8502193B2 (en) Light-emitting device and fabricating method thereof
TWI594459B (en) Light-emitting device and the manufacturing method thereof
US7928449B2 (en) Light emitting device and manufacturing method thereof
US8373152B2 (en) Light-emitting element and a production method therefor
US8471239B2 (en) Light-emitting element and a production method therefor
JP2009535802A (en) Metal electrode formation method, semiconductor light emitting device manufacturing method, and nitride compound semiconductor light emitting device
US20150236194A1 (en) Method of manufacturing microarray type nitride light emitting device
US20130062657A1 (en) Light emitting diode structure and manufacturing method thereof
KR20100093993A (en) Semiconductor light emitting device and fabrication method thereof
TWI488333B (en) LED element and manufacturing method thereof
JP5471485B2 (en) Nitride semiconductor device and pad electrode manufacturing method for nitride semiconductor device
KR20090115322A (en) Group 3 nitride-based semiconductor devices
KR100755649B1 (en) Gan-based semiconductor light emitting device and method of manufacturing the same
JP3665243B2 (en) Nitride semiconductor device and manufacturing method thereof
KR101239852B1 (en) GaN compound semiconductor light emitting element
TW201603320A (en) Method for production of an optoelectronic semiconductor chip and the optoelectronic semiconductor chip
JP2012060061A (en) Method for manufacturing semiconductor light emitting device and the semiconductor light emitting device
TWI692121B (en) Light-emitting device and the manufacturing method thereof
TW201818564A (en) Light-emitting device
KR101868232B1 (en) Light emitting diode comprising hybrid transparent electrode
KR20100027410A (en) Semiconductor light emitting device and fabrication method thereof
KR100737821B1 (en) Light emitting device and the fabrication method thereof
US9508901B2 (en) Light-emitting device and the manufacturing method thereof
US9525104B2 (en) Light-emitting diode