TWI685985B - Fast settling output line circuit, fast settling method and imaging system - Google Patents
Fast settling output line circuit, fast settling method and imaging system Download PDFInfo
- Publication number
- TWI685985B TWI685985B TW107146628A TW107146628A TWI685985B TW I685985 B TWI685985 B TW I685985B TW 107146628 A TW107146628 A TW 107146628A TW 107146628 A TW107146628 A TW 107146628A TW I685985 B TWI685985 B TW I685985B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- transistor
- bit line
- gate
- source
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000003384 imaging method Methods 0.000 title claims abstract description 33
- 238000007667 floating Methods 0.000 claims abstract description 56
- 238000009792 diffusion process Methods 0.000 claims abstract description 46
- 230000005540 biological transmission Effects 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 40
- 239000013078 crystal Substances 0.000 claims description 20
- 230000003071 parasitic effect Effects 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 239000013642 negative control Substances 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 241000593989 Scardinius erythrophthalmus Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 201000005111 ocular hyperemia Diseases 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/65—Control of camera operation in relation to power supply
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/741—Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/616—Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
- H04N25/627—Detection or reduction of inverted contrast or eclipsing effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/767—Horizontal readout lines, multiplexers or registers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
本揭露大體來說涉及互補金屬氧化物半導體(CMOS)圖像感測器,且具體來說涉及但並非只涉及應用於圖像感測器中的光電二極體像素單元及所述光電二極體像素單元的輸出線(位元線)的裝置及方法,所述圖像感測器能夠在圖像信號的讀出期間使位元線快速穩定以減少固定圖案雜訊(FPN)並維持供應電源的穩定性。 The present disclosure generally relates to a complementary metal oxide semiconductor (CMOS) image sensor, and specifically but not exclusively relates to a photodiode pixel unit and the photodiode used in the image sensor Device and method for output line (bit line) of volume pixel unit, the image sensor can quickly stabilize bit line during readout of image signal to reduce fixed pattern noise (FPN) and maintain supply Power supply stability.
圖像感測器已普遍存在。圖像感測器廣泛用於數位照相機(digital still camera)、手機、安全照相機以及醫療、汽車及其他應用中。這些應用中的許多應用需要使用高動態範圍(High dynamic range,HDR)圖像感測器。人眼一般具有高達約100分貝(dB)的動態範圍。對於汽車應用來說,常常需要具有超過100dB動態範圍的圖像感測器來處理不同的駕駛狀況,例如在穿過黑暗的隧道駛入明亮的陽光中時。 Image sensors are already ubiquitous. Image sensors are widely used in digital still cameras, mobile phones, security cameras, and medical, automotive, and other applications. Many of these applications require the use of high dynamic range (HDR) image sensors. The human eye generally has a dynamic range of up to about 100 decibels (dB). For automotive applications, image sensors with a dynamic range of more than 100dB are often required to handle different driving situations, such as when driving through a dark tunnel into bright sunlight.
HDR圖像感測器並非始終正確地執行HDR功能。常見 的缺點包括會由固定圖案雜訊(fixed pattern noise,FPN)導致圖像劣化、隨機雜訊大、與電荷暈染相關聯的解析度降低、存在運動偽影(motion artifact)、靈敏度固定以及在使用多個光電二極體時填充因數(fill factor)較低,其中填充因數是像素的感光面積對像素的總面積的比率。 The HDR image sensor does not always perform the HDR function correctly. common Disadvantages include fixed pattern noise (FPN) that causes image degradation, large random noise, reduced resolution associated with charge blooming, the presence of motion artifacts, fixed sensitivity, and When multiple photodiodes are used, the fill factor is low, where the fill factor is the ratio of the photosensitive area of the pixel to the total area of the pixel.
當使用圖像感測器時,多個像素單元中的每一者中的光生電子(photo-generated electron)從光電二極體(photodiode,PD)轉移到浮動擴散(floating diffusion,FD)以供後續讀出。耦合在PD與FD之間的轉移(transfer,TX)電晶體在施加到TX閘極端子的電壓脈衝的控制下接通及斷開以實現這種電荷轉移。由於在TX閘極端子與FD之間始終存在耦合電容,因此施加在TX閘極上的脈衝信號始終在很大程度上耦合到FD。這稱為TX饋通(TX feed-through)。所述脈衝信號通過源極跟隨器(source follower,SF)電晶體及列選擇(row select,RS)電晶體波動到像素單元的輸出線(也稱為位元線)。這種大的不期望的脈衝的傳播是不可避免的,且甚至也會對暗信號(由像素內部的非光生本征電子(non-photo-generated,intrinsic electrons)引起的信號)造成惱人的FPN。對於任何給定的位元線來說,由於所述給定的位元線連接到行中的所有像素,因此所述給定的位元線具有明顯的阻容(capacitive and resistive,RC)負載。因此,位元線上的任何狀態改變均會因這種RC延遲而不可避免地變慢。也就是說,一旦在位元線上發生狀態改變,便會耗用長的時間才能穩定到重新更新的步長準位(step level)。這受所謂的RC時間常數支配。對於任何給定的輸入步長Vin來說,其穩定時間受下式支配:
解決此問題的其中一種典型解決方案是使用鉗位電壓產生器來對位元線電壓進行鉗位以限制其擺動。此有助於抑制由接近電壓範圍的下端的電壓所帶來的高光帶化(high-light-banding)。這個目標是通過不允許位元線降到低於鉗位電壓限值來實現的。結果,這會減少在高光照條件下的FPN。然而,這一解決方案導致電源供應對每一步長電壓改變作出反應而引起大的電流變化,此轉而會在感測器上引起其他不期望的性能問題。 One typical solution to this problem is to use a clamping voltage generator to clamp the bit line voltage to limit its swing. This helps to suppress high-light-banding caused by the voltage near the lower end of the voltage range. This goal is achieved by not allowing the bit line to fall below the clamping voltage limit. As a result, this will reduce FPN under high light conditions. However, this solution causes the power supply to react to each step of the voltage change and cause large current changes, which in turn can cause other undesirable performance problems on the sensor.
另一種解決方案是在電荷轉移期間將像素單元從像素單元的輸出線(位元線)斷開,此同樣借助於所添加的鉗位電壓產生器。鉗位電壓產生器不允許位元線電壓降到低於某一電壓準位。因此,當發生電荷轉移時,位元線上的電壓改變可減小,且穩定時間可縮短。另外,鉗位電壓產生器使總電源供應(AVDD)電流保持接近恒定,以避免電源供應發生大的變化。通過這一解決方案,在RS電晶體再次重新接通以將像素輸出重新連接到位元線之後,在與最高電壓相關的完全黑暗條件下,位元線被流過SF電晶體的上拉電流充電而不會被相對弱的電流源產生器的下拉電流吸收。由於SF電流不受電流源產生器限制,因此穩定時間也縮短。始終達到較快的上拉。這意味著,在低光照條件下較快地穩定是這種解決方案的明顯優點所在。然而,在強光照條件下的性能仍然是問題,因為光強度的較高反差會在位元線上造成較大的 電壓降,此會直接導致穩定時間較長。 Another solution is to disconnect the pixel cell from the output line (bit line) of the pixel cell during charge transfer, again by means of the added clamping voltage generator. The clamp voltage generator does not allow the bit line voltage to drop below a certain voltage level. Therefore, when charge transfer occurs, the voltage change on the bit line can be reduced, and the settling time can be shortened. In addition, the clamp voltage generator keeps the total power supply (AVDD) current close to constant to avoid large changes in power supply. With this solution, after the RS transistor is turned back on again to reconnect the pixel output to the bit line, the bit line is charged by the pull-up current flowing through the SF transistor under the complete dark conditions associated with the highest voltage It will not be absorbed by the pull-down current of the relatively weak current source generator. Since the SF current is not limited by the current source generator, the settling time is also shortened. Always achieve a faster pull-up. This means that faster stabilization under low light conditions is the obvious advantage of this solution. However, the performance under strong light conditions is still a problem, because the higher contrast of light intensity will cause a larger bit line Voltage drop, this will directly lead to a longer settling time.
此外,隨著像素大小變小且所利用的轉換增益變高,FD電容可變得過小而使得TX饋通可能容易超出類比-數位轉換器(analog-digital converter,ADC)輸入電壓的範圍。 In addition, as the pixel size becomes smaller and the conversion gain utilized becomes higher, the FD capacitance may become too small so that the TX feedthrough may easily exceed the input voltage range of the analog-digital converter (ADC).
根據本揭露實施例,提供一種輸出線電路、快速穩定方法和成像系統以快速穩定位元線。 According to an embodiment of the present disclosure, an output line circuit, a fast stabilization method, and an imaging system are provided to quickly stabilize bit lines.
根據本揭露實施例,一種快速穩定輸出線電路包括:光電二極體,適於回應於入射光來積聚圖像電荷;至少一個轉移電晶體,耦合在所述光電二極體與浮動擴散之間以將所述圖像電荷從所述光電二極體轉移到所述浮動擴散,其中轉移閘極電壓控制所述圖像電荷從所述轉移電晶體的轉移接收端子向所述浮動擴散的傳輸;重置電晶體,被耦合成向所述浮動擴散供應重置浮動擴散電壓,其中重置閘極電壓控制所述重置電晶體;源極跟隨器電晶體,被耦合成從源極跟隨器閘極端子接收所述浮動擴散的電壓並將經放大信號提供到源極跟隨器源極端子;位元線使能電晶體,耦合在位元線與位元線源極節點之間,其中位元線使能電壓控制所述位元線使能電晶體,且其中所述位元線源極節點耦合到黑太陽電壓產生器;以及,電流源產生器,耦合在所述位元線源極節點與地電位之間,其中所述電流源產生器通過偏壓電晶體向所述位元線源極節點提供可調整的電流,所述偏壓電晶體受偏壓控制電壓控制。 According to an embodiment of the present disclosure, a fast and stable output line circuit includes: a photodiode adapted to accumulate image charge in response to incident light; at least one transfer transistor coupled between the photodiode and floating diffusion To transfer the image charge from the photodiode to the floating diffusion, wherein a transfer gate voltage controls the transfer of the image charge from the transfer receiving terminal of the transfer transistor to the floating diffusion; A reset transistor, coupled to supply a reset floating diffusion voltage to the floating diffusion, wherein a reset gate voltage controls the reset transistor; a source follower transistor, coupled to the source follower gate The terminal receives the floating diffused voltage and provides the amplified signal to the source terminal of the source follower; the bit line enables transistors, coupled between the bit line and the source node of the bit line, where the bit A line enable voltage controls the bit line enable transistor, and wherein the bit line source node is coupled to a black solar voltage generator; and, a current source generator is coupled to the bit line source node Between ground potential, wherein the current source generator provides an adjustable current to the bit line source node through a bias piezoelectric crystal, which is controlled by a bias control voltage.
根據本揭露實施例,一種使輸出線電路快速穩定的方法 包括:通過將重置閘極電壓重置到高準位以接通重置電晶體來將浮動擴散重置到重置浮動擴散電壓;當列選擇電晶體及位元線使能電晶體被斷開時,通過將空閒使能電壓設定成高準位以導通空閒使能電晶體來通過位元線寄生電容器將位元線預充電到源極跟隨器源極重置電壓;通過將黑太陽使能電壓設定成高準位以接通黑太陽使能電晶體並通過將黑太陽控制電壓提供到黑太陽電晶體來將位元線源極節點預充電到黑太陽電壓,並通過將鉗位使能電壓設定成低準位來關斷鉗位使能電晶體;通過將所述空閒使能電壓設定成低準位以關斷所述空閒使能電晶體來中斷對所述位元線寄生電容器的預充電;通過將列選擇閘極電壓及位元線使能電壓設定成高準位以將所述列選擇電晶體及所述位元線使能電晶體閉合來對源極跟隨器源極端子與所述位元線的連接進行使能並將所述位元線重新連接到所述位元線源極節點;通過將所述重置閘極電壓設定成低準位以斷開所述重置電晶體來將所述浮動擴散從像素電壓斷開;以及,從所述浮動擴散讀取背景信號,其中源極跟隨器電晶體在源極跟隨器閘極端子處接收所述背景信號並在源極跟隨器源極端子處提供經放大背景信號,且其中類比-數位轉換器將所述經放大背景信號從所述位元線接收到類比-數位轉換器輸入端子。 According to an embodiment of the present disclosure, a method for fast and stable output line circuit Including: reset the floating diffusion to the reset floating diffusion voltage by resetting the reset gate voltage to a high level to turn on the reset transistor; when the column select transistor and bit line enable transistor are turned off When on, pre-charge the bit line to the source reset voltage of the source follower through the bit line parasitic capacitor by setting the idle enable voltage to a high level to turn on the idle enable transistor; The energy voltage is set to a high level to turn on the black solar enable transistor and to precharge the bit line source node to the black solar voltage by supplying the black solar control voltage to the black solar transistor, and by clamping The enable voltage is set to a low level to turn off the clamp enable transistor; the parasitic capacitor to the bit line is interrupted by setting the idle enable voltage to a low level to turn off the idle enable transistor Pre-charging; by setting the column select gate voltage and bit line enable voltage to a high level to close the column select transistor and the bit line enable transistor to the source terminal of the source follower Enable the connection of the bit line with the bit line and reconnect the bit line to the source node of the bit line; by setting the reset gate voltage to a low level to disconnect the Reset the transistor to disconnect the floating diffusion from the pixel voltage; and, read the background signal from the floating diffusion, wherein the source follower transistor receives the background signal at the gate terminal of the source follower and The amplified background signal is provided at the source terminal of the source follower, and wherein the analog-to-digital converter receives the amplified background signal from the bit line to the analog-to-digital converter input terminal.
根據本揭露實施例,一種具有快速穩定輸出線電路的成像系統包括:由像素單元形成的像素陣列,其中每一像素單元包括:光電二極體,適於回應於入射光來積聚圖像電荷;至少一個轉移電晶體,耦合在所述光電二極體與浮動擴散之間以將所述圖像電荷從所述光電二極體轉移到所述浮動擴散,其中轉移閘極電 壓控制所述圖像電荷從所述轉移電晶體的轉移接收端子向所述浮動擴散的傳輸;重置電晶體,被耦合成向所述浮動擴散供應重置浮動擴散電壓,其中重置閘極電壓控制所述重置電晶體;以及,源極跟隨器電晶體,被耦合成從源極跟隨器閘極端子接收所述浮動擴散的電壓並將經放大信號提供到源極跟隨器源極端子;位元線使能電晶體,耦合在位元線與位元線源極節點之間,其中位元線使能電壓控制所述位元線使能電晶體,且其中所述位元線源極節點耦合到黑太陽電壓產生器;電流源產生器,耦合在所述位元線源極節點與地電位之間,其中所述電流源產生器通過偏壓電晶體向所述位元線源極節點提供可調整的電流,所述偏壓電晶體受偏壓控制電壓控制;控制電路系統,耦合到所述像素陣列以控制所述像素陣列的操作,其中所述控制電路系統向所述像素陣列提供所述轉移閘極電壓、所述重置閘極電壓、列選擇閘極電壓、所述位元線使能電壓、採樣保持電壓、閘地-陰地電壓、偏壓電壓、鉗位控制電壓、鉗位使能電壓、黑太陽控制電壓、黑太陽使能電壓、空閒控制電壓及空閒使能電壓;讀出電路系統,通過多個讀出行耦合到所述像素陣列,以從所述多個像素讀出圖像資料;以及,功能邏輯,被耦合成從所述讀出電路系統接收圖像資料以儲存來自所述多個像素單元中的每一者的所述圖像資料,其中所述功能邏輯向所述控制電路系統提供指令。 According to an embodiment of the present disclosure, an imaging system with a fast and stable output line circuit includes: a pixel array formed by pixel units, wherein each pixel unit includes: a photodiode, suitable for accumulating image charges in response to incident light; At least one transfer transistor coupled between the photodiode and floating diffusion to transfer the image charge from the photodiode to the floating diffusion, wherein the transfer gate is electrically charged Control the transfer of the image charge from the transfer receiving terminal of the transfer transistor to the floating diffusion; a reset transistor, coupled to supply a reset floating diffusion voltage to the floating diffusion, wherein the reset gate The voltage controls the reset transistor; and, the source follower transistor is coupled to receive the floating diffused voltage from the source follower gate terminal and provide the amplified signal to the source follower source terminal ; Bit line enable transistor, coupled between the bit line and the bit line source node, wherein the bit line enable voltage controls the bit line enable transistor, and wherein the bit line source A pole node is coupled to the black solar voltage generator; a current source generator is coupled between the bit line source node and ground potential, wherein the current source generator passes the bias piezoelectric crystal to the bit line source A pole node provides an adjustable current, the biased piezoelectric crystal is controlled by a bias control voltage; a control circuitry, coupled to the pixel array to control the operation of the pixel array, wherein the control circuitry directs the pixels The array provides the transfer gate voltage, the reset gate voltage, the column select gate voltage, the bit line enable voltage, the sample and hold voltage, the gate-ground voltage, the bias voltage, and the clamp control Voltage, clamping enable voltage, black sun control voltage, black sun enable voltage, idle control voltage, and idle enable voltage; readout circuitry, coupled to the pixel array through multiple readout rows, from the multiple Pixel readout image data; and, functional logic, coupled to receive image data from the readout circuitry to store the image data from each of the plurality of pixel units, wherein The functional logic provides instructions to the control circuitry.
100‧‧‧成像系統 100‧‧‧Imaging system
102‧‧‧像素陣列 102‧‧‧Pixel array
104‧‧‧控制電路系統/控制電路 104‧‧‧Control circuit system/control circuit
106‧‧‧讀出電路系統 106‧‧‧ readout circuit system
108‧‧‧功能邏輯 108‧‧‧Function logic
110‧‧‧讀出行/讀出行線 110‧‧‧read line/read line
200‧‧‧圖像感測器系統/電路系統 200‧‧‧Image sensor system/circuit system
201‧‧‧像素單元 201‧‧‧Pixel unit
202‧‧‧光電二極體(PD)/檢測光電二極體 202‧‧‧Photodiode (PD)/detection photodiode
203‧‧‧轉移儲存(TS)電晶體 203‧‧‧Transfer storage (TS) transistor
204‧‧‧轉移(TX)電晶體 204‧‧‧Transfer (TX) transistor
205‧‧‧轉移儲存閘極(TSG)電壓 205‧‧‧ Transfer storage gate (TSG) voltage
206‧‧‧轉移(TX)閘極電壓 206‧‧‧Transfer (TX) gate voltage
207‧‧‧轉移(TX)接收端子 207‧‧‧Transfer (TX) receiving terminal
208‧‧‧浮動擴散(FD) 208‧‧‧Floating Diffusion (FD)
210‧‧‧重置(RST)電晶體 210‧‧‧Reset (RST) transistor
212‧‧‧重置(RST)閘極電壓 212‧‧‧Reset (RST) gate voltage
216‧‧‧源極跟隨器(SF)電晶體 216‧‧‧ source follower (SF) transistor
218‧‧‧源極跟隨器(SF)源極端子/SF輸出/SF源極電位/源極端子 218‧‧‧Source follower (SF) source terminal/SF output/SF source potential/source terminal
220‧‧‧列選擇(RS)電晶體 220‧‧‧Column selection (RS) transistor
222‧‧‧列選擇(RS)閘極電壓 222‧‧‧Column selection (RS) gate voltage
224‧‧‧位元線/浮動位元線 224‧‧‧bit line/floating bit line
226‧‧‧位元線使能電晶體 226‧‧‧bit line enable transistor
228‧‧‧位元線使能電壓/位元線使能電壓bl_en/位元線使能信號bl_en 228‧‧‧Bit line enable voltage/bit line enable voltage bl_en/bit line enable signal bl_en
230‧‧‧位元線源極節點(BLSN) 230‧‧‧bit line source node (BLSN)
231‧‧‧電流源(CS)產生器 231‧‧‧Current source (CS) generator
232‧‧‧閘地-陰地電晶體 232‧‧‧Gate-negative ground transistor
234‧‧‧閘地-陰地控制電壓(Vcl) 234‧‧‧Gate-negative ground control voltage (Vcl)
236‧‧‧閘地-陰地採樣保持(SH)電晶體/閘地-陰地使能電晶體 236‧‧‧Gate-negative ground sample-hold (SH) transistor/gate-negative ground enable transistor
238‧‧‧採樣保持(SH)電壓/SH脈衝/採樣保持(SH)電壓脈衝 238‧‧‧Sample hold (SH) voltage/SH pulse/sample hold (SH) voltage pulse
240‧‧‧閘地-陰地電壓/電壓Vcasc/Vcasc 240‧‧‧Gate-to-ground voltage/voltage Vcasc/Vcasc
242‧‧‧偏壓電晶體 242‧‧‧bias piezoelectric crystal
244‧‧‧偏壓控制電壓(Vbl) 244‧‧‧bias control voltage (Vbl)
246‧‧‧偏壓採樣保持(SH)電晶體/偏壓使能電晶體 246‧‧‧ Bias sample-and-hold (SH) transistor/bias enabled transistor
248‧‧‧偏壓電壓/電壓(Vbias) 248‧‧‧bias voltage/voltage (Vbias)
250‧‧‧閘地-陰地保持(CH)電容器/電容器 250‧‧‧Gate-overground (CH) capacitor/capacitor
252‧‧‧偏壓保持(BH)電容器 252‧‧‧BH capacitor
254‧‧‧類比地電位(AGND) 254‧‧‧ Analog ground potential (AGND)
255‧‧‧鉗位電壓(CV)產生器 255‧‧‧Clamp voltage (CV) generator
256‧‧‧鉗位電晶體/鉗位電壓電晶體 256‧‧‧Clamp Transistor/Clamp Voltage Transistor
258‧‧‧鉗位控制電壓 258‧‧‧Clamp control voltage
260‧‧‧可調整的鉗位電壓 260‧‧‧Adjustable clamping voltage
262‧‧‧鉗位使能電晶體 262‧‧‧Clamp enable transistor
264‧‧‧鉗位使能電壓(clamp_en) 264‧‧‧Clamp enable voltage (clamp_en)
265‧‧‧黑太陽電壓產生器 265‧‧‧Black sun voltage generator
266‧‧‧黑太陽電源供應電晶體 266‧‧‧Black Sun Power Supply Transistor
268‧‧‧黑太陽電源供應電壓 268‧‧‧ Black Sun power supply voltage
270‧‧‧黑太陽電晶體 270‧‧‧Black Solar Transistor
272‧‧‧黑太陽控制電壓 272‧‧‧Black Sun control voltage
274‧‧‧可調整的黑太陽電壓/黑太陽電壓 274‧‧‧Adjustable black solar voltage/black solar voltage
276‧‧‧黑太陽使能電晶體 276‧‧‧Black Sun Enable Transistor
278‧‧‧黑太陽使能電壓(bsun_en) 278‧‧‧Black Sun Enable Voltage (bsun_en)
279‧‧‧空閒電壓(IV)產生器 279‧‧‧ Idle voltage (IV) generator
280‧‧‧空閒電源供應電晶體 280‧‧‧Idle power supply transistor
282‧‧‧空閒電源供應電壓 282‧‧‧Idle power supply voltage
284‧‧‧空閒使能電晶體 284‧‧‧Idle enable transistor
286‧‧‧空閒使能電壓(idle_en) 286‧‧‧Idle enable voltage (idle_en)
288‧‧‧位元線寄生電容器(Cp) 288‧‧‧bit line parasitic capacitor (Cp)
290‧‧‧傳輸閘 290‧‧‧Transmission gate
292‧‧‧類比-數位轉換器輸入端子 292‧‧‧Analog-to-digital converter input terminal
300‧‧‧信號讀出操作 300‧‧‧Signal readout operation
302‧‧‧時間點/時間 302‧‧‧point/time
310、320、330、340、350、360‧‧‧時間區 310, 320, 330, 340, 350, 360 ‧‧‧ time zone
400‧‧‧流程圖 400‧‧‧Flowchart
402、460‧‧‧過程塊 402, 460‧‧‧ process block
410、420、430、440、450‧‧‧過程塊/方塊 410, 420, 430, 440, 450 ‧‧‧ process block/block
C1、C2、C3、C4、C5~Cx‧‧‧行 C1, C2, C3, C4, C5~Cx‧‧‧ line
R1、R2、R3、R4、R5~Ry‧‧‧列 R1, R2, R3, R4, R5~Ry‧‧‧Column
參照以下各圖來闡述本發明的非限制性及非窮盡性實例,其中除非另外指明,否則在所有各個視圖中相同的參考編號 指代相同部件。 A non-limiting and non-exhaustive example of the present invention is explained with reference to the following figures, where the same reference numbers are used in all views unless otherwise specified Refers to the same parts.
圖1示出根據本揭露實施例的成像系統的一個實例。 FIG. 1 shows an example of an imaging system according to an embodiment of the present disclosure.
圖2是根據本揭露實施例的成像感測器中的像素單元及像素輸出電路的方塊圖的示例性示意圖,所述成像感測器能夠使其位元線快速穩定。 FIG. 2 is an exemplary schematic diagram of a block diagram of a pixel unit and a pixel output circuit in an imaging sensor according to an embodiment of the present disclosure. The imaging sensor can quickly stabilize its bit lines.
圖3是根據本揭露實施例的與成像感測器中的光電二極體為了達到位元線穩定而進行的操作相關聯的示例性波形。 FIG. 3 is an exemplary waveform associated with an operation performed by a photodiode in an imaging sensor to achieve bit line stability according to an embodiment of the present disclosure.
圖4是根據本揭露實施例的與圖3所示事件相關聯的例示性流程圖。 4 is an illustrative flowchart associated with the event shown in FIG. 3 according to an embodiment of the disclosure.
在圖式的所有幾個視圖中,對應的參考字元表示對應的元件。所屬領域中的技術人員應理解,圖中的元件是出於簡潔及清晰的目的而示出且未必按比例繪製。舉例來說,可相對於其他元件誇大圖中的一些元件的尺寸以助于增進對本發明各個實施例的理解。另外,在商業上可行的實施例中可使用的或必要的常見但熟知的元件常常不被示出,以便不妨礙本發明這些各種實施例的視圖。 In all several views of the drawing, corresponding reference characters represent corresponding elements. Those skilled in the art should understand that the elements in the figures are shown for brevity and clarity and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures can be exaggerated relative to other elements to help improve understanding of various embodiments of the present invention. In addition, common but well-known elements that are usable or necessary in commercially feasible embodiments are often not shown so as not to hinder the view of these various embodiments of the present invention.
本文中闡述了使成像感測器中的像素輸出線快速穩定的裝置及方法的實施例。在以下說明中,陳述許多具體細節以提供對實施例的透徹理解。然而,相關領域中的技術人員應認識到,本文所述技術可在不使用這些具體細節中的一個或多個具體細節 的條件下來實踐或者可使用其他方法、元件、材料等來實踐。在其他情形中,未詳細地示出或闡述眾所周知的結構、材料或操作以避免使某些方面模糊不清。 This article describes embodiments of an apparatus and method for quickly stabilizing pixel output lines in an imaging sensor. In the following description, many specific details are stated to provide a thorough understanding of the embodiments. However, those skilled in the relevant art should recognize that the technology described herein may not use one or more of these specific details Can be practiced under other conditions or using other methods, components, materials, etc. In other instances, well-known structures, materials, or operations have not been shown or described in detail to avoid obscuring certain aspects.
本說明書通篇中所提及的“一個實例”或“一個實施例”意指結合所述實例所闡述的特定特徵、結構或特性包括于本發明的至少一個實例中。因此,在本說明書通篇中各處出現的短語“在一個實例中”或“在一個實施例中”未必均指同一實例。另外,在一個或多個實例中,所述特定特徵、結構或特性可以任何適合的方式進行組合。 Reference throughout this specification to "one example" or "one embodiment" means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present invention. Therefore, the phrases "in one instance" or "in one embodiment" appearing throughout this specification do not necessarily refer to the same instance. In addition, in one or more examples, the specific features, structures, or characteristics may be combined in any suitable manner.
在本說明書通篇中,使用了若干技術用語。除非在本文中具體地定義或者在使用這些用語的上下文中清楚地表明,否則這些用語採用它們在所屬領域中的通常含義。 Throughout this manual, several technical terms are used. Unless specifically defined herein or clearly indicated in the context in which these terms are used, these terms adopt their usual meanings in the art.
圖1示出根據本揭露實施例的成像系統100的一個實例。成像系統100包括像素陣列102、控制電路系統104、讀出電路系統106及功能邏輯108。在一個實例中,像素陣列102是二維(two-dimensional,2D)光電二極體陣列、或圖像感測器像素(例如,像素P1、P2、...、Pn)。如圖中所示,光電二極體被排列成列(例如,列R1到Ry)及行(例如,行C1到Cx)以獲得人、場所、物體等的圖像資料,所述圖像資料可接著用於呈現人、場所、物體等的二維圖像。然而,光電二極體並非必須排列成列及行,而是也可採用其他配置方式。
FIG. 1 shows an example of an
在一個實例中,在像素陣列102中的每一個圖像感測器光電二極體/像素通過光生圖像電荷而獲得其圖像電荷之後,由讀出電路系統106讀出對應的圖像資料,且接著將對應的圖像資料
轉移到功能邏輯108。讀出電路系統106可耦合到來自像素陣列102中的所述多個光電二極體的讀出圖像資料。在各種實例中,讀出電路系統106可包括放大電路系統、類比-數位轉換(ADC)電路系統、或其他電路系統。在一個實例中,讀出電路系統106可沿著讀出行線110(圖中所示)一次讀出一列圖像資料,或者可使用各種其他技術(未示出)(例如,串列讀出或所有像素同時全平行讀出)來讀出圖像資料。功能邏輯108可儲存圖像資料或甚至通過應用後期圖像效果(例如,裁剪、旋轉、消除紅眼、調整亮度、調整對比度、或其他後期圖像效果)來操縱圖像資料。
In one example, after each image sensor photodiode/pixel in the pixel array 102 obtains its image charge through photo-generated image charge, the corresponding image data is read out by the
在一些實施例中,功能邏輯108可能要求滿足某些成像條件,且因此可指示控制電路系統104操縱像素陣列102中的某些參數來實現更好的品質或特殊效果。
In some embodiments, the
圖2是根據本揭露實施例的成像感測器中的像素單元及像素輸出電路的方塊圖的一個實例,所述圖像感測器能夠使其輸出線(位元線224)快速穩定。圖像感測器系統200的所示實施例在典型的4電晶體(4 transistor,4T)像素單元201中可包括檢測光電二極體(PD)202,其中4T部分可包括轉移(TX)電晶體204、重置(reset,RST)電晶體210、源極跟隨器(SF)電晶體216及列選擇(RS)電晶體220。在一個實施例中,RS電晶體220連接在SF電晶體216的源極端子與位元線224之間,SF電晶體216的汲極端子直接連接到像素電壓(pixel voltage,VPIX),如圖2所示。在另一個實施例中,RS電晶體220連接在SF電晶體216的汲極端子與VPIX之間。VPIX可連接到電源供應電壓AVDD,或者可連接到經調節電壓供應源,其中經調節電壓供應源
是基於來自AVDD的電源供應進行調節的。TX電晶體204的汲極、RST電晶體210的源極及SF電晶體216的閘極在其中發生交會的節點是浮動擴散(FD)208。受控制電路系統104(參見圖1)控制的重置(RST)閘極電壓212及RS閘極電壓222能夠分別使RST電晶體210及RS電晶體220導通。
FIG. 2 is an example of a block diagram of a pixel unit and a pixel output circuit in an imaging sensor according to an embodiment of the present disclosure. The image sensor can quickly stabilize its output line (bit line 224). The illustrated embodiment of the
轉移(TX)閘極電壓206對TX電晶體204進行使能。當對TX閘極電壓206施加高的連接電壓時,TX電晶體204可接通,在這種情況下,在一個實施例中,光電二極體(PD)202直接連接到TX電晶體204的TX接收端子207,在PD 202處積聚的光生信號電荷可通過TX電晶體204轉移到FD 208。在另一個實施例中,在TX電晶體204的TX接收端子207處存在的由轉移儲存(transfer storage,TS)電晶體203從PD 202轉移來的儲存電荷可通過TX電晶體204轉移到FD 208。當對TX閘極電壓206施加足夠低的斷開電壓時,TX電晶體204可斷開。其中,轉移儲存閘極(TSG)電壓205控制轉移儲存(TS)電晶體203。
The transfer (TX)
當RS電晶體220在RS閘極電壓222被設定成高準位而接通時,來自SF電晶體216的源極端子的經放大圖像信號被遞送到位元線224。位元線224上的類比圖像信號最終被提供到ADC的輸入端子。在一個實施例中,當對應的傳輸閘290被使能時,這種ADC是耦合到每一條位元線或圖1所示讀出行110的所述多個ADC中的一個ADC。
When the
位元線使能電晶體226連接在位元線224與位元線源極節點(bitline source node,BLSN)230之間。當位元線使能電壓bl_en 228被設定成高準位時,位元線使能電晶體226被接通,且
位元線224通過BLSN 230連接到其電流源(current source,CS)產生器231。
The bit line enable
CS產生器231連接在BLSN 230與類比地電位(analog ground,AGND)之間。在實施例中,CS產生器231通過偏壓電晶體242向BLSN 230提供可調整的電流。偏壓電晶體242受偏壓控制電壓Vbl 244控制。CS產生器231中的偏壓電晶體242的正常操作需要適當的偏壓控制電壓Vbl 244。Vbl 244受電壓Vbias 248制約。在另一個實施例中,CS產生器231(閘地-陰地電晶體232、閘地-陰地使能電晶體236、偏壓使能電晶體246、CH電容器250及BH電容器252全部存在)通過以下兩個串聯連接的電晶體向BLSN 230提供可調整的電流:閘地-陰地電晶體232與偏壓電晶體242。閘地-陰地電晶體232受閘地-陰地控制電壓Vcl 234控制。偏壓電晶體242受偏壓控制電壓Vbl 244控制。
The
CS產生器231的正常操作需要適當的閘地-陰地控制電壓Vcl 234,且當將採樣保持(sample and hold,SH)電壓238設定成高準位以閉合閘地-陰地使能電晶體236時,閘地-陰地控制電壓Vcl 234受電壓Vcasc 240制約。當SH電壓238為高準位時,閘地-陰地保持(cascode hold,CH)電容器250被充電到Vcasc 240。CH電容器250保持Vcasc 240的值不變直到下一個SH脈衝238到來,此時CH電容器250上的Vcl 234的值被再次刷新到Vcasc 240的確切值。由於CH電容器250耦合在閘地-陰地控制電壓Vcl 234與類比地電位AGND 254之間,因此Vcl 234緩慢地放電且Vcl 234的值在後續SH脈衝238到達之前稍微下降。Vcasc 240與SH脈衝238二者均受控制電路104控制。
The normal operation of the
CS產生器231的正常操作也需要適當的偏壓控制電壓244,且當將SH電壓238設定成高準位以閉合偏壓使能電晶體246時,偏壓控制電壓244受電壓Vbias 248制約。當SH電壓238為高準位時,偏壓保持(bias hold,BH)電容器252被充電到Vbias 248。BH電容器252保持Vbias 248的值不變直到下一個SH脈衝238到來,此時BH電容器252上的值Vbl 244被再次刷新到Vbias 248的確切值。由於偏壓BH電容器252耦合在偏壓控制電壓Vbl 244與AGND 254之間,因此Vbl 244緩慢地放電且Vbl 244的值在後續SH脈衝238到達之前稍微下降。Vbias 248受控制電路104控制。
The proper operation of the
無論位元線224是通過位元線使能(bitline enable,BE)電晶體226與BLSN 230連接還是從BLSN 230斷開,CS產生器231始終通過以下兩個電壓源直接連接到BLSN 230:鉗位電壓(clamp voltage,CV)產生器255及黑太陽電壓(blacksun voltage,BV)產生器265。CS產生器231在一個實施例中可由這兩個電壓產生器中的一者驅動,或者在另一個實施例中由這兩個電壓產生器同時驅動。
Regardless of whether the
鉗位電壓(CV)產生器255包括鉗位電壓電晶體256及鉗位使能電晶體262。鉗位電壓電晶體256接收VPIX並在鉗位控制電壓258的控制下提供可調整的鉗位電壓260。鉗位使能電晶體262在鉗位使能電壓264的控制下將可調整的鉗位電壓260遞送到BLSN 230上的CS產生器231。
The clamping voltage (CV)
黑太陽電壓(BV)產生器265包括黑太陽電源供應電晶體266、黑太陽電晶體270及黑太陽使能電晶體276。黑太陽電源
供應電晶體266提供黑太陽電源供應電壓268,由於黑太陽電源供應電晶體266的汲極端子與源極端子之間的電壓降,黑太陽電源供應電壓268保證低於VPIX。黑太陽電晶體270接收黑太陽電源供應電壓268並在黑太陽控制電壓272的控制下提供可調整的黑太陽電壓274。黑太陽使能電晶體276在黑太陽使能電壓278的控制下將可調整的黑太陽電壓274遞送到BLSN 230上的電流源產生器231。
The black solar voltage (BV)
可調整的黑太陽電壓274在BLSN 230上提供的電位比可調整的鉗位電壓260在BLSN 230上提供的電位高得多。如果VPIX(像素電路的最高電位)表示最暗圖像邊界(ADC將其看作轉換範圍的上限),且任何正常背景信號略低於VPIX,則將可調整的黑太陽電壓274設定成低於那些背景信號的最低電壓。黑太陽電壓仍然表示暗圖像,並且僅比那些背景信號稍暗。在下面的段落中解釋了黑太陽電壓產生器265的用途。
Adjustable black
使用黑太陽電壓是為了避免所謂的日食效應(sun eclipse effect)(或黑太陽效應)。也就是說,當圖像感測器直接面對陽光時,FD 208處按照推測為“暗”的背景被填充大量電子,所述電子是直接在FD上產生的(由於FD本身是感光性物質)或者是從環繞FD的矽酮不可阻擋地暈染的。因此,這種按照推測為“暗”的背景雜訊信號被保存為實際的亮信號。在ADC之後基於相關雙採樣(correlated double sampling,CDS)方法保存真實亮(加上雜訊)信號之後,這兩個所保存的幾乎相等的“亮”信號相減會得到接近“零”的最終信號,所述接近“零”的最終信號等效于在原本應呈現亮太陽的位置處的黑色圖像。可看出,如果
保持原樣,則由於上述減法,亮太陽會變成黑太陽-因此稱為“黑太陽”。為了克服黑太陽效應,當在CDS過程期間採用已知的背景信號(黑色或接近黑色)時,黑太陽電壓274強制使用黑準位。因此,圖像中的太陽將不再是黑色的。
The black sun voltage is used to avoid the so-called sun eclipse effect (or black sun effect). That is, when the image sensor directly faces the sunlight, the background at
控制電路系統104基於關於在何處存在正常背景信號的準位的回饋來控制黑太陽控制電壓272。一旦功能邏輯108確定了(許多正常背景信號中的)最低等效電壓,所述值便被饋送到控制電路系統104。且接著,將經過更新的黑太陽控制電壓272饋送到BV產生器265以確保對於CDS過程而言背景信號將足夠“黑”。
The
與可調整的黑太陽電壓274相比,可調整的鉗位電壓260設定最低限值電壓。所述最低限值電壓表示最亮圖像邊界(ADC將其看作轉換範圍的下端)。
Compared with the adjustable black
控制電路104提供全部四個控制信號:鉗位控制電壓258、鉗位使能電壓264、黑太陽控制電壓272及黑太陽使能電壓278,以控制CV產生器255及BV產生器265。
The
空閒電壓(idle voltage,IV)產生器279用作位元線224的電流源。當位元線224從其電源供應電路斷開時,需要此IV產生器279來相對於位元線224維持空閒電位。在一個實施例中,當RS電晶體220及位元線使能電晶體226二者被同時去能時,IV產生器279變成唯一的電源(power source)以通過其位元線寄生電容器Cp 288對浮動位元線224進行充電。當SF電晶體216的閘極被RST電晶體210設定成重置FD電壓(reset FD voltage,VRFD)時,空閒電位被維持處於與SF源極端子218的電位最接
近的值。VRFD是用於對受控制電路系統104控制的浮動擴散進行重置的專用電壓。VRFD可具有或可不具有與VPIX相同的電壓。當RS電晶體220再次接通時,位元線224處的電位已被預充電到SF源極端子218的相似準位;因此,位元線224與SF電晶體216連接的穩定時間大大縮短。這是因為當位元線224重新連接到SF電晶體216時,位元線224與SF輸出218之間的電壓差大大減小。在一個實施例中,IV產生器279包括空閒電源供應電晶體280以及用於驅動位元線224的空閒使能電晶體284,空閒電源供應電晶體280接收VPIX並提供受空閒控制電壓(VIDLE)控制的空閒電源供應電壓282。空閒使能電壓286及VIDLE受控制電路系統104控制。
An idle voltage (IV) generator 279 serves as a current source for the
圖3是根據本揭露實施例的成像感測器中的像素單元及像素單元的輸出電路的示例性信號讀出操作300,所述成像感測器能夠使其輸出線(位元線224)快速穩定。為更好地理解圖3以及圖3表示的序列,在圖4中提供了時序流程圖來結合圖2解釋在圖3中發生的所有主要事件。
3 is an exemplary
圖4是根據本揭露實施例的示例性流程圖400。流程圖400可示出完整的列讀出迴圈並展示可如何使用所揭露的電路系統200在典型的資料讀出迴圈中實現位元線224的快速穩定。
FIG. 4 is an
流程圖400在過程塊402處開始且接著進行過程塊410。過程塊402(與圖3中的時間點302相關)標記讀出迴圈的開始,此時讀出電路系統106讀出新的一列多個像素單元。過程塊410與圖3所示時間區310相關。過程塊410與像素陣列102的每一列的水平空白(H-空白)重合。H-空白在新的讀出迴圈之
前清除整個並發列(concurrent row)中的每一個讀出行110。在電路狀況方面,在方塊410期間,RST電晶體210被RST閘極電壓212接通以將FD 208重置到VRFD。同時,RS電晶體220與位元線使能電晶體226二者同時被RS閘極電壓222及位元線使能電壓(bl_en)228斷開。在其中RS電晶體220連接在SF電晶體216與位元線224之間的實施例中,這些斷開將位元線224與驅動電路系統的除了IV產生器279之外的其餘部分隔離開。
The
在與後續H-空白重合的過程塊410期間,三個主要的預充電活動同時生效。首先,對於電流源(CS)產生器231來說,如果在一個實施例中存在全部閘地-陰地電晶體232、閘地-陰地使能電晶體236、偏壓使能電晶體246、CH電容器250及BH電容器252,則採樣保持(SH)電壓脈衝238將閘地-陰地使能電晶體236及偏壓使能電晶體246二者使能。CH電容器250被充電到Vcasc 240,且BH電容器252被充電到Vbias 248。在方塊410內,當SH脈衝導通時,閘地-陰地電晶體232由Vcl 234驅動來正確地運行,Vcl 234是由Vcasc 240直接驅動;且偏壓電晶體242是由Vbl 244驅動來正確地運行,Vbl 244在一個實施例中由Vbias 248直接驅動或者在另一個實施例中由Vbias 248通過偏壓使能電晶體246驅動。在方塊410外,當SH脈衝斷開時,CH電容器250及BH電容器252正確地維持SH脈衝之間CS產生器231的正常操作,這是因為用於驅動閘地-陰地電晶體232和偏壓電晶體242的偏壓值Vcl及Vbl二者由這兩個電容器正確地保持。
During the process block 410 that coincides with the subsequent H-blank, the three main precharge activities are in effect simultaneously. First of all, for the current source (CS)
其次,通過將鉗位使能電壓clamp_en 264設定成低準位來將鉗位電壓(CV)產生器255去能。且通過將黑太陽使能電壓
bsun_en 278設定成高準位來將黑太陽電壓(BV)產生器265使能。在此當前過程塊410期間,BV產生器265通過CS產生器231對BLSN 230進行充電。
Second, the clamp voltage (CV)
第三,通過將空閒使能電壓idle_en 286設定成高準位來將空閒電壓(IV)產生器279使能。IV產生器279通過位元線寄生電容器Cp 288將隔離的位元線224充電到空閒電位,所述空閒電位與SF源極電位218上出現的高電壓值緊密匹配,這是因為SF閘極或FD 208在此相同週期期間被RST電晶體210設定成VRFD。
Third, the idle voltage (IV) generator 279 is enabled by setting the idle enable
IV產生器279通過僅使用通過位元線寄生電容器Cp 288的全電流容量(full current capacity)來將位元線224的電壓上拉到其預期的高重置準位。此縮短了每一列的重置穩定時間,因此縮短了H-空白時間。直接結果是每一列的讀出時間縮短以及總體幀時間縮短。在時間302處將充電負荷從CV產生器255交換到IV產生器279有助於在AVDD處維持供應電源的穩定消耗,這是因為作為負載電路的位元線224是由CV產生器255或IV產生器279連續充電。
The IV generator 279 pulls up the voltage of the
在過程塊410之後可進行過程塊420。過程塊420與圖3所示時間區320相關。在方塊420期間,SH電壓238及空閒使能電壓idle_en 286二者均被從高準位設定成低準位。閘地-陰地使能電晶體236、偏壓使能電晶體246及空閒使能電晶體284被從接通切換到斷開。時間區320的持續時間僅需要長到足以對由SH電壓238與空閒使能電壓idle_en 286一起進行的第一開關動作與由RS閘極電壓222與位元線使能電壓bl_en 228一起進行的第二開
關動作之間的區進行緩衝以避免第一開關動作與第二開關動作之間出現任何競爭狀況。且為了允許足夠的時間,在一個實施例中使用幾納秒來使位元線224達到穩定。
After
在過程塊420之後可進行過程塊430。過程塊430與圖3所示時間區330相關。在方塊430期間,RST閘極電壓212保持為高準位以保持RST電晶體210導通。FD 208被連續地重置成VRFD。在當RS電晶體220及位元線使能電晶體226二者均被接通時位元線224在一側上重新連接到SF電晶體216且在另一側上重新連接到BLSN 230之後,方塊430允許足夠的時間來使位元線224達到穩定。
After
在過程塊430之後可進行過程塊440。過程塊440與圖3所示時間區340相關。在方塊440期間,RST電晶體210斷開。SF電晶體216將FD 208上的背景信號放大,且接著經放大背景信號在一個實施例中通過RS電晶體220被提供到位元線224,或者在另一個實施例中從SF電晶體216的源極端子218被直接提供到位元線224。在這一時間段期間,黑太陽使能電壓278僅將全部三個電壓產生器中的BV產生器265使能。黑太陽電壓274同時驅動BLSN 230與位元線224二者,這是因為位元線使能電壓bl_en 228仍使位元線使能電晶體226閉合。來自BV產生器265的可調整的黑太陽電壓可提供一般設定在高準位側上的電位,所述電位僅略低於正常背景信號。如果VPIX表示最暗的圖像信號,則不太低的黑太陽電壓設定足夠暗的圖像信號(如果不是最暗的話)。在ADC看來,如果VPIX表示ADC輸出的最低值,則黑太陽電壓在ADC輸出處確保非常低的值,所述值不過分高於ADC在其範圍內
轉換的最低值。
After
在過程塊440之後可進行過程塊450。過程塊450與圖3所示時間區350相關。在方塊450期間,在一個實施例中,當轉移電晶體204被TX閘極電壓206接通時,積聚在PD 202上的光生信號電荷轉移到FD 208。在另一個實施例中,TX接收端子207處由轉移儲存(TS)電晶體203從PD 202轉移來的儲存電荷被轉移到FD 208。RS電晶體220及位元線使能電晶體226二者在電荷轉移之前斷開且在電荷轉移之後重新接通。這是為了確保在TX閘極電壓206的高準位與RS閘極電壓222的高準位及位元線使能信號bl_en 228的高準位之間不會發生交疊。還應注意,空閒使能電晶體284保持斷開,且在本揭露中當轉移電晶體204在此當前過程塊450期間在接通與斷開之間雙態觸變時,位元線224停留在完全浮動狀態中。
After
由轉移閘極電壓206的雙態觸變造成的位元線224的電壓變化與在位元線224不浮動時的相同情形相比大大降低。位元線224能夠維持其原始電壓準位幾乎與脈衝添加到TX閘極電壓206之前的值相同。在一個實例中,相比之下,位元線224上的電壓步長可小10倍以上。由於在由TX閘極電壓206造成的電荷轉移期間位元線224處於浮動狀態,FPN大大減少。儘管位元線224在電荷轉移期間從BV產生器265斷開,然而BV產生器265仍然通過電流源產生器231將BLSN 230充電到AGND。總AVDD電流在整個此方塊450中顯示出很小的變化。系統電源因此根據需要保持穩定。
The voltage variation of the
在過程塊450之後可進行過程塊460。過程塊460與圖
3所示時間區360相關。在方塊460期間,一般來說,從TX接收端子207轉移到FD 208的圖像電荷經過SF電晶體216放大,且接著在一個實施例中通過RS電晶體220提供到位元線224,或者在另一個實施例中從SF電晶體216的源極端子218直接提供到位元線224。確切地說,在方塊450中TX閘極電壓206上的脈衝結束之後,立刻通過將RS閘極電壓222設定成高準位以允許SF源極端子上的圖像信號電壓驅動位元線224來對RS電晶體220進行重新連接,並且通過將位元線使能電壓bl_en 228設定成高準位以允許BLSN 230對位元線224上的電壓進行鉗位來對位元線使能電晶體226進行重新連接。
After
在方塊460期間,在BLSN 230側上,BV產生器265的功能被CV產生器255接管。這種切換通過同時將黑太陽使能電壓278設定成低準位且將鉗位使能電壓264設定成高準位來生效。由於可調整的鉗位電壓被設定成比黑太陽電壓低得多,因此在方塊460開始處,BLSN 230上的電壓開始從高的黑太陽電壓向下移動。同時,在SF源極端子側上,如果圖像信號是暗的(其由高電壓表示),則位元線224上的有效輸入步長電壓在RS電晶體從斷開到接通的切換點處接近為0。位元線224基於小的有效輸入步長電壓而快速穩定。如果圖像信號是亮的,則位元線224上的有效輸入步長電壓也被最小化以有利於位元線224的快速穩定,這是因為位元線224的兩側上的初始電壓要同時向下漂移。
During
CV產生器255的可調整的鉗位電壓可提供比表示絕對最亮光的準位略高的電位。鉗位電壓對最低邊界設定了限值,所述最低邊界等效於在ADC看起來最亮的信號。儘管所述鉗位電壓
不是最亮的但它足夠接近最亮的,以使得ADC可接受所述鉗位電壓作為輸入,並對其進行轉換以用作ADC輸出處的最高值而不會使ADC超限(overflow)。鉗位電壓確保了ADC能夠應對的電壓下限值。一旦CV產生器255接管BV產生器265的功能,則CV產生器255便還用於使功耗的變化最小化並連續地維持總AVDD電流的穩定性。
The adjustable clamping voltage of the
本發明對所示出的實例的以上說明(包括摘要中所闡述的以上說明)並非旨在為窮盡性的或將本發明限制為所揭露的精確形式。儘管本文中出於例示性目的闡述了本發明的具體實例,但是如相關領域中的技術人員將認識到,在本發明的範圍內可存在各種修改。 The above description of the illustrated examples of the invention (including the above description set forth in the abstract) is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Although specific examples of the present invention are set forth herein for illustrative purposes, as those skilled in the relevant art will recognize, various modifications may exist within the scope of the present invention.
可根據以上詳細說明對本發明作出這些修改。以上權利要求書中所使用的用語不應被視為將本發明限制為本說明書中所揭露的具體實例。而是,本發明的範圍應完全由以上權利要求書來確定,此應根據所制定的權利要求解釋原則來理解。 These modifications can be made to the present invention based on the above detailed description. The terms used in the above claims should not be construed as limiting the invention to the specific examples disclosed in the specification. Rather, the scope of the present invention should be completely determined by the above claims, which should be understood in accordance with the principles for the interpretation of the claims.
200‧‧‧圖像感測器系統/電路系統 200‧‧‧Image sensor system/circuit system
201‧‧‧像素單元 201‧‧‧Pixel unit
202‧‧‧光電二極體(PD)/檢測光電二極體 202‧‧‧Photodiode (PD)/detection photodiode
203‧‧‧轉移儲存(TS)電晶體 203‧‧‧Transfer storage (TS) transistor
204‧‧‧轉移(TX)電晶體 204‧‧‧Transfer (TX) transistor
205‧‧‧轉移儲存閘極(TSG)電壓 205‧‧‧ Transfer storage gate (TSG) voltage
206‧‧‧轉移(TX)閘極電壓 206‧‧‧Transfer (TX) gate voltage
207‧‧‧轉移(TX)接收端子 207‧‧‧Transfer (TX) receiving terminal
208‧‧‧浮動擴散(FD) 208‧‧‧Floating Diffusion (FD)
210‧‧‧重置(RST)電晶體 210‧‧‧Reset (RST) transistor
212‧‧‧重置(RST)閘極電壓 212‧‧‧Reset (RST) gate voltage
216‧‧‧源極跟隨器(SF)電晶體 216‧‧‧ source follower (SF) transistor
218‧‧‧源極跟隨器(SF)源極端子/SF輸出/SF源極電位/源極端子 218‧‧‧Source follower (SF) source terminal/SF output/SF source potential/source terminal
220‧‧‧列選擇(RS)電晶體 220‧‧‧Column selection (RS) transistor
222‧‧‧列選擇(RS)閘極電壓 222‧‧‧Column selection (RS) gate voltage
224‧‧‧位元線/浮動位元線 224‧‧‧bit line/floating bit line
226‧‧‧位元線使能電晶體 226‧‧‧bit line enable transistor
228‧‧‧位元線使能電壓/位元線使能電壓bl_en/位元線使能信號bl_en 228‧‧‧Bit line enable voltage/bit line enable voltage bl_en/bit line enable signal bl_en
230‧‧‧位元線源極節點(BLSN) 230‧‧‧bit line source node (BLSN)
231‧‧‧電流源(CS)產生器 231‧‧‧Current source (CS) generator
232‧‧‧閘地-陰地電晶體 232‧‧‧Gate-negative ground transistor
234‧‧‧閘地-陰地控制電壓(Vcl) 234‧‧‧Gate-negative ground control voltage (Vcl)
236‧‧‧閘地-陰地採樣保持(SH)電晶體/閘地-陰地使能電晶體 236‧‧‧Gate-negative ground sample-hold (SH) transistor/gate-negative ground enable transistor
238‧‧‧採樣保持(SH)電壓/SH脈衝/採樣保持(SH)電壓脈衝 238‧‧‧Sample hold (SH) voltage/SH pulse/sample hold (SH) voltage pulse
240‧‧‧閘地-陰地電壓/電壓Vcasc/Vcasc 240‧‧‧Gate-to-ground voltage/voltage Vcasc/Vcasc
242‧‧‧偏壓電晶體 242‧‧‧bias piezoelectric crystal
244‧‧‧偏壓控制電壓(Vbl) 244‧‧‧bias control voltage (Vbl)
246‧‧‧偏壓採樣保持(SH)電晶體/偏壓使能電晶體 246‧‧‧ Bias sample-and-hold (SH) transistor/bias enabled transistor
248‧‧‧偏壓電壓/電壓(Vbias) 248‧‧‧bias voltage/voltage (Vbias)
250‧‧‧閘地-陰地保持(CH)電容器/電容器 250‧‧‧Gate-overground (CH) capacitor/capacitor
252‧‧‧偏壓保持(BH)電容器 252‧‧‧BH capacitor
254‧‧‧類比地電位(AGND) 254‧‧‧ Analog ground potential (AGND)
255‧‧‧鉗位電壓(CV)產生器 255‧‧‧Clamp voltage (CV) generator
256‧‧‧鉗位電晶體/鉗位電壓電晶體 256‧‧‧Clamp Transistor/Clamp Voltage Transistor
258‧‧‧鉗位控制電壓 258‧‧‧Clamp control voltage
260‧‧‧可調整的鉗位電壓 260‧‧‧Adjustable clamping voltage
262‧‧‧鉗位使能電晶體 262‧‧‧Clamp enable transistor
264‧‧‧鉗位使能電壓(clamp_en) 264‧‧‧Clamp enable voltage (clamp_en)
265‧‧‧黑太陽電壓產生器 265‧‧‧Black sun voltage generator
266‧‧‧黑太陽電源供應電晶體 266‧‧‧Black Sun Power Supply Transistor
268‧‧‧黑太陽電源供應電壓 268‧‧‧ Black Sun power supply voltage
270‧‧‧黑太陽電晶體 270‧‧‧Black Solar Transistor
272‧‧‧黑太陽控制電壓 272‧‧‧Black Sun control voltage
274‧‧‧可調整的黑太陽電壓/黑太陽電壓 274‧‧‧Adjustable black solar voltage/black solar voltage
276‧‧‧黑太陽使能電晶體 276‧‧‧Black Sun Enable Transistor
278‧‧‧黑太陽使能電壓(bsun_en) 278‧‧‧Black Sun Enable Voltage (bsun_en)
279‧‧‧空閒電壓(IV)產生器 279‧‧‧ Idle voltage (IV) generator
280‧‧‧空閒電源供應電晶體 280‧‧‧Idle power supply transistor
282‧‧‧空閒電源供應電壓 282‧‧‧Idle power supply voltage
284‧‧‧空閒使能電晶體 284‧‧‧Idle enable transistor
286‧‧‧空閒使能電壓(idle_en) 286‧‧‧Idle enable voltage (idle_en)
288‧‧‧位元線寄生電容器(Cp) 288‧‧‧bit line parasitic capacitor (Cp)
290‧‧‧傳輸閘 290‧‧‧Transmission gate
292‧‧‧類比-數位轉換器輸入端子 292‧‧‧Analog-to-digital converter input terminal
Claims (47)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/853,463 | 2017-12-22 | ||
US15/853,463 US10290673B1 (en) | 2017-12-22 | 2017-12-22 | Bitline settling improvement and FPN reduction by floating bitline during charge transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201929256A TW201929256A (en) | 2019-07-16 |
TWI685985B true TWI685985B (en) | 2020-02-21 |
Family
ID=66439628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107146628A TWI685985B (en) | 2017-12-22 | 2018-12-22 | Fast settling output line circuit, fast settling method and imaging system |
Country Status (3)
Country | Link |
---|---|
US (1) | US10290673B1 (en) |
CN (1) | CN110035243B (en) |
TW (1) | TWI685985B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10462394B1 (en) * | 2018-07-11 | 2019-10-29 | Raytheon Company | Digital pixel imager with dual bloom storage capacitors and cascode transistors |
US10622980B1 (en) * | 2018-11-09 | 2020-04-14 | Analog Devices, Inc. | Apparatus and methods for setting and clamping a node voltage |
US10834351B2 (en) * | 2018-11-26 | 2020-11-10 | Omnivision Technologies, Inc. | Bitline settling speed enhancement |
US11178351B1 (en) * | 2020-05-07 | 2021-11-16 | Novatek Microelectronics Corp. | Readout circuit for pixel |
KR20220051623A (en) * | 2020-10-19 | 2022-04-26 | 에스케이하이닉스 주식회사 | Image sensing device and method of operating the same |
US11430821B2 (en) * | 2020-12-07 | 2022-08-30 | Semiconductor Components Industries, Llc | Image sensor with active clamp to suppress transfer gate feedthrough |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1835245A (en) * | 2005-03-17 | 2006-09-20 | 富士通株式会社 | Image sensor with embedded photodiode region and fabrication method thereof |
US8149304B2 (en) * | 2008-10-10 | 2012-04-03 | Panasonic Corporation | Solid-state imaging device and imaging device |
US8325255B2 (en) * | 2009-07-14 | 2012-12-04 | Sony Corporation | Solid-state imaging device, control method therefor, and camera system |
TW201310989A (en) * | 2011-08-30 | 2013-03-01 | Omnivision Tech Inc | Multilevel reset voltage for multi-conversion gain image sensor |
CN105321967A (en) * | 2014-07-31 | 2016-02-10 | 全视科技有限公司 | Pixel cell and imaging system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110101420A1 (en) * | 2009-10-31 | 2011-05-05 | Pratik Patel | Increasing full well capacity of a photodiode used in digital photography |
US8730364B2 (en) * | 2010-11-09 | 2014-05-20 | Omnivision Technologies, Inc. | Image sensor with pipelined column analog-to-digital converters |
JP6369696B2 (en) * | 2013-03-29 | 2018-08-08 | パナソニックIpマネジメント株式会社 | Solid-state imaging device and imaging device |
US9491386B2 (en) * | 2014-12-03 | 2016-11-08 | Omnivision Technologies, Inc. | Floating diffusion reset level boost in pixel cell |
EP3379823A4 (en) * | 2015-11-19 | 2019-08-07 | Olympus Corporation | Inspection device, image processing device, correction value calculating method, image processing method, inspection program, and correction program |
US9819883B2 (en) * | 2015-12-03 | 2017-11-14 | Omnivision Technologies, Inc. | Global shutter correction |
-
2017
- 2017-12-22 US US15/853,463 patent/US10290673B1/en active Active
-
2018
- 2018-12-19 CN CN201811553579.9A patent/CN110035243B/en active Active
- 2018-12-22 TW TW107146628A patent/TWI685985B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1835245A (en) * | 2005-03-17 | 2006-09-20 | 富士通株式会社 | Image sensor with embedded photodiode region and fabrication method thereof |
US8149304B2 (en) * | 2008-10-10 | 2012-04-03 | Panasonic Corporation | Solid-state imaging device and imaging device |
US8325255B2 (en) * | 2009-07-14 | 2012-12-04 | Sony Corporation | Solid-state imaging device, control method therefor, and camera system |
TW201310989A (en) * | 2011-08-30 | 2013-03-01 | Omnivision Tech Inc | Multilevel reset voltage for multi-conversion gain image sensor |
CN105321967A (en) * | 2014-07-31 | 2016-02-10 | 全视科技有限公司 | Pixel cell and imaging system |
Also Published As
Publication number | Publication date |
---|---|
CN110035243A (en) | 2019-07-19 |
TW201929256A (en) | 2019-07-16 |
CN110035243B (en) | 2020-04-07 |
US10290673B1 (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI685985B (en) | Fast settling output line circuit, fast settling method and imaging system | |
TWI672822B (en) | Fast settling output line circuit, fast settling method and imaging system | |
US8729451B2 (en) | Multilevel reset voltage for multi-conversion gain image sensor | |
US10587830B2 (en) | Method for controlling an active pixel image sensor | |
US10116892B1 (en) | Bitline boost for fast settling with current source of adjustable bias | |
US7485836B2 (en) | Row driver for selectively supplying operating power to imager pixel | |
TWI424742B (en) | Methods and apparatus for high dynamic operation of a pixel cell | |
US8941044B2 (en) | Solid state image pickup apparatus | |
US20090096890A1 (en) | Method and apparatus for controlling dual conversion gain signal in imaging devices | |
JP6172608B2 (en) | Solid-state imaging device, driving method thereof, and imaging device | |
TWI531241B (en) | Image sensor pixel cell readout architecture | |
US20150200229A1 (en) | Image sensor pixel with multilevel transfer gate | |
US7619671B2 (en) | Method, apparatus and system for charge injection suppression in active pixel sensors | |
EP2648404A1 (en) | Floating diffusion pre-charge | |
TWI697232B (en) | Imaging system, output line circuit and fast settling method thereof | |
US11716547B2 (en) | Sample and hold switch driver circuitry with slope control | |
CN114363537A (en) | Pixel structure and array, circuit and method, image sensor, and storage medium |