TWI687200B - Optical pulse image measuring device and method for analyzing change of pulse waveform - Google Patents

Optical pulse image measuring device and method for analyzing change of pulse waveform Download PDF

Info

Publication number
TWI687200B
TWI687200B TW107124536A TW107124536A TWI687200B TW I687200 B TWI687200 B TW I687200B TW 107124536 A TW107124536 A TW 107124536A TW 107124536 A TW107124536 A TW 107124536A TW I687200 B TWI687200 B TW I687200B
Authority
TW
Taiwan
Prior art keywords
module
light source
item
patent application
structured light
Prior art date
Application number
TW107124536A
Other languages
Chinese (zh)
Other versions
TW202005604A (en
Inventor
黃澄儀
謝易振
柯昱成
蔡鈞涵
許庭銓
Original Assignee
大立光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大立光電股份有限公司 filed Critical 大立光電股份有限公司
Priority to TW107124536A priority Critical patent/TWI687200B/en
Priority to CN201811048854.1A priority patent/CN110720897A/en
Publication of TW202005604A publication Critical patent/TW202005604A/en
Application granted granted Critical
Publication of TWI687200B publication Critical patent/TWI687200B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Abstract

The present disclosure provides an optical pulse image measuring device including a base, a cover, an imaging module, a light source module, a structured light projection module, a circuit module, a computing module and a display module. The cover is disposed on the base. The imaging module is disposed within the cover and for capturing an image in an imaging area. The light source module is disposed on one side of the imaging module. The structured light projection module is disposed within the cover. The circuit module is electrically connected to the imaging module and the light source module. The computing module is signally connected to the circuit module. The display module is signally connected to the computing module. Therefore, the optical pulse image measuring device of the present disclosure can capture pulse images on wrists of a subject by the imaging module and visualize the pulse condition information so as to obtain pulse measurement results with high accuracy.

Description

光學脈波影像量測儀及脈波形變量測方法 Optical pulse wave image measuring instrument and pulse waveform variable measuring method

本發明係關於一種脈象量測儀,特別是關於一種利用光學成像系統進行量測並對脈波影像進行分析之光學脈波影像量測儀。 The invention relates to a pulse image measuring instrument, in particular to an optical pulse wave image measuring instrument which uses an optical imaging system to measure and analyze pulse wave images.

在傳統把脈時,中醫師透過觸、摸、壓等動作按壓患者手腕的橈動脈來感覺患者雙手手腕之寸、關、尺三部位的浮、中、沉三個按壓深度的脈象,並施以不同的按壓力度來感測不同的脈象變化。然而,脈診的準確度會因不同中醫師的觸診位置、觸診習慣以及按壓力度的不同而有所差異,並無法客觀地描述脈象,如此一來將使脈象變化的結果具有較大的變異性,更容易對患者發出錯誤的診斷結果。 In traditional pulse control, Chinese medicine practitioners press the radial artery of the patient's wrist by touching, touching, pressing, etc. to feel the pulse of the patient's wrist, such as the floating, middle, and deep depths of the three positions of the wrist, feet, and feet. Different pressures are used to sense different pulse changes. However, the accuracy of pulse diagnosis will vary depending on the palpation position, palpation habits, and pressure of different TCM doctors, and it cannot objectively describe the pulse, which will make the result of the pulse change more significant. Variability makes it easier to issue wrong diagnosis results to patients.

為了解決上述問題,相關技術人員提出一種觸感結合把脈輔助裝置,其藉由中醫師於手指上配戴一包含感測單元的把脈輔助裝置,以即時偵測中醫師於把脈時施予患者手腕之壓力大小,以利於在把脈的過程中調整按壓力道,並可將所得之脈象資訊數位化,進而提供患者一客觀的脈象診斷結果。然而,前述之觸感結合把脈輔助裝置在把脈的過 程中仍須由中醫師判斷觸診位置並對患者手腕之施加壓力,並無法對觸診位置及按壓力度進行標準化,致使不同中醫師對同一患者所發出的脈診結果仍有差異。 In order to solve the above-mentioned problems, related technical personnel have proposed a tactile combined pulse assisting device, in which a Chinese medicine practitioner wears a pulse assisting device including a sensing unit on a finger to detect in real time that the Chinese medicine practitioner applies the pulse to the patient's wrist The size of the pressure is good for adjusting the pressure channel during the pulse process, and can digitize the obtained pulse information, thereby providing the patient with an objective pulse diagnosis result. However, the aforementioned tactile sense combined with the pulse assist device In the process, it is still necessary for the TCM doctor to judge the palpation position and apply pressure to the patient's wrist, and it is not possible to standardize the palpation position and compression force, resulting in different pulse diagnosis results issued by different TCM practitioners to the same patient.

為了解決上述問題,相關技術人員更提出利用氣囊等加壓裝置對患者的橈動脈加壓,並擷取加壓後所反應之脈壓訊號進行分析之脈診檢測儀,以獲得標準化的脈診結果。然而,前述之脈診檢測儀雖可避免不同中醫師之觸診習慣所導致的結果誤差,但仍須以外力對患者手腕施加壓力並進行接觸式診斷,以得到相對之脈壓訊號而進行後續的脈診結果判定,不僅在操作方法上面較為繁複,亦可能因接觸式的把脈方式而影響脈診結果的準確率。 In order to solve the above-mentioned problems, related technical personnel have also proposed to use a compression device such as a balloon to pressurize the radial artery of the patient, and to obtain a pulse diagnostic tester for analyzing the pulse pressure signal after the compression to analyze to obtain a standardized pulse diagnosis result. However, although the aforementioned pulse diagnosis instrument can avoid the result error caused by the different palpation habits of traditional Chinese medicine practitioners, it still needs to apply external force to the patient's wrist and perform contact diagnosis to obtain the relative pulse pressure signal for subsequent follow-up The judgment of the pulse diagnosis result is not only complicated in the operation method, but also may affect the accuracy of the pulse diagnosis result due to the contact pulse-taking method.

因此,市面上亟需一種兼具使用便利性及達成客觀的脈象結果訴求之脈象量測儀。 Therefore, there is an urgent need on the market for a pulse measurement instrument that combines ease of use and achieves an objective pulse result request.

本發明之一態樣在於提供一種光學脈波影像量測儀,包含一基座、一外罩、一成像模組、一光源模組、一結構光投影裝置、一電路模組、一運算模組以及一顯示模組。外罩設置於基座上,用以提供一遮光範圍。光源模組設置於成像模組之一側邊。結構光投影裝置設置於外罩內。成像模組設置於外罩內,且成像模組用以擷取一待測區域的一影像。光源模組設置於成像模組之一側邊。電路模組電性連接成像模組與光源模組。運算模組訊號連接電路模組。顯示模組訊號連接運算模組。 One aspect of the present invention is to provide an optical pulse wave image measuring instrument, which includes a base, a cover, an imaging module, a light source module, a structured light projection device, a circuit module, and an arithmetic module And a display module. The outer cover is arranged on the base to provide a light-shielding area. The light source module is disposed on one side of the imaging module. The structured light projection device is arranged in the outer cover. The imaging module is disposed in the outer cover, and the imaging module is used to capture an image of an area to be measured. The light source module is disposed on one side of the imaging module. The circuit module is electrically connected to the imaging module and the light source module. The signal of the arithmetic module is connected to the circuit module. The display module signal is connected to the calculation module.

本發明之另一態樣在於提供一種脈象量測方法,其包含下述步驟:進行一定位調整步驟,其係透過一影像定位輔助方式以將一成像模組對準於一受測者之一手腕區域,並調整該成像模組及一結構光投影裝置至一量測位置,其中手腕區域包含寸、關及尺三部位中至少一者;進行一拍攝步驟,其係利用成像模組擷取手腕區域之一影像資訊;進行一運算步驟,其係利用一運算模組分析前述之影像資訊,以得一運算結果;進行一比對步驟,其係利用運算模組將前述之運算結果與一脈象分類資料集合進行比對,以輸出受測者之一脈象量測結果。 Another aspect of the present invention is to provide a pulse measurement method, which includes the following steps: performing a positioning adjustment step, which is to align an imaging module to one of the subjects through an image positioning assistance method The wrist area, and adjust the imaging module and a structured light projection device to a measurement position, where the wrist area includes at least one of the three parts of inch, close and ruler; perform a shooting step, which is captured by the imaging module Image information of a wrist area; performing an operation step, which uses an operation module to analyze the aforementioned image information to obtain an operation result; performing a comparison step, which uses an operation module to compare the aforementioned operation result with an The pulse classification data set is compared to output the pulse measurement result of one of the subjects.

藉此,本發明之光學脈波影像量測儀與脈象量測方法利用成像模組自動擷取受測者的手腕區域影像資訊,並透過運算模組進行運算與分析,以進一步將脈象資訊視覺化,並可同時對脈象的量測手法及其結果等數據進行標準化,避免習知利用觸診式或壓力式脈象偵測所造成之結果誤差,進而提供一客觀且準確之脈象量測結果。 In this way, the optical pulse wave image measuring instrument and the pulse image measuring method of the present invention use the imaging module to automatically capture the image information of the wrist area of the subject, and perform calculation and analysis through the computing module to further visualize the pulse information At the same time, it can also standardize the pulse measurement method and its results and other data at the same time, avoiding the result error caused by the conventional use of palpation or pressure pulse detection, and then provide an objective and accurate pulse measurement result.

100‧‧‧光學脈波影像量測儀 100‧‧‧Optical pulse wave image measuring instrument

110‧‧‧基座 110‧‧‧Dock

111‧‧‧承靠手腕脈枕 111‧‧‧Relying on the wrist pulse pillow

120‧‧‧外罩 120‧‧‧Outer cover

200‧‧‧成像模組 200‧‧‧Imaging module

202‧‧‧成像偏光片 202‧‧‧Imaging polarizer

204‧‧‧成像鏡頭 204‧‧‧Imaging lens

206‧‧‧影像感測器 206‧‧‧Image sensor

208‧‧‧同步電路 208‧‧‧synchronous circuit

300‧‧‧光源模組 300‧‧‧Light source module

302‧‧‧光源偏光片 302‧‧‧Light source polarizer

304‧‧‧光源 304‧‧‧Light source

308‧‧‧同步電路 308‧‧‧synchronous circuit

400‧‧‧電路模組 400‧‧‧circuit module

402‧‧‧電源電路 402‧‧‧Power circuit

404‧‧‧控制電路 404‧‧‧Control circuit

406‧‧‧驅動電路 406‧‧‧Drive circuit

408‧‧‧資料傳輸電路 408‧‧‧Data transmission circuit

500‧‧‧運算模組 500‧‧‧ arithmetic module

600‧‧‧顯示模組 600‧‧‧Display module

700‧‧‧結構光投影裝置 700‧‧‧Structured light projection device

702‧‧‧光源偏光片 702‧‧‧Light source polarizer

704‧‧‧結構光光源 704‧‧‧Structured light source

708‧‧‧同步電路 708‧‧‧synchronous circuit

720‧‧‧數位微鏡裝置 720‧‧‧Digital micromirror device

730‧‧‧反射鏡 730‧‧‧Reflecting mirror

800‧‧‧移動模組 800‧‧‧Mobile module

900‧‧‧脈象量測方法 900‧‧‧Pulse measurement method

910、920、930、940‧‧‧步驟 910, 920, 930, 940‧‧‧ steps

11‧‧‧手腕區域 11‧‧‧ wrist area

A‧‧‧待測區域 A‧‧‧ area to be tested

P‧‧‧投影條紋 P‧‧‧Projection stripes

R‧‧‧光束 R‧‧‧beam

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示本發明一實施方式之光學脈波影像量測儀的架構示意圖;第2圖係繪示本發明一實施方式之一實施例的光學脈波影像量測儀的示意圖; 第3圖係繪示第2圖實施例的光學脈波影像量測儀的部分剖示圖;第4圖係繪示第3圖實施例的光學脈波影像量測儀之成像模組、結構光投影裝置與移動模組的放大示意圖;第5圖係繪示第4圖實施例的光學脈波影像量測儀之結構光投影裝置與移動模組的放大示意圖;第6圖係繪示第5圖實施例的光學脈波影像量測儀之結構光投影裝置的放大示意圖;第7圖係繪示第2圖實施例的光學脈波影像量測儀的操作狀態示意圖;以及第8圖係繪示本發明另一實施方式之脈象量測方法的流程圖。 In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious and understandable, the drawings are described as follows: FIG. 1 illustrates an optical pulse wave image measuring instrument according to an embodiment of the present invention. Schematic architecture; Figure 2 is a schematic diagram of an optical pulse wave image measuring instrument according to an embodiment of the present invention; Figure 3 is a partial cross-sectional view of the optical pulse wave image measuring instrument of the embodiment of Figure 2; Figure 4 is an imaging module and structure of the optical pulse wave image measuring instrument of the embodiment of Figure 3 An enlarged schematic diagram of the light projection device and the mobile module; FIG. 5 is an enlarged schematic diagram of the structured light projection device and the mobile module of the optical pulse wave image measuring instrument of the embodiment of FIG. 4; FIG. 6 is a schematic diagram of the first 5 is an enlarged schematic view of the structured light projection device of the optical pulse wave image measuring instrument of the embodiment of FIG. 5; FIG. 7 is a schematic view showing the operating state of the optical pulse wave image measuring instrument of the embodiment of FIG. 2; and FIG. A flowchart of a pulse measurement method according to another embodiment of the invention is shown.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For clarity, many practical details will be explained in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some conventionally used structures and elements will be shown in a simple schematic manner in the drawings; and repeated elements may be indicated by the same number.

請參照第1圖、第2圖與第3圖,第1圖係繪示本發明一實施方式之光學脈波影像量測儀的架構示意圖,第2 圖係繪示本發明一實施方式之一實施例的光學脈波影像量測儀100的示意圖,而第3圖則係繪示第2圖實施例的光學脈波影像量測儀100的部分剖示圖。本發明旨在於提供一種光學脈波影像量測儀100,用以檢測一受測者(圖未繪示)之一待測區域A的脈象狀態,其包含基座110、一外罩120、一成像模組200、一光源模組300、一結構光投影裝置700、一電路模組400、一運算模組500以及一顯示模組600。 Please refer to FIG. 1, FIG. 2 and FIG. 3, FIG. 1 is a schematic structural diagram of an optical pulse wave image measuring instrument according to an embodiment of the present invention. FIG. 3 is a schematic diagram of an optical pulse wave image measuring instrument 100 according to an example of an embodiment of the present invention, and FIG. 3 is a partial cross section of the optical pulse wave image measuring instrument 100 according to the example of FIG. 2. Illustration. The present invention aims to provide an optical pulse wave image measuring instrument 100 for detecting the pulse state of a region A to be measured of a subject (not shown), which includes a base 110, a cover 120, and an imaging The module 200, a light source module 300, a structured light projection device 700, a circuit module 400, an arithmetic module 500, and a display module 600.

基座110可包含一量測定位輔助裝置(圖未繪示)及一輔助手腕固定治具(圖未繪示),用以輔助待測區域A放置於適當位置。較佳地,基座110可包含一承靠手腕脈枕111(標示於第3圖),以增加手腕的固定效率。外罩120設置於基座110上。較佳地,外罩120可用以阻隔待測區域A之所有周邊環境光源。具體言之,外罩120可為一遮蔽環境干擾擋板,用以阻隔所有周邊環境的干擾光,且外罩120的材質可為全波段不穿透材料,但本發明並不以此為限。 The base 110 may include a measuring and positioning assisting device (not shown in the figure) and an auxiliary wrist fixing jig (not shown in the figure) to assist in placing the area A to be measured in an appropriate position. Preferably, the base 110 may include a wrist pillow 111 (shown in FIG. 3) to increase the efficiency of wrist fixation. The cover 120 is disposed on the base 110. Preferably, the cover 120 can be used to block all ambient light sources in the area A to be measured. Specifically, the cover 120 may be a shielding environmental interference baffle to block all interference light from the surrounding environment, and the material of the cover 120 may be a full-band non-penetrating material, but the invention is not limited thereto.

成像模組200設置於外罩120內,且成像模組200係以一方向角度擷取待測區域A的一影像。成像模組200可包含一成像偏光片202、一成像鏡頭204、一影像感測器206以及一同步電路208,其中成像偏光片202可包含一線偏振片,而成像鏡頭204則可包含複數片透鏡,至於透鏡的數目及其設置方式並非本發明之主要特徵,在此不再贅述。影像感測器206可為感光耦合元件(Charge-coupled device,CCD)或互補性氧化金屬半導體(Complementary metal-oxide-semiconductor,CMOS),且本發明並不以此為限。 The imaging module 200 is disposed in the housing 120, and the imaging module 200 captures an image of the area A to be measured at a direction angle. The imaging module 200 may include an imaging polarizer 202, an imaging lens 204, an image sensor 206, and a synchronization circuit 208, wherein the imaging polarizer 202 may include a linear polarizer, and the imaging lens 204 may include a plurality of lenses As for the number of lenses and their arrangement, it is not the main feature of the present invention, and it will not be repeated here. The image sensor 206 can be a charge-coupled device (CCD) or a complementary metal oxide semiconductor (Complementary oxide semiconductor) metal-oxide-semiconductor (CMOS), and the invention is not limited thereto.

光源模組300設置於成像模組200的一側邊,且光源模組300可包含一光源304、光源偏光片302以及一同步電路308,其中光源偏光片302可包含一線偏振片,而成像模組200的成像偏光片202與光源模組300的光源偏光片302可為正交配置,但本發明並不以此為限。具體地,光源模組300可設置於成像模組200之至少一側邊或與成像模組200同軸設置。光源304可為發光二極體(Light-emitting diode,LED)閃光燈、頻閃燈(Stroboscopic lamp)或Lamp光源機等照射裝置。然在此須說明的是,光源模組300的數量可視實際需求而配置為二個或二個以上,二光源模組300係環繞設置於成像模組200的周邊,藉以對待測區域A提供較佳的亮度,且本發明並不以前述說明與圖式揭露的內容為限。 The light source module 300 is disposed on one side of the imaging module 200, and the light source module 300 may include a light source 304, a light source polarizer 302, and a synchronization circuit 308, wherein the light source polarizer 302 may include a linear polarizer, and the imaging module The imaging polarizer 202 of the group 200 and the light source polarizer 302 of the light source module 300 may be orthogonally arranged, but the invention is not limited thereto. Specifically, the light source module 300 may be disposed on at least one side of the imaging module 200 or coaxially with the imaging module 200. The light source 304 may be an illumination device such as a light-emitting diode (LED) flash lamp, a stroboscopic lamp (Stroboscopic lamp) or a Lamp light source. However, it should be noted that the number of light source modules 300 can be configured as two or more according to actual needs. The two light source modules 300 are arranged around the periphery of the imaging module 200, so as to provide more The brightness is good, and the present invention is not limited to the content disclosed in the foregoing description and drawings.

結構光投影裝置700設置於外罩120內,用以提供待測區域A一結構光,且結構光投影裝置700可包含一結構光光源704、光源偏光片702以及一同步電路708,其中光源偏光片702可包含一線偏振片,而成像模組200的成像偏光片202與結構光投影裝置700的光源偏光片702可為正交配置,但本發明並不以此為限。具體地,結構光投影裝置700係利用非接觸式空間頻率域影像技術(Spatial Frequency Domain Imaging,SFDI)進行結構光投影,且擷取結構光投影至待測區域A後所反射的光線,並根據待 測區域A之反射光所呈現的光波信號變化計算脈動位置、脈動深度等資訊,進而取得待測區域A之血管的血流動力學變化所產生之壓力波形變而對血管的管徑寬度及高度方向或週邊組織的一應變量。較佳地,結構光投影裝置700可包含數位光學處理投影機(DLP Projector)或液晶投影機(LCD Projector),而數位光學處理投影機可包含一數位微鏡裝置(Digital Micromirror Device)以及一數位微鏡裝置控制模組(圖未繪示)。再者,結構光投影裝置700的光源頻譜可包含可見光波段(波長範圍約為400nm至700nm)至近紅外光波段(Near InfraRed,NIR,波長範圍約為700nm至1000nm)。 The structured light projection device 700 is disposed in the housing 120 to provide a structured light in the area A to be measured, and the structured light projection device 700 may include a structured light source 704, a light source polarizer 702, and a synchronization circuit 708, wherein the light source polarizer 702 may include a linear polarizer, and the imaging polarizer 202 of the imaging module 200 and the light source polarizer 702 of the structured light projection device 700 may be orthogonally arranged, but the invention is not limited thereto. Specifically, the structured light projection device 700 utilizes non-contact spatial frequency domain imaging (SFDI) for structured light projection, and captures the reflected light after the structured light is projected onto the area to be measured A, and according to Wait Change the light wave signal presented by the reflected light in the measurement area A to calculate the pulsation position, pulsation depth and other information, and then obtain the pressure waveform generated by the hemodynamic change of the blood vessel in the measurement area A to change the diameter width and height of the blood vessel A dependent variable of direction or surrounding organization. Preferably, the structured light projection device 700 may include a digital optical processing projector (DLP Projector) or a liquid crystal projector (LCD Projector), and the digital optical processing projector may include a digital micromirror device (Digital Micromirror Device) and a digital Micromirror device control module (not shown). Furthermore, the light source spectrum of the structured light projection device 700 may include a visible light band (wavelength range of about 400 nm to 700 nm) to a near infrared light band (Near InfraRed, NIR, wavelength range of about 700 nm to 1000 nm).

電路模組400可設置於基座110內並電性連接成像模組200、光源模組300與結構光投影裝置700,且電路模組400可包含一電源電路402、一控制電路404、一驅動電路406以及一資料傳輸電路408,其中控制電路404可用以控制前述各構件中所可能包含之電路電源,而資料傳輸電路408則可用以將成像模組200所擷取之影像的資訊傳輸至運算模組500。此外,資料傳輸電路408可包含一無線通訊傳輸模組(圖未繪示)或一有線通訊傳輸模組(圖未繪示),其中無線通訊傳輸模組可為一藍芽無線通訊傳輸模組、一紅外線無線通訊傳輸模組或無線區域網路模組,但本發明並不以此為限。 The circuit module 400 may be disposed in the base 110 and electrically connect the imaging module 200, the light source module 300, and the structured light projection device 700, and the circuit module 400 may include a power circuit 402, a control circuit 404, and a driver Circuit 406 and a data transmission circuit 408, wherein the control circuit 404 can be used to control the circuit power supply that may be included in the aforementioned components, and the data transmission circuit 408 can be used to transmit the information of the image captured by the imaging module 200 to the operation Module 500. In addition, the data transmission circuit 408 may include a wireless communication transmission module (not shown) or a wired communication transmission module (not shown), wherein the wireless communication transmission module may be a Bluetooth wireless communication transmission module , An infrared wireless communication transmission module or a wireless local area network module, but the invention is not limited thereto.

運算模組500訊號連接電路模組400,藉以透過電路模組400之資料傳輸電路408接收成像模組200所擷取 之影像資訊,並透過運算模組500對前述之影像資訊進行分析與運算,以輸出一脈象量測結果。較佳地,運算模組500可包含一計算機處理器、一行動裝置運算單元或可完成前述動作之模組,例如微控制器(Micro Controller Unit,MCU)、中央處理器(Central Processing Unit,CPU)、進階精簡指令集機器(Advanced RISC Machine,ARM)、數位訊號處理器(Digital Signal Processor,DSP)或智慧行動裝置,但本發明並不以此為限。較佳地,運算模組500可以非接觸式空間頻率域影像(SFDI)解調變演算法分析待測區域A之影像的影像資訊,如手腕區域之血管的血流動力學變化所產生之壓力波形變而對血管的管徑寬度及高度方向或週邊組織的一應變量,並經由所測得之應力與應變曲線來觀察壓力波改變對脈象結構變化,藉以獲得客觀且標準化之脈象量測結果。 The signal of the arithmetic module 500 is connected to the circuit module 400, so that the data transmission circuit 408 of the circuit module 400 receives the capture of the imaging module 200 Image information, and analyze and calculate the aforementioned image information through the arithmetic module 500 to output a pulse measurement result. Preferably, the computing module 500 may include a computer processor, a mobile device computing unit, or a module that can complete the foregoing actions, such as a microcontroller (Micro Controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) ), advanced reduced instruction set machine (Advanced RISC Machine, ARM), digital signal processor (Digital Signal Processor, DSP) or smart mobile device, but the invention is not limited to this. Preferably, the arithmetic module 500 can analyze the image information of the image of the area A to be measured by a non-contact spatial frequency domain image (SFDI) demodulation algorithm, such as the pressure generated by the hemodynamic changes of the blood vessels in the wrist area The waveform changes to a dependent variable of the diameter and height direction of the blood vessel or the surrounding tissue, and the measured stress and strain curves are used to observe the change of the pressure wave to the pulse structure to obtain objective and standardized pulse measurement results .

顯示模組600訊號連接運算模組500,藉以接收並顯示影像與脈搏量測結果等資訊,且顯示模組600可包含一顯示器、一有線顯示裝置或一無線顯示裝置。具體而言,運算模組500可建置於一行動裝置或一個人電腦中,或可整合並內建於外罩120或基座110上,且本發明並不以任一實施方式或實施例為限。 The signal of the display module 600 is connected to the arithmetic module 500 to receive and display information such as image and pulse measurement results. The display module 600 may include a display, a wired display device, or a wireless display device. Specifically, the computing module 500 can be built in a mobile device or a personal computer, or can be integrated and built on the housing 120 or the base 110, and the present invention is not limited to any embodiment or example .

另外,如第1圖所示,光學脈波影像量測儀100可更包含一移動模組800,連接於成像模組200,且成像模組200與結構光投影裝置700可透過移動模組800而同步位移。較佳地,移動模組800可包含馬達、氣壓缸、微機電等 移動源,並可包含一移動機構(圖未繪示),用以帶動成像模組200與結構光投影裝置700於垂直方向、水平方向及傾斜方向移動,藉以將成像模組200與結構光投影裝置700調整至適當的拍攝位置。 In addition, as shown in FIG. 1, the optical pulse wave image measuring instrument 100 may further include a mobile module 800 connected to the imaging module 200, and the imaging module 200 and the structured light projection device 700 can pass through the mobile module 800 And synchronous displacement. Preferably, the mobile module 800 may include a motor, a pneumatic cylinder, a micro-electromechanical, etc. The moving source may include a moving mechanism (not shown) to drive the imaging module 200 and the structured light projection device 700 to move in the vertical direction, horizontal direction, and oblique direction, thereby projecting the imaging module 200 and the structured light The device 700 is adjusted to an appropriate shooting position.

請參照第2圖與第3圖,光學脈波影像量測儀100係用以檢測一受測者之手腕區域11(即前述之待測區域A)處的脈象狀態,且光學脈波影像量測儀100的架構大致上如第1圖所示,即包含一基座110、一外罩120、一成像模組200、一光源模組300、一結構光投影裝置700、一電路模組400、一運算模組500以及一顯示模組600。 Please refer to FIG. 2 and FIG. 3, the optical pulse wave image measuring instrument 100 is used to detect the pulse state at the wrist area 11 of the subject (that is, the aforementioned area A to be measured), and the optical pulse wave image volume The architecture of the measuring instrument 100 is roughly as shown in FIG. 1, which includes a base 110, a housing 120, an imaging module 200, a light source module 300, a structured light projection device 700, a circuit module 400, An arithmetic module 500 and a display module 600.

光學脈波影像量測儀100的基座110可為一矩形座體,而外罩120則為一設置於基座110上之一概呈半圓形之殼體,用以阻隔所有周邊環境光。具體地,前述的遮光範圍係位於基座110與外罩120之間,而待測區域則位於外罩120的遮光範圍中,以進一步防止外界光源影響光學脈波影像量測儀100的脈象量測準確度。 The base 110 of the optical pulse wave image measuring instrument 100 may be a rectangular base, and the cover 120 is a generally semi-circular shell disposed on the base 110 to block all ambient light. Specifically, the aforementioned shading range is located between the base 110 and the cover 120, and the area to be measured is located in the shading range of the cover 120, so as to further prevent external light sources from affecting the accurate pulse measurement of the optical pulse wave image measuring instrument 100 degree.

成像模組200設置於外罩120的內側,並以一方向角度擷取手腕區域11的一影像資訊,其中成像模組200的成像範圍約為50mm2至100mm2。光源模組300環繞設置於成像模組200的周圍並抵靠於外罩120上,而待測區域(圖未標示)則位於外罩120的遮光範圍中並為成像模組200、光源模組300與結構光投影裝置700所環繞,以在本發明之光學脈波影像量測儀100對受測者之手腕區域11處的脈象進行量測時提供充足的光線。較佳地,在第2圖與第 3圖的實施例中,光源模組300的數量可為二,二光源模組300彼此相對地環繞設置於成像模組200的周圍,且二光源模組300係分別抵靠於外罩120上,以有效地維持外罩120內的空間尺寸並對其提供充足的光源,但本發明並不以此為限。 The imaging module 200 is disposed inside the cover 120 and captures image information of the wrist area 11 at an angle. The imaging range of the imaging module 200 is about 50 mm 2 to 100 mm 2 . The light source module 300 is arranged around the imaging module 200 and abuts on the cover 120, and the area to be measured (not shown) is located in the shading range of the cover 120 and is the imaging module 200, the light source module 300 and The structured light projection device 700 is surrounded to provide sufficient light when the optical pulse wave image measuring instrument 100 of the present invention measures the pulse image at the wrist area 11 of the subject. Preferably, in the embodiments of FIGS. 2 and 3, the number of the light source modules 300 may be two, the two light source modules 300 are arranged around the imaging module 200 relative to each other, and the two light source modules The 300 series respectively abut against the outer cover 120 to effectively maintain the size of the space in the outer cover 120 and provide sufficient light sources for it, but the invention is not limited thereto.

請同時參照第4圖、第5圖與第6圖,第4圖係繪示第3圖實施例的光學脈波影像量測儀100之成像模組200、結構光投影裝置700與移動模組800的放大示意圖,第5圖係繪示第4圖實施例的光學脈波影像量測儀100之結構光投影裝置700與移動模組800的放大示意圖,而第6圖則係繪示第5圖實施例的光學脈波影像量測儀100之結構光投影裝置700的放大示意圖。 Please refer to FIG. 4, FIG. 5 and FIG. 6 at the same time. FIG. 4 illustrates the imaging module 200, structured light projection device 700 and mobile module of the optical pulse wave image measuring instrument 100 of the embodiment of FIG. 3. 800 is an enlarged schematic diagram, FIG. 5 is an enlarged schematic diagram of the structured light projection device 700 and the mobile module 800 of the optical pulse wave image measuring instrument 100 of the embodiment of FIG. 4, and FIG. 6 is a diagram showing the fifth An enlarged schematic view of the structured light projection device 700 of the optical pulse wave image measuring instrument 100 of the embodiment shown in the figure.

結構光投影裝置700設置於外罩120內並鄰設於成像模組200,且結構光投影裝置700可包含一結構光光源704、一數位微鏡裝置720以及一反射鏡730,且光學脈波影像量測儀100可更包含一移動模組800。詳細而言,結構光光源704將會發射一光束R,而光束R將會被反射鏡730反射至數位微鏡裝置720中,數位微鏡裝置720則會進一步處理光束R之光學性質而產生具有投影條紋P之結構光,再由數位微鏡裝置720將結構光投射至手腕區域11,並由成像模組200採集受手腕區域11所反射的光線,以利後續的分析。移動模組800則連接於成像模組200上,並進一步與結構光投影裝置700連接,且成像模組200與結構光投影裝置700則可透過移動模組800而同步位移。較佳地,移動模組 800可包含一移動機構(圖未繪示),用以帶動成像模組200與結構光投影裝置700於垂直方向、水平方向、傾斜方向及旋轉方向移動,以將成像模組200及結構光投影裝置700至一量測位置。 The structured light projection device 700 is disposed in the housing 120 and adjacent to the imaging module 200, and the structured light projection device 700 may include a structured light source 704, a digital micromirror device 720, and a reflection mirror 730, and an optical pulse wave image The measuring instrument 100 may further include a mobile module 800. In detail, the structured light source 704 will emit a light beam R, and the light beam R will be reflected by the mirror 730 into the digital micromirror device 720, and the digital micromirror device 720 will further process the optical properties of the light beam R to produce The structured light of the projection fringe P is then projected by the digital micromirror device 720 to the wrist area 11, and the imaging module 200 collects the light reflected by the wrist area 11 to facilitate subsequent analysis. The mobile module 800 is connected to the imaging module 200 and further connected to the structured light projection device 700, and the imaging module 200 and the structured light projection device 700 can be synchronously displaced through the mobile module 800. Preferably, the mobile module 800 may include a moving mechanism (not shown) to drive the imaging module 200 and the structured light projection device 700 to move in the vertical direction, horizontal direction, tilt direction, and rotation direction to project the imaging module 200 and the structured light The device 700 reaches a measurement position.

此外,第2圖與第3圖之光學脈波影像量測儀100的其他構件如電路模組400、運算模組500以及顯示模組600則已如前文所述,在此則不再贅述。 In addition, the other components of the optical pulse wave image measuring instrument 100 in FIGS. 2 and 3, such as the circuit module 400, the calculation module 500, and the display module 600, have already been described above, and will not be repeated here.

以下將配合參照第7圖與第8圖,以說明本發明之光學脈波影像量測儀100進行脈象量測的方法。請參照第7圖與第8圖,第7圖係繪示第2圖實施例的光學脈波影像量測儀100的操作狀態示意圖,而第8圖則係繪示本發明另一實施方式之脈象量測方法900的流程圖。脈象量測方法900包含步驟910、步驟920、步驟930以及步驟940。 The following will refer to FIG. 7 and FIG. 8 together to explain the method of performing pulse image measurement by the optical pulse wave image measuring instrument 100 of the present invention. Please refer to FIG. 7 and FIG. 8, FIG. 7 is a schematic diagram illustrating the operation state of the optical pulse wave image measuring instrument 100 of the embodiment of FIG. 2, and FIG. 8 is another embodiment of the present invention. A flowchart of a pulse measurement method 900. The pulse measurement method 900 includes steps 910, 920, 930, and 940.

步驟910係進行一定位調整步驟,其係透過影像定位輔助方式以將成像模組200對準於與受測者之一手腕區域11,並調整成像模組200及結構光投影裝置700至一量測位置,其中手腕區域11包含寸、關及尺(圖未標示)三部位中至少一者。詳細而言,當受測者欲使用本發明之光學脈波影像量測儀100進行脈象量測時,受測者將先以手心朝上的姿勢置於基座110與外罩120之間的遮光範圍中,並將手腕區域11放置於基座110之承靠基座脈枕111上,以將手腕區域11定位至正確的量測位置,並調整受測者的手腕區域11高度與心臟齊平,此時光學脈波影像量測儀100將於一空間頻率分別調變結構光投影裝置700的結構光光源704與成 像模組200,以找手腕區域11的橈動脈或周邊血管的延伸方向,並找出橈動脈之脈動最明顯的地方,藉以定位寸、關、尺三部位。 Step 910 is a positioning adjustment step, which is to align the imaging module 200 to the wrist area 11 of the subject through the image positioning assistance method, and adjust the imaging module 200 and the structured light projection device 700 to a certain amount To measure the position, the wrist area 11 includes at least one of three parts: an inch, a close, and a ruler (not shown in the figure). In detail, when the subject wants to use the optical pulse wave image measuring instrument 100 of the present invention to perform pulse image measurement, the subject will first place the palm-up position between the base 110 and the cover 120 for shading In the range, place the wrist area 11 on the pedestal 111 of the base 110 to locate the wrist area 11 to the correct measurement position, and adjust the height of the subject's wrist area 11 to be flush with the heart At this time, the optical pulse wave image measuring instrument 100 will modulate the structured light source 704 and the structure of the structured light projection device 700 at a spatial frequency, respectively. Like the module 200, to find the extension direction of the radial artery or the peripheral blood vessels in the wrist area 11, and to find the most obvious place of the pulsation of the radial artery, so as to locate the three parts of the inch, the close and the ruler.

較佳地,定位調整步驟可進一步透過移動模組800帶動成像模組200以及結構光投影裝置700進行垂直方向、水平方向、傾斜方向及旋轉方向之同步位移,以將成像模組200與結構光投影裝置700移動至一個最佳的量測位置。另外,定位調整步驟可調整成像模組200與結構光投影裝置700的位置,以使成像模組200的視野範圍同時包含手腕區域11的寸、關、尺三部位,以對同時對寸、關、尺三部位進行脈象的量測。較佳地,前述之結構光投影裝置700的光源頻譜的波段範圍為可見光波段(波長範圍為400nm-700nm)至近紅外光波段(波長範圍為700nm-1000nm)。具體地,影像定位輔助方式係利用皮膚表面紋理特徵與結構光調變解算高度資訊偵測手腕區域11的特徵,並利用一影像感測器與結構光投影裝置700的光源頻譜進行影像定位,以找出關部的位置,而關部沿血管延伸方向往手掌延伸約10mm的位置則為寸部,關部沿血管延伸方向往手肘延伸約10mm的位置則為尺部,其中前述之影像感測器可為RGB感測器,但本發明並不以此為限。 Preferably, the positioning adjustment step can further drive the imaging module 200 and the structured light projection device 700 through the moving module 800 to perform synchronous displacement in the vertical direction, the horizontal direction, the tilt direction, and the rotation direction, so as to move the imaging module 200 and the structured light The projection device 700 moves to an optimal measurement position. In addition, the positioning adjustment step can adjust the positions of the imaging module 200 and the structured light projection device 700, so that the field of view of the imaging module 200 includes the three positions of the wrist area 11 at the same time, so that Measure the pulse at the three parts of the ruler. Preferably, the wavelength range of the light source spectrum of the aforementioned structured light projection device 700 ranges from the visible light band (wavelength range is 400nm-700nm) to the near infrared light band (wavelength range is 700nm-1000nm). Specifically, the image positioning assistance method uses the skin surface texture features and structured light modulation to calculate height information to detect the characteristics of the wrist area 11, and uses an image sensor and the light source spectrum of the structured light projection device 700 to perform image positioning. In order to find the position of the close part, the position of the close part extending about 10mm to the palm along the blood vessel extending direction is the inch part, and the position of the close part extending about 10mm to the elbow along the blood vessel extending direction is the ruler, in which the aforementioned image The sensor may be an RGB sensor, but the invention is not limited thereto.

步驟920為進行一拍攝步驟,其係利用成像模組200擷取手腕區域11之一影像資訊,其中手腕區域11之影像資訊包含血管的管徑寬度形變資料及血管的高度方向形變資料或週邊組織形變資料。詳細而言,拍攝步驟係透過調 變頻率為0.0142mm-1至0.5mm-1之結構光光源704與成像模組200,以同步高速攝影方法擷取手腕區域11之不同量測點於不同空間頻率的調變影像,其中,結構光空間頻率可包含最低至頻率為零(亦即,光源中不包含結構光成分)的調變影像,以及最高至成像模組200可解析之空間頻率調變影像。 Step 920 is a photographing step, which uses the imaging module 200 to capture image information of the wrist region 11, wherein the image information of the wrist region 11 includes the data of the diameter and width of the blood vessel and the data of the height of the blood vessel or the surrounding tissue Deformation information. In detail, the shooting step is to capture the different measurement points of the wrist area 11 in different spaces through the synchronous high-speed photography method through the structured light source 704 and the imaging module 200 whose frequency conversion rate is 0.0142mm -1 to 0.5mm -1 Frequency-modulated image, wherein the spatial frequency of structured light can include the modulated image with the lowest frequency to zero (that is, the structured light component is not included in the light source), and the spatial frequency modulation up to the resolution of the imaging module 200 image.

另外,同步高速攝影方法可包含同步更新結構光光源704與成像模組200的步驟,其中結構光光源704與成像模組200的同步更新率係滿足奈奎斯特取樣定理(Nyquist Theorem)之取樣頻率,其約為120FPS(Frame per Second)至240FPS以上的取樣頻率,以避免脈波混疊現象發生。 In addition, the synchronous high-speed photography method may include the steps of simultaneously updating the structured light source 704 and the imaging module 200, wherein the synchronous update rate of the structured light source 704 and the imaging module 200 satisfies the sampling of the Nyquist Theorem The frequency is about 120 FPS (Frame per Second) to 240 FPS or more sampling frequency to avoid aliasing of the pulse wave.

步驟930為進行一運算步驟,其係利用運算模組500分析影像資訊,以得一運算結果。詳細而言,運算模組500先計算結構光之投影條紋P受手腕區域11調變的彎曲程度,再利用運算模組500以非接觸式空間頻率域影像解調變演算法解調變投影條紋P的彎曲程度而得到手腕區域11的相位資訊,並將前述之相位資訊轉換為血管的管徑寬度形變資料及血管的高度方向形變資料或週邊組織形變資料,並分析血管的血流動力學變化所產生之壓力波形變所致之血管的管徑寬度及高度方向或週邊組織的應變量,以獲得橈動脈或周邊血管位置、血管深度等信息,進而重建手腕區域11之血管分布狀況及單位時間內的脈象變化情形之運算結果。 Step 930 is an operation step, which uses the operation module 500 to analyze the image information to obtain an operation result. In detail, the calculation module 500 first calculates the degree of bending of the projected fringe P of the structured light by the wrist area 11, and then uses the calculation module 500 to demodulate the projected fringe with a non-contact spatial frequency domain image demodulation algorithm The degree of curvature of P to obtain the phase information of the wrist area 11, and convert the aforementioned phase information into the diameter of the blood vessel and the deformation data of the height of the blood vessel or the deformation data of the surrounding tissue, and analyze the hemodynamic changes of the blood vessel The diameter width and height direction of the blood vessel caused by the pressure waveform change or the dependent variable of the surrounding tissue to obtain information such as the position of the radial artery or the peripheral blood vessel and the depth of the blood vessel, and then reconstruct the blood vessel distribution and unit time of the wrist area 11 The result of the operation in the situation of the change of the pulse.

步驟940為進行一比對步驟,其係利用運算模組500將前述之運算結果與一脈象分類資料集合進行比對,以輸出受測者之一脈象量測結果。詳細而言,脈象分類資料集合包含浮、沈、虛、實、遲、數之六大類共二十八種脈象特徵,而運算模組500則會將運算結果與前述二十八種脈象特徵進行比對,以提供對應的脈象量測結果。 Step 940 is a comparison step, which uses the calculation module 500 to compare the foregoing calculation result with a pulse classification data set to output a pulse measurement result of the subject. In detail, the pulse classification data set includes a total of 28 types of pulse characteristics in six categories: floating, sinking, virtual, real, late, and counting, and the calculation module 500 compares the calculation results with the aforementioned 28 types of pulse characteristics Compare to provide corresponding pulse measurement results.

綜上所述,本發明之光學脈波影像量測儀利用成像模組自動擷取受測者的手腕區域影像資訊,並透過運算模組進行運算與分析,以進一步將脈象資訊視覺化,並可同時對脈象的量測手法及其結果等數據進行標準化,避免習知利用觸診式或壓力式脈象偵測所造成之結果誤差。再者,本發明之脈象量測方法透過將非接觸式空間頻率域影像技術應用於脈象量測中,且以自動化擷取脈象之影像資訊與計算,並將結果與脈象分類資料集合進行比對,以輔助中醫師進行把脈與診斷,進而提供一客觀且準確之脈象量測結果。 In summary, the optical pulse wave image measuring instrument of the present invention uses the imaging module to automatically capture the image information of the wrist area of the subject, and performs calculation and analysis through the calculation module to further visualize the pulse information, and The pulse measurement technique and its results can be standardized at the same time, to avoid the result error caused by the conventional use of palpation or pressure pulse detection. Furthermore, the pulse measurement method of the present invention applies non-contact spatial frequency domain imaging technology to pulse measurement, and automatically acquires pulse image information and calculation, and compares the results with the pulse classification data set , To assist Chinese medicine practitioners to carry out pulse and diagnosis, and then provide an objective and accurate pulse measurement results.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above in an embodiment, it is not intended to limit the present invention. Anyone who is familiar with this art can make various modifications and retouching without departing from the spirit and scope of the present invention, so the protection of the present invention The scope shall be as defined in the appended patent application scope.

200‧‧‧成像模組 200‧‧‧Imaging module

202‧‧‧成像偏光片 202‧‧‧Imaging polarizer

204‧‧‧成像鏡頭 204‧‧‧Imaging lens

206‧‧‧影像感測器 206‧‧‧Image sensor

208‧‧‧同步電路 208‧‧‧synchronous circuit

300‧‧‧光源模組 300‧‧‧Light source module

302‧‧‧光源偏光片 302‧‧‧Light source polarizer

304‧‧‧光源 304‧‧‧Light source

308‧‧‧同步電路 308‧‧‧synchronous circuit

400‧‧‧電路模組 400‧‧‧circuit module

402‧‧‧電源電路 402‧‧‧Power circuit

404‧‧‧控制電路 404‧‧‧Control circuit

406‧‧‧驅動電路 406‧‧‧Drive circuit

408‧‧‧資料傳輸電路 408‧‧‧Data transmission circuit

500‧‧‧運算模組 500‧‧‧ arithmetic module

600‧‧‧顯示模組 600‧‧‧Display module

700‧‧‧結構光投影裝置 700‧‧‧Structured light projection device

702‧‧‧光源偏光片 702‧‧‧Light source polarizer

704‧‧‧結構光光源 704‧‧‧Structured light source

708‧‧‧同步電路 708‧‧‧synchronous circuit

800‧‧‧移動模組 800‧‧‧Mobile module

A‧‧‧待測區域 A‧‧‧ area to be tested

Claims (21)

一種光學脈波影像量測儀,包含:一基座;一外罩,設置於該基座上;一成像模組,設置於該外罩內,且該成像模組用以擷取一待測區域的一影像;一光源模組,設置於該成像模組之一側邊;一結構光投影裝置,設置於該外罩內,其中該結構光投影裝置的光源頻譜包含一可見光波段至一近紅外光波段;一電路模組,電性連接該成像模組與該光源模組;一運算模組,訊號連接該電路模組;以及一顯示模組,訊號連接該運算模組。 An optical pulse wave image measuring instrument includes: a base; an outer cover, which is arranged on the base; an imaging module, which is arranged in the outer cover, and the imaging module is used to capture an area to be measured An image; a light source module, disposed on one side of the imaging module; a structured light projection device, disposed in the housing, wherein the light source spectrum of the structured light projection device includes a visible light band to a near infrared light band A circuit module that electrically connects the imaging module and the light source module; an arithmetic module that signals connect to the circuit module; and a display module that signals connect to the arithmetic module. 如申請專利範圍第1項所述之光學脈波影像量測儀,更包含:一移動模組,連接於該成像模組。 The optical pulse wave image measuring instrument described in item 1 of the patent application scope further includes: a mobile module connected to the imaging module. 如申請專利範圍第2項所述之光學脈波影像量測儀,其中該成像模組與該結構光投影裝置透過該移動模組而同步位移。 The optical pulse wave image measuring instrument as described in item 2 of the patent application scope, wherein the imaging module and the structured light projection device are simultaneously displaced through the moving module. 如申請專利範圍第1項所述之光學脈波影像量測儀,其中該基座包含一承靠手腕脈枕。 The optical pulse wave image measuring instrument as described in item 1 of the patent application scope, wherein the base includes a wrist pillow that bears the wrist. 如申請專利範圍第1項所述之光學脈波影像量測儀,其中該外罩用以阻隔該待測區域之所有周邊環境光。 The optical pulse wave image measuring instrument as described in item 1 of the patent application scope, wherein the outer cover is used to block all surrounding ambient light of the area to be measured. 如申請專利範圍第1項所述之光學脈波影像量測儀,其中該成像模組包含一成像偏光片、一成像鏡頭、一影像感測器以及一同步電路。 The optical pulse wave image measuring instrument as described in item 1 of the patent application scope, wherein the imaging module includes an imaging polarizer, an imaging lens, an image sensor and a synchronization circuit. 如申請專利範圍第6項所述之光學脈波影像量測儀,其中該光源模組包含一光源偏光片、一光源以及一同步電路。 The optical pulse wave image measuring instrument as described in item 6 of the patent application scope, wherein the light source module includes a light source polarizer, a light source and a synchronization circuit. 如申請專利範圍第1項所述之光學脈波影像量測儀,其中該結構光投影裝置包含一數位光學處理投影機。 An optical pulse wave image measuring instrument as described in item 1 of the patent application scope, wherein the structured light projection device includes a digital optical processing projector. 如申請專利範圍第8項所述之光學脈波影像量測儀,其中該數位光學處理投影機包含一數位微鏡裝置以及一數位微鏡裝置控制模組。 An optical pulse wave image measuring instrument as described in item 8 of the patent application range, wherein the digital optical processing projector includes a digital micromirror device and a digital micromirror device control module. 如申請專利範圍第2項所述之光學脈波影像量測儀,其中該移動模組包含:一移動機構,用以帶動該成像模組與該結構光投影裝置於垂直方向、水平方向及傾斜方向移動。 The optical pulse wave image measuring instrument as described in item 2 of the patent application scope, wherein the moving module includes: a moving mechanism for driving the imaging module and the structured light projection device in the vertical direction, horizontal direction and tilt Direction of movement. 如申請專利範圍第6項所述之光學脈波影像量測儀,其中該結構光投影裝置包含一光源偏光片、一結構光光源以及一同步電路。 An optical pulse wave image measuring instrument as described in item 6 of the patent application range, wherein the structured light projection device includes a light source polarizer, a structured light source, and a synchronization circuit. 如申請專利範圍第1項所述之光學脈波影像量測儀,其中該運算模組包含一計算機處理器或一行動裝置運算單元。 The optical pulse wave image measuring instrument as described in item 1 of the patent application scope, wherein the computing module includes a computer processor or a computing device of a mobile device. 一種脈波形變量測方法,其包含下述步驟:進行一定位調整步驟,其係透過一影像定位輔助方式以將一成像模組對準於一受測者之一手腕區域,並調整該成像模組及一結構光投影裝置至一量測位置,其中該手腕區域包含寸、關及尺三部位中至少一者,其中該結構光投影裝置的光源頻譜包含一可見光波段至一近紅外光波段;進行一拍攝步驟,其係利用該成像模組擷取該手腕區域之一影像資訊;以及進行一運算步驟,其係利用一運算模組分析該影像資訊,以得一脈波形變運算結果。 A pulse waveform variable measurement method includes the following steps: performing a positioning adjustment step, which is to align an imaging module to a wrist area of a subject through an image positioning assistance method, and adjust the imaging A module and a structured light projection device to a measurement position, wherein the wrist area includes at least one of three parts: an inch, a close and a ruler, wherein a light source spectrum of the structured light projection device includes a visible light band to a near infrared light band Performing a photographing step, which uses the imaging module to capture image information of the wrist area; and performing an arithmetic step, which uses an arithmetic module to analyze the image information to obtain a pulse waveform change operation result. 如申請專利範圍第13項所述之脈波形變量測方法,其中該定位調整步驟係於一空間頻率分別調變該結構光投影裝置的光源頻譜與該成像模組的光源頻譜,藉以定位該手腕區域。 The pulse waveform variable measurement method as described in item 13 of the patent application scope, wherein the positioning adjustment step is to modulate the light source spectrum of the structured light projection device and the light source spectrum of the imaging module at a spatial frequency to locate the Wrist area. 如申請專利範圍第13項所述之脈波形變量測方法,其中該拍攝步驟係利用一同步高速攝影方法擷取該手腕區域之複數個量測點的調變影像資訊,其中各該量測點具有一空間頻率。 The pulse waveform variable measurement method as described in item 13 of the patent application scope, wherein the shooting step is to acquire modulated image information of a plurality of measurement points of the wrist area by a synchronous high-speed photography method, wherein each measurement The point has a spatial frequency. 如申請專利範圍第13項所述之脈波形變量測方法,其中該運算步驟係利用該運算模組以一非接觸式空間頻率域影像解調變演算法分析該手腕區域之該影像資訊。 The pulse waveform variable measurement method as described in item 13 of the patent application scope, wherein the calculation step is to use the calculation module to analyze the image information of the wrist region with a non-contact spatial frequency domain image demodulation algorithm. 如申請專利範圍第13項所述之脈波形變量測方法,其中該手腕區域之該影像資訊包含一血管的管徑寬度形變資料及一血管的高度方向形變資料或週邊組織形變資料。 The pulse waveform variable measurement method as described in item 13 of the patent application range, wherein the image information of the wrist area includes a vessel diameter width deformation data and a blood vessel height direction deformation data or peripheral tissue deformation data. 如申請專利範圍第13項所述之脈波形變量測方法,其中該影像定位輔助方式係利用一影像感測器與該結構光投影裝置的光源頻譜進行影像定位,且該結構光投影裝置的光源頻譜的波段範圍為可見光波段至近紅外光波段。 The pulse waveform variable measurement method as described in item 13 of the patent application scope, wherein the image positioning auxiliary method uses an image sensor and the light source spectrum of the structured light projection device for image positioning, and the structured light projection device The frequency band of the light source spectrum ranges from the visible light band to the near infrared light band. 如申請專利範圍第13項所述之脈波形變量測方法,其中該影像定位輔助方式係利用一皮膚表面紋理特徵與一結構光調變解算高度資訊以對該手腕區域進行定位。 The pulse waveform variable measurement method as described in item 13 of the patent application scope, wherein the image positioning assistance method uses a skin surface texture feature and a structured light modulation to calculate height information to locate the wrist area. 如申請專利範圍第13項所述之脈波形變量測方法,其中該調整步驟係調整該成像模組與該結構光投影裝置的位置,藉以使該成像模組的一視野範圍包含該手腕區域,其中該手腕區域同時包含該寸、關及尺三部位。 The pulse waveform variable measurement method as described in item 13 of the patent application scope, wherein the adjustment step is to adjust the position of the imaging module and the structured light projection device so that a field of view of the imaging module includes the wrist area , Where the wrist area contains the inch, close and ruler parts. 如申請專利範圍第16項所述之脈波形變量測方法,其中該非接觸式空間頻率域影像解調變演算法係分析該手腕區域之血管的血流動力學變化所產生之壓力波形變而對血管的管徑寬度及高度方向或週邊組織的一應變量。 The pulse waveform variable measurement method as described in item 16 of the patent application scope, wherein the non-contact spatial frequency domain image demodulation algorithm is to analyze the pressure waveform generated by the hemodynamic change of the blood vessel in the wrist area. It is a dependent variable on the width and height of the blood vessel or the surrounding tissue.
TW107124536A 2018-07-16 2018-07-16 Optical pulse image measuring device and method for analyzing change of pulse waveform TWI687200B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107124536A TWI687200B (en) 2018-07-16 2018-07-16 Optical pulse image measuring device and method for analyzing change of pulse waveform
CN201811048854.1A CN110720897A (en) 2018-07-16 2018-09-10 Optical pulse wave image measuring instrument and pulse wave measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107124536A TWI687200B (en) 2018-07-16 2018-07-16 Optical pulse image measuring device and method for analyzing change of pulse waveform

Publications (2)

Publication Number Publication Date
TW202005604A TW202005604A (en) 2020-02-01
TWI687200B true TWI687200B (en) 2020-03-11

Family

ID=69217635

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124536A TWI687200B (en) 2018-07-16 2018-07-16 Optical pulse image measuring device and method for analyzing change of pulse waveform

Country Status (2)

Country Link
CN (1) CN110720897A (en)
TW (1) TWI687200B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759757B (en) * 2020-06-05 2022-04-01 揚明光學股份有限公司 Optical characteristic measurement device and fabrication method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111700598B (en) * 2020-05-19 2023-09-15 上海掌门科技有限公司 Pulse feeling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136059A (en) * 2015-05-26 2015-12-09 东莞市盟拓光电科技有限公司 Three-dimensional measuring system capable of reducing light reflection on surface of measured object
CN106175676A (en) * 2016-07-11 2016-12-07 天津大学 Imaging space of lines follows the trail of lingual surface color three dimension formation method and system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2460987Y (en) * 2000-09-15 2001-11-21 清华大学 Real-time investigating device for welded seam path trajectory
CN101825445B (en) * 2010-05-10 2011-11-30 华中科技大学 Three-dimension measuring system for dynamic object
KR101225390B1 (en) * 2011-06-02 2013-01-22 경북대학교 산학협력단 Pulse analyzing system using optical coherence tomography for oriental medical and the method
US20140213910A1 (en) * 2013-01-25 2014-07-31 The Regents Of The University Of California Method and apparatus for performing qualitative and quantitative analysis of burn extent and severity using spatially structured illumination
WO2015078735A1 (en) * 2013-11-27 2015-06-04 Koninklijke Philips N.V. Device and method for obtaining pulse transit time and/or pulse wave velocity information of a subject
CN104248423A (en) * 2014-08-03 2014-12-31 李志芳 Non-contact three-dimensional pulse measuring and analyzing method
CN104568963A (en) * 2014-12-17 2015-04-29 华南理工大学 Online three-dimensional detection device based on RGB structured light
US10973422B2 (en) * 2016-01-22 2021-04-13 Fitbit, Inc. Photoplethysmography-based pulse wave analysis using a wearable device
CN105942992A (en) * 2016-04-12 2016-09-21 中国科学院合肥物质科学研究院 Real-time pulse wave detection device based on CCD
CN107149462A (en) * 2017-04-10 2017-09-12 东北大学 A kind of vein displaying based on intelligent terminal is as device and method
CN107802269A (en) * 2017-10-30 2018-03-16 温州医科大学 Real-time single snap shot multifrequency demodulation spatial frequency domain imaging method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136059A (en) * 2015-05-26 2015-12-09 东莞市盟拓光电科技有限公司 Three-dimensional measuring system capable of reducing light reflection on surface of measured object
CN106175676A (en) * 2016-07-11 2016-12-07 天津大学 Imaging space of lines follows the trail of lingual surface color three dimension formation method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759757B (en) * 2020-06-05 2022-04-01 揚明光學股份有限公司 Optical characteristic measurement device and fabrication method thereof

Also Published As

Publication number Publication date
TW202005604A (en) 2020-02-01
CN110720897A (en) 2020-01-24

Similar Documents

Publication Publication Date Title
US10492691B2 (en) Systems and methods for tissue stiffness measurements
CN102670177B (en) Skin optical diagnosis device and operation method thereof
US7705291B2 (en) Apparatus and method for wound diagnosis
KR20090013216A (en) Systems and methods for wound area management
US20150320385A1 (en) Systems and methods for noninvasive health monitoring
TWI687200B (en) Optical pulse image measuring device and method for analyzing change of pulse waveform
JP7101509B2 (en) Biological information measuring device
CN104146684B (en) The dizzy detector of a kind of eyeshield formula
TW201310019A (en) PPG signal optical imaging device and optical measurement method
US11207024B2 (en) Vascular imaging apparatus and vascular imaging method
EP3685304A1 (en) Contactless rolled fingerprints
CN101626728A (en) Optical height measuring instrument
TWI717992B (en) Optical pulse image measuring device and method for analyzing change of pulse waveform
WO2004056262A1 (en) Apparatus and method for the reproduction of measuring conditions based on the body surface or surface veins and the contacting pressure
CN209951236U (en) Optical image pulse measuring system
TW202023478A (en) System and method for measuring scoliosis
KR102266345B1 (en) Fingernails and toenails diseases detection apparatus and method thereof
WO2015060070A1 (en) Organ image capture device
KR102049040B1 (en) Apparatus for diagnosing biometric roughness
WO2018185992A1 (en) Biometric authentication device and method
CN117462073B (en) Hand-held polarization imaging intraocular pressure detection device and method
CN106352810A (en) Profile measuring and perspective imaging system with smart phone
CN108392189A (en) Holographic pulse-taking instrument based on laser scanning Three-Dimensional Dynamic profilometry
Wortman et al. LesionAir: An automated, low-cost vision-based skin cancer diagnostic tool
TWM571213U (en) Optical image pulse measurement system