TWI685918B - Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same - Google Patents
Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same Download PDFInfo
- Publication number
- TWI685918B TWI685918B TW107145318A TW107145318A TWI685918B TW I685918 B TWI685918 B TW I685918B TW 107145318 A TW107145318 A TW 107145318A TW 107145318 A TW107145318 A TW 107145318A TW I685918 B TWI685918 B TW I685918B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- gate dielectric
- oxide
- oxide layer
- forming
- Prior art date
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
本發明是有關於一種半導體製程,且特別是有關於一種具有傾斜面之閘介電層及其半導體結構的製造方法。 The invention relates to a semiconductor manufacturing process, and in particular to a method for manufacturing a gate dielectric layer with an inclined plane and a semiconductor structure thereof.
使用平面雙閘極元件(planar dual gate device),讓高壓橫向擴散金氧半電晶體(Laterally Diffused Metal Oxide Semiconductor;LDMOS)在汲極-源極崩潰電壓(Drain-Source Breakdown Voltage;BVDSS)、特定導通電阻(specific ON-resistance;Rsp)、跨導(transconductance)、熱載子壽命(hot carrier lifetimes)、安全操作區(safe operating area;SOA)等各方面的評量指標(figure of merit;FOM)上皆具有優秀的表現。此類LDMOS的關鍵結構為厚度不一的閘介電層,且厚薄閘介電層之間具有厚度漸變的部分來平順地連接薄閘介電層和厚閘介電層,藉此獲得更為均勻的橫 向電場分布,以減少多晶矽場板(polysilicon field plate)的表面電場(reduced surface field;RESURF)。 Using a planar dual gate device (Layerally Diffused Metal Oxide Semiconductor; LDMOS) at the drain-source breakdown voltage (BV DSS ), Specific ON-resistance (R sp ), transconductance, hot carrier lifetimes, safe operating area (SOA) and other evaluation indicators (figure of merit) ; FOM) have excellent performance. The key structure of this type of LDMOS is a gate dielectric layer with different thickness, and there is a portion with a gradually varying thickness between the thick and thin gate dielectric layers to smoothly connect the thin gate dielectric layer and the thick gate dielectric layer, thereby obtaining more Uniform lateral electric field distribution to reduce the surface field (reduced surface field; RESURF) of the polysilicon field plate.
因此本發明提供一種具有傾斜面之閘介電層及其半導體結構的製造方法。 Therefore, the present invention provides a method for manufacturing a gate dielectric layer having an inclined surface and a semiconductor structure thereof.
在上述具有傾斜面之閘介電層的製造方法中,先在基底上形成圖案化的疊層,疊層包括下方之第一氧化層和上方之氮化矽層。然後在圖案化疊層的側壁上形成氧化間隙壁。接著在基底上形成第三氧化層,第三氧化層的厚度小於該第一氧化層的厚度。上述第一氧化層、該氮化矽層、氧化間隙壁和第三氧化層構成具有傾斜面之閘介電層。 In the above method for manufacturing a gate dielectric layer with an inclined plane, a patterned stack is first formed on a substrate. The stack includes a first oxide layer below and a silicon nitride layer above. An oxide spacer is then formed on the sidewall of the patterned stack. Next, a third oxide layer is formed on the substrate. The thickness of the third oxide layer is smaller than the thickness of the first oxide layer. The above-mentioned first oxide layer, the silicon nitride layer, the oxide spacer and the third oxide layer constitute a gate dielectric layer having an inclined surface.
依據一實施例,上述圖案化疊層的形成方法包含先在基底上依序形成第一氧化層和氮化矽層。對第一氧化層和氮化矽層進行微影蝕刻製程,以圖案化上述疊層並暴露出部分基底的表面。上述之第一氧化層的形成方法例如可為熱氧化法,上述之氮化矽層的形成方法例如可為化學氣相沉積法或含氮電漿處理法。 According to an embodiment, the method for forming the patterned stack includes first forming a first oxide layer and a silicon nitride layer on the substrate in sequence. A lithography etching process is performed on the first oxide layer and the silicon nitride layer to pattern the above-mentioned stack and expose part of the surface of the substrate. The method for forming the first oxide layer may be a thermal oxidation method, and the method for forming the silicon nitride layer may be a chemical vapor deposition method or a nitrogen-containing plasma treatment method, for example.
依據另一實施例,上述氧化間隙壁的形成方法包括在基底上形成第二氧化層,以覆蓋上述之疊層和基底。再利用非等向性蝕刻該第二氧化層,以氮化矽層做為蝕刻停止層(etch stop layer),直至暴露出未被該疊層所覆蓋之基底的表面。上述之第二氧化層的形成方法例如可為化學氣相沉積法,上述之非等向性蝕刻的方 法例如可為乾蝕刻法,或是乾蝕刻法和溼蝕刻法的混用。 According to another embodiment, the method for forming the above-mentioned oxide spacer includes forming a second oxide layer on the substrate to cover the above-mentioned stacked layer and the substrate. The second oxide layer is then anisotropically etched, using the silicon nitride layer as an etch stop layer (etch stop layer) until the surface of the substrate not covered by the stack is exposed. The method for forming the above-mentioned second oxide layer may be, for example, chemical vapor deposition, and the method for anisotropic etching described above The method may be, for example, dry etching, or a mixture of dry etching and wet etching.
依據再一實施例,上述第三氧化層的形成方法例如可為熱氧化法或化學氣相沉積法。 According to still another embodiment, the method for forming the third oxide layer may be, for example, a thermal oxidation method or a chemical vapor deposition method.
依據又一實施例,上述具有傾斜面之閘介電層的製造方法還包含在形成該氧化間隙壁和形成該第三氧化層的步驟之間,去除上述的氮化矽層,例如使用乾蝕刻法或濕蝕刻法來去除上述氮化矽層。而且,氧化間隙壁的高度約略等於第一氧化層的厚度。 According to yet another embodiment, the method for manufacturing the gate dielectric layer with an inclined surface further includes removing the silicon nitride layer between the steps of forming the oxide spacer and forming the third oxide layer, for example, using dry etching Method or wet etching method to remove the silicon nitride layer. Moreover, the height of the oxidation spacer is approximately equal to the thickness of the first oxide layer.
在包含上述具有傾斜面之閘介電層的半導體結構的製造方法中,除了上述之具有傾斜面之閘介電層的製造步驟之外,還包括在閘介電層上形成閘極,再於閘極兩側之基底中形成源極和汲極。 In the manufacturing method of the semiconductor structure including the above-mentioned inclined gate dielectric layer, in addition to the above-mentioned manufacturing steps of the above-mentioned inclined gate dielectric layer, it also includes forming a gate electrode on the gate dielectric layer, and then Source and drain are formed in the substrate on both sides of the gate.
基於上述,利用氧化間隙壁來形成位於薄閘介電層和厚氧化層之間的斜面,以平順地連接薄閘介電層和厚閘介電層,讓電場分布地更均勻,增加包含此具有傾斜面之閘介電層的半導體結構具有更優秀的元件性能。 Based on the above, the oxide spacer is used to form a slope between the thin gate dielectric layer and the thick oxide layer to smoothly connect the thin gate dielectric layer and the thick gate dielectric layer to make the electric field distribution more uniform. The semiconductor structure with the inclined gate dielectric layer has better device performance.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.
100‧‧‧基底 100‧‧‧ base
110‧‧‧第一氧化層 110‧‧‧First oxide layer
120‧‧‧氮化矽層 120‧‧‧Silicon nitride layer
125‧‧‧疊層 125‧‧‧Lamination
130‧‧‧氧化間隙壁 130‧‧‧ Oxidation gap
140‧‧‧第三氧化層 140‧‧‧third oxide layer
150‧‧‧閘極 150‧‧‧Gate
160‧‧‧汲極 160‧‧‧ Jiji
170‧‧‧源極 170‧‧‧Source
180‧‧‧摻雜井 180‧‧‧Doped well
圖1和圖2A-2B是依照本發明第一實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 2A-2B are schematic cross-sectional structure diagrams of a manufacturing process of a gate dielectric layer with an inclined plane according to the first embodiment of the present invention.
圖1和圖3A-3B是依照本發明第二實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 3A-3B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a second embodiment of the invention.
圖1和圖4A-4B是依照本發明第三實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 4A-4B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a third embodiment of the invention.
圖1和圖5A-5B是依照本發明第四實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 5A-5B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a fourth embodiment of the invention.
圖1和圖2A-2B是依照本發明第一實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。在圖1中,在基底100上依序形成第一氧化層110和氮化矽層120。第一氧化層110的形成方法例如可為熱氧化法(thermal oxidation),第一氧化層110的厚度例如約為130-170Å,例如130、140、150、160、170Å。氮化矽層120的形成方法例如可為化學氣相沉積法(chemical vapor deposition;CVD)直接沉積出氮化矽層120,或是使用含氮電漿來氮化第一氧化層110的表層而形成氮化矽層120。氮化矽層120的厚度例如約為30-70Å,例如30、40、50、60、70Å。
1 and 2A-2B are schematic cross-sectional structure diagrams of a manufacturing process of a gate dielectric layer with an inclined plane according to the first embodiment of the present invention. In FIG. 1, a
接著,圖案化氮化矽層120和第一氧化層110,得到圖案化的疊層125,並暴露出部分基底100的表面。上述圖案化的方法,例如可先對氮化矽層120進行微影蝕刻製程,得到圖案化的氮化矽層120。接著,以圖案化的氮化矽層120為硬罩幕,繼續蝕刻第一氧化層110,形成圖案化的疊層125。
Next, the
在圖2A中,形成第二氧化層,階梯覆蓋在暴露的基底100和圖案化的疊層125之上,第二氧化層的厚度例如約為150-250Å,例如約180-220Å,如180、190、200、210、220Å。接著,對第二氧化層進行非等向性蝕刻,直至暴露出氮化矽層120為止,得到位在疊層125側壁的氧化間隙壁130。上述第二氧化層的形成方法例如可為化學氣相沉積法,而上述之非等向性蝕刻的方法例如可為乾蝕刻法,或是乾蝕刻法和溼蝕刻法的混用。一般來說,只用乾蝕刻法就可以得到氧化間隙壁130,若想調整氧化間隙壁130表面的傾斜程度,可以調整乾蝕刻法的各種參數,或是加入濕蝕刻法。由於此為半導體製程領域之具有通常知識者所能自行決定者,因此不再贅述此步驟的所有細節。
In FIG. 2A, a second oxide layer is formed, and the step covers the exposed
然後,形成第三氧化層140,覆蓋暴露出的基底100、氧化間隙壁130和氮化矽層120。第三氧化層140的形方法成例如可為化學氣相沉積法,且第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。到此步驟,上述第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。
Then, a
在圖2B中,可繼續在閘介電層(第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。
In FIG. 2B, the
圖1和圖3A-3B是依照本發明第二實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。圖1的說明如前所述,在此不再贅述。接著,在圖3A中,形成位在疊層125側壁的氧化間隙壁130,氧化間隙壁130的形成方法已在圖2A中敘述過,在此不再贅述。
1 and 3A-3B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a second embodiment of the invention. The description of FIG. 1 is as described above and will not be repeated here. Next, in FIG. 3A, an
然後,進行熱氧化或含氧電漿處理法,氧化基底100和氮化矽層120的表面,形成第三氧化層140。第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。至此,上述第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。
Then, thermal oxidation or oxygen-containing plasma treatment is performed to oxidize the surfaces of the
在圖3B中,可繼續在閘介電層(第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。
In FIG. 3B, the
圖1和圖4A-4B是依照本發明第三實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。圖1的說明如前所述,在此不再贅述。在圖4A中,形成第二氧化層,階梯覆蓋在暴露的基底100和圖案化的疊層125之上,第二氧化層的厚度例如約為150-250Å,例如約180-220Å,如180、190、200、210、220Å。接著,對第二氧化層進行非等向性蝕刻,直至所得的氧化間隙壁130的高度約略等於第一氧化層110的厚度為止,形成位
在第一氧化層110側壁上的氧化間隙壁130。上述的第二氧化層的蝕刻方法如前面圖2A所述,在此不再贅述之。
1 and 4A-4B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a third embodiment of the invention. The description of FIG. 1 is as described above and will not be repeated here. In FIG. 4A, a second oxide layer is formed, and the steps cover the exposed
接著,去除氮化矽層120,去除的方法例如可為乾蝕刻法或濕蝕刻法。然後,形成第三氧化層140,覆蓋暴露出的基底100、氧化間隙壁130和第一氧化層110。第三氧化層140的形成方法例如可為化學氣相沉積法,且第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。到此步驟,上述第一氧化層110、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。
Next, the
在圖4B中,可繼續在閘介電層(第一氧化層110、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。
In FIG. 4B, the
圖1和圖5A-5B是依照本發明第四實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。在圖5A中,形成位在第一氧化層110側壁上的氧化間隙壁130。氧化間隙壁130形成方法如前面圖4A所述,在此不再贅述之。
1 and 5A-5B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a fourth embodiment of the invention. In FIG. 5A, an
接著,去除氮化矽層120,去除的方法例如可為乾蝕刻法或濕蝕刻法。然後,進行熱氧化法或含氧電漿處理法,氧化基底100的表面,形成第三氧化層140,且第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。至此,上述
第一氧化層110、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。
Next, the
請參考圖5B,圖5B是依照本發明另一實施例的一種半導體元件的剖面結構示意圖。在圖2B中,可繼續在閘介電層(第一氧化層110、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。
Please refer to FIG. 5B, which is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention. In FIG. 2B, the
綜上所述,本發明利用氧化間隙壁來形成位於閘介電層中薄層和厚層之間的斜面,以平順地連接閘介電層中之薄層和厚層。藉此讓電場分布地更均勻,減少多晶矽場板的表面電場,讓包含具有傾斜面之閘介電層的半導體結構具有更優秀的元件表現。 In summary, the present invention uses an oxide spacer to form a slope between the thin layer and the thick layer in the gate dielectric layer to smoothly connect the thin layer and the thick layer in the gate dielectric layer. In this way, the electric field distribution is more uniform, the surface electric field of the polysilicon field plate is reduced, and the semiconductor structure including the gate dielectric layer with the inclined plane has better device performance.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.
100‧‧‧基底 100‧‧‧ base
110‧‧‧第一氧化層 110‧‧‧First oxide layer
120‧‧‧氮化矽層 120‧‧‧Silicon nitride layer
125‧‧‧疊層 125‧‧‧Lamination
130‧‧‧氧化間隙壁 130‧‧‧ Oxidation gap
140‧‧‧第三氧化層 140‧‧‧third oxide layer
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107145318A TWI685918B (en) | 2018-12-14 | 2018-12-14 | Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107145318A TWI685918B (en) | 2018-12-14 | 2018-12-14 | Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI685918B true TWI685918B (en) | 2020-02-21 |
TW202022985A TW202022985A (en) | 2020-06-16 |
Family
ID=70413377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107145318A TWI685918B (en) | 2018-12-14 | 2018-12-14 | Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI685918B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201631634A (en) * | 2014-12-30 | 2016-09-01 | 格羅方德半導體公司 | Tapered gate oxide in LDMOS devices |
-
2018
- 2018-12-14 TW TW107145318A patent/TWI685918B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201631634A (en) * | 2014-12-30 | 2016-09-01 | 格羅方德半導體公司 | Tapered gate oxide in LDMOS devices |
Also Published As
Publication number | Publication date |
---|---|
TW202022985A (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101319719B1 (en) | Fin profile structure and method of making same | |
US8022483B2 (en) | Semiconductor and manufacturing method for the same | |
KR100809841B1 (en) | Semiconductor device with sti and its manufacture | |
JP2013058688A (en) | Semiconductor device manufacturing method | |
US7875938B2 (en) | LDMOS device with multiple gate insulating members | |
JP2011138947A (en) | Semiconductor device and method for manufacturing the same | |
TWI708390B (en) | Semiconductor structure and method of forming the same | |
CN106960875B (en) | Semiconductor device and method for manufacturing the same | |
US20050260840A1 (en) | Method of fabricating T-shaped polysilicon gate by using dual damascene process | |
WO2014171014A1 (en) | Method for producing semiconductor device, and semiconductor device | |
KR20070082921A (en) | Method of forming an isolation layer of the fin type field effect transistor and method of manufacturing the fin type field effect transistor using the same | |
TWI685918B (en) | Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same | |
CN109103106B (en) | Method for preparing lateral diffusion metal oxide semiconductor | |
TW201212231A (en) | Semiconductor device and fabrications thereof | |
WO2012169218A1 (en) | Method for manufacturing silicon carbide semiconductor device | |
TWI739087B (en) | Manufacturing method of split gate structure and split gate structure | |
KR100702324B1 (en) | Semiconductor device and method for fabricating the same | |
TW409361B (en) | Self-aligned contact process | |
JP2004228342A (en) | Semiconductor device and its manufacturing method | |
JP4193638B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
KR100912960B1 (en) | Transistor with recess channel and method for fabricating the same | |
JP2007234740A (en) | Manufacturing method of semiconductor device | |
TWI715967B (en) | Semiconductor structure and method of processing the same | |
WO2024169311A1 (en) | Split-gate mosfet device and manufacturing method therefor | |
JP2012109378A (en) | Semiconductor device and method of manufacturing the same |