TWI691643B - 渦輪機葉片及燃氣渦輪機 - Google Patents
渦輪機葉片及燃氣渦輪機 Download PDFInfo
- Publication number
- TWI691643B TWI691643B TW107123279A TW107123279A TWI691643B TW I691643 B TWI691643 B TW I691643B TW 107123279 A TW107123279 A TW 107123279A TW 107123279 A TW107123279 A TW 107123279A TW I691643 B TWI691643 B TW I691643B
- Authority
- TW
- Taiwan
- Prior art keywords
- blade
- cooling
- previous
- area
- height direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/06—Fluid supply conduits to nozzles or the like
- F01D9/065—Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/16—Cooling of plants characterised by cooling medium
- F02C7/18—Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/307—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/18—Two-dimensional patterned
- F05D2250/185—Two-dimensional patterned serpentine-like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/205—Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
渦輪機葉片係具備:葉片部;和冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和複數個冷卻孔,係以沿著前記葉片高度方向而排列的方式而被形成在前記葉片部的後緣部,連接於前記冷卻通路並且在前記後緣部中的前記葉片部之表面做開口;令表示包含前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid,令前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側之領域中的前記指標為d_up,令前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側之領域中的前記指標為d_down時,滿足d_up<d_mid<d_down之關係。
Description
本揭露係有關於渦輪機葉片及燃氣渦輪機。
於燃氣渦輪機等的渦輪機葉片中,藉由在被形成在渦輪機葉片之內部的冷卻通路中流過冷卻媒體,以冷卻暴露於高溫氣流等的渦輪機葉片,已為人知。
例如,專利文獻1中係揭露,設有被排列在燃氣渦輪機的燃氣流路中,內部有冷卻媒體流動的內部流路的渦輪機可動葉片。在該渦輪機可動葉片的後緣部,係沿著連結葉片根部與葉片尖端之方向而排列有複數個吹出口,這些吹出口係被設置成在後緣端做開口。從被設在渦輪機可動葉片的葉片根部上的供給口往內部流路所被供給的冷卻媒體,係通過該內部流路,同時其一部分會從被設在後緣部的複數個吹出口噴出。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2004-225690號公報
[發明所欲解決之課題]
可是,根據本發明人們的研討,被形成在渦輪機葉片內部的冷卻通路內,會發生溫度分布及/或壓力分布。因此,藉由進行冷卻通路內的溫度分布及/或壓力分布所相應之冷卻,應該可以更有效果地冷卻葉片。 然而,在專利文獻1中,關於進行冷卻通路內的溫度分布及/或壓力分布所相應之渦輪機葉片的冷卻,並沒有具體的揭露。
有鑑於上述的事情,本發明的至少一實施形態,其目的在於,提供可有效冷卻渦輪機葉片的渦輪機葉片及燃氣渦輪機。 [用以解決課題之手段]
(1)本發明的至少一實施形態所述的渦輪機葉片,係 具備: 葉片部;和 冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和 複數個冷卻孔,係以沿著前記葉片高度方向而排列的方式而被形成在前記葉片部的後緣部,連接於前記冷卻通路並且在前記後緣部中的前記葉片部之表面做開口; 前記後緣部中的前記複數個冷卻孔之形成領域係含有: 中央領域,係包含有前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和 上游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側,且表示複數個前記冷卻孔之開口密度的指標的d_up係為一定;和 下游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側,且表示複數個前記冷卻孔之開口密度的指標的d_down係為一定; 滿足d_up<d_mid<d_down之關係。
在被形成在葉片部之內部的冷卻通路內,冷卻媒體係一面冷卻葉片部一面流動,因此有的時候會產生越靠近冷卻媒體流之下游側越為高溫的溫度分布。這點,在上記(1)的構成中,在冷卻通路中的冷卻媒體流之下游側的位置上,相較於較上游側之位置,冷卻孔之開口密度是設成較大,因此在冷卻媒體溫度相對較高的下游側中,可增加通過冷卻孔的冷卻媒體之供給流量。藉此,可隨應於冷卻通路的溫度分布,而適切地冷卻渦輪機葉片的後緣部。
(2)本發明的至少一實施形態所述的渦輪機葉片,係 具備: 葉片部;和 冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和 複數個冷卻孔,係以沿著前記葉片高度方向而排列以將前記葉片部的後緣部做對流冷卻的方式而被形成在前記後緣部,連接於前記冷卻通路並且貫通前記後緣部而在後緣端面做開口; 令表示包含前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid, 令前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側之領域中的前記指標為d_up, 令前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側之領域中的前記指標為d_down時, 滿足d_up<d_down<d_mid之關係,並且, 前記後緣部中的前記複數個冷卻孔之形成領域係含有: 中央領域,係包含有前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和 最上游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側且為前記形成領域中的前記冷卻媒體流之最上游側,且表示複數個前記冷卻孔之開口密度的指標的d_up係為一定;和 最下游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側且為前記形成領域中的前記冷卻媒體流之最下游側,且表示複數個前記冷卻孔之開口密度的指標的d_down係為一定。
在渦輪機葉片所被配置的燃氣流路中流通的氣體的溫度,係在葉片高度方向上,相較於葉片部之兩端部(第1端及第2端)側之領域,於中央領域會有較高的傾向。另一方面,在被形成在葉片部之內部的冷卻通路內,冷卻媒體係一面冷卻葉片部一面流動,因此有的時候會產生越靠近冷卻媒體流之下游側越為高溫的溫度分布。在此種情況下,為了適切地冷卻後緣部,將通過葉片高度方向之中央領域中的冷卻孔的冷卻媒體流量設成最大,且使得位於冷卻通路的冷卻媒體流之下游側的領域中,通過冷卻孔的冷卻媒體流量會大於位於上游側之領域,較為理想。 這點,若依據上記(2)的構成,則因為將中央領域中的冷卻孔之開口密度,設成比位於該中央領域還要上游側之領域(上游側領域)及位於其下游側之領域(下游側領域)中的冷卻孔之開口密度還大,因此在燃氣流路中流通的氣體溫度相對較高的中央領域中,可增加通過冷卻孔的冷卻媒體之供給流量。又,在上記(2)的構成中,因為於上述的下游側領域中,相較於上述的上游側領域而把冷卻孔之開口密度設成較大,因此在冷卻媒體溫度是比上游側領域還高的下游側領域中,可增加通過冷卻孔的冷卻媒體之供給流量。如此一來,可隨應於冷卻通路的溫度分布,而適切地冷卻渦輪機葉片的後緣部。
(3)本發明的至少一實施形態所述的渦輪機葉片,係 具備: 葉片部;和 冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和 複數個冷卻孔,係以沿著前記葉片高度方向而排列的方式而被形成在前記葉片部的後緣部,連接於前記冷卻通路並且在前記後緣部中的前記葉片部之表面做開口; 前記渦輪機葉片係為可動葉片; 令表示包含前記葉片部在前記葉片高度方向上的尖端與基端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid,令前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側之領域中的前記指標為d_tip,令前記葉片高度方向上位於比前記中央領域還要靠往前記基端側之領域中的前記指標為d_root時,滿足d_tip<d_mid<d_root之關係,並且, 表示前記開口密度的指標d_tip、d_mid及d_root係為,以貫通前記後緣部的方式而被設置的前記冷卻孔的貫通孔徑D,相對於前記葉片高度方向上彼此相鄰之前記冷卻孔間的間距P的比值D/P; 前記後緣部中的前記複數個冷卻孔之形成領域係含有: 中央領域,係包含有前記葉片部在前記葉片高度方向上的尖端與基端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和 尖端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側且為前記形成領域之中最靠近前記尖端處,且表示複數個前記冷卻孔之開口密度的指標的d_tip係為一定;和 基端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記基端側且為前記形成領域之中最靠近前記基端處,且表示複數個前記冷卻孔之開口密度的指標的d_root係為一定。
在渦輪機的運轉時,由於對被形成在可動葉片的葉片部之內部的冷卻通路內的冷卻媒體會有離心力作用,因此於該冷卻通路內有時候會產生越靠葉片部之尖端側會越為高壓的壓力分布。這點,在上記(3)的構成中,由於在葉片部的尖端側之位置上,相較於基端側之位置,將冷卻孔之開口密度設成較小,因此即使有上述的壓力分布的情況下,仍可使得通過冷卻孔的冷卻媒體之供給流量在葉片高度方向上的參差變小。藉此,可隨應於冷卻通路的壓力分布,而適切地冷卻渦輪機葉片的後緣部。
(4)本發明的至少一實施形態所述的渦輪機葉片,係 具備: 葉片部;和 冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和 複數個冷卻孔,係以沿著前記葉片高度方向而排列以將前記葉片部的後緣部做對流冷卻的方式而被形成在前記後緣部,連接於前記冷卻通路並且貫通前記後緣部而在後緣端面做開口; 前記渦輪機葉片係為可動葉片; 令表示包含前記葉片部在前記葉片高度方向上的尖端與基端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid,令前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側之領域中的前記指標為d_tip,令前記葉片高度方向上位於比前記中央領域還要靠往前記基端側之領域中的前記指標為d_root時,滿足d_tip<d_root<d_mid之關係; 前記後緣部中的前記複數個冷卻孔之形成領域係含有: 中央領域,係包含有前記葉片部在前記葉片高度方向上的尖端與基端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和 尖端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側且為前記形成領域之中最靠近前記尖端處,且表示複數個前記冷卻孔之開口密度的指標的d_tip係為一定;和 基端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記基端側且為前記形成領域之中最靠近前記基端處,且表示複數個前記冷卻孔之開口密度的指標的d_root係為一定。
在可動葉片(渦輪機葉片)所被配置的燃氣流路中流通的氣體的溫度,係在葉片高度方向上,相較於葉片部之兩端部(尖端及基端)側之領域,於中央領域會有較高的傾向。另一方面,在渦輪機的運轉時,由於對被形成在可動葉片的葉片部之內部的冷卻通路內的冷卻媒體會有離心力作用,因此於該冷卻通路內有時候會產生越靠葉片部之尖端側會越為高壓的壓力分布。在此種情況下,為了適切地冷卻後緣部,將通過葉片高度方向之中央領域中的冷卻孔的冷卻媒體流量設成最大,且在葉片高度方向上的位於尖端側之領域與位於基端側之領域間,使得通過冷卻孔的冷卻媒體之供給流量之參差變小,較為理想。 這點,若依據上記(4)的構成,則因為將中央領域中的冷卻孔之開口密度,設成比位於該中央領域還要尖端側之領域(尖端側領域)及位於其基端側之領域(基端側領域)中的冷卻孔之開口密度還大,因此在燃氣流路中流通的氣體溫度相對較高的中央領域中,可增加通過冷卻孔的冷卻媒體之供給流量。又,在上記(4)的構成中,因為於上述的尖端側領域中,相較於上述的基端側領域而把冷卻孔之開口密度設成較小,因此即使有上述的壓力分布的情況下,仍可使得尖端側領域與基端側領域之間,通過冷卻孔的冷卻媒體之供給流量之參差變小。如此一來,可隨應於冷卻通路的壓力分布,而適切地冷卻渦輪機葉片的後緣部。
(5)在數個實施形態中,係於上記(1)乃至(4)之任一構成中, 前記中央領域係含有相同直徑的複數個冷卻孔; 位於比前記中央領域還要靠往前記葉片部之尖端側的尖端側領域及位於比前記中央領域還要靠往前記葉片部之基端側的基端側領域係含有:與前記中央領域中的冷卻孔相同直徑的複數個冷卻孔。
(6)在數個實施形態中,係於上記(1)乃至(5)之任一構成中,前記葉片部的前記表面係為前記後緣部的端面。
(7)在數個實施形態中,係於上記(1)乃至(6)之任一構成中,前記複數個冷卻孔,係相對於正交於前記葉片高度方向之平面帶有傾斜而被形成。
若依據上記(7)的構成,則由於複數個冷卻孔,係相對於正交於葉片高度方向之平面帶有傾斜而被形成,因此相較於將該冷卻孔形成為與葉片高度方向之正交平面平行的情況,可使冷卻孔變得較長。藉此,可有效地冷卻渦輪機葉片的後緣部。
(8)在數個實施形態中,係於上記(1)乃至(7)之任一構成中,前記複數個冷卻孔係被形成為彼此平行。
若依據上記(8)的構成,則由於複數個冷卻孔是彼此平行地被形成,因此相較於複數個冷卻孔不是彼此平行的情況,可在葉片部形成較多的冷卻孔。藉此,可有效地冷卻渦輪機葉片的後緣部。
(9)在數個實施形態中,係於上記(1)乃至(8)之任一構成中,前記冷卻通路係為,被形成在前記葉片部之內部的蛇行流路之中的最終路徑。
若依據上記(9)的構成,則使連通於蛇行流路之最終路徑的複數個冷卻孔,在後緣部的葉片部之表面做開口,藉此可適切地冷卻渦輪機葉片的後緣部。
(10)在數個實施形態中,係於上記(1)乃至(9)之任一構成中, 前記渦輪機葉片係為可動葉片; 在前記葉片部之尖端側,形成有前記冷卻通路的出口開口。
若依據上記(10)的構成,則作為渦輪機葉片的可動葉片是具有上記(1)~(9)之任一構成,因此可適切地冷卻作為渦輪機葉片的可動葉片的後緣部。
(11)在數個實施形態中,係於上記(1)或(2)之任一構成中, 前記渦輪機葉片係為定子葉片; 在前記葉片部之內側遮板側,形成有前記冷卻通路的出口開口。
若依據上記(11)的構成,則作為渦輪機葉片的定子葉片是具有上記(1)或(2)之構成,因此可適切地冷卻作為渦輪機葉片的定子葉片的後緣部。
(12)本發明的至少一實施形態所述之燃氣渦輪機,係 具備: 上記(1)乃至(11)之任一項所記載之渦輪機葉片;和 燃燒器,係用來生成在前記渦輪機葉片所被設置之燃氣流路中流動的燃氣。
若依據上記(12)的構成,則渦輪機葉片是具有上記(1)~(11)之任一構成,因此可適切地冷卻渦輪機葉片的後緣部。 [發明效果]
若依據本發明的至少一實施形態,則可提供可有效冷卻渦輪機葉片的渦輪機葉片及燃氣渦輪機。
以下,參照添附圖面來說明本發明的數個實施形態。但是,作為實施形態而被記載或示於圖式的構成零件的尺寸、材質、形狀、其相對配置等,並非意圖限定本發明之範圍,僅單純為說明例。
關於本發明的基本想法,以渦輪機可動葉片為代表例而說明如下。 燃氣渦輪機的可動葉片26,係被固定在高速旋轉的轉子8(參照圖1),在高溫的燃氣氛圍中工作,因此會使用冷卻媒體來冷卻葉片部42。如圖20A所示,在可動葉片26的葉片部42之內部係形成有冷卻通路66,從基端50側所被供給的冷卻媒體,係在冷卻通路66內流過而將葉片部42予以冷卻,從後緣46側的最終路徑60e的尖端48被排出至燃氣中。又,冷卻媒體,係流過最終路徑60e,被供給至被形成在後緣部47的轉子8的軸方向下游側的在後緣46具有開口的複數個冷卻孔70。冷卻媒體,係在流過冷卻孔70而往燃氣中排出的過程中,將後緣部47予以對流冷卻。又,專利文獻1中所揭露的冷卻孔,係如圖20B所示,跨越後緣部47的葉片高度方向的全長,將相同孔徑的冷卻孔70以相同的間距而加以配置,冷卻孔70之開口密度在葉片高度方向上係為均勻。此例係為先前的冷卻孔的配置之一例。
冷卻媒體,係在流過比最終路徑60e還要上游側的冷卻通路66的過程中,被從葉片部42加熱,而流入至後緣46側的最終路徑60e。冷卻媒體,係在從最終路徑60e的流動方向之入口側的基端50流動到出口側的尖端48為止的過程中,從葉片部42受熱而被更進一步地加熱。因此,在最終路徑60e中流動的冷卻媒體的尖端側領域的葉片部42之溫度會變成高溫,有時候會變成嚴峻的使用條件。可動葉片26的情況下,葉片部42的葉片高度方向外側(徑方向外側)的尖端側領域,係會變成接近於根據氧化變薄容許量而定之使用臨界溫度的金屬溫度,為了使其不要超過使用臨界溫度,必須要將葉片部42進行冷卻。前述的先前的葉片構造的情況下,因為冷卻媒體的加熱,葉片部42的最終路徑60e的尖端側領域會變成最高的金屬溫度,葉片部42的中央領域會比尖端側領域還低,基端側領域係又比中央領域還低。因此,從冷卻媒體的加熱所致之葉片部42的過熱的觀點來看,以不會增大各領域的金屬溫度的參差,使其成為均勻的金屬溫度之分布的方式,而來選定在葉片高度方向上排列的冷卻孔70之開口密度,較為理想。亦即,將可動葉片26的葉片高度方向外側的尖端側領域,且為冷卻媒體的流動方向之下游側領域的冷卻孔70之開口密度,設成最密之分布,將中央領域的冷卻孔70之開口密度設成中間之分布,基端側領域的冷卻孔70為最疏之分布,較為理想。基於上述的的想法,本發明所述之一實施態樣的冷卻孔的模式圖之一例,示於圖20C。
另一方面,最終路徑60e的中央領域及基端側領域,係必須要一併考慮離心力所致之潛變強度。可動葉片26的情況下,因為是被固定於旋轉之轉子8而呈一體地高速旋轉,因此離心力會作用於葉片部42,在葉片壁的葉片高度方向上會產生拉扯應力。圖20E係圖示葉片材料的潛變臨界曲線之一例。縱軸係表示容許應力,橫軸係表示金屬溫度。其係為隨著金屬溫度的增加而容許應力會降低的朝下的曲線。若為比潛變臨界曲線還要下方的應力較小的領域,則葉片部42不會發生潛變破裂,但若是比曲線還要上方的應力較大的領域,則有可能因為潛變破裂而導致葉片部42損傷。葉片部42的尖端側領域係由於作用的離心力較小,因此不會發生潛變破裂,但葉片部42的中央領域與基端側領域,係即使金屬溫度低於尖端側領域,仍必須要考慮潛變破裂的可能性。
圖20D及圖20E所示的例子,係表示中央領域及基端側領域的潛變強度達到臨界時的一例。於圖20E中,舉出中央領域的A1點與基端側領域的B1點為例來做說明。此例係為,A1點係表示超過潛變臨界的狀態,B1點係表示還在潛變臨界內的狀態。是否還在潛變臨界內,是受該當部位中的葉片之大小、壁厚、金屬溫度等所左右。在本實施形態所示的例子的情況下,在位於中央領域的A1點的位置,因為已經超過了潛變臨界,所以必須要降低金屬溫度。亦即,將中央領域的冷卻孔70之開口密度設成更密以強化冷卻,降低A2點之位置的金屬溫度。另一方面,若將中央領域的冷卻孔70之開口密度設成較大,則在中央領域的冷卻孔70中流動的冷卻媒體的流量可能會增加,在基端側領域的冷卻孔70中流動的冷卻媒體的流量可能會降低。因此,在強化中央領域之冷卻的情況下,雖然基端側領域的金屬溫度會上升到B2點,但若B2點之位置係如圖20E所示般地是在潛變臨界內,則只要選定該開口密度即可。尖端側領域也可同樣地做調整。亦即,若將尖端側領域的冷卻孔70之開口密度設成較小,則可縮減在尖端側領域的冷卻孔70中流動的冷卻媒體的流量。在尖端側領域的金屬溫度不會超過前述的使用臨界溫度的範圍內減少冷卻媒體的流量,藉此,可使在中央領域的冷卻孔70中流動的冷卻媒體的流量增加,可強化中央領域的冷卻。根據如此程序,冷卻孔70之開口密度的修正例,示於圖20D。實線係表示調整後的開口密度,虛線係表示調整前的開口密度。可確認各領域皆是落在使用臨界溫度或潛變臨界內,可決定各領域的冷卻孔的適切的開口密度。
接著,尖端48側的金屬溫度係低於使用臨界溫度,尖端48側的金屬溫度是較有餘裕的可動葉片26的情況下,對於在最終路徑60e中流動的冷卻媒體作用的離心力,有時候會影響到冷卻孔70的配置。以下說明其一例。如圖20A所示,對於在葉片部42的最終路徑60e中流動的冷卻媒體,係在與冷卻媒體之流動方向相同的方向上,會有離心力作用。亦即,藉由離心力的作用,對冷卻媒體係會產生從基端50側往尖端48側壓力逐漸上升的壓力梯度。因此,在圖20B所示的具有均勻開口密度的冷卻孔的配置下,從葉片部42的尖端48的出口開口64或尖端側領域的冷卻孔70往燃氣中排出的冷卻媒體的流量會一眛地增加,被供給至中央領域及基端側領域之冷卻孔70的冷卻媒體的流量會減少,而會有中央領域及基端側領域變成冷卻不足的情況。此種情況下,必須從基端側領域往尖端側領域呈步進狀地使開口密度變小,縮減從尖端48側的出口開口64或尖端側領域的冷卻孔70往燃氣中排出的冷卻媒體的流量,增加被供給至中央領域及基端側領域之冷卻孔70的冷卻媒體量。藉由如此適切的冷卻孔之開口密度之選定,可使各領域的金屬溫度變為均勻。圖20F係圖示,考慮到離心力之影響的冷卻孔70之開口密度分布之一例。
藉由基於上記的想法來決定各領域之開口密度,就可避免後緣部的氧化變薄及潛變破裂等所伴隨而來的葉片之損傷,可提高葉片的信賴性。此外,上記的說明,雖然是舉出渦輪機可動葉片為例來做說明,但除了沒有離心力的作用這點以外,對於渦輪機定子葉片也可適用。接著,說明本發明的具體實施形態。
首先說明,數個實施形態所述的渦輪機葉片所被適用之燃氣渦輪機。
圖1係一實施形態所述的渦輪機葉片所被適用之燃氣渦輪機的概略構成圖。如圖1所示,燃氣渦輪機1係具備:用來生成壓縮空氣所需的壓縮機2、使用壓縮空氣及燃料而產生燃氣所需的燃燒器4、被構成為藉由燃氣而被旋轉驅動的渦輪機6。若為發電用的燃氣渦輪機1,則渦輪機6係被連結至未圖示的發電機。
壓縮機2係含有:被固定於壓縮機車室10側的複數個定子葉片16、和對定子葉片16呈交互排列般地被植設於轉子8的複數個可動葉片18。 對壓縮機2係會送入從空氣取入口12所擷取到的空氣,該空氣係通過複數個定子葉片16及複數個可動葉片18而被壓縮而變成高溫高壓的壓縮空氣。
對燃燒器4係供給有燃料、和已被壓縮機2所生成的壓縮空氣,於該燃燒器4中燃料會被燃燒,生成渦輪機6的作動流體也就是燃氣。燃燒器4,係亦可如圖1所示,是在殼體20內以轉子為中心而沿著周方向被複數配置。
渦輪機6,係具備有被形成在渦輪機車室22內的燃氣流路28,含有被設在該燃氣流路28中的複數個定子葉片24及可動葉片26。 定子葉片24係被固定於渦輪機車室22側,沿著轉子8的周方向而被排列的複數個定子葉片24係構成了定子葉片列。又,可動葉片26係被植設於轉子8,沿著轉子8的周方向而被排列的複數個可動葉片26係構成了可動葉片列。定子葉片列與可動葉片列,係於轉子8的軸方向上被交互排列。 在渦輪機6中,流入燃氣流路28的來自燃燒器4的燃氣係通過複數個定子葉片24及複數個可動葉片26而使轉子8被旋轉驅動,藉此,被連結至轉子8的發電機係被驅動而會產生電力。驅動了渦輪機6後的燃氣,係透過排氣室30而往外部排出。
在數個實施形態中,渦輪機6的可動葉片26或定子葉片24的至少一方,係為以下說明的渦輪機葉片40。
圖2係為一實施形態所述的渦輪機葉片40亦即可動葉片26的部分剖面圖。此外,圖2中,係在可動葉片26之中,圖示葉片部42之部分的剖面。圖3係為圖2所示的渦輪機葉片40的III-III剖面。圖4係為圖2所示的可動葉片26(渦輪機葉片40)的模式性剖面圖。又,圖5係為一實施形態所述的渦輪機葉片40亦即定子葉片24的模式性剖面圖。此外,於圖4及圖5中,渦輪機葉片40的部分構成係省略圖示。此外,圖中的箭頭係表示冷卻媒體的流動方向。
如圖2及圖4所示,一實施形態所述的可動葉片26亦即渦輪機葉片40係具備:葉片部42、平台80、葉片根部82。葉片根部82,係被埋設於轉子8(參照圖1),可動葉片26,係與轉子8一起旋轉。平台80係與葉片根部82被一體構成。葉片部42,係沿著轉子8的徑方向(以下有時簡稱為「徑方向」)而被延伸設置,具有被固定於平台80的基端50、和於徑方向上位於與基端50相反側的尖端48。
在數個實施形態中,渦輪機葉片40係亦可為定子葉片24。 如圖5所示,屬於定子葉片24的渦輪機葉片40,係具備:葉片部42、相對於葉片部42而位於徑方向內側的內側遮板86、相對於葉片部42而位於徑方向外側的外側遮板88。外側遮板88係被渦輪機車室22所支持,定子葉片24係隔著外側遮板88而被渦輪機車室22所支持。葉片部42係具有:位於外側遮板88側(亦即徑方向外側)的外側端52、和位於內側遮板86側(亦即徑方向內側)的內側端54。
如圖2~圖5所示,渦輪機葉片40的葉片部42,若為可動葉片26則是從基端50往尖端48(參照圖2~圖4),若為定子葉片24則是從外側端52往內側端54(參照圖5),具有前緣44及後緣46。又,葉片部42的葉片面,若為可動葉片26則是在基端50與尖端48之間,若為定子葉片24則是在外側端52與內側端54之間,藉由沿著葉片高度方向而延伸的壓力面(腹面)56與負壓面(背面)58(參照圖3)而被形成。
在葉片部42的內部係形成有,沿著葉片高度方向而延伸的冷卻通路66。冷卻通路66,係用來冷卻渦輪機葉片40所需之冷卻媒體(例如空氣等)的流動所需之流路。
在圖2~圖5所示的例示性的實施形態中,冷卻通路66係形成了,被設在葉片部42之內部的蛇行流路60之一部分。 圖2~圖5所示的蛇行流路60,係分別含有沿著葉片高度方向而延伸之複數個路徑60a~60e,從前緣44側往後緣46側依此順序而被排列。這些複數個路徑60a~60e之中彼此相鄰的路徑(例如路徑60a與路徑60b),係於尖端48側或基端50側被彼此連接,在該連接部,冷卻媒體流的方向會在葉片高度方向上變成逆向地折返而形成返回流路,蛇行流路60全體來說是具有蛇行的形狀。
在圖2~圖5所示的例示性的實施形態中,冷卻通路66,係為蛇行流路60之中的最終路徑60e。典型而言,最終路徑60e係被設在,構成蛇行流路60的複數個路徑60a~60e之中位於冷卻媒體流方向之最下游側的後緣46側。
渦輪機葉片40為可動葉片26的情況下,冷卻媒體,係例如透過被形成在葉片根部82之內部的內部流路84及被設在葉片部42之基端50側的入口開口62(參照圖2及圖4)而被導入至蛇行流路60,依序流過複數個路徑60a~60e。然後,在複數個路徑60a~60e之中,在冷卻媒體流方向之最下游側的最終路徑60e中流動的冷卻媒體,係會透過被設在葉片部42之尖端48側的出口開口64而往渦輪機葉片40的外部的燃氣流路28流出。
渦輪機葉片40為定子葉片24的情況下,冷卻媒體,係例如透過被形成在外側遮板88之內部的內部流路(未圖示)及被設在葉片部42之外側端52側的入口開口62(參照圖5)而被導入至蛇行流路60,依序流過複數個路徑60a~60e。然後,在複數個路徑60a~60e之中,在冷卻媒體流方向之最下游側的最終路徑60e中流動的冷卻媒體,係會透過被設在葉片部42之內側端54側(內側遮板86側)的出口開口64而往渦輪機葉片40的外部的燃氣流路28流出。
作為用來冷卻渦輪機葉片40所需之冷卻媒體,例如,被壓縮機2(參照圖1)所壓縮之壓縮空氣的一部分,係亦可被導入至冷卻通路66。亦可為,來自壓縮機2的壓縮空氣,係經過與冷熱源的熱交換而被冷卻後,才被供給至冷卻通路66。
此外,蛇行流路60的形狀,係不限定於圖2及圖3所示的形狀。例如,在1個渦輪機葉片40的葉片部42之內部,亦可被形成有複數個蛇行流路。或者,蛇行流路60,係亦可在該蛇行流路60上的分歧點,被分歧成複數個流路。
如圖2及圖3所示,在葉片部42的後緣部47(包含後緣46之部分),係沿著葉片高度方向而排列般地被形成有複數個冷卻孔70。複數個冷卻孔70,係連通於被形成在葉片部42之內部的冷卻通路66(於圖示的例子中係為蛇行流路60的最終路徑60e),並且在葉片部42的後緣部47中的葉片部42的表面做開口。
在冷卻通路66中流動的冷卻媒體之一部分,係通過冷卻孔70,從葉片部42的後緣部47的開口往渦輪機葉片40的外部的燃氣流路28流出。如此讓冷卻媒體通過冷卻孔70,葉片部42的後緣部47就可被對流冷卻。
此外,葉片部42的後緣部47之表面,係亦可為包含葉片部42的後緣46之表面,或者亦可為後緣46附近的葉片面之表面,亦可為後緣端面49之表面。葉片部42的後緣部47中的葉片部42之表面係亦可為,在前緣44與後緣46所連結的翼弦方向(參照圖3)上,在葉片部42之中,包含後緣46的後緣46側10%之部分中的葉片部42之表面。所謂後緣端面49,係指正壓面(腹側)56與負壓面(背側)在轉子8的軸方向下游側的後緣46的末端交會,面朝轉子8的軸方向下游側的端面。
複數個冷卻孔70係具有,於葉片高度方向上並非一定的不均勻之開口密度之分布。 以下說明,數個實施形態所述的複數個冷卻孔70之開口密度之分布。 圖6~圖8、圖14及圖15係分別為,一實施形態中的可動葉片26(渦輪機葉片40)的後緣部47的葉片高度方向上之開口密度之分布之一例的圖表。圖9及圖13係分別為,葉片高度方向上的燃氣的溫度分布之一例的圖表。圖10~圖12係分別為,一實施形態中的定子葉片24(渦輪機葉片40)的後緣部47的葉片高度方向上之開口密度之分布之一例的圖表。圖16係為一實施形態所述的渦輪機葉片40的後緣部47中的沿著葉片高度方向之剖面圖,圖17係為一實施形態所述的渦輪機葉片40的後緣部47,從葉片部的後緣往前緣方向觀看的圖。
以下的說明中,所謂「上游側」及「下游側」係分別指「冷卻通路66內的冷卻媒體流之上游側」及「冷卻通路66內的冷卻媒體流之上游側」。
在數個實施形態中,表示包含葉片部42在葉片高度方向上之兩端亦即第1端與第2端之中間位置Pm的中央領域中的冷卻孔70之開口密度的指標(以下亦稱為開口密度指標)d_mid、和位於比中央領域還要靠往上游側的上游側領域中的冷卻孔70的開口密度指標d_up、和位於比中央領域Rm還要靠往下游側的下游側領域中的冷卻孔70的開口密度指標d_down,係滿足d_up<d_mid<d_down之關係。
又,在數個實施形態中,上述的中央領域中的冷卻孔70的開口密度指標d_mid、和上述的上游側領域中的冷卻孔70的開口密度指標d_up、和上述的下游側領域中的冷卻孔70的開口密度指標d_down,係滿足d_up< d_down<d_mid之關係。
關於這些實施形態,針對渦輪機葉片40為可動葉片26的情況、和渦輪機葉片40為定子葉片24的情況,分別加以說明。
首先,上述的實施形態之中,針對渦輪機葉片40為可動葉片26的數個實施形態,參照圖4及圖6~圖9來加以說明。 渦輪機葉片40為可動葉片26的情況下,冷卻媒體,係在冷卻通路66(蛇行流路60的最終路徑60e)中從基端50側往尖端48側流動(參照圖2及圖4),因此冷卻通路66內的冷卻媒體流之「上游側」及「下游側」,係分別相當於冷卻通路66中的葉片部42的基端50側及尖端48側。又,葉片高度方向上的葉片部42之兩端也就是第1端及第2端,係分別相當於尖端48及基端50。
在數個實施形態中,例如如圖6及圖7的圖表所示,表示包含葉片部42在葉片高度方向上之尖端48與基端50之中間位置Pm的中央領域Rm中的冷卻孔70的開口密度指標d_mid、和位於比中央領域Rm還要靠往上游側(基端50側)的上游側領域Rup中的冷卻孔70的開口密度指標d_up、和位於比中央領域Rm還要靠往下游側(尖端48側)的下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係滿足d_up<d_mid<d_down之關係。
在圖6的圖表所涉及的實施形態中,葉片部42的葉片高度方向領域係被分割成含有:中央領域Rm、包含基端50且位於比中央領域Rm還要靠往基端50側的上游側領域Rup、包含尖端48且位於比中央領域Rm還要靠往尖端48側的下游側領域Rdown的3個領域。然後,在3個各領域中,冷卻孔70之開口密度係為均勻且一定,開口密度係於葉片高度方向上呈步進狀地變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為中間位置Pm上的開口密度指標dm且為一定,上游側領域Rup中的冷卻孔70的開口密度指標d_up,係為比中間位置Pm還靠基端50側之位置Pr上的開口密度指標dr(其中dr<dm)且為一定,下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係為比中間位置Pm還靠尖端48側之位置Pt上的開口密度指標dt(其中dm<dt)且為一定。
此外,於圖6中,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域亦可為,各領域中的所有冷卻孔70的開口密度係為相同且為一定,令各領域中的徑方向之領域中間位置上的冷卻孔70的開口密度指標分別為d_up及d_mid以及d_down,滿足d_up<d_mid< d_down之關係即可。各領域中的領域中間位置,係針對上游側領域Rup及中央領域Rm以及下游側領域Rdown之每一者,分別以Pdm、Pcm、Pum來表示。此處,Pdm、Pcm及Pum係亦可為,各領域中的被配置在徑方向之最外側的冷卻孔70的位置與被配置在徑方向之最內側的冷卻孔70的位置之間的徑方向長度的中間位置。又,亦可為,各領域中的冷卻孔的徑方向上所被排列之冷卻孔數的相當於中間之位置處所被配置的冷卻孔之位置。又,冷卻孔70的孔徑D,係亦可為從尖端48側至基端50側都是相同孔徑D,也可為不同孔徑D的冷卻孔70之組合。又,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域,在含有開口密度不同之冷卻孔70的情況下,亦可為,各個領域中的平均開口密度指標,是滿足d_up<d_mid<d_down之關係。此處所謂各領域中的平均開口密度指標係意味著,表示各領域中的所有冷卻孔70之開口密度的平均值的指標。
此外,上游側領域Rup的領域中間位置Pum,係相對於葉片高度方向的尖端48至基端50之間的全長L,配置在包含從基端50起算至1/4L為止之長度的位置,且靠近基端50側之位置,較為理想。中央領域Rm的領域中間位置Pcm係配置在,從基端50起算1/4L之長度的位置至3/4L之長度的位置之間,較為理想。又,下游側領域Rdown的領域中間位置Pdm係配置在,包含從基端50起算3/4L之長度的位置,到尖端48之間的位置,較為理想。
在圖7的圖表所涉及之實施形態中,葉片部42的葉片高度方向上,冷卻孔70的開口密度,是從基端50側往尖端48側越來越大地連續變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為包含中間位置Pm上的開口密度指標dm之範圍的值,上游側領域Rup中的冷卻孔70的開口密度指標d_up,係為基端50側之位置Pr上的開口密度指標dr以上且未滿中間位置Pm上的開口密度指標dm的值,下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係為尖端48側之位置Pt上的開口密度指標dt以下且大於中間位置Pm上的開口密度指標dm的值。
在被形成在可動葉片26(渦輪機葉片40)的葉片部42之內部的冷卻通路66內,冷卻媒體係一面冷卻葉片部42一面流動,因此有的時候會產生越靠近冷卻媒體流之下游側(尖端48側)越為高溫的溫度分布,亦即發生前述的加熱。這點,如上述的實施形態所述之可動葉片26(渦輪機葉片40)般地,在冷卻通路66中的冷卻媒體流之下游側(尖端48側)之位置,相較於上游側(基端50側)之位置,把冷卻孔70的開口密度設成較大,藉此,在冷卻媒體的溫度相對較高的下游側(尖端48側),可增加通過冷卻孔70的冷卻媒體之供給流量。藉此,可隨應於冷卻通路66的溫度分布,而適切地冷卻可動葉片26(渦輪機葉片40)的後緣部47。
又,於葉片部42於葉片高度方向上的一部分之領域中,將冷卻孔70的開口密度設成比其他領域還小,藉此可使葉片部42全體的冷卻孔70的開口密度變得比較小。藉此,冷卻通路66的壓力容易維持較高,因此可適切地維持冷卻通路66與渦輪機葉片40外部(例如燃氣渦輪機1的燃氣流路28)之壓力的差壓,容易有效地供給冷卻媒體給冷卻孔70。
此外,葉片高度方向上的冷卻孔70的開口密度之分布,係只要上述的開口密度指標d_mid、d_up及d_down有滿足d_up<d_mid<d_down之關係即可,並不限定於圖6或圖7的圖表所示者。 例如,亦可將葉片部42中的葉片高度方向之領域分割成比3個還多的領域,各領域中的冷卻孔70的開口密度,是隨著從基端50側往尖端48側而緩緩變大地呈步進狀變化。 又,亦可為,例如,葉片部42的葉片高度方向之領域中,在一部分之領域中冷卻孔70的開口密度係為連續變化,同時,在另一部分之領域中冷卻孔70的開口密度係為一定。
在數個實施形態中,例如如圖8的圖表所示,中央領域中的冷卻孔70的開口密度指標d_mid、和位於比中央領域還要靠往上游側(基端50側)的上游側領域中的冷卻孔70的開口密度指標d_up、和位於比中央領域還要靠往下游側(尖端48側)的下游側領域中的冷卻孔70的開口密度指標d_down,係滿足d_up<d_down<d_mid之關係。
在圖8的圖表所涉及的實施形態中,葉片部42的葉片高度方向領域係被分割成含有:中央領域Rm、包含基端50且位於比中央領域Rm還要靠往基端50側的上游側領域Rup、包含尖端48且位於比中央領域Rm還要靠往尖端48側的下游側領域Rdown的3個領域。然後,在3個各領域中,冷卻孔70之開口密度係為一定,開口密度係於葉片高度方向上呈步進狀地變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為中間位置Pm上的dm且為一定,上游側領域Rup中的冷卻孔70的開口密度指標d_up,係為比中間位置Pm還靠基端50側之位置Pr上的開口密度指標dr(其中dr<dm)且為一定,下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係為比中間位置Pm還靠尖端48側之位置Pt上的開口密度指標dt(其中dr<dt<dm)且為一定。
在可動葉片26(渦輪機葉片40)所被配置的燃氣流路28(參照圖1)中流通的氣體的溫度,係為例如如圖9的圖表所示之分布,在葉片高度方向上,相較於葉片部42的尖端48側之領域及基端50側之領域,包含尖端48與基端50之中間位置Pm的中央領域中會有較高的傾向。 另一方面,在被形成在葉片部42之內部的冷卻通路66內,冷卻媒體係一面冷卻葉片部42一面流動,因此有的時候會產生越靠近冷卻媒體流之下游側(尖端48側)越為高溫的溫度分布。在此種情況下,為了適切地冷卻後緣部47,將通過葉片高度方向之中央領域Rm中的冷卻孔70的冷卻媒體流量設成最大,且於上述的下游側領域Rdown中,相較於上游側領域Rup而把通過冷卻孔70之冷卻媒體流量設成較大,較為理想。
亦即,如前述,冷卻媒體在最終路徑60e內流動的過程中會被加熱,最終路徑60e的尖端48或下游側領域Rdown中的冷卻孔70之金屬溫度會變成最高。可是,金屬溫度被抑制在不會超過根據氧化變薄容許量而定之使用臨界溫度之範圍內的葉片的情況下,藉由選定圖20C及圖6所示的冷卻孔70的開口密度分布,就可抑制葉片的損傷。另一方面,在圖9所示的表示燃氣溫度分布的燃氣之氛圍中工作的葉片的情況下,中央領域Rm中的葉片部42從燃氣所受到的入熱較大,在圖20C及圖6所示的中央領域Rm的冷卻孔70的開口密度指標中,中央領域Rm的冷卻孔70之金屬溫度,會有超過使用臨界溫度的情況。在如此情況下,必須要將中央領域Rm的冷卻孔70的開口密度指標設成更大,以強化冷卻。亦即,將下游側領域Rdown的冷卻孔70的開口密度指標減小,將中央領域Rm的冷卻孔70的開口密度指標加大,縮減在下游側領域Rdown的冷卻孔70中流動的冷卻媒體之供給流量,藉此可使在中央領域Rm的冷卻孔70中流動的冷卻媒體之供給流量增加。隨著金屬溫度,甚至亦可為,將上游側領域Rup的冷卻孔70的開口密度指標減小,而選定會使最終路徑60e的尖端48及下游側領域Rdown中的冷卻孔70之金屬溫度以及中央領域Rm中之金屬溫度停留在使用臨界溫度內的開口密度分布。又,亦可一併確認中央領域Rm及上游側領域Rup中的前述之潛變強度會停留在潛變臨界內,來選擇本實施形態中的各領域的冷卻孔70之開口密度分布。
如上述的實施形態所述之可動葉片26(渦輪機葉片40)般地,將中央領域Rm中的冷卻孔70的開口密度指標d_mid,設成比上述的上游側領域Rup及下游側領域Rdown中的冷卻孔70的開口密度指標d_up、d_down還大,藉此,在燃氣流路28中流通的氣體溫度相對較高的中央領域Rm中,可增加通過冷卻孔70的冷卻媒體之供給流量。又,如上述的實施形態所述之可動葉片26(渦輪機葉片40)般地,將下游側領域Rdown中的冷卻孔70的開口密度指標d_down,設成比上游側領域Rup中的冷卻孔70的開口密度指標d_up還大,藉此,在冷卻媒體溫度是比上游側領域Rup還高的下游側領域Rdown中,可增加通過冷卻孔70的冷卻媒體之供給流量。如此一來,可隨應於冷卻通路66的溫度分布,而適切地冷卻可動葉片26(渦輪機葉片40)的後緣部47。
此外,於圖8中,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域亦可為,各領域中的所有冷卻孔70的開口密度係為相同且為一定,令各領域中的徑方向之領域中間位置上的冷卻孔70的開口密度指標分別為d_up及d_mid以及d_down,滿足d_up<d_down< d_mid之關係即可。又,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域,在含有開口密度不同之冷卻孔70的情況下,亦可為,各個領域中的平均開口密度指標,是滿足d_up<d_down<d_mid之關係。此處各領域中的領域中間位置及平均開口密度指標的想法,係和前述相同。又,冷卻孔70的孔徑D,係亦可為從尖端48側至基端50側都是相同孔徑D,也可為不同孔徑D的冷卻孔70之組合。
此外,葉片高度方向上的冷卻孔70的開口密度之分布,係只要上述的開口密度指標d_mid、d_up及d_down有滿足d_up<d_down<d_mid之關係即可,並不限定於圖8的圖表所示者。 例如,亦可將葉片部42中的葉片高度方向之領域分割成比3個還多的領域,各領域中的冷卻孔70的開口密度是滿足上述關係而呈步進狀變化。 又,亦可為,例如,葉片部42的葉片高度方向之領域中,在至少一部分之領域中,冷卻孔70的開口密度係為連續變化。此情況下,亦可為,在葉片部42的葉片高度方向上的其他一部分之領域中,冷卻孔70的開口密度係為一定。
接著,上述的實施形態之中,針對渦輪機葉片40為定子葉片24的數個實施形態,參照圖5及圖10~圖13來加以說明。 渦輪機葉片40為定子葉片24的情況下,冷卻媒體,係在冷卻通路66(蛇行流路60的最終路徑60e)中從外側端52側往內側端54側流動(參照圖5),因此冷卻通路66內的冷卻媒體流之「上游側」及「下游側」,係分別相當於冷卻通路66內的葉片部42的外側端52側及內側端54側。又,葉片高度方向上的葉片部42之兩端也就是第1端及第2端,係分別相當於外側端52及內側端54。
在數個實施形態中,例如如圖10及圖11的圖表所示,表示包含葉片部42在葉片高度方向上之外側端52與內側端54之中間位置Pm的中央領域中的冷卻孔70的開口密度指標d_mid、和位於比中央領域還要靠往上游側(外側端52側)的上游側領域中的冷卻孔70的開口密度指標d_up、和位於比中央領域還要靠往下游側(內側端54側)的下游側領域中的冷卻孔70的開口密度指標d_down,係滿足d_up<d_mid<d_down之關係。
在圖10的圖表所涉及的實施形態中,葉片部42的葉片高度方向領域係被分割成含有:中央領域Rm、包含外側端52且位於比中央領域Rm還要靠往外側端52側的上游側領域Rup、包含內側端54且位於比中央領域Rm還要靠往內側端54側的下游側領域Rdown的3個領域。然後,在3個各領域中,冷卻孔70之開口密度係為一定,開口密度係於葉片高度方向上呈步進狀地變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為中間位置Pm上的開口密度指標dm且為一定,上游側領域Rup中的冷卻孔70的開口密度指標d_up,係為比中間位置Pm還靠外側端52側之位置Po上的開口密度指標do(其中do<dm)且為一定,下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係為比中間位置Pm還靠內側端54側之位置Pi上的開口密度指標di(其中dm<di)且為一定。
在圖11的圖表所涉及之實施形態中,葉片部42的葉片高度方向上,冷卻孔70的開口密度,是從外側端52側往內側端54側越來越大地連續變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為包含中間位置Pm上的開口密度指標dm之範圍的值,上游側領域Rup中的冷卻孔70的開口密度指標d_up,係為外側端52側之位置Po上的開口密度指標do以上且未滿中間位置Pm上的開口密度指標dm的值,下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係為內側端54側之位置Pi上的開口密度指標di以下且大於中間位置Pm上的開口密度指標dm的值。
在被形成在定子葉片24(渦輪機葉片40)的葉片部42之內部的冷卻通路66內,冷卻媒體係一面冷卻葉片部42一面流動,因此有的時候會產生越靠近冷卻媒體流之下游側(內側端54側)越為高溫的溫度分布,亦即發生前述的加熱。這點,如上述的實施形態所述之定子葉片24(渦輪機葉片40)般地,在冷卻通路66中的冷卻媒體流方向之下游側(內側端54側)之位置,相較於上游側(外側端52側)之位置,把冷卻孔70的開口密度設成較大,藉此,在冷卻媒體的溫度相對較高的下游側(內側端54側),可增加通過冷卻孔70的冷卻媒體之供給流量。藉此,可隨應於冷卻通路66的溫度分布,而適切地冷卻定子葉片24(渦輪機葉片40)的後緣部47。
此外,於圖10中,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域亦可為,各領域中的所有冷卻孔70的開口密度係為相同且為一定,令各領域中的徑方向之領域中間位置上的冷卻孔70的開口密度指標分別為d_up及d_mid以及d_down,滿足d_up<d_mid< d_down之關係即可。又,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域,在含有開口密度不同之冷卻孔70的情況下,亦可為,各個領域中的平均開口密度指標,是滿足d_up<d_mid<d_down之關係。此處各領域中的領域中間位置及平均開口密度指標的想法,係和前述相同。又,冷卻孔70的孔徑D,係亦可為從尖端48側至基端50側都是相同孔徑D,也可為不同孔徑D的冷卻孔70之組合。
此外,葉片高度方向上的冷卻孔70的開口密度之分布,係只要上述的開口密度指標d_mid、d_up及d_down有滿足d_up<d_mid<d_down之關係即可,並不限定於圖10或圖11的圖表所示者。 例如,亦可將葉片部42中的葉片高度方向之領域分割成比3個還多的領域,各領域中的冷卻孔70的開口密度,是隨著從內側端54側往外側端52側而緩緩變大地呈步進狀變化。 又,亦可為,例如,葉片部42的葉片高度方向之領域中,在一部分之領域中冷卻孔70的開口密度係為連續變化,同時,在另一部分之領域中冷卻孔70的開口密度係為一定。
在數個實施形態中,例如如圖12的圖表所示,中央領域中的冷卻孔70的開口密度指標d_mid、和位於比中央領域還要靠往上游側(外側端52側)的上游側領域中的冷卻孔70的開口密度指標d_up、和位於比中央領域還要靠往下游側(內側端54側)的下游側領域中的冷卻孔70的開口密度指標d_down,係滿足d_up<d_down<d_mid之關係。
在圖12的圖表所涉及的實施形態中,葉片部42的葉片高度方向領域係被分割成含有:中央領域Rm、包含外側端52且位於比中央領域Rm還要靠往外側端52側的上游側領域Rup、包含內側端54且位於比中央領域Rm還要靠往內側端54側的下游側領域Rdown的3個領域。然後,在3個各領域中,冷卻孔70之開口密度係為一定,開口密度係於葉片高度方向上呈步進狀地變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為中間位置Pm上的dm且為一定,上游側領域Rup中的冷卻孔70的開口密度指標d_up,係為比中間位置Pm還靠外側端52側之位置Po上的開口密度指標do(其中do<dm)且為一定,下游側領域Rdown中的冷卻孔70的開口密度指標d_down,係為比中間位置Pm還靠內側端54側之位置Pi上的開口密度指標di(其中do<di<dm)且為一定。
在定子葉片24(渦輪機葉片40)所被配置的燃氣流路28(參照圖1)中流通的氣體的溫度,係為例如如圖13的圖表所示之分布,在葉片高度方向上,相較於葉片部42的外側端52側之領域及內側端54側之領域,包含外側端52與內側端54之中間位置Pm的中央領域中會有較高的傾向。 另一方面,在被形成在葉片部42之內部的冷卻通路66內,冷卻媒體係一面冷卻葉片部42一面流動,因此有的時候會產生越靠近冷卻媒體流之下游側(內側端54側)越為高溫的溫度分布。在此種情況下,為了適切地冷卻後緣部47,將通過葉片高度方向之中央領域Rm中的冷卻孔70的冷卻媒體流量設成最大,且於上述的下游側領域Rdown中,相較於上游側領域Rup而把通過冷卻孔70之冷卻媒體流量設成較大,較為理想。
亦即,如前述,冷卻媒體在最終路徑60e內流動的過程中會被加熱,最終路徑60e的內側端54或下游側領域Rdown中的冷卻孔70之金屬溫度會變成最高。可是,被抑制在不會超過根據氧化變薄容許量而定之使用臨界溫度之範圍內的葉片的情況下,藉由選定圖10所示的冷卻孔70的開口密度分布,就可抑制葉片的損傷。另一方面,在圖13所示的表示燃氣溫度分布的燃氣之氛圍中工作的葉片的情況下,中央領域Rm中的葉片部42從燃氣所受到的入熱較大,在圖10所示的中央領域Rm的冷卻孔70的開口密度指標中,中央領域Rm的冷卻孔70之金屬溫度,會有超過使用臨界溫度的情況。在如此情況下,將中央領域Rm的冷卻孔70的開口密度指標設成更大,以強化冷卻。亦即,將下游側領域Rdown的冷卻孔70的開口密度指標減小,將中央領域Rm的冷卻孔70的開口密度指標加大,縮減在下游側領域Rdown的冷卻孔70中流動的冷卻媒體之供給流量,藉此可使在中央領域Rm的冷卻孔70中流動的冷卻媒體之供給流量增加。隨著金屬溫度,甚至亦可為,將上游側領域Rup的冷卻孔70的開口密度指標減小,而選定會使最終路徑60e的內側端54及下游側領域Rdown中的冷卻孔70之金屬溫度以及中央領域Rm中之金屬溫度停留在使用臨界溫度內的開口密度分布。
如上述的實施形態所述之定子葉片24(渦輪機葉片40)般地,將中央領域Rm中的冷卻孔70的開口密度指標d_mid,設成比上述的上游側領域Rup及下游側領域Rdown中的冷卻孔70的開口密度指標d_up、d_down還大,藉此,在燃氣流路28中流通的氣體溫度相對較高的中央領域Rm中,可增加通過冷卻孔70的冷卻媒體之供給流量。又,如上述的實施形態所述之定子葉片24(渦輪機葉片40)般地,將下游側領域Rdown中的冷卻孔70的開口密度指標d_down,設成比上游側領域Rup中的冷卻孔70的開口密度指標d_up還大,藉此,在冷卻媒體溫度是比上游側領域Rup還高的下游側領域Rdown中,可增加通過冷卻孔70的冷卻媒體之供給流量。如此一來,可隨應於冷卻通路66的溫度分布,而適切地冷卻定子葉片24(渦輪機葉片40)的後緣部47。
此外,於圖12中,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域亦可為,各領域中的所有冷卻孔70的開口密度係為相同且為一定,令各領域中的徑方向之領域中間位置上的冷卻孔70的開口密度指標分別為d_up及d_mid以及d_down,滿足d_up<d_down< d_mid之關係即可。又,關於上游側領域Rup及中央領域Rm以及下游側領域Rdown之各個領域,在含有開口密度不同之冷卻孔70的情況下,亦可為,各個領域中的平均開口密度指標,是滿足d_up<d_down<d_mid之關係。此處各領域中的領域中間位置及平均開口密度指標的想法,係和前述相同。又,冷卻孔70的孔徑D,係亦可為從尖端48側至基端50側都是相同孔徑D,也可為不同孔徑D的冷卻孔70之組合。
此外,葉片高度方向上的冷卻孔70的開口密度之分布,係只要上述的開口密度指標d_mid、d_up及d_down有滿足d_up<d_down<d_mid之關係即可,並不限定於圖13的圖表所示者。 例如,亦可將葉片部42中的葉片高度方向之領域分割成比3個還多的領域,各領域中的冷卻孔70的開口密度是滿足上述關係而呈步進狀變化。 又,亦可為,例如,葉片部42的葉片高度方向之領域中,在至少一部分之領域中,冷卻孔70的開口密度係為連續變化。此情況下,亦可為,在葉片部42的葉片高度方向上的其他一部分之領域中,冷卻孔70的開口密度係為一定。
接著,關於其他數個實施形態,參照圖4、圖14及圖15而加以說明。於這些實施形態中,渦輪機葉片40係為可動葉片26(參照圖4)。
在數個實施形態中,例如如圖14的圖表所示,表示包含葉片部42在葉片高度方向上之尖端48與基端50之中間位置Pm的中央領域中的冷卻孔70的開口密度指標d_mid、和位於比中央領域還要靠往尖端48側的尖端側領域中的開口密度指標d_tip、和位於比中央領域還要靠往基端50側的基端側領域中的開口密度指標d_root,係滿足d_tip<d_mid<d_root之關係。
在圖14的圖表所涉及的實施形態中,葉片部42的葉片高度方向領域係被分割成含有:中央領域Rm、包含尖端48且位於比中央領域Rm還要靠往尖端48側的尖端側領域Rtip、包含基端50且位於比中央領域Rm還要靠往基端50側的基端側領域Rroot的3個領域。然後,在3個各領域中,冷卻孔70之開口密度係為一定,開口密度係於葉片高度方向上呈步進狀地變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為中間位置Pm上的開口密度指標dm且為一定,尖端側領域Rtip中的冷卻孔70的開口密度指標d_tip,係為比中間位置Pm還靠尖端48側之位置Pt上的開口密度指標dt(其中dt<dm)且為一定,基端側領域Rroot中的冷卻孔70的開口密度指標d_root,係為比中間位置Pm還靠基端50側之位置Pr上的開口密度指標dr(其中dm<dr)且為一定。
在燃氣渦輪機1的運轉時,對於被形成在可動葉片26的葉片部42之內部的冷卻通路66內的冷卻媒體會有離心力作用,因此於該冷卻通路66內有時候會產生越靠葉片部42的尖端48側越為高壓之壓力分布。這點,如上述的實施形態所述之可動葉片26(渦輪機葉片40)般地,在葉片部42的尖端48側之位置,相較於基端50側之位置,把冷卻孔70的開口密度設成較小,藉此,即使有上述的壓力分布的情況下,仍可使得通過冷卻孔70的冷卻媒體之供給流量在葉片高度方向上的參差變小。藉此,可隨應於冷卻通路66的壓力分布,而適切地冷卻可動葉片26(渦輪機葉片40)的後緣部47。
此外,於圖14中,關於基端側領域Rroot及中央領域Rm以及尖端側領域Rtip之各個領域亦可為,各領域中的所有冷卻孔70的開口密度係為相同且為一定,令各領域中的徑方向之領域中間位置上的冷卻孔70的開口密度指標分別為d_root及d_mid以及d_tip,滿足d_tip<d_mid< d_root之關係即可。各領域中的領域中間位置,係針對基端側領域Rroot及中央領域Rm以及尖端側領域Rtip之每一者,分別以Prm、Pcm、Ptm來表示。又,關於基端側領域Rroot及中央領域Rm以及尖端側領域Rtip之各個領域,在含有開口密度不同之冷卻孔70的情況下,亦可為,各個領域中的平均開口密度指標,是滿足d_tip<d_mid<d_root之關係。此處各領域中的領域中間位置及平均開口密度指標的想法,係和前述相同。又,冷卻孔70的孔徑D,係亦可為從尖端48側至基端50側都是相同孔徑D,也可為不同孔徑D的冷卻孔70之組合。
此外,葉片高度方向上的冷卻孔70的開口密度之分布,係只要上述的開口密度指標d_mid、d_tip及d_root有滿足d_tip<d_mid<d_root之關係即可,並不限定於圖14的圖表所示者。 例如,亦可將葉片部42中的葉片高度方向之領域分割成比3個還多的領域,各領域中的冷卻孔70的開口密度是滿足上述關係而呈步進狀變化。 又,亦可為,例如,葉片部42的葉片高度方向之領域中,在至少一部分之領域中,冷卻孔70的開口密度係為連續變化。此情況下,亦可為,在葉片部42的葉片高度方向上的其他一部分之領域中,冷卻孔70的開口密度係為一定。
又,在數個實施形態中,例如如圖15的圖表所示,上述的中央領域中的冷卻孔70的開口密度指標d_mid、和位於比中央領域還要靠往尖端48側的尖端側領域中的開口密度指標d_tip、和位於比中央領域還要靠往基端50側的基端側領域中的開口密度指標d_root,係滿足d_tip<d_root<d_mid之關係。
在圖15的圖表所涉及的實施形態中,葉片部42的葉片高度方向領域係被分割成含有:中央領域Rm、包含尖端48且位於比中央領域Rm還要靠往尖端48側的尖端側領域Rtip、包含基端50且位於比中央領域Rm還要靠往基端50側的基端側領域Rroot的3個領域。然後,在3個各領域中,冷卻孔70之開口密度係為一定,開口密度係於葉片高度方向上呈步進狀地變化。 亦即,中央領域Rm中的冷卻孔70的開口密度指標d_mid,係為中間位置Pm上的開口密度指標dm且為一定,尖端側領域Rtip中的冷卻孔70的開口密度指標d_tip,係為比中間位置Pm還靠尖端48側之位置Pt上的開口密度指標dt(其中dt<dm)且為一定,基端側領域Rroot中的冷卻孔70的開口密度指標d_root,係為比中間位置Pm還靠基端50側之位置Pr上的開口密度指標dr(其中dt<dr<dm)且為一定。
在可動葉片26(渦輪機葉片40)所被配置的燃氣流路28(參照圖1)中流通的氣體的溫度,係為例如如圖9的圖表所示之分布,在葉片高度方向上,相較於葉片部42的尖端48側之領域及基端50側之領域,包含尖端48與基端50之中間位置Pm的中央領域中會有較高的傾向。 另一方面,在燃氣渦輪機1的運轉時,對於被形成在可動葉片26的葉片部42之內部的冷卻通路66內的冷卻媒體會有離心力作用,因此於該冷卻通路66內有時候會產生越靠葉片部42的尖端48側越為高壓之壓力分布。在此種情況下,為了適切地冷卻後緣部47,將通過葉片高度方向之中央領域中的冷卻孔70的冷卻媒體流量設成最大,且在葉片高度方向上的位於尖端48側之領域與位於基端50側之領域間,使得通過冷卻孔的冷卻媒體之供給流量之參差變小,較為理想。
這點,如上述的實施形態所述之可動葉片26(渦輪機葉片40)般地,將中央領域Rm中的冷卻孔70的開口密度指標d_mid,設成比上述的尖端側領域Rtip及基端側領域Rroot中的冷卻孔70的開口密度指標d_tip、d_root還大,藉此,在燃氣流路28中流通的氣體溫度相對較高的中央領域Rm中,可增加通過冷卻孔70的冷卻媒體之供給流量。又,如上述的實施形態所述之可動葉片26(渦輪機葉片40)般地,將尖端側領域Rtip中的冷卻孔70的開口密度指標d_tip,設成比基端側領域Rroot中的冷卻孔70的開口密度指標d_root還小,藉此,即使有上述的壓力分布的情況下,仍可使得尖端側領域Rtip與基端側領域Rroot之間,通過冷卻孔70的冷卻媒體之供給流量之參差變小。如此一來,可隨應於冷卻通路66的壓力分布,而適切地冷卻可動葉片26(渦輪機葉片40)的後緣部47。
此外,於圖15中,關於基端側領域Rroot及中央領域Rm以及尖端側領域Rtip之各個領域亦可為,各領域中的所有冷卻孔70的開口密度係為相同且為一定,令各領域中的徑方向之領域中間位置上的冷卻孔70的開口密度指標分別為d_root及d_mid以及d_tip,滿足d_tip<d_root< d_mid之關係即可。各領域中的領域中間位置,係針對基端側領域Rroot及中央領域Rm以及尖端側領域Rtip之每一者,分別以Prm、Pcm、Ptm來表示。又,關於基端側領域Rroot及中央領域Rm以及尖端側領域Rtip之各個領域,在含有開口密度不同之冷卻孔70的情況下,亦可為,各個領域中的平均開口密度指標,是滿足d_tip<d_root<d_mid之關係。此處各領域中的領域中間位置及平均開口密度指標的想法,係和前述相同。又,冷卻孔70的孔徑D,係亦可為從尖端48側至基端50側都是相同孔徑D,也可為不同孔徑D的冷卻孔70之組合。
此外,葉片高度方向上的冷卻孔70的開口密度之分布,係只要上述的開口密度指標d_mid、d_tip及d_root有滿足d_tip<d_root<d_mid之關係即可,並不限定於圖15的圖表所示者。 例如,亦可將葉片部42中的葉片高度方向之領域分割成比3個還多的領域,各領域中的冷卻孔70的開口密度是滿足上述關係而呈步進狀變化。 又,亦可為,例如,葉片部42的葉片高度方向之領域中,在至少一部分之領域中,冷卻孔70的開口密度係為連續變化。此情況下,亦可為,在葉片部42的葉片高度方向上的其他一部分之領域中,冷卻孔70的開口密度係為一定。
此外,例如上述的圖6、圖8、圖10、圖12、圖14及圖15的圖表所涉及之實施形態中,葉片部42於葉片高度方向上的各領域(中央領域Rm、上游側領域Rup及下游側領域Rdown、或尖端側領域Rtip及基端側領域Rroot)中的冷卻孔70的開口密度係分別為一定,因此各領域中的冷卻孔的加工係為容易。
作為上述的渦輪機葉片40的冷卻孔70的開口密度之指標,亦可採用例如,葉片高度方向上的冷卻孔70之間距P(參照圖16)、與冷卻孔70之直徑D(參照圖16)的比值P/D。此外,作為冷卻孔70之直徑D,亦可使用冷卻孔70的最大直徑、最小直徑或平均直徑。 或者,作為上述的開口密度指標亦可採用,冷卻孔70的葉片部42的往表面的開口端72(參照圖17)的濕周長度S (亦即葉片部42表面中的開口端72之周長)、與葉片高度方向上的冷卻孔70之間距P(參照圖17)的比值S/P。 或者,作為上述的開口密度指標亦可採用,葉片部42的後緣部47中的葉片部42之表面的每單位面積(或每單位長度)的冷卻孔70之個數。
被形成在渦輪機葉片40的葉片部42之後緣部47的冷卻孔70,係亦可具有以下特徵。
數個實施形態中,冷卻孔70係亦可對葉片高度方向的正交平面帶有傾斜而被形成。 如此,冷卻孔70相對於正交於葉片高度方向之平面帶有傾斜而被形成,藉此,相較於將該冷卻孔70形成為與葉片高度方向之正交平面平行的情況,可使冷卻孔70變得較長。藉此,可有效地冷卻渦輪機葉片40的後緣部。
在數個實施形態中,冷卻孔70的延伸方向、與葉片高度方向的正交平面所夾的角度A(參照圖16),係亦可為15°以上45°以下,或20°以上40°以下。若前記角度A是在上述的範圍,則可維持冷卻孔70的加工容易性,或是維持葉片部42的後緣部47的強度,同時形成比較長的冷卻孔70。
又,在數個實施形態中,冷卻孔70係亦可被形成為彼此平行。 如此,藉由將複數個冷卻孔70形成為彼此平行,相較於複數個冷卻孔70並非彼此平行的情況,可將較多的冷卻孔70,形成在葉片部42的後緣部47。藉此,可有效地冷卻渦輪機葉片40的後緣部47。
接著,關於最終路徑60e與後緣部47的冷卻孔70的開口密度之關係,說明如下。一般而言,在蛇行流路60的葉片內面,係為了促進與冷卻媒體之間的熱傳達,而會設有擾流器90。圖18中係圖示,被形成在後緣部47附近的冷卻孔70之配置、和相鄰於後緣部47而被配置在冷卻媒體的流動方向之上游側的冷卻通路66的最終路徑60e之構成。在最終路徑60e係從基端50到尖端48為止,在葉片部42的壓力面(腹側)56與負壓面(背側)58的各內壁面68,配置有作為亂流促進材的擾流器90。同樣地,在比最終路徑60e還要靠往冷卻媒體的流動方向之上游側的蛇行流路60中,也配置有擾流器(未圖示)。
被配置在蛇行流路60的擾流器90,係如圖19所示,是被設置在各路徑60a~60e的至少1個路徑的壓力面(腹側)56與負壓面(背側)58的內壁面68,以擾流器90的內壁面68為基準而形成為具有高度e。又,各路徑60a~60e的背腹方向的通路寬度係形成為H,在各流路中,在徑方向上被相鄰配置的複數個擾流器90,係以間距PP之間隔而被設置。擾流器90,係擾流器90之間距PP與高度e的比值(PP/e)及擾流器90之高度e與背腹方向之通路寬度H的比值(e/H)以及擾流器90相對於冷卻媒體流動方向的傾斜角,從基端50至尖端48為止都是大略一定般地而被形成,被配置成會與冷卻媒體之間獲得最佳的熱傳達。
可是,在最終路徑60e中,最終路徑60e的通路寬度H,是比最終路徑60e以外的其他路徑60a~60d還窄。因此,對應於前述的獲得適切熱傳達的冷卻通路66的擾流器90之高度e與通路寬度H的適切的比值(e/H)而選定擾流器高度e,有時候會有困難。亦即,在最終路徑60e的情況,相較於其他路徑60a~60d,為了維持擾流器90之高度e與通路寬度H的適切之比值(e/H),擾流器90的高度e有時候會變得過小,而導致擾流器90的加工變得困難的情況。尤其是,相較於基端50側,尖端48側的通路寬度H係較窄,因此,擾流器90的適切高度e之選定有時候會變得更加困難。
又,流入至蛇行流路60的最終路徑60e的冷卻媒體,係在比最終路徑60e還靠上游側的各路徑60a~60d中流動的過程中,被從葉片部42的內壁面68加熱,然後才被供給至最終路徑60e。因此,最終路徑60e之金屬溫度係容易高溫化,尤其是在最終路徑60e的尖端48側附近,更容易被高溫化。因此,必須要採取使得最終路徑60e之金屬溫度不會超過使用臨界溫度的手段。例如,最終路徑60e的葉片高度方向的從中間位置往尖端48的出口開口64,使通路寬度H緩緩變窄,減少通路剖面積,提高冷卻媒體的流速,有時候會選定如此的通路構造。將最終路徑60e的通路剖面積越往出口開口64就越減少,加快冷卻媒體的流速,促進與最終路徑60e之間的熱傳達,就可將最終路徑60e之金屬溫度抑制在使用臨界溫度以下。在適用如此構造時,最終路徑60e的尖端48附近的通路寬度H會有變得更窄的傾向。
於是,有時候,在流過最終路徑60e的冷卻流體的壓力損失是可容許的範圍內,對於擾流器90相對於通路寬度H的適切高度e,選定高度e相對較大的擾流器90。亦即,被形成在最終路徑60e的擾流器90,係相較於最終路徑60e以外的其他路徑60a~60d的擾流器90,高度e會比較小,但有時候會選定使擾流器90的高度e從基端50至尖端48為止都沒有改變而為一定的相同高度e。其結果為,最終路徑60e的擾流器90的高度e與通路寬度H之比值(e/H),係比對其他路徑60a~60d所適用的高度e與通路寬度H之比值(e/H)還大。如此,在最終路徑60e中,藉由選定高度e是比適正值相對還大的擾流器90,就可促進最終路徑60e的冷卻媒體的亂流的發生,相較於其他路徑60a~60d可更為促進最終路徑60e中的冷卻媒體之間的熱傳達。其結果為,最終路徑60e之金屬溫度,會被抑制成使用臨界溫度以下。
另一方面,如上述般地促進最終路徑60e中的熱傳達的情況下,最終路徑60e之金屬溫度雖然會降低,但流過最終路徑60e的冷卻媒體的溫度會更為上升。伴隨溫度上升的冷卻媒體會被供給至被配置在後緣部47的冷卻孔70,因此有時候對後緣部47之開口密度之分布會有影響。亦即,藉由使最終路徑60e中的通路寬度H越往尖端48側就越為減少,或是使最終路徑60e的擾流器90的高度e比其他路徑60a~60d相對還大等,以強化最終路徑60e之冷卻,改善熱應力的發生等。另一方面,對於被供給至後緣部47的冷卻媒體的溫度上升,係將最終路徑60e的葉片高度方向的從中間位置至尖端48的出口開口64為止的後緣部47的冷卻孔70的開口密度加大,以吸收所流入的冷卻媒體的溫度上升,抑制後緣部47之金屬溫度的上升,就可適切地冷卻包含最終路徑60e的後緣部47。
以上雖然針對本發明的實施形態做說明,但本發明係不限定於上述的實施形態,亦包含對上述的實施形態施加變形而成的形態、或是將這些形態做適宜組合而成的形態。
本說明書中,「朝某個方向」、「沿著某個方向」、「平行」、「正交」、「中心」、「同心」或「同軸」等的相對或絕對性的表示配置的表現,係不只表示嚴謹的該些配置,也表示了即使帶有公差、或是能夠得到相同機能之程度的角度或距離而有相對性位移的狀態。 例如,「相同」、「相等」及「均質」等的表示事物處於相等之狀態的表現,係不只表示嚴謹的相等之狀態,也表示了存在有公差、或是能夠得到相同機能之程度之差異的狀態。 又,本說明書中,四角形狀或圓筒形狀等的表示形狀的表現,係不只表示幾何學上嚴謹意義下的四角形狀或圓筒形狀等之形狀,在可獲得同樣效果的範圍內,也表示了包含有凹凸部或倒角部等的形狀。 又,本說明書中,「具備」、「含有」、或「具有」一個構成要素的此種表現,係並非把其他構成要素的存在予以除外的排他性表現。
1‧‧‧燃氣渦輪機2‧‧‧壓縮機4‧‧‧燃燒器6‧‧‧渦輪機8‧‧‧轉子10‧‧‧壓縮機車室12‧‧‧空氣取入口16‧‧‧定子葉片18‧‧‧可動葉片20‧‧‧殼體22‧‧‧渦輪機車室24‧‧‧定子葉片26‧‧‧可動葉片28‧‧‧燃氣流路30‧‧‧排氣室40‧‧‧渦輪機葉片42‧‧‧葉片部44‧‧‧前緣46‧‧‧後緣47‧‧‧後緣部48‧‧‧尖端49‧‧‧後緣端面50‧‧‧基端52‧‧‧外側端54‧‧‧內側端56‧‧‧壓力面58‧‧‧負壓面60‧‧‧蛇行流路60a~60e‧‧‧路徑62‧‧‧入口開口64‧‧‧出口開口66‧‧‧冷卻通路68‧‧‧內壁面70‧‧‧冷卻孔72‧‧‧開口端80‧‧‧平台82‧‧‧葉片根部84‧‧‧內部流路86‧‧‧內側遮板88‧‧‧外側遮板90‧‧‧擾流器Pm‧‧‧中間位置Pcm‧‧‧中央領域中間位置Pum‧‧‧上游側領域中間位置Pdm‧‧‧下游側領域中間位置Ptm‧‧‧尖端側領域中間位置Prm‧‧‧基端側領域中間位置Rtip‧‧‧尖端側領域Rm‧‧‧中央領域Rroot‧‧‧基端側領域Rup‧‧‧上游側領域Rdown‧‧‧下游側領域
[圖1]一實施形態所述的渦輪機葉片所被適用之燃氣渦輪機的概略構成圖。 [圖2]一實施形態所述的渦輪機葉片亦即可動葉片的部分剖面圖。 [圖3]圖2所示的可動葉片(渦輪機葉片)的III-III剖面。 [圖4]圖2所示的可動葉片(渦輪機葉片)的模式性剖面圖。 [圖5]一實施形態所述的渦輪機葉片亦即定子葉片的模式性剖面圖。 [圖6]一實施形態中的可動葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖7]一實施形態中的可動葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖8]一實施形態中的可動葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖9]葉片高度方向上的燃氣的溫度分布之一例的圖表。 [圖10]一實施形態中的定子葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖11]一實施形態中的定子葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖12]一實施形態中的定子葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖13]葉片高度方向上的燃氣的溫度分布之一例的圖表。 [圖14]一實施形態中的可動葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖15]一實施形態中的可動葉片(渦輪機葉片)的後緣部之開口密度之分布之一例的圖表。 [圖16]一實施形態所述的渦輪機葉片的後緣部沿著葉片高度方向的剖面圖。 [圖17]一實施形態所述的渦輪機葉片的後緣部,從葉片部的後緣往前緣方向觀看的圖。 [圖18]一實施形態中的渦輪機可動葉片的冷卻通路之構成的模式圖。 [圖19]一實施形態中的擾流器之構成的模式圖。 [圖20A]說明本發明之基本構成的渦輪機可動葉片的模式圖。 [圖20B]先前葉片的冷卻孔之開口密度分布的圖示。 [圖20C]本發明之基本構成的冷卻孔之開口密度分布的一例的圖示。 [圖20D]本發明之基本構成的冷卻孔之開口密度分布的修正例的圖示。 [圖20E]潛變臨界曲線的圖示。 [圖20F]本發明之基本構成的冷卻孔之開口密度分布的另一例。
26‧‧‧可動葉片
40‧‧‧渦輪機葉片
42‧‧‧葉片部
44‧‧‧前緣
46‧‧‧後緣
47‧‧‧後緣部
48‧‧‧尖端
49‧‧‧後緣端面
50‧‧‧基端
60‧‧‧蛇行流路
62‧‧‧入口開口
64‧‧‧出口開口
66‧‧‧冷卻通路
70‧‧‧冷卻孔
80‧‧‧平台
82‧‧‧葉片根部
84‧‧‧內部流路
60a~60e‧‧‧路徑
Claims (12)
- 一種渦輪機葉片,係具備:葉片部;和冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和複數個冷卻孔,係以沿著前記葉片高度方向而排列的方式而被形成在前記葉片部的後緣部,連接於前記冷卻通路並且在前記後緣部中的前記葉片部之後緣端面做開口;前記後緣部中的前記複數個冷卻孔之形成領域係含有:中央領域,係包含有前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和上游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側,且表示複數個前記冷卻孔之開口密度的指標的d_up係為一定;和下游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側,且表示複數個前記冷卻孔之開口密度的指標的d_down係為一定;滿足d_up<d_mid<d_down之關係。
- 一種渦輪機葉片,係具備: 葉片部;和冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和複數個冷卻孔,係以沿著前記葉片高度方向而排列以將前記葉片部的後緣部做對流冷卻的方式而被形成在前記後緣部,連接於前記冷卻通路並且貫通前記後緣部而在後緣端面做開口;令表示包含前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid,令前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側之領域中的前記指標為d_up,令前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側之領域中的前記指標為d_down時,滿足d_up<d_down<d_mid之關係,並且,前記後緣部中的前記複數個冷卻孔之形成領域係含有:中央領域,係包含有前記葉片部在前記葉片高度方向上的第1端與第2端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和最上游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻通路內的冷卻媒體流之上游側 且為前記形成領域中的前記冷卻媒體流之最上游側,且表示複數個前記冷卻孔之開口密度的指標的d_up係為一定;和最下游側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記冷卻媒體流之下游側且為前記形成領域中的前記冷卻媒體流之最下游側,且表示複數個前記冷卻孔之開口密度的指標的d_down係為一定。
- 一種渦輪機葉片,係具備:葉片部;和冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和複數個冷卻孔,係以沿著前記葉片高度方向而排列的方式而被形成在前記葉片部的後緣部,連接於前記冷卻通路並且在前記後緣部中的前記葉片部之後緣端面做開口;前記渦輪機葉片係為可動葉片;令表示包含前記葉片部在前記葉片高度方向上的尖端與基端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid,令前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側之領域中的前記指標為d_tip,令前記葉片高度方向上位於比前記中央領域還要靠往前記基端側之領域中的前記指標為d_root時,滿足d_tip<d_mid<d_root之關係,並且,表示前記開口密度的指標d_tip、d_mid及d_root係 為,以貫通前記後緣部的方式而被設置的前記冷卻孔的貫通孔徑D,相對於前記葉片高度方向上彼此相鄰之前記冷卻孔間之間距P的比值D/P;前記後緣部中的前記複數個冷卻孔之形成領域係含有:中央領域,係包含有前記葉片部在前記葉片高度方向上的尖端與基端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和尖端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側且為前記形成領域之中最靠近前記尖端處,且表示複數個前記冷卻孔之開口密度的指標的d_tip係為一定;和基端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記基端側且為前記形成領域之中最靠近前記基端處,且表示複數個前記冷卻孔之開口密度的指標的d_root係為一定。
- 一種渦輪機葉片,係具備:葉片部;和冷卻通路,係於前記葉片部之內部沿著葉片高度方向而延伸;和複數個冷卻孔,係以沿著前記葉片高度方向而排列以將前記葉片部的後緣部做對流冷卻的方式而被形成在前記後緣部,連接於前記冷卻通路並且貫通前記後緣部而在後 緣端面做開口;前記渦輪機葉片係為可動葉片;令表示包含前記葉片部在前記葉片高度方向上的尖端與基端之中間位置的中央領域中的前記冷卻孔之開口密度的指標為d_mid,令前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側之領域中的前記指標為d_tip,令前記葉片高度方向上位於比前記中央領域還要靠往前記基端側之領域中的前記指標為d_root時,滿足d_tip<d_root<d_mid之關係,並且,前記後緣部中的前記複數個冷卻孔之形成領域係含有:中央領域,係包含有前記葉片部在前記葉片高度方向上的尖端與基端之中間位置,且表示複數個前記冷卻孔之開口密度的指標的d_mid係為一定;和尖端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記尖端側且為前記形成領域之中最靠近前記尖端處,且表示複數個前記冷卻孔之開口密度的指標的d_tip係為一定;和基端側領域,係於前記葉片高度方向上位於比前記中央領域還要靠往前記基端側且為前記形成領域之中最靠近前記基端處,且表示複數個前記冷卻孔之開口密度的指標的d_root係為一定。
- 如請求項1至4之任一項所記載之渦輪機葉片,其中, 前記中央領域係含有相同直徑的複數個冷卻孔;位於比前記中央領域還要靠往前記葉片部之尖端側的尖端側領域及位於比前記中央領域還要靠往前記葉片部之基端側的基端側領域係含有:與前記中央領域中的冷卻孔相同直徑的複數個冷卻孔。
- 如請求項2或請求項4所記載之渦輪機葉片,其中,前記葉片部的前記表面係為前記後緣部的端面。
- 如請求項1至4之任一項所記載之渦輪機葉片,其中,前記複數個冷卻孔,係相對於正交於前記葉片高度方向之平面帶有傾斜而被形成。
- 如請求項1至4之任一項所記載之渦輪機葉片,其中,前記複數個冷卻孔係被形成為彼此平行。
- 如請求項1至4之任一項所記載之渦輪機葉片,其中,前記冷卻通路係為,被形成在前記葉片部之內部的蛇行流路之中的最終路徑。
- 如請求項1至4之任一項所記載之渦輪機葉片,其中,前記渦輪機葉片係為可動葉片;在前記葉片部之尖端側,形成有前記冷卻通路的出口開口。
- 如請求項1或2所記載之渦輪機葉片,其中,前記渦輪機葉片係為定子葉片;在前記葉片部之內側遮板側,形成有前記冷卻通路的出口開口。
- 一種燃氣渦輪機,係具備:如請求項1至4之任一項所記載之渦輪機葉片;和燃燒器,係用來生成在前記渦輪機葉片所被設置之燃氣流路中流動的燃氣。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017134101A JP6345319B1 (ja) | 2017-07-07 | 2017-07-07 | タービン翼及びガスタービン |
JP2017-134101 | 2017-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201920829A TW201920829A (zh) | 2019-06-01 |
TWI691643B true TWI691643B (zh) | 2020-04-21 |
Family
ID=62635680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107123279A TWI691643B (zh) | 2017-07-07 | 2018-07-05 | 渦輪機葉片及燃氣渦輪機 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11339669B2 (zh) |
JP (1) | JP6345319B1 (zh) |
KR (1) | KR102364543B1 (zh) |
CN (1) | CN110691892B (zh) |
DE (1) | DE112018002830T5 (zh) |
MX (1) | MX2019014789A (zh) |
TW (1) | TWI691643B (zh) |
WO (1) | WO2019009331A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102321824B1 (ko) * | 2020-04-28 | 2021-11-04 | 두산중공업 주식회사 | 터빈 베인, 그리고 이를 포함하는 터빈 |
CN113586165B (zh) * | 2021-07-20 | 2022-09-16 | 西安交通大学 | 一种具有单一煤油冷却通道的涡轮叶片 |
CN114776400B (zh) | 2022-04-11 | 2024-02-20 | 北京航空航天大学 | 一种航空发动机涡轮机匣及导叶一体化冷却系统 |
JP2023165485A (ja) * | 2022-05-06 | 2023-11-16 | 三菱重工業株式会社 | タービン翼及びガスタービン |
JP2023183113A (ja) * | 2022-06-15 | 2023-12-27 | 三菱重工業株式会社 | 動翼、及びこれを備えているガスタービン |
JP2024005613A (ja) * | 2022-06-30 | 2024-01-17 | 三菱重工業株式会社 | 静翼、及びこれを備えているガスタービン |
US11952912B2 (en) * | 2022-08-24 | 2024-04-09 | General Electric Company | Turbine engine airfoil |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004137958A (ja) * | 2002-10-17 | 2004-05-13 | Mitsubishi Heavy Ind Ltd | ガスタービン動翼 |
US20080273988A1 (en) * | 2006-02-24 | 2008-11-06 | Ian Tibbott | Aerofoils |
US20090214328A1 (en) * | 2005-11-18 | 2009-08-27 | Ian Tibbott | Blades for gas turbine engines |
US8807943B1 (en) * | 2010-02-15 | 2014-08-19 | Florida Turbine Technologies, Inc. | Turbine blade with trailing edge cooling circuit |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4951907U (zh) * | 1972-08-15 | 1974-05-08 | ||
JPS4951907A (zh) | 1972-09-16 | 1974-05-20 | ||
FR2476207A1 (fr) * | 1980-02-19 | 1981-08-21 | Snecma | Perfectionnement aux aubes de turbines refroidies |
JP3142850B2 (ja) | 1989-03-13 | 2001-03-07 | 株式会社東芝 | タービンの冷却翼および複合発電プラント |
US5378108A (en) | 1994-03-25 | 1995-01-03 | United Technologies Corporation | Cooled turbine blade |
US5498126A (en) * | 1994-04-28 | 1996-03-12 | United Technologies Corporation | Airfoil with dual source cooling |
JPH0814001A (ja) * | 1994-06-29 | 1996-01-16 | Toshiba Corp | ガスタービン翼 |
JP3817205B2 (ja) | 2002-07-31 | 2006-09-06 | アンリツ株式会社 | ネットワーク中継装置及び該装置の通信離脱方法 |
US6942449B2 (en) | 2003-01-13 | 2005-09-13 | United Technologies Corporation | Trailing edge cooling |
US6988872B2 (en) | 2003-01-27 | 2006-01-24 | Mitsubishi Heavy Industries, Ltd. | Turbine moving blade and gas turbine |
US7165940B2 (en) | 2004-06-10 | 2007-01-23 | General Electric Company | Method and apparatus for cooling gas turbine rotor blades |
GB2428749B (en) * | 2005-08-02 | 2007-11-28 | Rolls Royce Plc | A component comprising a multiplicity of cooling passages |
US7387492B2 (en) * | 2005-12-20 | 2008-06-17 | General Electric Company | Methods and apparatus for cooling turbine blade trailing edges |
US9447692B1 (en) | 2012-11-28 | 2016-09-20 | S&J Design Llc | Turbine rotor blade with tip cooling |
US9638046B2 (en) * | 2014-06-12 | 2017-05-02 | Pratt & Whitney Canada Corp. | Airfoil with variable land width at trailing edge |
-
2017
- 2017-07-07 JP JP2017134101A patent/JP6345319B1/ja active Active
-
2018
- 2018-07-04 WO PCT/JP2018/025385 patent/WO2019009331A1/ja active Application Filing
- 2018-07-04 KR KR1020197034910A patent/KR102364543B1/ko active IP Right Grant
- 2018-07-04 DE DE112018002830.5T patent/DE112018002830T5/de active Pending
- 2018-07-04 US US16/617,266 patent/US11339669B2/en active Active
- 2018-07-04 MX MX2019014789A patent/MX2019014789A/es unknown
- 2018-07-04 CN CN201880036090.6A patent/CN110691892B/zh active Active
- 2018-07-05 TW TW107123279A patent/TWI691643B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004137958A (ja) * | 2002-10-17 | 2004-05-13 | Mitsubishi Heavy Ind Ltd | ガスタービン動翼 |
US20090214328A1 (en) * | 2005-11-18 | 2009-08-27 | Ian Tibbott | Blades for gas turbine engines |
US20080273988A1 (en) * | 2006-02-24 | 2008-11-06 | Ian Tibbott | Aerofoils |
US8807943B1 (en) * | 2010-02-15 | 2014-08-19 | Florida Turbine Technologies, Inc. | Turbine blade with trailing edge cooling circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201920829A (zh) | 2019-06-01 |
JP6345319B1 (ja) | 2018-06-20 |
CN110691892A (zh) | 2020-01-14 |
MX2019014789A (es) | 2020-02-10 |
JP2019015252A (ja) | 2019-01-31 |
KR102364543B1 (ko) | 2022-02-17 |
KR20190138879A (ko) | 2019-12-16 |
US20210123349A1 (en) | 2021-04-29 |
WO2019009331A1 (ja) | 2019-01-10 |
CN110691892B (zh) | 2022-08-23 |
US11339669B2 (en) | 2022-05-24 |
DE112018002830T5 (de) | 2020-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI691643B (zh) | 渦輪機葉片及燃氣渦輪機 | |
JP6283462B2 (ja) | タービンエーロフォイル | |
US8523527B2 (en) | Apparatus for cooling a platform of a turbine component | |
US10436040B2 (en) | Airfoil with dual-wall cooling for a gas turbine engine | |
US20190093487A1 (en) | Turbine airfoil with turbulating feature on a cold wall | |
JP6239163B2 (ja) | 前縁インピンジメント冷却システム及び隣接壁インピンジメントシステムを備えたタービン翼冷却システム | |
EP2785979B1 (en) | A cooled turbine guide vane or blade for a turbomachine | |
US10364684B2 (en) | Fastback vorticor pin | |
JP6381816B2 (ja) | 弦方向に延びるスキーラ先端冷却チャネルを備えるタービン翼冷却システム | |
CN101779001A (zh) | 燃气轮机的叶片冷却结构 | |
EP2886797B1 (en) | A hollow cooled gas turbine rotor blade or guide vane, wherein the cooling cavities comprise pins interconnected with ribs | |
EP1925780A1 (en) | Blade for an axial-flow turbine | |
CN105408586B (zh) | 具有翼型轮廓形状散热器的涡轮叶片 | |
TW202003999A (zh) | 渦輪葉片及燃氣渦輪機 | |
JP2019183805A5 (zh) | ||
JP5331743B2 (ja) | ガスタービン翼 | |
JP6996947B2 (ja) | タービン翼及びガスタービン | |
JP2019085973A5 (zh) | ||
RU2573085C2 (ru) | Лопатка газовой турбины | |
JP2014047782A (ja) | タービンロータブレードのプラットフォームの冷却 | |
US11230931B1 (en) | Inserts for airfoils of gas turbine engines | |
WO2023106125A1 (ja) | タービン翼及びガスタービン | |
EP3425165B1 (en) | Mechanical component | |
JP2023165485A (ja) | タービン翼及びガスタービン |