TWI688656B - PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutation - Google Patents

PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutation Download PDF

Info

Publication number
TWI688656B
TWI688656B TW107124135A TW107124135A TWI688656B TW I688656 B TWI688656 B TW I688656B TW 107124135 A TW107124135 A TW 107124135A TW 107124135 A TW107124135 A TW 107124135A TW I688656 B TWI688656 B TW I688656B
Authority
TW
Taiwan
Prior art keywords
amino acid
dna polymerase
pcr
gene mutation
concentration
Prior art date
Application number
TW107124135A
Other languages
Chinese (zh)
Other versions
TW201908493A (en
Inventor
李炳哲
朴日鉉
李輝皓
Original Assignee
南韓商基因凱斯特有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商基因凱斯特有限公司 filed Critical 南韓商基因凱斯特有限公司
Publication of TW201908493A publication Critical patent/TW201908493A/en
Application granted granted Critical
Publication of TWI688656B publication Critical patent/TWI688656B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/125Specific component of sample, medium or buffer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

本發明係提供一種具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物及其用途,更具體地說,本發明係提供在特定胺基酸位置誘導突變以增加基因突變特異性的DNA聚合酶活性增強用的PCR緩衝液組合物、包含所述PCR緩衝液組合物及/或具有增加的基因突變特異性的DNA聚合酶之用於檢測基因突變或SNP的PCR試劑盒、以及利用所述試劑盒從一個以上的模板中體外(in vitro)檢測至少一種基因突變或SNP的檢測方法。 The present invention provides a PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity and uses thereof. More specifically, the present invention provides mutation induction at specific amino acid positions to increase gene mutation specificity PCR buffer composition for enhancing DNA polymerase activity, PCR kit for detecting gene mutation or SNP containing the PCR buffer composition and/or DNA polymerase with increased gene mutation specificity, And a method for detecting at least one gene mutation or SNP in vitro from more than one template by using the kit.

Description

具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物 PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity

本發明係關於一種具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物及其用途,尤其是一種在特定胺基酸位置誘導突變以增加基因突變特異性的DNA聚合酶活增強性用PCR緩衝液組合物、包含所述PCR緩衝液組合物及/或具有增加的基因突變特異性的DNA聚合酶之用於檢測基因突變或SNP的PCR試劑盒、以及利用所述試劑盒從一個以上的模板中體外(in vitro)檢測至少一種基因突變或SNP的檢測方法。 The present invention relates to a PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity and its use, in particular to a DNA polymerase activity for inducing mutation at a specific amino acid position to increase gene mutation specificity PCR buffer composition for enhancement, PCR kit for detecting gene mutation or SNP containing the PCR buffer composition and/or DNA polymerase with increased gene mutation specificity, and using the kit A method for detecting at least one gene mutation or SNP in vitro from more than one template.

自從第一個人類基因組序列被發現,研究者的研究主要集中探索單核苷酸突變(單核苷酸多態性,SNPs)等個體間的遺傳差異上。基因組中的單核苷酸突變與各種疾病的不同耐藥性或易感體質相關,這已經越來越明確,因此成為主要關心對象。未來醫學相關核苷酸變異的知識可適用於個體遺傳供應的治療方法,並可防止無效或導致副作用的藥物治療(Shi,Expert Rev.Mol.Diagn.1,363-365(2001))。在時間和成本上有效率的核苷酸變異鑑定技術的開發將帶來藥物遺傳學的進一步發展。 Since the discovery of the first human genome sequence, researchers have focused on exploring genetic differences between individuals such as single nucleotide mutations (single nucleotide polymorphisms, SNPs). Single nucleotide mutations in the genome are associated with different drug resistance or susceptibility of various diseases, which has become increasingly clear, so it has become the main concern. The knowledge of future medical-related nucleotide variations can be applied to the treatment of genetic supply of individuals, and can prevent ineffective or cause side effects of drug treatment (Shi, Expert Rev. Mol. Diagn. 1, 363-365 (2001)). The development of efficient nucleotide variation identification technology in time and cost will bring further development of pharmacogenetics.

SNPs在人類基因組中佔據主要的遺傳變異,可以誘發個體間差異的90%以上。(Kwok,Annu.Rev.Genomics Hum,Genet.2,235-258(2001);Kwok and Chen,Curr.Issues Mol.Biol.5,43-60(2003);Twyman and Primrose,Pharmacogenomics 4,67-79(2003))。為了檢測這些遺傳變異和突變等其他核酸變異,可以使用各種方法。例如,可以通過在適當的雜交條件下將待分析的核酸樣品與對於序列變體具有特異性的雜交引子雜交來實現標靶核酸的變體的鑑定(Guo et al.,Nat.Biotechnol.15,331-335(1997))。 SNPs occupy the main genetic variation in the human genome and can induce more than 90% of the differences between individuals. (Kwok, Annu. Rev. Genomics Hum, Genet. 2, 235-258 (2001); Kwok and Chen, Curr. Issues Mol. Biol. 5, 43-60 (2003); Twyman and Primrose, Pharmacogenomics 4, 67- 79 (2003)). In order to detect these genetic variations and mutations and other nucleic acid variations, various methods can be used. For example, the identification of a variant of a target nucleic acid can be achieved by hybridizing a nucleic acid sample to be analyzed with a hybridization primer specific for sequence variants under appropriate hybridization conditions (Guo et al., Nat. Biotechnol. 15, 331-335 (1997)).

但是,發現這種雜交方法,尤其在測定時必需的靈敏度方面無法滿足臨床需要。因此,PCR已被廣泛使用於分子生物學、SNP及其他等位基因 序列變體等突變檢測的診斷檢測方法中(Saiki等人,Science 239,487-490(1988)),其中,考慮到變體的存在,在雜交前通過聚合酶鏈式反應(PCR)擴增待檢測的標靶核酸。用於這種測定的雜交引子,通常使用單股寡核苷酸。所述測定之修改的具體實例包括使用螢光雜交探針(Livak,Genet.73-5 2017-07-12 Anal.14,143-149(1999))。一般而言,已經嘗試使SNP和其他序列變異的測定方法自動化(Gut,Hum.Mutat.17,475-492(2001))。 However, it has been found that this hybridization method cannot meet the clinical needs particularly in terms of the sensitivity required for measurement. Therefore, PCR has been widely used in diagnostic tests for mutation detection in molecular biology, SNP, and other allelic sequence variants (Saiki et al., Science 239, 487-490 (1988)), where changes are considered Before the hybridization, the target nucleic acid to be detected is amplified by polymerase chain reaction (PCR) before hybridization. For the hybridization primer used for this assay, a single-stranded oligonucleotide is usually used. Specific examples of modifications of the assay include the use of fluorescent hybridization probes (Livak, Genet. 73-5 2017-07-12 Anal. 14, 143-149 (1999)). In general, attempts have been made to automate SNP and other sequence variation determination methods (Gut, Hum. Mutat. 17, 475-492 (2001)).

本領域已知的序列變異特異性雜交的對策係通過所謂的基因突變特異性擴增來提供。在該檢測方法中,已經在擴增過程中,使用變異特異性擴增引子,通常引子的3'-末端具有所謂的差異性末端核苷酸殘基,殘基僅對待檢測標靶核酸的一個特異性變異互補。在該方法中,通過PCR擴增後以DNA產物的存在或不存在來測量核苷酸變體。基因突變特異性擴增的原理基於在基因突變特異性擴增引子末端形成典型(canonical)或非典型引子-模板複合物。在精確配對的3'引子末端,產生DNA聚合酶所引起的擴增,而在錯配之引子末端延伸被抑制。 Strategies for specific hybridization of sequence variations known in the art are provided by so-called gene mutation-specific amplification. In this detection method, mutation-specific amplification primers have been used in the amplification process. Usually, the 3'-end of the primer has a so-called differential terminal nucleotide residue, and the residue is only one of the target nucleic acids to be detected. Specific mutations are complementary. In this method, nucleotide variants are measured by the presence or absence of DNA products after PCR amplification. The principle of gene mutation-specific amplification is based on the formation of canonical or atypical primer-template complexes at the ends of gene mutation-specific amplification primers. At the end of the precisely matched 3'primer, amplification caused by DNA polymerase is generated, while extension at the end of the mismatched primer is inhibited.

例如,美國專利第5,595,890號公開了基因突變特異性擴增方法及其應用,如揭示了用於檢測k-ras腫瘤基因中的臨床相關點突變(point mutation)的使用方法。另外,美國專利第5,521,301號公開了用於ABO血型系統的基因型分析的等位基因-特異性擴增方法。相反地,美國專利第5,639,611號公開了與檢測導致鐮刀型貧血症的點突變有關的等位基因-特異性擴增的使用方法。然而,基因突變特異性擴增或等位基因特異性擴增具有低選擇性的問題,因此需要更複雜的、時間和成本密集型之最佳化的步驟。 For example, US Patent No. 5,595,890 discloses a gene mutation-specific amplification method and its application, such as a method for detecting clinically relevant point mutations in k-ras tumor genes. In addition, US Patent No. 5,521,301 discloses an allele-specific amplification method for genotype analysis of the ABO blood group system. In contrast, US Patent No. 5,639,611 discloses the use of allele-specific amplification related to the detection of point mutations that cause sickle-type anemia. However, gene mutation-specific amplification or allele-specific amplification has the problem of low selectivity, so more complicated, time- and cost-intensive optimization steps are required.

所述用於檢測序列變異、多態性和集中於點突變的方法,當待檢測的序列變異與相同核酸片段(或相同基因)的顯性變異相比不充分時,尤其需要基因-特異性擴增(或基因突變特異性擴增)。 The method for detecting sequence variation, polymorphism, and focus on point mutations requires gene-specificity when the sequence variation to be detected is inadequate compared with the dominant variation of the same nucleic acid fragment (or the same gene) Amplification (or gene mutation specific amplification).

例如,當通過基因突變特異性擴增在體液如血液、血清或血漿中檢測散發性腫瘤細胞時發生這種情況(美國專利第5,496,699號)。為此,DNA首先從血液、血清或血漿等體液中分離出來,而DNA由不充足的散發性腫瘤細胞和過量的非增殖細胞組成。因此,在過量的野生型DNA存在的情況下,在k-ras基因中的腫瘤DNA之重要突變應該從多個複製中被檢測到。 For example, this occurs when sporadic tumor cells are detected in body fluids such as blood, serum, or plasma by specific amplification of gene mutations (US Patent No. 5,496,699). To this end, DNA is first separated from body fluids such as blood, serum, or plasma, and DNA consists of insufficient sporadic tumor cells and excessive non-proliferating cells. Therefore, in the presence of excess wild-type DNA, important mutations in tumor DNA in the k-ras gene should be detected from multiple replications.

現有技術中公開的所有用於基因突變特異性擴增的方法,儘管使用3'-差異性核苷酸殘基,但即使標靶核酸不完全與待檢測的序列變體相匹配,在合適的DNA聚合酶存在條件下,具有發生較低水準的引子延伸的缺點。特別地,當特定的序列變體通過包含另一個序列變體的過量的背景核酸而被檢測出來,會導致假陽性結果。已知方法的另一個缺點是需要使用3'-末端差異性寡核苷酸殘基。這種基於PCR的方法所存在的缺點,主要是由於用於充分區分錯配鹼基的方法中使用的聚合酶的不適用性而產生。因此,尚不可能通過PCR直接獲得關於是否存在突變的明確資訊。迄今為止,需要額外的時間和成本密集型的純化和測定方法來明確診斷突變。因此,提高基因突變特異性或等位基因-特異性PCR擴增的選擇性的新方法,會對通過PCR的直接基因突變或SNP分析的可信度和強效性帶來很大影響。 All methods disclosed in the prior art for the specific amplification of gene mutations, although using 3'-differential nucleotide residues, even if the target nucleic acid does not completely match the sequence variant to be detected, the appropriate In the presence of DNA polymerase, it has the disadvantage of lower primer extension. In particular, when a specific sequence variant is detected by an excess of background nucleic acid containing another sequence variant, a false positive result may result. Another disadvantage of the known method is the need to use 3'-terminal differential oligonucleotide residues. The disadvantages of this PCR-based method are mainly due to the unsuitability of the polymerase used in the method for sufficiently distinguishing mismatched bases. Therefore, it is not yet possible to obtain clear information about the existence of mutations directly by PCR. To date, additional time and cost-intensive purification and assay methods are needed to clearly diagnose mutations. Therefore, a new method to increase the specificity of gene mutation specificity or allele-specific PCR amplification will greatly affect the reliability and potency of direct gene mutation or SNP analysis by PCR.

因此,需要持續研究具有增加的基因突變特異性的DNA聚合酶及可使所述DNA聚合酶發揮其功能的、混合多種物質的最佳反應緩衝液。 Therefore, there is a need to continuously study DNA polymerases with increased specificity of gene mutations and optimal reaction buffers that can mix the multiple substances that enable the DNA polymerases to perform their functions.

本發明人致力於開發能夠提高基因突變-特異性PCR擴增選擇性的新型DNA聚合酶及用於提高其活性的反應緩衝液,結果證實對Taq聚合酶特定位置處的胺基酸殘基誘發突變時,基因突變特異性顯著增加,當控制PCR緩衝液組合物中的KCl、(NH4)2SO4和/或TMAC(四甲基氯化銨,Tetra methyl ammonium chloride)的濃度時,所述具有增加的基因突變特異性的DNA聚合酶的活性增強,進而完成本發明。 The present inventors are devoted to the development of a novel DNA polymerase capable of improving the selectivity of gene mutation-specific PCR amplification and a reaction buffer used to increase its activity, and the results confirmed the induction of amino acid residues at specific positions of Taq polymerase During mutation, the specificity of gene mutation increases significantly. When the concentration of KCl, (NH 4 ) 2 SO 4 and/or TMAC (Tetra methyl ammonium chloride) in the PCR buffer composition is controlled, The activity of the DNA polymerase with increased gene mutation specificity is enhanced, thereby completing the present invention.

緣此,本發明的一目的在提供一種具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物。 Accordingly, an object of the present invention is to provide a PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutations.

本發明的又一目的在提供一種包含所述之PCR緩衝液組合物之用於檢測基因突變或SNP的PCR試劑盒。 Another object of the present invention is to provide a PCR kit for detecting gene mutations or SNPs comprising the PCR buffer composition.

本發明的另一目的在提供一種利用所述之PCR試劑盒從一個以上的模板中體外(in vitro)檢測至少一種基因突變或SNP的檢測方法。 Another object of the present invention is to provide a method for detecting at least one gene mutation or SNP in vitro from more than one template using the PCR kit.

為了實現所述的目的,本發明提供具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該組合物包含25至100mM的KCl;1至15mM的(NH4)2SO4;最終pH為8.0至9.0。 In order to achieve the stated object, the present invention provides a PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, wherein the composition contains 25 to 100 mM KCl; 1 to 15 mM (NH 4 ) 2 SO 4 ; final pH is 8.0 to 9.0.

在本發明的一實施例中,其中該KCl濃度為60至90mM。 In an embodiment of the invention, the KCl concentration is 60 to 90 mM.

在本發明的又一實施例中,該(NH4)2SO4濃度為2.5至8mM。 In yet another embodiment of the present invention, the (NH 4 ) 2 SO 4 concentration is 2.5 to 8 mM.

在本發明的又一實施例中,其中該KCl濃度為70至80mM,且該(NH4)2SO4濃度為4至6mM。 In still another embodiment of the present invention, wherein the KCl concentration is 70 to 80 mM, and the (NH 4 ) 2 SO 4 concentration is 4 to 6 mM.

本發明提供具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該PCR緩衝液組合物進一步包含5至80mM的TMAC(四甲基氯化銨,Tetra methyl ammonium chloride)。 The present invention provides a PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, wherein the PCR buffer composition further comprises 5 to 80 mM TMAC (Tetra methyl ammonium chloride) .

在本發明的一實施例中,其中該KCl濃度為40至90mM。 In an embodiment of the invention, the KCl concentration is 40 to 90 mM.

在本發明的又一實施例中,其中該(NH4)2SO4濃度為1至7mM。 In still another embodiment of the present invention, wherein the (NH 4 ) 2 SO 4 concentration is 1 to 7 mM.

在本發明的另一實施例中,其中該TMAC(四甲基氯化銨,Tetra methyl ammonium chloride)濃度為15至70mM、該KCl濃度為50至80mM,且該(NH4)2SO4濃度為1.5至6mM。 In another embodiment of the present invention, wherein the TMAC (Tetra methyl ammonium chloride) concentration is 15 to 70 mM, the KCl concentration is 50 to 80 mM, and the (NH 4 ) 2 SO 4 concentration 1.5 to 6 mM.

如在本發明的又一實施例中,其中該PCR緩衝液組合物進一步包含Tris.Cl及MgCl2As in another embodiment of the present invention, wherein the PCR buffer composition further comprises Tris. Cl and MgCl 2 .

本發明提供一種包含該PCR緩衝液組合物之用於檢測基因突變或SNP的PCR試劑盒。 The invention provides a PCR kit for detecting gene mutation or SNP containing the PCR buffer composition.

在本發明的又一實施例中,其中該PCR試劑盒可進一步包含由SEQ ID NO:1的胺基酸序列(SEQ ID NO:6的鹼基序列)組成的Taq聚合酶的DNA聚合酶,所述DNA聚合酶可包含(a)SEQ ID NO:1的胺基酸序列中第507個胺基酸殘基的取代;及(b)SEQ ID NO:1的胺基酸序列中的第536個胺基酸殘基的取代、第660個胺基酸殘基的取代或第536個及第660個即兩個胺基酸殘基的取代。 In still another embodiment of the present invention, wherein the PCR kit may further comprise a DNA polymerase of Taq polymerase consisting of the amino acid sequence of SEQ ID NO: 1 (base sequence of SEQ ID NO: 6), The DNA polymerase may comprise (a) substitution of the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1; and (b) 536th in the amino acid sequence of SEQ ID NO: 1 Substitution of amino acid residues, substitution of the 660th amino acid residue, or substitution of the 536th and 660th, ie, two amino acid residues.

在本發明的又一實施例中,其中該第507個胺基酸殘基的取代是穀胺酸(E)被賴胺酸(K)取代,所述第536個胺基酸殘基的取代是精胺酸(R)被賴胺酸取代(K),所述第660個胺基酸殘基的取代是精胺酸(R)被纈胺酸(V)取代。 In still another embodiment of the present invention, wherein the substitution of the 507th amino acid residue is glutamic acid (E) replaced by lysine (K), the substitution of the 536th amino acid residue It is that arginine (R) is replaced by lysine (K), and the substitution of the 660th amino acid residue is that arginine (R) is replaced by valine (V).

在本發明的又一實施例中,其中該PCR試劑盒進一步包含:(i)三磷酸核苷;(ii)與雙股DNA結合的定量試劑;(iii)聚合酶阻斷抗體;(iv)一個或多個對照值或對照序列;(v)一個或多個模板。 In yet another embodiment of the present invention, wherein the PCR kit further comprises: (i) nucleoside triphosphate; (ii) quantitative reagents that bind to double-stranded DNA; (iii) polymerase blocking antibody; (iv) One or more control values or control sequences; (v) one or more templates.

本發明還提供一種利用該PCR試劑盒從一個以上的模板中體外(in vitro)檢測至少一種基因突變或SNP的檢測方法。 The invention also provides a detection method for detecting at least one gene mutation or SNP in vitro from more than one template by using the PCR kit.

與現有技術相比,本發明具有如下的有益效果:本發明提供一種可以使具有增加的基因突變特異性的DNA聚合酶發揮其功能的最佳PCR緩衝液組合物,與具有增加的基因突變特異性的DNA聚合酶一起使用,顯著提高所述DNA聚合酶的活性,可實現可靠的基因突變-特異性擴增。另外,包含本發明的PCR緩衝液組合物和/或具有增加的基因特異性的DNA聚合酶的試劑盒可以有效地檢測基因突變或SNP,因此可以有效地利用於疾病的醫學診斷和重組DNA的研究。 Compared with the prior art, the present invention has the following beneficial effects: The present invention provides an optimal PCR buffer composition that enables DNA polymerases with increased gene mutation specificity to exert their functions, and is specific to those with increased gene mutations When used together, the DNA polymerase significantly improves the activity of the DNA polymerase and can achieve reliable gene mutation-specific amplification. In addition, the kit containing the PCR buffer composition of the present invention and/or DNA polymerase with increased gene specificity can effectively detect gene mutations or SNPs, and thus can be effectively used for medical diagnosis of diseases and recombinant DNA the study.

通過以下圖式對非限制性實施例所作的詳細描述,以使本發明的其它特徵、目的及優點變得更加明顯: The following detailed description of the non-limiting embodiments makes the other features, objects, and advantages of the present invention more obvious:

圖1是描述分別含有R536K、R660V和R536K/R660V突變的Taq DNA聚合酶的製備過程,其中,(a)是片段PCR及重疊PCR的示意圖,(b)顯示在片段PCR中擴增產物的電泳確認結果,(c)顯示用重疊PCR擴增全長後通過電泳確認擴增產物的結果。 1 is a description of the preparation process of Taq DNA polymerase containing R536K, R660V and R536K/R660V mutations, respectively, (a) is a schematic diagram of fragment PCR and overlapping PCR, (b) shows the electrophoresis of amplified products in fragment PCR As a result of confirmation, (c) shows the result of confirming the amplified product by electrophoresis after amplifying the full length by overlapping PCR.

圖2是顯示為了提取凝膠,用限制性酶EcoRI/XbaI分解後進行SAP處理的pUC19載體和純化之圖1(c)的重疊PCR產物的電泳確認結果。 Fig. 2 shows the results of electrophoretic confirmation of the pUC19 vector subjected to SAP treatment and the purified overlapping PCR product of Fig. 1(c) after being decomposed with the restriction enzyme EcoRI/XbaI for extracting the gel.

圖3是製備分別包含E507K、E507K/R536K、E507K/R660V及E507K/R536K/R660V突變的Taq DNA聚合酶過程中片段PCR和重疊PCR的示意圖。 3 is a schematic diagram of fragment PCR and overlap PCR in the preparation of Taq DNA polymerase containing E507K, E507K/R536K, E507K/R660V, and E507K/R536K/R660V mutations, respectively.

圖4是顯示為了提取凝膠,用限制性酶EcoRI/XbaI分解後進行SAP處理的pUC19載體和純化之圖3的重疊PCR產物的電泳確認結果。 Fig. 4 shows the results of electrophoresis confirmation of the pUC19 vector subjected to SAP treatment and the purified overlapping PCR product of Fig. 3 after being decomposed with the restriction enzyme EcoRI/XbaI in order to extract the gel.

圖5是顯示通過收集口腔上皮細胞來製備PCR模板的過程的示意圖。 FIG. 5 is a schematic diagram showing the process of preparing a PCR template by collecting oral epithelial cells.

圖6是顯示使用本發明的E507K/R536K、E507K/R660V和E507K/R536K/R660V Taq聚合酶對rs1408799進行的AS-qPCR的結果;作為對照組,使用包括E507K突變的Taq聚合酶。 6 is a graph showing the results of AS-qPCR of rs1408799 using the E507K/R536K, E507K/R660V, and E507K/R536K/R660V Taq polymerases of the present invention; as a control group, Taq polymerase including the E507K mutation was used.

圖7是顯示使用本發明的E507K/R536K、E507K/R660V和E507K/R536K/R660V Taq聚合酶對rs1015362進行的AS-qPCR的結果;作為對照組,使用包括E507K突變的Taq聚合酶。 7 is a graph showing the results of AS-qPCR performed on rs1015362 using E507K/R536K, E507K/R660V, and E507K/R536K/R660V Taq polymerase of the present invention; as a control group, Taq polymerase including E507K mutation was used.

圖8是顯示使用本發明的E507K/R536K、E507K/R660V和E507K/R536K/R660V Taq聚合酶對rs4911414進行的AS-qPCR的結果;作為對照組,使用包括E507K突變的Taq聚合酶。 8 is a graph showing the results of AS-qPCR of rs4911414 using E507K/R536K, E507K/R660V, and E507K/R536K/R660V Taq polymerases of the present invention; as a control group, Taq polymerase including E507K mutation was used.

圖9是顯示使用本發明的E507K、E507K/R536K、E507K/R660V和E507K/R536K/R660V Taq聚合酶,根據反應緩衝液中KCl濃度的變化,確認錯配擴增的延遲效果的圖表。 9 is a graph showing the delay effect of mismatch amplification based on the change in KCl concentration in the reaction buffer using the E507K, E507K/R536K, E507K/R660V, and E507K/R536K/R660V Taq polymerases of the present invention.

圖10是顯示為了確定反應緩衝液中最佳的KCl濃度,固定(NH4)2SO4的濃度並變化KCl的濃度進行擴增後,通過電泳確認PCR產物的結果。 FIG. 10 shows the results of confirming the PCR product by electrophoresis after fixing the concentration of (NH 4 ) 2 SO 4 and changing the concentration of KCl to determine the optimal KCl concentration in the reaction buffer.

圖11是顯示為了確定反應緩衝液中最佳的(NH4)2SO4濃度,固定KCl的濃度並變化(NH4)2SO4的濃度進行擴增後,通過電泳確認PCR產物的結果。 11 is to determine the optimal reaction buffer (4 NH) 4 SO 2 concentration, and changes in the concentration of KCl fixed (NH 4) 2 SO 4 concentration after the amplification, the PCR product to confirm the results by electrophoresis.

圖12是顯示根據反應緩衝液中(NH4)2SO4濃度的變化,確認錯配擴增的延遲效果的圖表。 FIG. 12 is a graph showing the delay effect of mismatch amplification confirmed according to the change in (NH 4 ) 2 SO 4 concentration in the reaction buffer.

圖13是顯示在反應緩衝液中固定KCl和(NH4)2SO4的濃度,根據TMAC濃度的變化,確認錯配擴增的延遲效果的圖表。 13 is a graph showing the effect of fixing the concentration of KCl and (NH 4 ) 2 SO 4 in the reaction buffer, and confirming the delay effect of mismatch amplification according to the change in TMAC concentration.

圖14是顯示在反應緩衝液中固定TMAC和(NH4)2SO4的濃度,根據KCl濃度的變化,確認錯配擴增的延遲效果的圖表。 FIG. 14 is a graph showing the effect of fixing the TMAC and (NH 4 ) 2 SO 4 concentration in the reaction buffer, and confirming the delay effect of mismatch amplification based on the change in KCl concentration.

以下將對本發明進行詳細說明。 The present invention will be described in detail below.

如上所述,為了改善以往技術中揭示的基因突變-特異性擴增方法的缺點,需要持續開發具有增加的基因突變特異性的DNA聚合酶及可使所述DNA聚合酶發揮其功能的混合多種物質的最佳反應緩衝液,這些方法的開發,將對通過PCR的直接的基因突變或SNP分析的可信度和強效性帶來很大影響。本發明人致力於開發能夠提高基因突變-特異性PCR擴增選擇性的新型DNA聚合酶及用於提高其活性的反應緩衝液,結果證實對Taq聚合酶特定位置處的胺基酸殘基誘發突變時,基因突變特異性顯著增加,當控制PCR緩衝液組合物中的KCl、(NH4)2SO4及/或TMAC(四甲基氯化銨,Tetra methyl ammonium chloride)的濃度時,所述具有增加的基因突變特異性的DNA聚合酶的活性增強,從而完成本發明。 As described above, in order to improve the shortcomings of the gene mutation-specific amplification method disclosed in the prior art, it is necessary to continue to develop a DNA polymerase with increased gene mutation specificity and a mixed variety that enables the DNA polymerase to exert its function The optimal reaction buffer of the substance, the development of these methods will have a great influence on the reliability and potency of direct gene mutation or SNP analysis by PCR. The present inventors are devoted to the development of a novel DNA polymerase capable of improving the selectivity of gene mutation-specific PCR amplification and a reaction buffer used to increase its activity, and the results confirmed the induction of amino acid residues at specific positions of Taq polymerase During mutation, the specificity of gene mutation increases significantly. When the concentration of KCl, (NH 4 ) 2 SO 4 and/or TMAC (Tetra methyl ammonium chloride) in the PCR buffer composition is controlled, the The activity of the DNA polymerase with increased gene mutation specificity is enhanced, thereby completing the present invention.

本發明提供可使具有增加的基因突變特異性的DNA聚合酶發揮其功能的最佳PCR緩衝液組合物,與具有增加的基因突變特異性的DNA聚合酶一起使用,顯著提高所述DNA聚合酶的活性,可實現可靠的基因突變-特異性擴增。另外,包含本發明的PCR緩衝液組合物及/或具有增加的基因特異性的DNA聚合酶的試劑盒可以有效地檢測基因突變或SNP,因此可以有效地利用於疾病的醫學診斷和重組DNA的研究。 The present invention provides an optimal PCR buffer composition that enables a DNA polymerase with increased gene mutation specificity to perform its function, and is used together with a DNA polymerase with increased gene mutation specificity to significantly improve the DNA polymerase The activity can achieve reliable gene mutation-specific amplification. In addition, the kit containing the PCR buffer composition of the present invention and/or DNA polymerase with increased gene specificity can effectively detect gene mutations or SNPs, and thus can be effectively used for medical diagnosis of diseases and recombinant DNA the study.

下面將對本文所用術語進行說明。 The terminology used in this article will be explained below.

本文中“胺基酸”是指可以導入到肽、多肽或蛋白質中的任何單體單元。如本文所使用,術語“胺基酸”包括以下20種天然或遺傳編碼的α-胺基酸:丙胺酸(Ala或A)、精胺酸(Arg或R)、天冬醯胺(Asn或N)、天冬胺酸(Asp或D)、半胱胺酸(Cys或C)、穀氨醯胺(Gln或Q)、穀胺酸(Glu或E)、甘胺酸(Gly或G)、組胺酸(His或H)、異亮胺酸(Ile或I)、亮胺酸(Leu或L)、賴胺酸(Lys或K)、甲硫胺酸(Met或M)、苯丙胺酸(Phe或F)、脯胺酸(Pro或P)、絲胺酸(Ser或S)、蘇胺酸(Thr或T)、色胺酸(Trp或W)、酪胺酸(Tyr或Y)、纈胺酸(Val或V)。 As used herein, "amino acid" refers to any monomer unit that can be introduced into a peptide, polypeptide, or protein. As used herein, the term “amino acid” includes the following 20 natural or genetically encoded α -amino acids: alanine (Ala or A), arginine (Arg or R), aspartame (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glutamine (Gln or Q), glutamic acid (Glu or E), glycine (Gly or G) , Histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), amphetamine (Phe or F), proline (Pro or P), serine (Ser or S), threonine (Thr or T), tryptophan (Trp or W), tyrosine (Tyr or Y) , Valine (Val or V).

胺基酸通常是有機酸,可包含被取代或未被取代胺基、被取代或未被取代的羧基和至少一個側鏈(chain)或基團(group),或這些基團的任何類似物。示例性的側鏈包括巰基、硒基、磺醯基、烷基、芳基、醯基、酮基、疊氮基、羥基、肼基、氰基、鹵基、醯肼、烯基、炔基、醚基、硼酸酯、硼酸基、二氧磷基、膦磺酸基、膦基、雜環、烯酮、亞胺、醛基、酯基、硫代酸、羥胺或這些基團的任何組合。 Amino acids are usually organic acids and may contain substituted or unsubstituted amine groups, substituted or unsubstituted carboxyl groups, and at least one side chain (chain) or group (group), or any analogs of these groups . Exemplary side chains include mercapto, seleno, sulfonyl, alkyl, aryl, acetyl, keto, azido, hydroxy, hydrazino, cyano, halo, hydrazide, alkenyl, alkynyl , Ether group, boric acid ester, boric acid group, phosphorous dioxygen group, phosphine sulfonic acid group, phosphine group, heterocyclic ring, enone, imine, aldehyde group, ester group, thioacid, hydroxylamine or any of these groups combination.

其他示例性胺基酸包括但不限於:含有可光活化交聯劑的胺基酸、金屬結合胺基酸、自旋標記胺基酸、螢光胺基酸、含金屬的胺基酸、具有新型官能團的胺基酸、與其他分子共價或非共價相互作用的胺基酸、可光籠化和/或可光異構化胺基酸、放射性胺基酸、含有生物素或生物素類似物的胺基酸、糖基化胺基酸、其他碳水化合物修飾的胺基酸、含有聚乙二醇或聚醚的胺基酸、重原子取代胺基酸、可化學分解和/或可光分解的胺基酸、碳連接的含糖胺基酸、氧化還原活性胺基酸、含硫羧酸的胺基酸及含有至少一個毒性部分的胺基酸。 Other exemplary amino acids include, but are not limited to: amino acids containing photoactivatable crosslinking agents, metal-bound amino acids, spin-labeled amino acids, fluorescent amino acids, metal-containing amino acids, Amino acids with novel functional groups, amino acids covalently or non-covalently interacting with other molecules, photocageable and/or photoisomerizable amino acids, radioactive amino acids, containing biotin or biotin Amino acids of analogs, glycosylated amino acids, amino acids modified with other carbohydrates, amino acids containing polyethylene glycols or polyethers, amino acids substituted with heavy atoms, chemically decomposable and/or Photolytic amino acids, carbon-linked sugar-containing amino acids, redox-active amino acids, sulfur-containing carboxylic acid-containing amino acids, and amino acids containing at least one toxic moiety.

在本發明的DNA聚合酶中,術語“突變體”指相對於天然存在的或未修飾的DNA聚合酶包含一個或多個胺基酸取代的重組多肽。 In the DNA polymerase of the present invention, the term "mutant" refers to a recombinant polypeptide containing one or more amino acid substitutions relative to a naturally occurring or unmodified DNA polymerase.

術語“熱穩定性聚合酶”(指對熱穩定的酶)指具有足夠的熱抵抗性,保持足夠的活性以實現隨後的多核苷酸延伸反應,並且在實現雙股核酸變性所需的時間過程中升溫處理時不會不可逆地變性(失活)。如本文所用,它適用於PCR等反應中的循環溫度。這裡的不可逆變性是指永久性的酶活性的完全喪失。對於熱穩定性聚合酶,酶活性是指用合適的方式催化核苷酸組合以在模板核酸鏈上形成互補的多核苷酸延伸產物。嗜熱性細菌衍生的熱穩定性DNA聚合酶包括例如:來自海棲熱袍菌(Thermatoga maritime)、水生棲熱菌(Thermus acquaticus)、嗜熱棲熱菌(Thermus thermophilus)、黃棲熱菌(Thermusflavus)、絲狀棲熱菌(Thermus filiformus)、栖热菌種Sps17、栖热菌種Z05、熱堅棲熱菌(Thermus caldophilus)、熱堅芽孢桿菌(Bacillus caldotenax)、新阿波羅棲熱袍菌(Thermotoga neapolitana)、非洲棲熱腔菌(Thermosipho africanus)的DNA聚合酶。 The term "thermostable polymerase" (referring to a thermostable enzyme) means having sufficient heat resistance, maintaining sufficient activity to achieve the subsequent polynucleotide extension reaction, and the time course required to achieve denaturation of double-stranded nucleic acids It will not be irreversibly denatured (inactivated) during the medium temperature treatment. As used herein, it is suitable for cycling temperatures in reactions such as PCR. Irreversible here refers to the complete loss of permanent enzyme activity. For thermostable polymerases, enzyme activity refers to catalyzing the combination of nucleotides in a suitable manner to form complementary polynucleotide extension products on the template nucleic acid strand. Thermostable bacteria-derived thermostable DNA polymerases include, for example, from Thermatoga maritime , Thermus acquaticus , Thermus thermophilus , Thermusflavus ), Thermus filiformus , Thermus filiformus , Thermus sp.17 , Thermus sp. Z05 , Thermus caldophilus , Bacillus caldotenax , New Apollo thermus ( Thermotoga neapolitana ), the DNA polymerase of Thermosipho africanus ( Thermosipho africanus ).

術語“熱活性”是指在RT-PCR及/或PCR反應中的逆轉錄或黏合/延伸階段通常使用的溫度(即,45-80℃)下保持其催化性能的酶。熱穩定性酶是當用核酸變性所需的高溫處理時不會不可逆地失活或變性的酶。而熱活性酶可能是熱穩定的或可能不是熱穩定的。熱活性DNA聚合酶可以包括但不限於依賴於嗜熱性物種或嗜溫性物種的DNA或RNA。 The term "thermal activity" refers to an enzyme that maintains its catalytic properties at temperatures (ie, 45-80°C) commonly used in the reverse transcription or binding/extension phases of RT-PCR and/or PCR reactions. Thermostable enzymes are enzymes that are not irreversibly inactivated or denatured when treated with the high temperatures required for denaturation of nucleic acids. The thermally active enzyme may or may not be thermally stable. Thermally active DNA polymerases can include, but are not limited to, DNA or RNA dependent on thermophilic or mesophilic species.

術語“宿主細胞”是指用於細胞培養基中培養的來自高等植物或動物的單細胞原核生物和真核生物有機體(例如細菌、酵母和放線菌)以及單細胞。 The term "host cell" refers to single-cell prokaryotic and eukaryotic organisms (such as bacteria, yeast, and actinomycetes) and single cells from higher plants or animals used for cultivation in cell culture media.

術語“載體(vector)”是能夠被複製,並能夠將基因等將外源DNA傳遞到受體細胞的DNA分子如質體、噬菌體和人工染色體等。“質體”、“載體”或“質體載體”在本文中可互換使用。 The term "vector" is a DNA molecule such as plastid, bacteriophage, artificial chromosome, etc. capable of being replicated and capable of transferring genes and the like to foreign DNA to recipient cells. "Plastid", "carrier" or "plastidic carrier" are used interchangeably herein.

術語“核苷酸(nucleotide)”是指以單股(single strand)或雙股(double strand)形式存在的去氧核糖核酸(deoxyribonucleic acid;DNA)或核糖核酸(ribonucleic acid;RNA),並且除非另有特別說明,可以包括天然核苷酸的類似物。 The term "nucleotide" refers to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) in the form of single strands or double strands, and unless Unless otherwise specified, analogs of natural nucleotides may be included.

術語“核酸”或“多核苷酸”是指DNA或RNA聚合物,或其類似物的聚合物。核酸可以是例如染色體或染色體片段、載體(例如表達載體)、表達盒、 裸露的DNA或RNA聚合物、聚合酶鏈式反應(PCR)產物、寡核苷酸、探針或引子,或包含所述物質。核酸可以是例如單股、雙股或三股,但不限於任何特定的長度。除非另有說明,特定的核酸序列除了包含指定的任何序列之外還包括互補序列或可以對其進行編碼。 The term "nucleic acid" or "polynucleotide" refers to polymers of DNA or RNA polymers, or analogs thereof. Nucleic acids can be, for example, chromosomes or chromosome fragments, vectors (such as expression vectors), expression cassettes, naked DNA or RNA polymers, polymerase chain reaction (PCR) products, oligonucleotides, probes or primers, or contain Described substance. The nucleic acid can be, for example, single-stranded, double-stranded, or triple-stranded, but is not limited to any particular length. Unless otherwise specified, a specific nucleic acid sequence includes a complementary sequence or can encode it in addition to any specified sequence.

術語“引子”是指當多核苷酸在延伸啟動條件下時可以充當模板方向上的核酸合成起始點的多核苷酸。引子也可用於多種其他寡核苷酸介導的合成過程,包括從頭合成(de novo)RNA和作為試管內轉錄相關過程的啟動子。引子通常是單股寡核苷酸(例如,寡去氧核糖核苷酸)。引子的適當長度通常在6至40個核苷酸範圍內,更典型的長度在15至35個核苷酸範圍內並取決於預期用途。短引子分子通常需要較低的溫度以與模板形成足夠穩定的雜交複合物。引子不需要反映模板的正確序列,但引子必須有足夠的互補性才能與需延長的模板進行雜交。在特定實施方案中,術語“引子對”是指包括與待擴增的核酸序列的5'末端互補雜交的5'正義引子,與待擴增序列的3'末端雜交的3'-反義引子的引子組。如有必要,可以通過摻入可通過光譜、光化學、生物化學、免疫化學或化學手段檢測到的標籤來標記引子。例如,有用的標記包括:32P、螢光染料、電子密度試劑、酶(通常用於ELISA分析)、生物素或半抗原、以及可以使用抗血清或單株抗體的蛋白質。 The term "primer" refers to a polynucleotide that can serve as a starting point for nucleic acid synthesis in the direction of the template when the polynucleotide is under extension initiation conditions. Primers can also be used in a variety of other oligonucleotide-mediated synthesis processes, including de novo RNA and as a promoter for transcription-related processes in test tubes. Primers are usually single-stranded oligonucleotides (eg, oligodeoxyribonucleotides). The appropriate length of the primer is usually in the range of 6 to 40 nucleotides, and the more typical length is in the range of 15 to 35 nucleotides and depends on the intended use. Short primer molecules usually require lower temperatures to form a sufficiently stable hybrid complex with the template. The primer does not need to reflect the correct sequence of the template, but the primer must have sufficient complementarity to hybridize with the template to be extended. In certain embodiments, the term "primer pair" refers to a 3'-antisense primer that includes a 5'sense primer that hybridizes complementary to the 5'end of the nucleic acid sequence to be amplified and a 3'end that hybridizes to the 3'end of the sequence to be amplified Intro group. If necessary, the primer can be labeled by incorporating a label detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include: 32P, fluorescent dyes, electron density reagents, enzymes (usually used for ELISA analysis), biotin or haptens, and proteins that can use antisera or monoclonal antibodies.

術語“5'-核酸水解酶(核酸酶,nuclease)探針”是指包含至少一個用於進行5'-核酸水解酶反應的發光標記物部分以檢測標靶核酸的寡核苷酸。在一些實施方案中,例如,5'-核酸水解酶探針僅包含單個發光部分(例如螢光染料等)。在某些實施方案中,5'-核酸水解酶探針包含自我互補區域,使得探針可以在選擇條件下形成髮夾結構。在一些實施方案中,5'-核酸水解酶探針包含兩個或更多個標記部分,兩個標記中的一個從寡核苷酸分離或分解,輻射強度增加而被釋放。在某些實施方案中,5'-核酸水解酶探針用兩種不同的螢光染料標記,例如5'-末端報導染料和3'-末端淬滅染料或部分標記。在一些實施方案中,5'-核酸酶探針在末端上再加標記或在除末端以外的一個或多個位置加標記。當探針完好時,能量轉移通常發生在兩種螢光材料之間,使得來自報導染料的螢光發射被淬滅一定部分以上。在聚合酶鏈式反應的延伸步驟期間,例如,與模板核酸結合的5'-核酸水解酶探針具有使得報導染料的螢光發射不再被淬滅的活性,例如被Taq聚合酶或其他聚合酶的5'至3'-核酸水解酶活性分解。在一些實 施方案中,5'-核酸水解酶探針可以用兩種或更多種不同的報導染料和3'-末端淬滅染料或部分標記。 The term "5'-nuclease probe" refers to an oligonucleotide comprising at least one luminescent label moiety for performing a 5'-nucleolytic enzyme reaction to detect a target nucleic acid. In some embodiments, for example, the 5'-nucleolytic enzyme probe contains only a single luminescent moiety (eg, fluorescent dye, etc.). In certain embodiments, the 5'-nucleolytic enzyme probe contains a self-complementary region so that the probe can form a hairpin structure under selected conditions. In some embodiments, the 5'-nucleic acid hydrolase probe contains two or more label moieties, one of the two labels is separated or decomposed from the oligonucleotide, and the radiation intensity is increased to be released. In certain embodiments, the 5'-nucleolytic enzyme probe is labeled with two different fluorescent dyes, such as a 5'-end reporter dye and a 3'-end quencher dye or partial label. In some embodiments, the 5'-nuclease probe is relabeled at the end or at one or more positions other than the end. When the probe is intact, energy transfer usually occurs between the two fluorescent materials, so that the fluorescent emission from the reporter dye is quenched by more than a certain amount. During the extension step of the polymerase chain reaction, for example, the 5'-nucleic acid hydrolase probe bound to the template nucleic acid has an activity such that the fluorescent emission of the reporter dye is no longer quenched, such as by Taq polymerase or other polymerization The enzyme's 5'to 3'-nucleolytic enzyme activity breaks down. In some embodiments, the 5'-nucleolytic enzyme probe may be labeled with two or more different reporter dyes and 3'-end quencher dyes or partially.

術語“FRET”或“螢光共振能量轉移”或“forester共振能量轉移”是指兩個或更多個發色團,供體發色團和受體發色團(稱為淬滅劑)之間的能量轉移。供體通常通過發射適當波長的光而激發,將能量轉移給受體。受體通常以重新發射不同波長的光的形式將移動的能量再發射出去。當受體是“暗”淬滅劑時,以光以外的形式將移動的能量進行分散。一個特定的螢光物質是否充當供體或受體取決於FRET對其他成員的性質。常用的供體-受體對包括FAM-TAMRA對。常用的淬滅劑是DABCYL和TAMRA。常用的暗淬滅劑包括:BlackHole QuenchersTM(BHQ),(Biosearch Technologies,Inc.,Novato,Cal.),Iowa BlackTM(Integrated DNA Tech.,Inc.,Coralville,Iowa),BlackBerryTM Quencher 650(BBQ-650)(Berry& Assoc.,Dexter,Mich.)。 The term "FRET" or "fluorescence resonance energy transfer" or "forester resonance energy transfer" refers to two or more chromophores, donor chromophore and acceptor chromophore (called quencher) Energy transfer. The donor is usually excited by emitting light of an appropriate wavelength to transfer energy to the acceptor. Receptors usually re-emit moving energy in the form of re-emitting light of different wavelengths. When the receptor is a "dark" quencher, the moving energy is dispersed in a form other than light. Whether a particular fluorescent substance acts as a donor or acceptor depends on the nature of FRET to other members. Commonly used donor-acceptor pairs include FAM-TAMRA pairs. Commonly used quenchers are DABCYL and TAMRA. Commonly used dark quenchers include: BlackHole Quenchers TM (BHQ), (Biosearch Technologies, Inc., Novato, Cal.), Iowa Black TM (Integrated DNA Tech., Inc., Coralville, Iowa), BlackBerry TM Quencher 650 ( BBQ-650) (Berry & Assoc., Dexter, Mich.).

當提及核酸鹼基、三磷酸核苷或核苷酸時,術語“常規的”或“天然的”是指天然發生於所述多核苷酸(即,對於DNA是dATP、dGTP、dCTP、dTTP),而且dITP和7-deaza-dGTP經常用來代替dGTP,在定序等試管內DNA合成反應中可以用來代替dATP。 When referring to nucleic acid bases, nucleoside triphosphates or nucleotides, the term "conventional" or "natural" refers to naturally occurring in the polynucleotide (ie, dATP, dGTP, dCTP, dTTP for DNA ), and dITP and 7-deaza-dGTP are often used to replace dGTP, which can be used to replace dATP in DNA synthesis reactions such as sequencing.

提及核酸鹼基、核苷、或核苷酸時,術語“非常規”或“修飾”包含在特定多核苷酸中天然發生的常規的鹼基、核苷、或核苷酸的修飾、衍生物或類似物。與常規的dNTP相比,特定的非常規的核苷酸在核糖的2'位置被修飾。因此,RNA的天然發生的核苷酸即使為核糖核苷酸(即,ATP、GTP、CTP、UTP、統稱rNTP),核苷酸在糖2’位置具有羥基基團,相對來說dNTP不存在,因此如本文所用,核糖核苷酸是非常規的作為DNA聚合酶底物的核苷酸。如本文所用,非常規核苷酸包括但不限於用作核酸定序終止子的化合物。示例性終止子化合物包括但不限於具有2',3'-二去氧結構的化合物,被稱為雙去氧核苷三磷酸。雙去氧核苷三磷酸ddATP、ddTTP、ddCTP和ddGTP,被統稱為ddNTP。終止子化合物的其他例子包括核糖核苷酸的2'-PO4類似物。其他非常規核苷酸包括但不限於硫代dNTP([[α]-S]dNTP)、5'-[α]-硼(borano)-dNTP、[α]-甲基-膦酸dNTP、核糖核苷三磷酸(rNTP)。非常規的鹼基可用放射性同位素如32P、33P或35S;螢光標記;化學發光標記;生物發光標記;半抗原標籤如生物素;或酶標籤如鏈黴抗生物素蛋白或抗生物素蛋白來標記。螢光標記可以包括帶負電荷的染 料如螢光素家族的染料、或帶中性電荷的染料如羅丹明家族的染料、或帶正電荷的染料如花青家族。螢光素家族的染料包括例如FAM、HEX、TET、JOE、NAN及ZOE。羅丹明家族的染料包括Texas Red、ROX、R110、R6G及TAMRA。用FAM、HEX、TET、JOE、NAN、ZOE、ROX、R110、R6G、Texas Red和TAMRA標記的各種染料或核苷酸通過Perkin-Elmer(波士頓,麻塞諸塞州)、Applied Biosystems(福斯特市,加州)、Invitrogen/Molecular Probes(尤金,俄勒岡州)市場銷售。花青家族染料包括Cy2、Cy3、Cy5、及Cy7,通過GE Healthcare UK Limited(Amersham Place,Little Chalfont,白金漢郡,英格蘭)市場銷售。 When referring to nucleic acid bases, nucleosides, or nucleotides, the term "unconventional" or "modification" includes modifications, derivations of conventional bases, nucleosides, or nucleotides that occur naturally in a particular polynucleotide Thing or the like. Compared with conventional dNTPs, specific unconventional nucleotides are modified at the 2'position of ribose. Therefore, even if the naturally occurring nucleotide of RNA is a ribonucleotide (ie, ATP, GTP, CTP, UTP, collectively referred to as rNTP), the nucleotide has a hydroxyl group at the 2'position of the sugar, and relatively speaking, dNTP does not exist. Therefore, as used herein, ribonucleotides are unconventional nucleotides that serve as substrates for DNA polymerases. As used herein, unconventional nucleotides include but are not limited to compounds used as nucleic acid sequence terminators. Exemplary terminator compounds include, but are not limited to, compounds having a 2', 3'-dideoxy structure, known as dideoxynucleoside triphosphate. Dideoxynucleoside triphosphate ddATP, ddTTP, ddCTP and ddGTP are collectively referred to as ddNTP. Other examples of terminator compounds include 2'-PO4 analogs of ribonucleotides. Other unconventional nucleotides include but are not limited to thiodNTP ([[ α ]-S]dNTP), 5'-[ α ]-borano-dNTP, [ α ]-methyl-phosphonate dNTP, ribose Nucleoside triphosphate (rNTP). Unconventional bases can be radioisotopes such as 32P, 33P or 35S; fluorescent tags; chemiluminescent tags; bioluminescent tags; hapten tags such as biotin; or enzyme tags such as streptavidin or avidin mark. Fluorescent labels may include negatively charged dyes such as the fluorescein family of dyes, or neutrally charged dyes such as the rhodamine family of dyes, or positively charged dyes such as the cyanine family. Dyes of the luciferin family include, for example, FAM, HEX, TET, JOE, NAN, and ZOE. The dyes of the Rhodamine family include Texas Red, ROX, R110, R6G and TAMRA. Various dyes or nucleotides labeled with FAM, HEX, TET, JOE, NAN, ZOE, ROX, R110, R6G, Texas Red, and TAMRA through Perkin-Elmer (Boston, Massachusetts), Applied Biosystems (Foss Special City, California), Invitrogen/Molecular Probes (Eugene, Oregon) market. Cyanine family dyes including Cy2, Cy3, Cy5, and Cy7 are marketed through GE Healthcare UK Limited (Amersham Place, Little Chalfont, Buckinghamshire, England).

術語“錯配的區分”是指通過在核酸上將一個或多個核苷酸黏附(例如共價地),以模板依賴性方式延伸核酸(例如引子或其它寡核苷酸)時,用於從錯配-包含序列區分完全互補的序列的生物催化(例如聚合酶、連接酶等酶)的能力。術語“錯配的區分”,是指延伸的核酸(如引子或其它寡核苷酸)與核酸雜交的模板相比,從3'末端核酸具有錯配的錯配-包含(約互補)序列區分完全互補的序列的生物催化能力。在一些實施方案中,延伸的核酸對於完全互補序列在3'末端包含錯配。在一些實施方案中,延伸的核酸對於完全互補序列在末端第二個(N-1)3'-位置及/或N-2位置上包含錯配。 The term "distinguishment of mismatch" refers to the use of one or more nucleotides attached to a nucleic acid (eg, covalently) to extend the nucleic acid (eg, a primer or other oligonucleotide) in a template-dependent manner. From mismatches-the ability to distinguish biocatalysts (such as polymerases, ligases, etc.) from sequences that contain completely complementary sequences. The term "distinguishment of mismatches" refers to the fact that extended nucleic acids (such as primers or other oligonucleotides) have mismatches from the 3'end nucleic acid with mismatches-containing (approximately complementary) sequence distinctions compared to the template where the nucleic acid hybridizes The biocatalytic ability of a completely complementary sequence. In some embodiments, the extended nucleic acid contains a mismatch at the 3'end for a completely complementary sequence. In some embodiments, the extended nucleic acid contains a mismatch at the second (N-1) 3'-end and/or N-2 position of the terminal for a completely complementary sequence.

除非另有說明,本說明書中使用的所有技術及科學術語具有與本領域普通技術人員通常理解的相同的含義。 Unless otherwise stated, all technical and scientific terms used in this specification have the same meaning as commonly understood by those of ordinary skill in the art.

本發明涉及具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,所述組合物包含25至100mM的KCI;1至15mM的(NH4)2SO4;最終pH為8.0至9.0。 The present invention relates to a PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, the composition comprising 25 to 100 mM KCI; 1 to 15 mM (NH 4 ) 2 SO 4 ; the final pH is 8.0 To 9.0.

PCR中使用的聚合酶應使用混合各種物質的最佳反應緩衝液,以發揮其功能。反應緩衝液通常含有穩定pH的因子,作為輔助因子(cofactor)的金屬離子和防止聚合酶變性的穩定化成分。 The polymerase used in PCR should use the best reaction buffer mixed with various substances in order to exert its function. The reaction buffer usually contains a factor that stabilizes the pH, metal ions as a cofactor and a stabilizing component that prevents denaturation of the polymerase.

所述KCl可作為穩定酶的必要因子,幫助引子與靶DNA配對(pairing)。在本發明中,通過調節反應緩衝液中KCl的濃度來確定最佳濃度,以確認最大程度延遲由錯配引起的擴增,同時不降低由匹配引起的擴增效率的高陽離子濃度。 The KCl can be used as an essential factor for stabilizing enzymes, helping primers pair with target DNA. In the present invention, the optimal concentration is determined by adjusting the concentration of KCl in the reaction buffer to confirm that the amplification caused by the mismatch is delayed to the greatest extent without reducing the high cation concentration of the amplification efficiency caused by the matching.

分別使用E507K、E507K/R536K、E507K/R660V及E507K/R536K/R660V Taq聚合酶,確認根據反應緩衝液中KCl濃度變化產生的 錯配擴增延遲效果,結果如圖9所示,對於E507K/R536K/R660V Taq聚合酶,即使反應緩衝液中沒有KCl,其錯配擴增延遲效果也很優秀;對於E507K/R536和E507K/R660V,在50mM;作為對照組E507K,在100mM時,錯配擴增延遲效果優秀。結果來看,對於KCl濃度的閾值,E507K/R536K/R660V Taq聚合酶最低,E507K/R536K和E507K/R660V比E507K低。 Using E507K, E507K/R536K, E507K/R660V, and E507K/R536K/R660V Taq polymerases, respectively, to confirm the mismatch amplification delay effect due to the change in KCl concentration in the reaction buffer, the results are shown in Figure 9, for E507K/R536K /R660V Taq polymerase, even if there is no KCl in the reaction buffer, its mismatch amplification delay effect is excellent; for E507K/R536 and E507K/R660V, at 50mM; as a control group E507K, at 100mM, mismatch amplification The delay effect is excellent. As a result, for the KCl concentration threshold, E507K/R536K/R660V Taq polymerase is the lowest, and E507K/R536K and E507K/R660V are lower than E507K.

為了進一步推導適當的KCI濃度,使用E507K/R536K/R660V Taq聚合酶,將反應緩衝液中的(NH4)2SO4濃度固定在一定數值,採用多種KCl濃度進行擴增。通過電泳確認擴增產物的結果,如圖10所示,可以確認適當的KCI濃度為75mM。 In order to further deduce the appropriate KCI concentration, E507K/R536K/R660V Taq polymerase was used to fix the (NH 4 ) 2 SO 4 concentration in the reaction buffer to a certain value, and amplification was performed using multiple KCl concentrations. As a result of confirming the amplified product by electrophoresis, as shown in FIG. 10, it was confirmed that the appropriate KCI concentration was 75 mM.

因此,本發明的PCR反應緩衝液組合物中KCl濃度可以是25-100mM,較佳為60-90mM,更佳為70-80mM,最佳為75mM。 Therefore, the concentration of KCl in the PCR reaction buffer composition of the present invention may be 25-100 mM, preferably 60-90 mM, more preferably 70-80 mM, and most preferably 75 mM.

當KCl濃度低於25mM時,對於一般標靶的擴增沒有影響,但可使由匹配引子產生的擴增與由錯配引子產生的擴增差異減小,當濃度高於100mM時,產生一般標靶的擴增效率下降的問題。 When the concentration of KCl is lower than 25mM, it has no effect on the amplification of the general target, but the difference between the amplification caused by the matched primer and the amplification caused by the mismatched primer can be reduced. When the concentration is higher than 100mM, the general The problem is that the amplification efficiency of the target decreases.

對於PCR反應緩衝液組合物,所述(NH4)2SO4為酶活性的必要輔助因子,與Tris一同用於提高聚合酶的活性。本發明的一個實施例中,以上述推導結果作為基礎,將反應緩衝液中KCl濃度固定在75mM,將(NH4)2SO4的濃度從2.5mM到25mM進行各種變化,以確認適當的(NH4)2SO4的濃度。 For the PCR reaction buffer composition, the (NH 4 ) 2 SO 4 is a necessary cofactor for enzyme activity, and is used together with Tris to increase the activity of the polymerase. In one embodiment of the present invention, based on the above derivation results, the KCl concentration in the reaction buffer is fixed at 75 mM, and the concentration of (NH 4 ) 2 SO 4 is varied from 2.5 mM to 25 mM to confirm the appropriate ( NH 4 ) 2 SO 4 concentration.

其結果如圖11所示,在2.5mM到15mM的(NH4)2SO4的濃度下,確認擴增產物,且適當的(NH4)2SO4的濃度為5mM。 As a result, as shown in FIG. 11, the amplification product was confirmed at a concentration of (NH 4 ) 2 SO 4 from 2.5 mM to 15 mM, and an appropriate concentration of (NH 4 ) 2 SO 4 was 5 mM.

進一步在(NH4)2SO4的的濃度接近5mM(分別用2.5mM、5mM、10mM)的情況下,進行AS-qPCR,結果如圖12所示,雖然在10mM下Ct值差異最大,但確認匹配擴增中Ct稍微延遲,峰向下傾倒,因此確定適當的(NH4)2SO4的濃度為5mM。 Further, when the concentration of (NH 4 ) 2 SO 4 was close to 5 mM (2.5 mM, 5 mM, and 10 mM, respectively), AS-qPCR was performed. The results are shown in FIG. 12, although the difference in Ct value was the largest at 10 mM. It was confirmed that Ct was slightly delayed in the matched amplification, and the peak was dumped downward, so it was determined that the appropriate concentration of (NH 4 ) 2 SO 4 was 5 mM.

因此,本發明的PCR反應緩衝液組合物中(NH4)2SO4的濃度可以是1-15mM,較佳為2.5-8mM,更佳為4-6mM,最佳為5mM。 Therefore, the concentration of (NH 4 ) 2 SO 4 in the PCR reaction buffer composition of the present invention may be 1-15 mM, preferably 2.5-8 mM, more preferably 4-6 mM, and most preferably 5 mM.

當(NH4)2SO4濃度低於1mM時,對於一般標靶的擴增沒有影響,但可使由匹配引子產生的擴增與由錯配引子產生的擴增差異減小,當濃度高於15mM時,產生一般標靶的擴增效率下降的問題。 When the concentration of (NH 4 ) 2 SO 4 is less than 1 mM, it has no effect on the amplification of the general target, but the difference between the amplification caused by the matched primer and the amplification caused by the mismatched primer can be reduced. When the concentration is high At 15 mM, there is a problem that the amplification efficiency of the general target decreases.

因此,本發明的最佳PCR緩衝液組合物可以包含70至80mM的KCl;4至6mM的(NH4)2SO4;最終pH為8.0至9.0。 Therefore, the optimal PCR buffer composition of the present invention may contain 70 to 80 mM KCl; 4 to 6 mM (NH 4 ) 2 SO 4 ; the final pH is 8.0 to 9.0.

本發明的PCR緩衝液組合物可以進一步包含5至80mM的TMAC(四甲基氯化銨,Tetra methyl ammonium chloride)。 The PCR buffer composition of the present invention may further contain 5 to 80 mM of TMAC (Tetra methyl ammonium chloride).

TMAC通常用於減少由錯配引起的擴增或提高雜交反應的嚴謹性(stringency)。本發明的一個實施例中,以上述推導結果作為基礎,將反應緩衝液中KCl濃度固定在75mM,(NH4)2SO4的濃度固定在5mM,將TMAC濃度從0mM到80mM進行各種變化,以確認適當的TMAC濃度。 TMAC is commonly used to reduce amplification caused by mismatches or to improve stringency of hybridization reactions. In an embodiment of the present invention, based on the above derivation results, the KCl concentration in the reaction buffer is fixed at 75 mM, the (NH 4 ) 2 SO 4 concentration is fixed at 5 mM, and the TMAC concentration is varied from 0 mM to 80 mM. To confirm the appropriate TMAC concentration.

其結果如圖13所示,確認了適當的TMAC濃度,對於E507K/R536K Taq聚合酶為70mM;對於E507K/R536K/R660V Taq聚合酶為25mM。進一步將TMAC濃度固定在25mM,(NH4)2SO4的濃度固定在2.5mM,將KCl濃度分別調整為20、40、60、80mM,進行擴增,結果如圖14所示,確認對於SNP rs1015362及rs4911414,適當的KCl濃度為60mM。 As a result, as shown in FIG. 13, it was confirmed that an appropriate TMAC concentration was 70 mM for E507K/R536K Taq polymerase and 25 mM for E507K/R536K/R660V Taq polymerase. Further, the TMAC concentration was fixed at 25 mM, the (NH 4 ) 2 SO 4 concentration was fixed at 2.5 mM, and the KCl concentration was adjusted to 20, 40, 60, and 80 mM, respectively, and the results were amplified. As shown in FIG. 14, it was confirmed that for SNP rs1015362 and rs4911414, the appropriate KCl concentration is 60mM.

當TMAC濃度超過80mM時,擴增效率降低,因此較佳在所述範圍內使用TMAC。 When the TMAC concentration exceeds 80 mM, the amplification efficiency decreases, so it is preferable to use TMAC within the range.

因此,當本發明的PCR緩衝液組合物包含5-80mM的TMAC時,KCl的濃度可以是40-90mM,較佳是50-80mM,(NH4)2SO4的濃度可以是1-7mM,較佳是1.5-6mM。 Therefore, when the PCR buffer composition of the present invention contains 5-80 mM TMAC, the concentration of KCl may be 40-90 mM, preferably 50-80 mM, and the concentration of (NH 4 ) 2 SO 4 may be 1-7 mM, It is preferably 1.5-6 mM.

因此,當包含TMAC時,本發明的最佳PCR緩衝液組合物可以包含15至70mM的TMAC;50至80mM的KCl;1.5至6mM的(NH4)2SO4;最終pH為8.0至9.0。 Therefore, when TMAC is included, the optimal PCR buffer composition of the present invention may include TMAC of 15 to 70 mM; KCl of 50 to 80 mM; (NH 4 ) 2 SO 4 of 1.5 to 6 mM; and a final pH of 8.0 to 9.0.

本發明的PCR緩衝液組合物還可以進一步包括Tris.Cl及MgCl2,還可以進一步包括Tween 20及牛血清白蛋白(BSA)。 The PCR buffer composition of the present invention may further include Tris. Cl and MgCl 2 may further include Tween 20 and bovine serum albumin (BSA).

本發明提供包含所述PCR緩衝液組合物之用於檢測基因突變或SNP的PCR試劑盒。 The present invention provides a PCR kit for detecting gene mutations or SNPs comprising the PCR buffer composition.

本發明的PCR試劑盒可進一步包含由SEQ ID NO:1的胺基酸序列組成的Taq聚合酶的DNA聚合酶,所述DNA聚合酶可包含(a)SEQ ID NO:1的胺基酸序列中第507個胺基酸殘基的取代;以及(b)SEQ ID NO:1的胺基酸序列中的第536個胺基酸殘基的取代、第660個胺基酸殘基的取代或第536個及第660個即兩個胺基酸殘基的取代。 The PCR kit of the present invention may further include a DNA polymerase of Taq polymerase consisting of the amino acid sequence of SEQ ID NO: 1, and the DNA polymerase may include (a) the amino acid sequence of SEQ ID NO: 1 Substitution of the 507th amino acid residue in; and (b) the substitution of the 536th amino acid residue in the amino acid sequence of SEQ ID NO: 1 and the 660th amino acid residue or The 536th and 660th are the substitution of two amino acid residues.

根據本發明的另一個較佳實施例,所述第507個胺基酸殘基的取代是穀胺酸(E)被賴胺酸(K)取代,所述第536個胺基酸殘基的取代是精胺酸(R)被賴胺酸取代(K),所述第660個胺基酸殘基的取代是精胺酸(R)被纈胺酸(V)取代。 According to another preferred embodiment of the present invention, the substitution of the 507th amino acid residue is the substitution of glutamic acid (E) by lysine (K), and the substitution of the 536th amino acid residue The substitution is substitution of arginine (R) with lysine (K), and the substitution of the 660th amino acid residue is substitution of arginine (R) with valine (V).

本發明的PCR試劑盒可包括一般技術人員在引子延伸過程中使用的已知任意試劑或其他要素。 The PCR kit of the present invention may include any reagents or other elements known to those skilled in the art during the primer extension process.

根據本發明的另一個較佳實施例,所述PCR試劑盒包括一個以上的匹配引子、一個以上的錯配引子或同時包含一個以上的匹配引子和一個以上的錯配引子,所述一個以上的匹配引子及一個以上的錯配引子與標靶序列雜交,所述錯配引子,對於雜交標靶序列,在其3'末端至第7個鹼基位置包含非典型(non-canonical)核苷酸。 According to another preferred embodiment of the present invention, the PCR kit includes more than one matched primer, more than one mismatched primer, or contains more than one matched primer and more than one mismatched primer, the more than one The matched primer and one or more mismatched primers hybridize to the target sequence, and the mismatched primers contain non-canonical nucleotides from the 3′ end to the 7th base position for the hybridized target sequence .

本發明的PCR試劑盒還可進一步包含:(i)三磷酸核苷;(ii)與雙股DNA結合的定量試劑;(iii)聚合酶阻斷抗體;(iv)一個或多個對照值或對照序列;(v)一個或多個模板。 The PCR kit of the present invention may further comprise: (i) nucleoside triphosphate; (ii) quantitative reagents that bind to double-stranded DNA; (iii) polymerase blocking antibody; (iv) one or more control values or Control sequence; (v) one or more templates.

所述“Taq聚合酶”是根據嗜熱性細菌水生棲熱菌(Thermus aquaticus)的名字來命名的耐熱性DNA聚合酶,最初從所述細菌中被分離出來。水生棲熱菌是棲息在溫泉和熱水噴出口中的細菌,Taq聚合酶被確認為是能夠承受在PCR過程中所需的蛋白變性條件(高溫)的酶。Taq聚合酶的最佳活性溫度是75-80℃,半衰期在92.5℃條件下為2小時以上,在95℃條件下為40分鐘,97.5℃條件下為9分鐘,在72℃條件下10秒內可複製1000個鹼基對DNA。這缺乏3→'5'核酸外切酶(exonuclease)校正活性,並且在9000個核苷酸中,約在1個中測量出錯誤率。例如,當使用耐熱Taq時,PCR可以在高溫(60℃或更高)下進行。對於Taq聚合酶,使用SEQ ID NO:1中所示的胺基酸序列作為基準序列。 The "Taq polymerase" is a heat-resistant DNA polymerase named after the name of the thermophilic bacterium Thermus aquaticus and was originally isolated from the bacterium. The aquatic thermophilic bacteria are bacteria that inhabit hot springs and hot water spouts, and Taq polymerase is confirmed to be an enzyme that can withstand the protein denaturation conditions (high temperature) required during the PCR process. The optimal activity temperature of Taq polymerase is 75-80℃, the half-life is more than 2 hours at 92.5℃, 40 minutes at 95℃, 9 minutes at 97.5℃, and 10 seconds at 72℃ It can replicate 1000 base pairs of DNA. This lacks the 3→'5' exonuclease correction activity, and out of 9000 nucleotides, the error rate is measured in about 1 of them. For example, when heat-resistant Taq is used, PCR can be performed at a high temperature (60°C or higher). For Taq polymerase, the amino acid sequence shown in SEQ ID NO: 1 was used as a reference sequence.

在本發明中,SEQ ID NO:1的胺基酸序列中,第507個胺基酸殘基的穀胺酸(E)被取代為賴胺酸(K)的Taq聚合酶被命名為“E507K”(SEQ ID NO:2,鹼基序列為SEQ ID NO:7);SEQ ID NO:1的胺基酸序列中,第507個胺基酸殘基的穀胺酸(E)被取代為賴胺酸(K),第536個胺基酸殘基的精胺酸(R)被取代為賴胺酸(K)的Taq聚合酶被命名為“E507K/R536K”(SEQ ID NO:3,鹼基序列為SEQ ID NO:8);SEQ ID NO:1的胺基酸序列中,第507個胺基酸殘基的穀胺酸(E)被取代為賴胺酸(K),第660個胺基酸殘基的精胺酸(R)被取 代為纈胺酸(V)的Taq聚合酶被命名為“E507K/R660V”(SEQ ID NO:4,鹼基序列為SEQ ID NO:9);最後,SEQ ID NO:1的胺基酸序列中,第507個胺基酸殘基的穀胺酸(E)被取代為賴胺酸(K),第536個胺基酸殘基的精胺酸(R)被取代為賴胺酸(K),第660個胺基酸殘基的精胺酸(R)被取代為纈胺酸(V)的Taq聚合酶被命名為“E507K/R536K/R660V”(SEQ ID NO:5,鹼基序列為SEQ ID NO:10)。 In the present invention, in the amino acid sequence of SEQ ID NO: 1, the Taq polymerase in which the glutamic acid (E) of the 507th amino acid residue is replaced with lysine (K) is named "E507K "(SEQ ID NO: 2, the base sequence is SEQ ID NO: 7); in the amino acid sequence of SEQ ID NO: 1, the glutamic acid (E) of the 507th amino acid residue is replaced by Lai Amino acid (K), Taq polymerase where arginine (R) of the 536th amino acid residue was replaced with lysine (K) was named "E507K/R536K" (SEQ ID NO: 3, base The base sequence is SEQ ID NO: 8); in the amino acid sequence of SEQ ID NO: 1, the glutamic acid (E) of the 507th amino acid residue is replaced with lysine (K), the 660th Taq polymerase with amino acid residues of arginine (R) replaced by valine (V) was named "E507K/R660V" (SEQ ID NO: 4, base sequence is SEQ ID NO: 9) ; Finally, in the amino acid sequence of SEQ ID NO: 1, the glutamic acid (E) of the 507th amino acid residue was replaced with lysine (K), the refined of the 536th amino acid residue The amino acid (R) was replaced with lysine (K), and the 660th amino acid residue of arginine (R) was replaced with valine (V). Taq polymerase was named "E507K/R536K /R660V" (SEQ ID NO: 5, the base sequence is SEQ ID NO: 10).

根據本發明的一個實施例,所述DNA聚合酶區分匹配引子和錯配引子,所述匹配引子和錯配引子與標靶序列雜交,所述錯配引子,對於雜交標靶序列,在其3'末端可包含非典型核苷酸。 According to an embodiment of the present invention, the DNA polymerase distinguishes between matched primers and mismatched primers, the matched primers and mismatched primers hybridize with the target sequence, and the mismatched primers, for the hybridized target sequence, in its 3 The'end may contain atypical nucleotides.

所述錯配引子是雜交寡核苷酸,必須充分互補以與標靶序列雜交,但不反映標靶序列的確切序列。 The mismatched primer is a hybrid oligonucleotide, which must be sufficiently complementary to hybridize to the target sequence, but does not reflect the exact sequence of the target sequence.

所述“典型核苷酸(canonical nucleotide)”或“互補核苷酸”是指標準華生-克里克(Watson-Crick)鹼基對、A-U、A-T和G-C。 The "canonical nucleotide" or "complementary nucleotide" refers to a standard Watson-Crick base pair, A-U, A-T, and G-C.

所述“非典型核苷酸(non-canonical nucleotide)”或“非互補核苷酸”是指除華生-克里克(Watson-Crick)鹼基對以外的A-C、A-G、G-U、G-T、T-C、T-U、A、G-G、T-T、U-U、C-C、C-U。 The "non-canonical nucleotide" or "non-complementary nucleotide" refers to AC, AG, GU, GT, except Watson-Crick base pairs. TC, TU, A, GG, TT, UU, CC, CU.

根據本發明的一個較佳實施例,包含匹配引子的標靶序列的擴增,與包含錯配引子的標靶序列的擴增相比,所述DNA聚合酶可表現出比更低的Ct值。 According to a preferred embodiment of the present invention, the amplification of the target sequence including the matching primers, compared with the amplification of the target sequence including the mismatching primers, the DNA polymerase may exhibit a lower Ct value .

例如,通過將一個或多個核苷酸共價連接至引子,DNA聚合酶可以比以標靶序列依賴性方式錯配的引子更高效率地延伸匹配的引子。在這裡,更高的效率可通過以下例子觀察到,如RT-PCR中與錯配引子相比,匹配引子的Ct值更低。匹配引子和錯配引子之間的Ct值的差異為10或更高,較佳是10-20,或者不存在由錯配引子引起的擴增子合成。 For example, by covalently linking one or more nucleotides to a primer, the DNA polymerase can extend the matched primer more efficiently than a primer that is mismatched in a target sequence-dependent manner. Here, higher efficiency can be observed by the following example, as in RT-PCR, the Ct value of the matched primer is lower than that of the mismatched primer. The difference in Ct value between the matched primer and the mismatched primer is 10 or higher, preferably 10-20, or there is no amplicon synthesis caused by the mismatched primer.

例如,第一反應中使用匹配的正向引子和反向引子,第二反應中,以相同的實驗設置,使用錯配的正向引子和匹配的反向引子,通過標準PCR形成的產物,第一個反應比第二個反應更大。 For example, in the first reaction, matched forward primers and reverse primers are used. In the second reaction, using the same experimental settings, using mismatched forward primers and matched reverse primers, the product formed by standard PCR, the first One response is greater than the second response.

Ct(閾值交叉循環)值表示定量PCR的DNA定量方法,取決於繪製對數相循環數量上的螢光。基於DNA的螢光檢測的閾值設置為至少比背景稍高。螢光超過閾值的循環數稱為Ct或根據MIQE準則稱為Cq(定量循環, quantification cycle)。給定反應的Ct值定義為螢光發射交叉固定極限值的循環次數。例如,SYBR Green I和螢光探針可用於模板DNA定量的即時PCR。在PCR期間每個循環收集來自樣品的螢光,並對照循環次數繪圖。起始模板濃度與螢光訊號的螢光訊號最初顯示時間成反比。模板濃度越高,訊號越早出現(在較低的循環數出現)。 The Ct (threshold cross-cycle) value represents the DNA quantification method for quantitative PCR, depending on the fluorescence plotted on the number of log phase cycles. The threshold for DNA-based fluorescence detection is set at least slightly higher than the background. The number of cycles where the fluorescence exceeds the threshold is called Ct or Cq (quantification cycle) according to the MIQE criteria. The Ct value for a given reaction is defined as the number of cycles of fluorescent emission crossing a fixed limit. For example, SYBR Green I and fluorescent probes can be used for real-time PCR of template DNA quantification. The fluorescence from the sample was collected every cycle during PCR and plotted against the number of cycles. The initial template concentration is inversely proportional to the initial display time of the fluorescent signal. The higher the template concentration, the earlier the signal appears (appears at a lower number of cycles).

本發明還涉及編碼上述DNA聚合酶的核酸序列和包含該核酸序列的載體和宿主細胞。使用編碼本發明的DNA聚合酶的核酸可以製備各種載體。可以使用包括來源於可與宿主細胞互換的物種的複製子和控制序列的任何載體。本發明的載體可以是表達載體並且包括與編碼本發明的DNA聚合酶的核酸序列可操作地連接的控制轉錄和翻譯的核酸區域。調控序列是指在特定宿主生物體中表達可操作地連接的編碼序列所需的DNA序列。例如,適用於原核生物的調控序列包括啟動子、任何操作序列和alc核糖體結合位點。另外,載體可以含有“正調節因子(Positive Retroregulatory Element,PRE)”以增強轉錄的mRNA的半衰期。控制轉錄和翻譯核酸區域通常適用於用於表達聚合酶的宿主細胞。本領域已知用於各種宿主細胞之各種類型的合適的表達載體和合適的調控序列。通常,轉錄和翻譯調控序列可以包括例如啟動子序列、核糖體結合位點、轉錄起始和終止序列、翻譯起始和終止序列以及增強子或啟動序列。在典型的實施方案中,調控序列包括啟動子和轉錄起始及終止序列。載體通常還包含含有幾個用於插入外源DNA的限制性位點的多位元點轉接子區域。在某些實施方案中,使用“融合標記”來促進純化,並且如果需要,隨後去除標籤/標誌(例如“組胺酸標籤(His-tag)”)。然而,當從使用“加熱步驟”的嗜溫宿主(例如大腸桿菌)純化熱活性和/或熱穩定性蛋白時,這些通常是不必要的。使用標準重組DNA技術製備含有編碼DNA複製序列、調控序列、表型選擇基因的合適載體和關注的突變聚合酶。如本領域已知,分離的質體、病毒載體和DNA片段被分解並剪切並以特定順序連接在一起以產生期望的載體。 The present invention also relates to a nucleic acid sequence encoding the above DNA polymerase and a vector and host cell containing the nucleic acid sequence. Various vectors can be prepared using the nucleic acid encoding the DNA polymerase of the present invention. Any vector including replicons and control sequences derived from species interchangeable with the host cell can be used. The vector of the present invention may be an expression vector and includes a nucleic acid region that controls transcription and translation operably linked to the nucleic acid sequence encoding the DNA polymerase of the present invention. Regulatory sequence refers to the DNA sequence required to express the operably linked coding sequence in a particular host organism. For example, regulatory sequences suitable for prokaryotes include promoters, any operating sequences, and alc ribosome binding sites. In addition, the vector may contain "Positive Retroregulatory Element (PRE)" to enhance the half-life of transcribed mRNA. Nucleic acid regions that control transcription and translation are generally suitable for host cells used to express polymerases. Various types of suitable expression vectors and suitable regulatory sequences for various host cells are known in the art. Generally, transcription and translation control sequences can include, for example, promoter sequences, ribosome binding sites, transcription initiation and termination sequences, translation initiation and termination sequences, and enhancer or promoter sequences. In typical embodiments, regulatory sequences include promoters and transcription initiation and termination sequences. The vector usually also contains a multi-site adapter region containing several restriction sites for insertion of foreign DNA. In certain embodiments, "fusion tags" are used to facilitate purification, and if necessary, tags/markers are subsequently removed (eg, "His-tag"). However, when thermally active and/or thermostable proteins are purified from mesophilic hosts (eg E. coli) using a "heating step", these are usually unnecessary. Standard recombinant DNA techniques are used to prepare suitable vectors containing the DNA replication sequences, regulatory sequences, phenotypic selection genes, and the mutant polymerase of interest. As is known in the art, isolated plastids, viral vectors, and DNA fragments are broken down and sheared and ligated together in a specific order to produce the desired vector.

在本發明的一個較佳實施例中,表達載體含有用於選擇轉化宿主細胞的選擇標記基因。選擇基因在本領域中是已知的,並且根據所使用的宿主細胞會有所不同。合適的選擇基因可以包括編碼安比西林及/或四環素抗性的基因,由此可以在存在這些抗生素的情況下轉化培養這些載體的細胞。 In a preferred embodiment of the present invention, the expression vector contains a selection marker gene for selecting transformed host cells. Selection genes are known in the art and will vary depending on the host cell used. Suitable selection genes may include genes encoding ampicillin and/or tetracycline resistance, whereby cells that culture these vectors can be transformed in the presence of these antibiotics.

在本發明的一個較佳實施例中,編碼本發明的DNA聚合酶的核酸序列單獨或與載體組合導入細胞中。導入或其等同表達是指核酸以適於隨後的整合、擴增和/或表達的方式進入細胞。導入方法包括例如CaPO4沉澱、脂質體融合、LIPOFECTIN®、電泳、病毒感染等。 In a preferred embodiment of the present invention, the nucleic acid sequence encoding the DNA polymerase of the present invention is introduced into cells alone or in combination with a vector. Introduction or equivalent expression means that the nucleic acid enters the cell in a manner suitable for subsequent integration, amplification and/or expression. Introduction methods include, for example, CaPO 4 precipitation, liposome fusion, LIPOFECTIN ® , electrophoresis, virus infection, etc.

原核生物用作本發明初始轉植步驟的宿主細胞。為了快速製備大量的DNA,為了製備用於生成位點-取向突變的單股DNA模板,為了同時篩選許多突變體,為了對所產生的突變體進行DNA定序,這是特別有用的。原核細胞的合適的宿主細胞包括大腸桿菌E.coli K12菌株94(ATCC No.31,446)、大腸桿菌E.coli菌株W3110(ATCC No.27,325)、大腸桿菌E.coli K12菌株DG116(ATCC No.53,606)、大腸桿菌E.coli X1776(ATCC No.31,537)和大腸桿菌E.coli B;大腸桿菌E.coli的許多不同的菌株如HB101、JM101、NM522、NM538、NM539,以及其他物種,包括芽孢桿菌科如枯草芽孢桿菌(Bacillus subtilis)、其他腸桿菌科如鼠傷寒沙門氏桿菌(Salmonella typhimurium)、黏質沙雷氏菌(Serratia marcesans)、以及各種假單胞菌種(假單胞菌屬,Pseudomonas sp.)的原核生物屬可被作為宿主。典型地,用於轉化大腸桿菌(E.coli)的質體包括pBR322、pUCI8、pUCI9、pUCI18、pUC 119及Bluescript M13。然而,也可以使用許多其他合適的載體。 Prokaryotes are used as host cells in the initial transplantation step of the present invention. For the rapid preparation of large amounts of DNA, for the preparation of single-stranded DNA templates for generating site-oriented mutations, for the simultaneous screening of many mutants, and for the DNA sequencing of the resulting mutants, this is particularly useful. Suitable host cells for prokaryotic cells include E. coli E. coli K12 strain 94 (ATCC No. 31, 446), E. coli E. coli strain W3110 (ATCC No. 27, 325), E. coli E. coli K12 strain DG116 ( ATCC No. 53, 606), E. coli X1776 (ATCC No. 31, 537) and E. coli B; many different strains of E. coli such as HB101, JM101, NM522, NM538, NM539 , And other species, including Bacillus subtilis ( Bacillus subtilis ), other Enterobacteriaceae such as Salmonella typhimurium , Serratia marcesans , and various Pseudomonas Prokaryotes of the species ( Pseudomonas sp. ) can be used as hosts. Typically, plastids used to transform E. coli include pBR322, pUCI8, pUCI9, pUCI18, pUC 119, and Bluescript M13. However, many other suitable carriers can also be used.

本發明還提供製備DNA聚合酶的方法,包括以下步驟:培養所述宿主細胞的步驟;從培養物及其培養上清液中分離DNA聚合酶的步驟。 The present invention also provides a method for preparing a DNA polymerase, which includes the following steps: a step of culturing the host cell; and a step of separating the DNA polymerase from the culture and its culture supernatant.

本發明的DNA聚合酶通過在誘導或引起DNA聚合酶表達的適當條件下,培養通過含有編碼DNA聚合酶的核酸序列的表達載體轉化的宿主細胞來製備。在適合於蛋白質表達的條件下培養轉化的宿主細胞的方法是本領域已知的。用於以含有λ pL啟動子的質體載體製備聚合酶的合適宿主細胞是大腸桿菌菌株DG116(ATCC No.53606)。根據表達情況,可以收集並分離聚合酶。 The DNA polymerase of the present invention is prepared by culturing a host cell transformed with an expression vector containing a nucleic acid sequence encoding DNA polymerase under appropriate conditions to induce or cause expression of the DNA polymerase. Methods for culturing transformed host cells under conditions suitable for protein expression are known in the art. A suitable host cell for preparing a polymerase with a plastid vector containing a λ pL promoter is E. coli strain DG116 (ATCC No. 53606). Depending on the expression, the polymerase can be collected and isolated.

一旦純化,就可以測定本發明DNA聚合酶的錯配區分。例如,通過比較引子完全匹配的標靶序列的擴增與引子3’末端的單鹼基錯配的標靶序列的擴增來測量錯配區別活性。擴增可以即時被檢測,例如通過使用TaqManTM探針。可以通過比較兩種反應的Ct來估計聚合酶區分兩種標靶序列的能力。 Once purified, the mismatch discrimination of the DNA polymerase of the invention can be determined. For example, the mismatch discrimination activity is measured by comparing the amplification of a target sequence with a perfect match of a primer and the amplification of a single base mismatched target sequence at the 3'end of the primer. Amplification can be detected instantly, for example by using TaqManTM probes. The ability of the polymerase to distinguish between two target sequences can be estimated by comparing the Ct of the two reactions.

本發明提供利用所述PCR試劑盒從一個以上的模板中體外(in vitro)檢測至少一種基因突變或SNP的檢測方法。 The invention provides a method for detecting at least one gene mutation or SNP in vitro from more than one template by using the PCR kit.

術語“SNP(單核苷酸多態性,Single Nucleotide Polymorphisms)”是指在DNA核苷酸序列中顯示一個核苷酸序列(A、T、G或C)的差異的遺傳變化或突變。 The term "SNP (Single Nucleotide Polymorphisms)" refers to a genetic change or mutation that shows a difference in a nucleotide sequence (A, T, G, or C) in a DNA nucleotide sequence.

在本發明的體外(in vitro)SNP檢測方法中,標靶序列可以存在於測試樣品中並包括DNA、cDNA或RNA,較佳包括基因組DNA。測試樣品可以是從細菌、細菌培養物或細胞培養物製備的一種細胞裂解物。另外,測試樣品可以包含在動物中,較佳包含在脊椎動物中,更佳包含在人受試者中。標靶序列可以包含在基因組DNA中,較佳包含在個體的基因組DNA中,更佳包含在細菌或脊椎動物,最佳包含在人受試者的基因組DNA中。 In the in vitro SNP detection method of the present invention, the target sequence may be present in the test sample and include DNA, cDNA or RNA, preferably genomic DNA. The test sample may be a cell lysate prepared from bacteria, bacterial culture or cell culture. In addition, the test sample may be contained in an animal, preferably a vertebrate, and more preferably a human subject. The target sequence may be contained in the genomic DNA, preferably in the genomic DNA of the individual, more preferably in bacteria or vertebrates, and most preferably in the genomic DNA of the human subject.

本發明的SNP檢測方法可以包括利用雙股特異性染料如SYBR Green I的熔解溫度分析。 The SNP detection method of the present invention may include melting temperature analysis using a double-strand specific dye such as SYBR Green I.

熔解溫度曲線分析可以在包含軟體(onboard software SDS 2.1)的ABI 5700/7000(96孔格式)或ABI 7900(384孔格式)等即時PCR設備中進行。或者,熔解溫度曲線分析可以以終點分析來執行。 The melting temperature curve analysis can be performed in real-time PCR equipment such as ABI 5700/7000 (96-well format) or ABI 7900 (384-well format) containing software (onboard software SDS 2.1). Alternatively, melting temperature curve analysis may be performed as an endpoint analysis.

“結合雙股DNA的染料”或“雙股特異性染料”,和未與雙股DNA結合時相比,與雙股DNA結合時具有高螢光的情況下可以被使用。這種染料的實例包括SOYTO-9、SOYTO-13、SOYTO-16、SOYTO-60、SOYTO-64、SYTO-82、溴乙烷(EtBr)、SYTOX Orange、TO-PRO-1、SYBR Green I、TO-PRO-3或EvaGreen。除了EtBr和EvaGreen(Quiagen),這些染料已用於即時應用測試。 "Dye that binds double-stranded DNA" or "dual-strand specific dye" can be used when it has high fluorescence when it is bound to double-stranded DNA compared to when it is not bound to double-stranded DNA. Examples of such dyes include SOYTO-9, SOYTO-13, SOYTO-16, SOYTO-60, SOYTO-64, SYTO-82, bromoethane (EtBr), SYTOX Orange, TO-PRO-1, SYBR Green I, TO-PRO-3 or EvaGreen. In addition to EtBr and EvaGreen (Quiagen), these dyes have been used for immediate application testing.

本發明的體外(in vitro)SNP檢測方法可通過即時PCR、標準PCR後的瓊脂糖凝膠分析、通過即時PCR的基因突變特異性擴增或等位基因特異性擴增、四引子擴增受阻突變系統PCR或等溫擴增來進行。 The in vitro SNP detection method of the present invention can be blocked by real-time PCR, agarose gel analysis after standard PCR, gene mutation-specific amplification or allele-specific amplification by real-time PCR, and four-primer amplification are blocked Mutation system PCR or isothermal amplification.

所謂“標準PCR”是一般技術人員已知之用於擴增DNA或cDNA的單拷貝或多拷貝的技術。幾乎所有的PCR都使用Taq聚合酶或熱穩定DNA聚合酶如Klen Taq。DNA聚合酶通過使用單股DNA作為模板並使用寡核苷酸(引子)從核苷酸酶促裝配新的DNA股。通過PCR產生的擴增子,可以在瓊脂糖凝膠上分析。 The so-called "standard PCR" is a technique known to those of ordinary skill for amplifying single or multiple copies of DNA or cDNA. Almost all PCRs use Taq polymerase or thermostable DNA polymerase such as Klen Taq. DNA polymerase enzymatically assembles new strands of DNA from nucleotides by using single-stranded DNA as a template and using oligonucleotides (primers). Amplicons generated by PCR can be analyzed on agarose gel.

所述“即時PCR”可以在執行PCR時即時監控其過程。因此,在整個PCR過程中收集資料,而不是在PCR結束時收集。在即時PCR中,反應的特 徵是循環中首次檢測到擴增的時間點,而不是固定循環次數後累積的目標量。主要使用基於染料的檢測和基於探針的檢測兩種方法來執行定量PCR。 The "instant PCR" can monitor its process in real time when performing PCR. Therefore, data is collected throughout the PCR process, not at the end of the PCR. In real-time PCR, the characteristic of the reaction is the time point when the amplification is first detected in the cycle, rather than the target amount accumulated after a fixed number of cycles. Quantitative PCR is mainly performed using two methods, dye-based detection and probe-based detection.

所述“等位基因特異性擴增(Allele Specific Amplification,ASA)”是一種擴增技術,其PCR引子被設計為單個核苷酸殘基可以區分其他模板。 The "Allele Specific Amplification (ASA)" is an amplification technique in which PCR primers are designed such that a single nucleotide residue can distinguish other templates.

所述“通過即時PCR的基因突變特異性擴增或等位基因特異性擴增”可以以高效方式檢測基因突變或SNP。與大多數檢測基因突變或SNP的其他方法不同,目標基因材料的預擴增不是必需的。ASA根據匹配和錯配的引子/標靶序列複合物之間的區別,在單個反應中結合擴增和檢測。反應過程中擴增DNA的增加可以通過由諸如SYBR Green I的染料引起的螢光訊號的增加來即時監測,所述染料在與雙股DNA結合時發光。通過即時PCR的遺傳突變特異性擴增或等位基因特異性擴增,發生錯配時出現螢光訊號的延遲或訊號不存在。在基因突變或SNP檢測中,這提供了關於是否存在基因突變或SNP的資訊。 The "gene mutation-specific amplification or allele-specific amplification by real-time PCR" can detect gene mutations or SNPs in an efficient manner. Unlike most other methods for detecting gene mutations or SNPs, pre-amplification of target genetic material is not necessary. ASA combines amplification and detection in a single reaction based on the distinction between matched and mismatched primer/target sequence complexes. The increase in amplified DNA during the reaction can be monitored in real time by the increase in the fluorescent signal caused by a dye such as SYBR Green I, which emits light when bound to the double-stranded DNA. Through real-time PCR-based genetic mutation-specific amplification or allele-specific amplification, there is a delay in the fluorescent signal or the absence of the signal when a mismatch occurs. In gene mutation or SNP testing, this provides information about whether there is a gene mutation or SNP.

所述“四引子擴增受阻突變系統PCR”在單管PCR反應中與對照片段一同擴增野生型和突變型等位基因。非等位基因特異性對照擴增子通過突變區側面的兩個通用(外部)引子擴增。兩個等位基因特異性(內部)引子的設計方向與通用引子相反,與通用引子一同擴增野生型和突變型擴增子。結果,兩個等位基因特異性擴增子由於突變的位置相對於通用(外部)引子是不對稱的,因此具有不同的長度,可以通過標準凝膠電泳容易地分離。所述對照擴增子提供了假陰性和擴增失敗的內部對照,並且兩個等位基因特異性擴增子中的至少一個始終存在於四引子擴增受阻突變系統PCR中。 The "four primer amplification hindered mutation system PCR" amplifies wild-type and mutant alleles together with control fragments in a single-tube PCR reaction. Non-allele-specific control amplicons are amplified by two universal (outer) primers flanking the mutation region. The design direction of the two allele-specific (internal) primers is opposite to the universal primer, and the wild-type and mutant amplicons are amplified together with the universal primer. As a result, the two allele-specific amplicons are asymmetrical with respect to the universal (external) primer because of the mutation position, and therefore have different lengths, and can be easily separated by standard gel electrophoresis. The control amplicon provides an internal control for false negatives and failed amplification, and at least one of the two allele-specific amplicons is always present in the four primer amplification hindered mutation system PCR.

所述“等溫擴增”是指核酸的擴增在較低溫度下進行,而不依賴於熱循環儀,較佳溫度不需要在擴增期間改變。等溫擴增中使用的溫度可以在室溫(22-24℃)至約65℃之間,或者在約60-65℃、45-50℃、37℃-42℃或22-24℃的常溫。等溫擴增產物可通過凝膠電泳、ELISA、ELOSA(酶聯寡核苷酸試驗,Enzyme linked oligosorbent assay)、即時PCR、ECL(改進的化學發光)、分析RNA、DNA和蛋白質或濁度之基於晶片的毛細管電泳裝置生物分析儀(bioanalyzer)來檢測。 The "isothermal amplification" refers to that the amplification of nucleic acid is performed at a lower temperature without relying on a thermal cycler, and the preferred temperature does not need to be changed during amplification. The temperature used in the isothermal amplification can be between room temperature (22-24°C) and about 65°C, or normal temperature of about 60-65°C, 45-50°C, 37°C-42°C or 22-24°C . Isothermal amplification products can be analyzed by gel electrophoresis, ELISA, ELOSA (Enzyme linked oligosorbent assay), real-time PCR, ECL (improved chemiluminescence), analysis of RNA, DNA and protein or turbidity Wafer-based capillary electrophoresis device bioanalyzer (bioanalyzer) to detect.

在本發明的一個實施例中,使用E507K/R536K、E507K/R660V或E507K/R536K/R660V Taq聚合酶,確認對於包含SNP(rs1408799、rs1015362和/或rs4911414)的模板,其錯配引子延伸能力是否減少。 In one embodiment of the present invention, using E507K/R536K, E507K/R660V or E507K/R536K/R660V Taq polymerase to confirm whether the mismatched primer extension ability of the template containing SNP (rs1408799, rs1015362 and/or rs4911414) cut back.

結果,如圖6至圖8所示,與E507K Taq聚合酶相比,可以證實E507K/R536K、E507K/R660V或E507K/R536K/R660V Taq聚合酶的由錯配引子引起的擴增延遲,其效果在E507K/R536K/R660V Taq聚合酶中最為明顯。 As a result, as shown in FIGS. 6 to 8, compared with E507K Taq polymerase, the amplification delay caused by mismatched primers of the E507K/R536K, E507K/R660V, or E507K/R536K/R660V Taq polymerase can be confirmed, and its effect It is most obvious in E507K/R536K/R660V Taq polymerase.

這證實了與常規Taq聚合酶(E507K)相比,本發明的DNA聚合酶具有更高的錯配延伸選擇性。因此,預計本發明的DNA聚合酶可有效應用於疾病的醫學診斷和重組DNA的研究。 This confirms that the DNA polymerase of the present invention has a higher selectivity for mismatch extension than conventional Taq polymerase (E507K). Therefore, it is expected that the DNA polymerase of the present invention can be effectively applied to medical diagnosis of diseases and research of recombinant DNA.

根據本發明的另一個較佳實施例,所述PCR試劑盒包括一個以上的匹配引子、一個以上的錯配引子或同時包含一個以上的匹配引子和一個以上的錯配引子,所述一個以上的匹配引子及一個以上的錯配引子與標靶序列雜交,所述錯配引子,對於雜交標靶序列,在其3'末端至第7個鹼基位置包含非典型(non-canonical)核苷酸。 According to another preferred embodiment of the present invention, the PCR kit includes more than one matched primer, more than one mismatched primer, or contains more than one matched primer and more than one mismatched primer, the more than one The matched primer and one or more mismatched primers hybridize to the target sequence, and the mismatched primers contain non-canonical nucleotides from the 3′ end to the 7th base position for the hybridized target sequence .

本發明的PCR試劑盒可以進一步包含三磷酸核苷。 The PCR kit of the present invention may further contain nucleoside triphosphate.

本發明的PCR試劑盒還包括(i)一種或多種緩衝液;(ii)與雙股DNA結合的定量試劑;(iii)聚合酶阻斷抗體;(iv)一個或多個對照值或對照序列;(v)一個或多個模板;如圖所示。 The PCR kit of the present invention also includes (i) one or more buffers; (ii) quantitative reagents that bind to double-stranded DNA; (iii) polymerase blocking antibody; (iv) one or more control values or control sequences ; (V) One or more templates; as shown.

下面將通過實施例對本發明進行詳細說明。這些實施例是對本發明的示例性說明,本領域具有一般知識的人應理解,本發明的申請專利範圍並不侷限於所述實施例。 The present invention will be described in detail below through examples. These embodiments are exemplary illustrations of the present invention, and those with general knowledge in the art should understand that the scope of patent application of the present invention is not limited to the embodiments.

實施例1 誘發Taq聚合酶突變Example 1 Inducing Taq polymerase mutation

1-1.片段PCR1-1. Fragment PCR

在本實施例中,按照以下方法製備SEQ ID NO:1的胺基酸序列中第536個胺基酸殘基的精胺酸被賴胺酸取代的Taq DNA聚合酶(以下稱為“R536K”)、第660個胺基酸殘基的精胺酸被纈胺酸取代的Taq DNA聚合酶(以下稱為“R660V”)、和第536個胺基酸殘基的精胺酸被賴胺酸取代以及第660個胺基酸殘基的精胺酸被纈胺酸取代的Taq DNA聚合酶(以下稱為“R536K/R660V”)。 In this example, the Taq DNA polymerase (hereinafter referred to as "R536K") in which the arginine acid of the 536th amino acid residue in the amino acid sequence of SEQ ID NO: 1 was substituted with lysine was prepared according to the following method ), Taq DNA polymerase with the 660th amino acid residue of arginine replaced by valine (hereinafter referred to as "R660V"), and the 536th amino acid residue of arginine with lysine Taq DNA polymerase (hereinafter referred to as "R536K/R660V") in which the arginine of the 660th amino acid residue is substituted with valinate is substituted.

首先,使用表1所示的突變特異性引子通過PCR擴增Taq DNA聚合酶片段(F1至F5),如圖1(a)所示。反應條件如表2所示。 First, Taq DNA polymerase fragments (F1 to F5) were amplified by PCR using the mutation-specific primers shown in Table 1, as shown in FIG. 1(a). The reaction conditions are shown in Table 2.

Figure 107124135-A0101-12-0021-1
Figure 107124135-A0101-12-0021-1

Figure 107124135-A0101-12-0021-2
Figure 107124135-A0101-12-0021-2

通過電泳確認PCR產物,結果如圖1(b)所示,確認了各片段的條帶,以此確認標靶片段已被擴增。 The PCR product was confirmed by electrophoresis. As shown in FIG. 1(b), the band of each fragment was confirmed to confirm that the target fragment had been amplified.

1-2.重疊(overlap)PCR1-2. Overlap PCR

將所述1-1中擴增的各片段作為模板,兩端使用引子(Eco-F和Xba-R引子)擴增全長。反應條件如表3和表4所示。 Using each fragment amplified in 1-1 as a template, the primers (Eco-F and Xba-R primers) were used to amplify the full length at both ends. The reaction conditions are shown in Table 3 and Table 4.

Figure 107124135-A0101-12-0021-4
Figure 107124135-A0101-12-0021-4
Figure 107124135-A0101-12-0022-5
Figure 107124135-A0101-12-0022-5

Figure 107124135-A0101-12-0022-6
Figure 107124135-A0101-12-0022-6

結果,如圖1(c)所示,確認了“R536K”、“R660V”、“R536K/R660V”Tag聚合酶被擴增。 As a result, as shown in FIG. 1(c), it was confirmed that the "R536K", "R660V", and "R536K/R660V" Tag polymerases were amplified.

1-3.連接(ligation)1-3. Ligation

在表5所示的條件下,用限制性酶EcoRI/XbaI將pUC19在37℃下分解4小時並純化DNA,在表6所示的條件下,將純化的DNA在37℃用SAP處理1小時以製備載體。 Under the conditions shown in Table 5, pUC19 was decomposed with the restriction enzyme EcoRI/XbaI at 37°C for 4 hours and the DNA was purified, and under the conditions shown in Table 6, the purified DNA was treated with SAP at 37°C for 1 hour To prepare a carrier.

Figure 107124135-A0101-12-0022-7
Figure 107124135-A0101-12-0022-7

Figure 107124135-A0101-12-0022-8
Figure 107124135-A0101-12-0022-8

對於插入物(insert),將所述實施例1-2的重疊PCR產物純化,並在表7所示條件下,用限制性酶EcoRI/XbaI在37℃下分解3小時,然後與製備的載體一同進行凝膠提取(圖2)。 For the insert, the overlapping PCR products of Examples 1-2 were purified and decomposed with the restriction enzyme EcoRI/XbaI at 37°C for 3 hours under the conditions shown in Table 7, and then combined with the prepared vector The gel extraction was performed together (Figure 2).

Figure 107124135-A0101-12-0023-9
Figure 107124135-A0101-12-0023-9

在表8所示的條件下,在室溫(RT)下連接2小時後,轉化大腸桿菌E.coli DH5α並在含有安比西林的培養基上篩選。從獲得的菌落製備的質體進行定序,獲得引入了所需突變的Taq DNA聚合酶突變體(“R536K”、“R660V”和“R536K/R660V”)。 Under the conditions shown in Table 8, after ligation at room temperature (RT) for 2 hours, E. coli DH5α was transformed and selected on medium containing ampicillin. The plastids prepared from the obtained colonies were sequenced to obtain Taq DNA polymerase mutants ("R536K", "R660V" and "R536K/R660V") into which the desired mutations were introduced.

Figure 107124135-A0101-12-0023-10
Figure 107124135-A0101-12-0023-10

實施例2 引入E507K突變Example 2 Introduction of E507K mutation

2-1.片段PCR2-1. Fragment PCR

對所述實施例1中製備的“R536K”、“R660V”及“R536K/R660V”Taq DNA聚合酶的活性進行測試,結果確認活性下降(數據未顯示),分別對“R536K”、“R660V”及“R536K/R660V”引入E507K突變(SEQ ID NO:1的胺基酸序列中,第507個胺基酸殘基的穀胺酸被賴胺酸取代),作為對照組,在野生型(WT)Taq DNA聚合酶中也引入E507K突變。引入E507K突變的Taq DNA聚合酶製備方法與實施例1相同。 The activity of the "R536K", "R660V" and "R536K/R660V" Taq DNA polymerase prepared in Example 1 was tested, and the results confirmed that the activity decreased (data not shown), respectively for "R536K" and "R660V" And "R536K/R660V" introduced the E507K mutation (in the amino acid sequence of SEQ ID NO: 1, the glutamic acid of the 507th amino acid residue was replaced by lysine), as a control group, in the wild type (WT ) Taq DNA polymerase also introduces E507K mutation. The preparation method of Taq DNA polymerase introducing the E507K mutation is the same as in Example 1.

使用表9所示的突變特異性引子通過PCR擴增Taq DNA聚合酶片段(F6至F7),如圖3所示。反應條件如表10所示。 Taq DNA polymerase fragments (F6 to F7) were amplified by PCR using the mutation-specific primers shown in Table 9, as shown in FIG. 3. The reaction conditions are shown in Table 10.

Figure 107124135-A0101-12-0024-11
Figure 107124135-A0101-12-0024-11

Figure 107124135-A0101-12-0024-12
Figure 107124135-A0101-12-0024-12

2-2.重疊(overlap)PCR2-2. Overlap PCR

將所述2-1中擴增的各片段作為模板,兩端使用引子(Eco-F和Xba-R引子)擴增全長。反應條件如表11所示。 Using each fragment amplified in 2-1 as a template, the primers (Eco-F and Xba-R primers) were used to amplify the full length at both ends. The reaction conditions are shown in Table 11.

Figure 107124135-A0101-12-0024-13
Figure 107124135-A0101-12-0024-13

2-3.連接(ligation)2-3. Ligation

在表5所示的條件下,用限制性酶EcoRI/XbaI將pUC19在37℃下分解4小時並純化DNA,在表6所示的條件下,將純化的DNA在37℃用SAP處理1小時以製備載體。 Under the conditions shown in Table 5, pUC19 was decomposed with the restriction enzyme EcoRI/XbaI at 37°C for 4 hours and the DNA was purified, and under the conditions shown in Table 6, the purified DNA was treated with SAP at 37°C for 1 hour To prepare a carrier.

對於插入物(insert),將所述實施例2-2的重疊PCR產物純化,並在表7所示條件下,用限制性酶EcoRI/XbaI在37℃下分解3小時,然後與製備的載體一同進行凝膠提取(圖4)。 For the insert, the overlapping PCR product of Example 2-2 was purified and decomposed with the restriction enzyme EcoRI/XbaI at 37°C for 3 hours under the conditions shown in Table 7, and then combined with the prepared vector The gel extraction was performed together (Figure 4).

在表8所示的條件下,在室溫(RT)下連接2小時後,轉化大腸桿菌E.coli DH5α或DH10β並在含有安比西林的培養基上篩選。從獲得的菌落製備的質體進行定序,獲得引入了所需突變的Taq DNA聚合酶突變體(“E507K/R536K”、“E507K/R660V”和“E507K/R536K/R660V”)。 Under the conditions shown in Table 8, after ligation at room temperature (RT) for 2 hours, E. coli E. coli DH5α or DH10β was transformed and selected on medium containing ampicillin. The plastids prepared from the obtained colonies were sequenced to obtain Taq DNA polymerase mutants ("E507K/R536K", "E507K/R660V" and "E507K/R536K/R660V") into which the desired mutations were introduced.

實施例3 使用本發明的DNA聚合酶進行qPCRExample 3 qPCR using the DNA polymerase of the present invention

使用各自含有所述實施例2中獲得的“E507K/R536K”、“E507K/R660V”和“E507K/R536K/R660V”突變的Taq聚合酶,確認對於含有SNP的模板其延伸錯配引子能力是否減少。作為對照組,使用含有E507K突變的“E507K”Taq聚合酶。 Using Taq polymerases each containing the "E507K/R536K", "E507K/R660V", and "E507K/R536K/R660V" mutations obtained in Example 2 above, it was confirmed whether the ability to extend mismatched primers for the SNP-containing template was reduced . As a control group, "E507K" Taq polymerase containing E507K mutation was used.

在本發明中使用的包含SNP的模板為rs1408799、rs1015362和rs4911414,各模板的基因型和其特異性引子(IDT,美國)的序列資訊如表12和表13所示。 The SNP-containing templates used in the present invention are rs1408799, rs1015362 and rs4911414. The genotype of each template and the sequence information of its specific primers (IDT, USA) are shown in Table 12 and Table 13.

Figure 107124135-A0101-12-0025-14
Figure 107124135-A0101-12-0025-14

Figure 107124135-A0101-12-0026-15
Figure 107124135-A0101-12-0026-15

PCR條件(Applied Biosystems 7500 Fast)如下表14所示。 The PCR conditions (Applied Biosystems 7500 Fast) are shown in Table 14 below.

Figure 107124135-A0101-12-0026-16
Figure 107124135-A0101-12-0026-16

探針進行雙重標記,如下表15所示。 The probes are double labeled, as shown in Table 15 below.

Figure 107124135-A0101-12-0026-17
Figure 107124135-A0101-12-0026-17

使用購自Noble Bio的口腔上皮細胞收集試劑盒收集口腔上皮細胞,將其溶解於500μl裂解液(lysis solution)中,並以12,000×g離心3分鐘。將上清液轉移到新管中,每次使用1μl(圖5)。 The oral epithelial cell collection kit purchased from Noble Bio was used to collect oral epithelial cells, dissolved in 500 μl of lysis solution, and centrifuged at 12,000×g for 3 minutes. Transfer the supernatant to a new tube, using 1 μl each time (Figure 5).

反應條件如表16表示,反應緩衝液的組成如表17表示。 The reaction conditions are shown in Table 16, and the composition of the reaction buffer is shown in Table 17.

Figure 107124135-A0101-12-0027-18
Figure 107124135-A0101-12-0027-18

Figure 107124135-A0101-12-0027-19
Figure 107124135-A0101-12-0027-19

除了表13所示的特異性引子以外,其他反應液以同樣方式在兩個試管中製備,通過添加各等位基因特異性引子進行qPCR。此時,合併各試管中檢測到的螢光訊號以在AB 7500軟體(v 2.0.6)上計算和分析達到閾值(threshold)螢光值的循環(Ct)值的差異。由錯配引子引起的擴增中的Ct值延遲的時間越長,可判斷為基因突變特異性或等位基因特異性良好。 Except for the specific primers shown in Table 13, other reaction solutions were prepared in two test tubes in the same manner, and qPCR was performed by adding each allele-specific primer. At this time, the fluorescent signals detected in each test tube are combined to calculate and analyze the difference in the cycle (Ct) value of the fluorescence value reaching the threshold on the AB 7500 software (v 2.0.6). The longer the delay of the Ct value in the amplification caused by the mismatched primer, the better the mutation specificity or allele specificity.

在rs1408799、rs1015362及rs4911414上進行AS-qPCR的結果,如圖6至圖8所示,與對照組E507K相比,可以證實包含E507K/R536K、E507K/R660V或E507K/R536K/R660V突變的Taq聚合酶的情況下,錯配引子引起的擴增延遲,其效果在E507K/R536K/R660V突變中最為明顯。 The results of AS-qPCR on rs1408799, rs1015362, and rs4911414, as shown in FIGS. 6 to 8, compared with the control group E507K, it can be confirmed that Taq polymerization containing E507K/R536K, E507K/R660V, or E507K/R536K/R660V mutations In the case of enzymes, the amplification delay caused by mismatched primers is most obvious in the E507K/R536K/R660V mutation.

這證實了與包含E507K突變的Taq聚合酶相比,本發明包含E507K/R536K、E507K/R660V或E507K/R536K/R660V突變的Taq DNA聚合酶具有更優秀的錯配延伸選擇性。因此,預計本發明的Taq DNA聚合酶可有效應用於疾病的醫學診斷和重組DNA的研究。 This confirms that the Taq DNA polymerase of the present invention containing the E507K/R536K, E507K/R660V, or E507K/R536K/R660V mutation has better selectivity for mismatch extension than the Taq polymerase containing the E507K mutation. Therefore, it is expected that the Taq DNA polymerase of the present invention can be effectively applied to medical diagnosis of diseases and research of recombinant DNA.

實施例4 反應緩衝液的KCl濃度最佳化Example 4 Optimization of KCl concentration in reaction buffer

在本實施例中,為了尋找使由匹配引起的擴增效率不降低而由錯配引起的擴增最大限度地延遲的高陽離子濃度,調整PCR反應緩衝液中的KCl濃度來確定KCl的最佳濃度。 In this embodiment, in order to find a high cation concentration that maximizes the delay in amplification caused by mismatches without reducing the amplification efficiency caused by matching, the KCl concentration in the PCR reaction buffer is adjusted to determine the optimal KCl concentration.

使用實施例2中獲得的分別包含“E507K/R536K”、“E507K/R660V”或“E507K/R536K/R660V”突變的Taq聚合酶,並與包括E507K突變的Taq聚合酶比較KCl濃度閾值。 The Taq polymerase obtained in Example 2 containing the mutations "E507K/R536K", "E507K/R660V" or "E507K/R536K/R660V", respectively, was used, and the KCl concentration threshold was compared with the Taq polymerase including the E507K mutation.

包含SNP的模板使用rs1408799,模板的基因型為TT,引子使用表12中記載的rs1408799引子。qPCR條件(Applied Biosystems 7500 Fast)以表14的條件進行,雙重標記探針使用表15的1408799-FAM,反應條件如表18所示,反應緩衝液組成如表19。 The template containing SNP uses rs1408799, the template genotype is TT, and the primer uses the rs1408799 primer described in Table 12. The qPCR conditions (Applied Biosystems 7500 Fast) were performed according to the conditions in Table 14, the double-labeled probe used 1408799-FAM in Table 15, the reaction conditions are shown in Table 18, and the reaction buffer composition is shown in Table 19.

Figure 107124135-A0101-12-0028-20
Figure 107124135-A0101-12-0028-20

Figure 107124135-A0101-12-0028-21
Figure 107124135-A0101-12-0028-21

結果如圖9所示,E507K/R536K/R660V Taq聚合酶的KCI濃度閾值最低,E507K/R536K、E507K/R660V的KCl濃度閾值比E507K低。 The results are shown in FIG. 9, the KCI concentration threshold of E507K/R536K/R660V Taq polymerase is the lowest, and the KCl concentration threshold of E507K/R536K and E507K/R660V is lower than that of E507K.

以上述結果為基礎,為了確定適當的KCl濃度,使用E507K/R536K/R660V Taq聚合酶進行進一步實驗,引子使用表13中記載的rs1408799-T特異性引子。qPCR條件(Applied Biosystems 7500 Fast)以表14的條件進行35個循環,反應條件如表20所示。 Based on the above results, in order to determine the appropriate KCl concentration, E507K/R536K/R660V Taq polymerase was used for further experiments, and the rs1408799-T specific primer described in Table 13 was used as the primer. The qPCR conditions (Applied Biosystems 7500 Fast) were carried out for 35 cycles under the conditions of Table 14, and the reaction conditions are shown in Table 20.

Figure 107124135-A0101-12-0029-22
Figure 107124135-A0101-12-0029-22

對照組的反應緩衝液組成與表21相同,實驗組的反應緩衝液的組成如表8,將(NH4)2SO4濃度固定在2.5mM,對KCl濃度進行各種變化。 The composition of the reaction buffer in the control group is the same as that in Table 21. The composition of the reaction buffer in the experimental group is shown in Table 8. The (NH 4 ) 2 SO 4 concentration was fixed at 2.5 mM, and the KCl concentration was variously changed.

Figure 107124135-A0101-12-0029-23
Figure 107124135-A0101-12-0029-23

用所述條件擴增後通過電泳確認PCR產物的結果,如圖10所示,可以確認既可使由錯配引起的擴增最大限度地延遲而又使由匹配引起的擴增效率不降低的適當的KCl濃度為75mM。 The result of confirming the PCR product by electrophoresis after amplification under the above conditions, as shown in FIG. 10, it can be confirmed that the amplification caused by the mismatch can be delayed to the maximum while the amplification efficiency caused by the matching is not reduced. The appropriate KCl concentration is 75mM.

實施例5 反應緩衝液的(NHExample 5 (NH 44 )) 22 SOSO 44 濃度最佳化Concentration optimization

本實施例以所述實施例4的結果為基礎,將反應緩衝液內KCl濃度固定在75mM,對(NH4)2SO4濃度進行各種變化,以此確認最佳的(NH4)2SO4濃度。引子使用表13中記載的rs1408799-T特異性引子,qPCR條件(Applied Biosystems 7500 Fast)以表14的條件進行35個循環,反應條件如表20所示,對照組的反應緩衝液組成與表21相同。 In this example, based on the results of Example 4, the KCl concentration in the reaction buffer was fixed at 75 mM, and the (NH 4 ) 2 SO 4 concentration was changed variously to confirm the optimal (NH 4 ) 2 SO 4 concentration. For the primers, use the rs1408799-T specific primer described in Table 13, and perform qPCR conditions (Applied Biosystems 7500 Fast) under the conditions of Table 14 for 35 cycles. The reaction conditions are shown in Table 20. The composition of the reaction buffer in the control group is shown in Table 21. the same.

其結果如圖11所示,適當的(NH4)2SO4濃度為5mM。 As a result, as shown in FIG. 11, the appropriate (NH 4 ) 2 SO 4 concentration is 5 mM.

以所述結果作為基礎,將反應緩衝液中KCl濃度固定在75mM,將(NH4)2SO4的濃度設定在5mM左右(分別為2.5mM、5mM及10mM),進一步確認由錯配引起的擴增延遲效果。 Based on the above results, the KCl concentration in the reaction buffer was fixed at 75 mM, and the (NH 4 ) 2 SO 4 concentration was set at about 5 mM (respectively 2.5 mM, 5 mM, and 10 mM) to further confirm the mismatch. Amplify the delay effect.

引子使用表13中記載的rs1408799引子,雙重標記探針使用表15的1408799-FAM,反應條件如表22所示。 The rs1408799 primer described in Table 13 was used as the primer, and the 1408799-FAM of Table 15 was used as the double-labeled probe. The reaction conditions are shown in Table 22.

Figure 107124135-A0101-12-0030-24
Figure 107124135-A0101-12-0030-24

其結果,如圖12所示,(NH4)2SO4的濃度在10mM下Ct值差異最大,但確認由匹配引起的擴增Ct稍微延遲,峰向下傾倒,因此確定適當的(NH4)2SO4的濃度為5mM。 As a result, as shown in FIG. 12, the concentration of (NH 4 ) 2 SO 4 had the largest difference in Ct value at 10 mM. However, it was confirmed that the amplification Ct caused by the match was slightly delayed and the peak fell down, so the appropriate (NH 4 ) The concentration of 2 SO 4 is 5mM.

綜合實施例4及實施例5的結果,確認最佳反應緩衝液組合包含50mM的Tris.Cl、2.5mM的MgCl2、75mM的KCl、5mM的(NH4)2SO4、0.1% Tween 20及0.01% BSA。 Combining the results of Example 4 and Example 5, it was confirmed that the optimal reaction buffer combination contained 50 mM Tris. Cl, 2.5 mM MgCl 2 , 75 mM KCl, 5 mM (NH 4 ) 2 SO 4 , 0.1% Tween 20, and 0.01% BSA.

實施例6 反應緩衝液中添加TMAC及其濃度最佳化Example 6 Adding TMAC to the reaction buffer and optimizing its concentration

在本實施例中,在反應緩衝液中添加TMAC,並確認其最佳濃度。以所述實施例4及實施例5的結果為基礎,將反應緩衝液中KCl濃度固定在75mM,(NH4)2SO4濃度固定在5mM,對TMAC的濃度進行各種變化,以此確認最佳的TMAC濃度。 In this example, TMAC was added to the reaction buffer, and its optimal concentration was confirmed. Based on the results of Examples 4 and 5, the concentration of KCl in the reaction buffer was fixed at 75 mM, and the concentration of (NH 4 ) 2 SO 4 was fixed at 5 mM, and various changes were made to the concentration of TMAC to confirm the best The best TMAC concentration.

使用E507K/R536K或E507K/R536K/R660V Taq聚合酶,包含SNP的模板使用rs1408799,模板的基因型為TT,引子使用表12中記載的rs1408799 引子。qPCR條件(Applied Biosystems 7500 Fast)以表14的條件進行,雙重標記探針使用表15的1408799-FAM,反應條件如表22所示。 E507K/R536K or E507K/R536K/R660V Taq polymerase was used, the template containing SNP used rs1408799, the template genotype was TT, and the rs1408799 primer described in Table 12 was used for the primer. The qPCR conditions (Applied Biosystems 7500 Fast) were performed according to the conditions in Table 14. The double-labeled probe used 1408799-FAM in Table 15 and the reaction conditions are shown in Table 22.

實驗結果如圖13所示,確認了適當的TMAC濃度,對於E507K/R536K Taq聚合酶為60mM;對於E507K/R536K/R660V Taq聚合酶為25mM,並確認若TMAC濃度過高,擴增效率降低。 As shown in FIG. 13, the experimental results confirmed that the appropriate TMAC concentration was 60 mM for E507K/R536K Taq polymerase and 25 mM for E507K/R536K/R660V Taq polymerase, and it was confirmed that if the TMAC concentration is too high, the amplification efficiency is reduced.

實施例7 反應緩衝液的KCl、(NHExample 7 KCl, (NH 44 )) 22 SOSO 44 及TMAC濃度最佳化And TMAC concentration optimization

在本實施例中,基於所述實施例6確認的結果,使用E507K/R536K/R660V Taq聚合酶確認反應緩衝液中最佳的KCl、(NH4)2SO4及TMAC濃度。 In this example, based on the results confirmed in Example 6, the optimal KCl, (NH 4 ) 2 SO 4 and TMAC concentrations in the reaction buffer were confirmed using E507K/R536K/R660V Taq polymerase.

具體而言,將反應緩衝液中TMAC濃度固定在25mM,(NH4)2SO4濃度固定在2.5mM,將KCl濃度分別調整為20、40、60、80mM。對於兩個SNP即rs1015362及rs4911414進行實驗,模板的基因型如表12所述,引子使用表13中記載的rs1015362及rs4911414引子,qPCR條件(Applied Biosystems 7500 Fast)以表14的條件進行,雙重標記探針使用表15的1408799-FAM,反應條件如表22所示。 Specifically, the TMAC concentration in the reaction buffer was fixed at 25 mM, the (NH 4 ) 2 SO 4 concentration was fixed at 2.5 mM, and the KCl concentration was adjusted to 20, 40, 60, and 80 mM, respectively. For the two SNPs, rs1015362 and rs4911414, the genotype of the template was as described in Table 12, the primers were the rs1015362 and rs4911414 primers described in Table 13, and the qPCR conditions (Applied Biosystems 7500 Fast) were carried out under the conditions of Table 14, double labeling The probe used 1408799-FAM in Table 15, and the reaction conditions are shown in Table 22.

實驗結果,如圖14所示,對於兩個SNP,適當的KCl濃度為60mM,濃度為80mM時,可以觀察到擴增效率降低。 Experimental results, as shown in FIG. 14, for two SNPs, when the appropriate KCl concentration is 60 mM and the concentration is 80 mM, a decrease in amplification efficiency can be observed.

通過以上結果,確認反應緩衝液中最佳的KCl濃度為60mM,(NH4)2SO4濃度為2.5mM,TMAC濃度為25mM。更具體來說,確認對於E507K/R536K聚合酶,使用濃度為75mM的KCl、5mM的(NH4)2SO4、60mM的TMAC最有效;對於E507K/R536K/R660V聚合酶,使用濃度為60mM的KCl、2.5mM的(NH4)2SO4濃度、25mM的TMAC最有效。 From the above results, it was confirmed that the optimal KCl concentration in the reaction buffer was 60 mM, the (NH 4 ) 2 SO 4 concentration was 2.5 mM, and the TMAC concentration was 25 mM. More specifically, the confirmation of E507K / R536K polymerase, the concentration of KCl 75mM, 5mM of (NH 4) 2 SO 4, 60mM the most effective TMAC; for E507K / R536K / R660V polymerase, used at a concentration of 60mM KCl, 2.5 mM (NH 4 ) 2 SO 4 concentration, and 25 mM TMAC are most effective.

<110> 基因凱斯特有限公司 <110> Gene Kester Co., Ltd.

<120> 具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物 <120> PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity

<130> 107E0252 <130> 107E0252

<150> KR 10-2017-0088376 <150> KR 10-2017-0088376

<151> 2017-07-12 <151> 2017-07-12

<160> 30 <160> 30

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 832 <211> 832

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<400> 1

Figure 107124135-A0101-12-0032-25
Figure 107124135-A0101-12-0033-26
Figure 107124135-A0101-12-0034-27
Figure 107124135-A0101-12-0035-28
Figure 107124135-A0101-12-0036-29
<400> 1
Figure 107124135-A0101-12-0032-25
Figure 107124135-A0101-12-0033-26
Figure 107124135-A0101-12-0034-27
Figure 107124135-A0101-12-0035-28
Figure 107124135-A0101-12-0036-29

<210> 2 <210> 2

<211> 832 <211> 832

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<400> 2

Figure 107124135-A0101-12-0037-30
Figure 107124135-A0101-12-0038-31
Figure 107124135-A0101-12-0039-32
Figure 107124135-A0101-12-0040-33
Figure 107124135-A0101-12-0041-34
<400> 2
Figure 107124135-A0101-12-0037-30
Figure 107124135-A0101-12-0038-31
Figure 107124135-A0101-12-0039-32
Figure 107124135-A0101-12-0040-33
Figure 107124135-A0101-12-0041-34

<210> 3 <210> 3

<211> 832 <211> 832

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<400> 3

Figure 107124135-A0101-12-0041-35
Figure 107124135-A0101-12-0042-36
Figure 107124135-A0101-12-0043-37
Figure 107124135-A0101-12-0044-38
Figure 107124135-A0101-12-0045-39
Figure 107124135-A0101-12-0046-40
<400> 3
Figure 107124135-A0101-12-0041-35
Figure 107124135-A0101-12-0042-36
Figure 107124135-A0101-12-0043-37
Figure 107124135-A0101-12-0044-38
Figure 107124135-A0101-12-0045-39
Figure 107124135-A0101-12-0046-40

<210> 4 <210> 4

<211> 832 <211> 832

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<400> 4

Figure 107124135-A0101-12-0046-41
Figure 107124135-A0101-12-0047-42
Figure 107124135-A0101-12-0048-43
Figure 107124135-A0101-12-0049-44
Figure 107124135-A0101-12-0050-45
<400> 4
Figure 107124135-A0101-12-0046-41
Figure 107124135-A0101-12-0047-42
Figure 107124135-A0101-12-0048-43
Figure 107124135-A0101-12-0049-44
Figure 107124135-A0101-12-0050-45

<210> 5 <210> 5

<211> 832 <211> 832

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<400> 5

Figure 107124135-A0101-12-0050-46
Figure 107124135-A0101-12-0051-47
Figure 107124135-A0101-12-0052-48
Figure 107124135-A0101-12-0053-49
Figure 107124135-A0101-12-0054-50
Figure 107124135-A0101-12-0055-51
<400> 5
Figure 107124135-A0101-12-0050-46
Figure 107124135-A0101-12-0051-47
Figure 107124135-A0101-12-0052-48
Figure 107124135-A0101-12-0053-49
Figure 107124135-A0101-12-0054-50
Figure 107124135-A0101-12-0055-51

<210> 6 <210> 6

<211> 2499 <211> 2499

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 6

Figure 107124135-A0101-12-0055-52
Figure 107124135-A0101-12-0056-53
Figure 107124135-A0101-12-0057-54
<400> 6
Figure 107124135-A0101-12-0055-52
Figure 107124135-A0101-12-0056-53
Figure 107124135-A0101-12-0057-54

<210> 7 <210> 7

<211> 2499 <211> 2499

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 7

Figure 107124135-A0101-12-0057-55
Figure 107124135-A0101-12-0058-56
Figure 107124135-A0101-12-0059-57
<400> 7
Figure 107124135-A0101-12-0057-55
Figure 107124135-A0101-12-0058-56
Figure 107124135-A0101-12-0059-57

<210> 8 <210> 8

<211> 2499 <211> 2499

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 8

Figure 107124135-A0101-12-0059-58
Figure 107124135-A0101-12-0060-59
Figure 107124135-A0101-12-0061-60
<400> 8
Figure 107124135-A0101-12-0059-58
Figure 107124135-A0101-12-0060-59
Figure 107124135-A0101-12-0061-60

<210> 9 <210> 9

<211> 2499 <211> 2499

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 9

Figure 107124135-A0101-12-0061-61
Figure 107124135-A0101-12-0062-62
Figure 107124135-A0101-12-0063-63
<400> 9
Figure 107124135-A0101-12-0061-61
Figure 107124135-A0101-12-0062-62
Figure 107124135-A0101-12-0063-63

<210> 10 <210> 10

<211> 2499 <211> 2499

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 10

Figure 107124135-A0101-12-0063-64
Figure 107124135-A0101-12-0064-65
Figure 107124135-A0101-12-0065-66
<400> 10
Figure 107124135-A0101-12-0063-64
Figure 107124135-A0101-12-0064-65
Figure 107124135-A0101-12-0065-66

<210> 11 <210> 11

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 11

Figure 107124135-A0101-12-0065-67
<400> 11
Figure 107124135-A0101-12-0065-67

<210> 12 <210> 12

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 12

Figure 107124135-A0101-12-0065-68
<400> 12
Figure 107124135-A0101-12-0065-68

<210> 13 <210> 13

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 13

Figure 107124135-A0101-12-0066-69
<400> 13
Figure 107124135-A0101-12-0066-69

<210> 14 <210> 14

<211> 30 <211> 30

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 14

Figure 107124135-A0101-12-0066-70
<400> 14
Figure 107124135-A0101-12-0066-70

<210> 15 <210> 15

<211> 30 <211> 30

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 15

Figure 107124135-A0101-12-0066-71
<400> 15
Figure 107124135-A0101-12-0066-71

<210> 16 <210> 16

<211> 32 <211> 32

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 16

Figure 107124135-A0101-12-0066-72
<400> 16
Figure 107124135-A0101-12-0066-72

<210> 17 <210> 17

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 17

Figure 107124135-A0101-12-0067-73
<400> 17
Figure 107124135-A0101-12-0067-73

<210> 18 <210> 18

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 18

Figure 107124135-A0101-12-0067-74
<400> 18
Figure 107124135-A0101-12-0067-74

<210> 19 <210> 19

<211> 25 <211> 25

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 19

Figure 107124135-A0101-12-0067-75
<400> 19
Figure 107124135-A0101-12-0067-75

<210> 20 <210> 20

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 20

Figure 107124135-A0101-12-0068-76
<400> 20
Figure 107124135-A0101-12-0068-76

<210> 21 <210> 21

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 21

Figure 107124135-A0101-12-0068-77
<400> 21
Figure 107124135-A0101-12-0068-77

<210> 22 <210> 22

<211> 22 <211> 22

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 22

Figure 107124135-A0101-12-0068-78
<400> 22
Figure 107124135-A0101-12-0068-78

<210> 23 <210> 23

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 23

Figure 107124135-A0101-12-0069-79
<400> 23
Figure 107124135-A0101-12-0069-79

<210> 24 <210> 24

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 24

Figure 107124135-A0101-12-0069-80
<400> 24
Figure 107124135-A0101-12-0069-80

<210> 25 <210> 25

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 25

Figure 107124135-A0101-12-0069-81
<400> 25
Figure 107124135-A0101-12-0069-81

<210> 26 <210> 26

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 26

Figure 107124135-A0101-12-0069-82
<400> 26
Figure 107124135-A0101-12-0069-82

<210> 27 <210> 27

<211> 23 <211> 23

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 27

Figure 107124135-A0101-12-0070-83
<400> 27
Figure 107124135-A0101-12-0070-83

<210> 28 <210> 28

<211> 25 <211> 25

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 28

Figure 107124135-A0101-12-0070-84
<400> 28
Figure 107124135-A0101-12-0070-84

<210> 29 <210> 29

<211> 24 <211> 24

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 29

Figure 107124135-A0101-12-0070-85
<400> 29
Figure 107124135-A0101-12-0070-85

<210> 30 <210> 30

<211> 24 <211> 24

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<400> 30

Figure 107124135-A0101-12-0071-86
<400> 30
Figure 107124135-A0101-12-0071-86

Claims (10)

一種具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該組合物包含:60至90mM的KCl;及2.5至8mM的(NH4)2SO4;最終pH為8.0至9.0,其中,該具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物中,該具有增加的基因突變特異性的DNA聚合酶係具有由SEQ ID NO:1的胺基酸序列中第507個胺基酸殘基即谷胺酸(E)被賴胺酸(K)取代、第536個胺基酸殘基即精胺酸(R)被賴胺酸取代(K)、及第660個胺基酸殘基即精胺酸(R)被纈胺酸(V)取代的胺基酸序列組成的Taq聚合酶的DNA聚合酶。 A PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, wherein the composition comprises: 60 to 90 mM KCl; and 2.5 to 8 mM (NH 4 ) 2 SO 4 ; the final pH is 8.0 To 9.0, wherein, in the PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, the DNA polymerase system with increased gene mutation specificity has an amine group represented by SEQ ID NO: 1 In the acid sequence, the 507th amino acid residue, glutamic acid (E), was replaced by lysine (K), and the 536th amino acid residue, arginine (R), was replaced by lysine (K). And the DNA polymerase of Taq polymerase consisting of the amino acid sequence of the 660th amino acid residue, that is, an amino acid sequence in which arginine (R) is replaced by valine (V). 如申請專利範圍第1項所述之具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該KCl濃度為70至80mM,且該(NH4)2SO4濃度為4至6mM。 The PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity as described in item 1 of the patent application scope, wherein the KCl concentration is 70 to 80 mM, and the (NH 4 ) 2 SO 4 concentration is 4 to 6 mM. 一種具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該組合物包含:50至80mM的KCl;1.5至6mM的(NH4)2SO4;以及5至30mM的四甲基氯化銨(Tetra methyl ammonium chloride,TMAC);最終pH為8.0至9.0,其中,該具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物中,該具有增加的基因突變特異性的DNA聚合酶係具有由SEQ ID NO:1的胺基酸序列中第507個胺基酸殘基即谷胺酸(E)被賴胺酸(K)取代、第536個胺基酸殘基即精胺酸(R)被賴胺酸取代(K)、及第660個胺基酸殘基即精胺酸(R)被纈胺酸(V)取代的胺基酸序列組成的Taq聚合酶的DNA聚合酶。 A PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, wherein the composition comprises: 50 to 80 mM KCl; 1.5 to 6 mM (NH 4 ) 2 SO 4 ; and 5 to 30 mM Tetra methyl ammonium chloride (TMAC); the final pH is 8.0 to 9.0, wherein the PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity has an increased The gene mutation-specific DNA polymerase system has a 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1, that is, glutamic acid (E) is replaced by lysine (K), and the 536th amine Amino acid sequence consisting of arginine (R) substituted by lysine (K) and arginine (R) substituted by valine (V) Taq polymerase DNA polymerase. 如申請專利範圍第3項所述之具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該TMAC濃度為25mM、該KCl濃度為60mM、且該(NH4)2SO4濃度為2.5mM。 The PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity as described in item 3 of the patent application scope, wherein the TMAC concentration is 25 mM, the KCl concentration is 60 mM, and the (NH 4 ) 2 The SO 4 concentration is 2.5 mM. 如申請專利範圍第1項或第3項所述之具有增加的基因突變特異性的DNA聚合酶活性增強用PCR緩衝液組合物,其中該PCR緩衝液組合物進一步包含Tris.Cl及MgCl2As described in the first or third paragraph of the scope of the patent application, the PCR buffer composition for enhancing DNA polymerase activity with increased gene mutation specificity, wherein the PCR buffer composition further comprises Tris. Cl and MgCl 2 . 一種包含申請專利範圍第1項或第3項所述的PCR緩衝液組合物的用於檢測基因突變或SNP的PCR試劑盒。 A PCR kit for detecting gene mutations or SNPs comprising the PCR buffer composition described in item 1 or item 3 of the patent scope. 如申請專利範圍第6項所述之用於檢測基因突變或SNP的PCR試劑盒,其中該PCR試劑盒進一步包含一DNA聚合酶,且該DNA聚合酶具有由SEQ ID NO:1的胺基酸序列中第507個胺基酸殘基即谷胺酸(E)被賴胺酸(K)取代、第536個胺基酸殘基即精胺酸(R)被賴胺酸(K)取代、及第660個胺基酸殘基即精胺酸(R)被纈胺酸(V)取代的胺基酸序列組成的Taq聚合酶。 The PCR kit for detecting gene mutations or SNPs as described in item 6 of the patent application scope, wherein the PCR kit further comprises a DNA polymerase, and the DNA polymerase has an amino acid represented by SEQ ID NO: 1 In the sequence, the 507th amino acid residue, glutamic acid (E), was replaced by lysine (K), and the 536th amino acid residue, arginine (R), was replaced by lysine (K). And the Taq polymerase consisting of the amino acid sequence of the 660th amino acid residue, that is, the amino acid sequence in which arginine (R) is replaced by valine (V). 如申請專利範圍第6項所述之用於檢測基因突變或SNP的PCR試劑盒,其中該PCR試劑盒進一步包含:(i)三磷酸核苷;(ii)與雙股DNA結合的定量試劑;(iii)聚合酶阻斷抗體;(iv)一個或多個對照值或對照序列;以及(v)一個或多個模板。 The PCR kit for detecting gene mutations or SNPs as described in item 6 of the patent application scope, wherein the PCR kit further comprises: (i) nucleoside triphosphate; (ii) quantitative reagents that bind to double-stranded DNA; (iii) polymerase blocking antibody; (iv) one or more control values or control sequences; and (v) one or more templates. 一種使用申請專利範圍第6項所述之PCR試劑盒從一個以上的模板中體外檢測至少一種基因突變或SNP的檢測方法。 A detection method for in vitro detection of at least one gene mutation or SNP from more than one template using the PCR kit described in item 6 of the patent application scope. 如申請專利範圍第9項所述之方法,其中該PCR試劑盒進一步包含一DNA聚合酶,且該DNA聚合酶具有由SEQ ID NO:1的胺基酸序列中第507個胺基酸殘基即谷胺酸(E)被賴胺酸(K)取代、第536個胺基酸殘基即精胺酸(R)被賴胺酸(K)取代、及第660個胺基酸殘基即精胺酸(R)被纈胺酸(V)取代的胺基酸序列組成的Taq聚合酶。 The method as described in item 9 of the patent application scope, wherein the PCR kit further comprises a DNA polymerase, and the DNA polymerase has the 507th amino acid residue in the amino acid sequence of SEQ ID NO: 1 That is, glutamic acid (E) is substituted with lysine (K), the 536th amino acid residue, arginine (R), is substituted with lysine (K), and the 660th amino acid residue is, Taq polymerase consisting of an amino acid sequence in which arginine (R) is replaced by valine (V).
TW107124135A 2017-07-12 2018-07-12 PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutation TWI688656B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170088376A KR101958660B1 (en) 2017-07-12 2017-07-12 Pcr buffer compositions for increasing activity of dna polymerases with increased mutation specificity
KR10-2017-0088376 2017-07-12
??10-2017-0088376 2017-07-12

Publications (2)

Publication Number Publication Date
TW201908493A TW201908493A (en) 2019-03-01
TWI688656B true TWI688656B (en) 2020-03-21

Family

ID=65050743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124135A TWI688656B (en) 2017-07-12 2018-07-12 PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutation

Country Status (3)

Country Link
KR (1) KR101958660B1 (en)
CN (1) CN109251965B (en)
TW (1) TWI688656B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145715A1 (en) * 2019-01-11 2020-07-16 주식회사 진캐스트 Dna polymerase for detecting tert mutation and kit comprising same
KR102370550B1 (en) * 2019-01-11 2022-03-08 주식회사 진캐스트 DNA polymerase for detecting EGFR mutation and kit comprising the same
WO2020145754A1 (en) * 2019-01-11 2020-07-16 주식회사 진캐스트 Mass spectrometry using dna polymerase with increased genetic mutation specificity
TWI715997B (en) * 2019-06-13 2021-01-11 新加坡商克雷多生物醫學私人有限公司 Pcr apparatus for real-time detecting multiplex fluorescent signals
KR102247419B1 (en) 2020-03-24 2021-05-03 정지원 Buffer composition and analysis method using the same
KR102264902B1 (en) 2021-03-05 2021-06-14 주식회사 모노바이오 PCR premix composition with improved stability and its preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554665A2 (en) * 2011-08-03 2013-02-06 Fermentas UAB DNA polymerases
WO2015082449A2 (en) * 2013-12-02 2015-06-11 Universitaet Konstanz Mutated dna polymerases with high selectivity and activity

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049614A1 (en) * 1999-10-06 2003-03-13 Holly Hurlbut Hogrefe Compositions for dna amplification, synthesis, and mutagenesis
US20030180741A1 (en) * 2001-12-21 2003-09-25 Holly Hogrefe High fidelity DNA polymerase compositions and uses therefor
EP2524036B1 (en) * 2009-07-31 2019-06-12 Agilent Technologies, Inc. Thermostable type-a dna polymerase mutants with increased polymerization rate and resistance to inhibitors
US9758773B2 (en) * 2014-02-14 2017-09-12 Agilent Technologies, Inc. Thermostable type-A DNA polymerase mutant with increased resistance to inhibitors in blood
CN106520997A (en) * 2016-12-14 2017-03-22 南京诺唯赞医疗科技有限公司 Single cell gene expressions quantitative analysis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554665A2 (en) * 2011-08-03 2013-02-06 Fermentas UAB DNA polymerases
WO2015082449A2 (en) * 2013-12-02 2015-06-11 Universitaet Konstanz Mutated dna polymerases with high selectivity and activity

Also Published As

Publication number Publication date
KR101958660B1 (en) 2019-03-18
KR20190007216A (en) 2019-01-22
CN109251965B (en) 2022-11-18
CN109251965A (en) 2019-01-22
TW201908493A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
TWI688656B (en) PCR buffer composition for enhancing DNA polymerase activity with increased specificity of gene mutation
TWI733038B (en) DNA polymerase with improved gene mutation specific amplification efficiency
JP6986299B2 (en) DNA polymerizing enzyme with increased gene mutation specificity and PCR buffer composition for increasing its activity
US9840698B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US10724016B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US10647967B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US10563182B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US9879237B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US9353402B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US10647966B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US10131886B2 (en) DNA polymerases with increased 3′-mismatch discrimination
US10144918B2 (en) DNA polymerases with increased 3′-mismatch discrimination
WO2018132939A1 (en) Method for synthesizing nucleic acid under constant temperature