TWI685918B - Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same - Google Patents

Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same Download PDF

Info

Publication number
TWI685918B
TWI685918B TW107145318A TW107145318A TWI685918B TW I685918 B TWI685918 B TW I685918B TW 107145318 A TW107145318 A TW 107145318A TW 107145318 A TW107145318 A TW 107145318A TW I685918 B TWI685918 B TW I685918B
Authority
TW
Taiwan
Prior art keywords
layer
gate dielectric
oxide
oxide layer
forming
Prior art date
Application number
TW107145318A
Other languages
Chinese (zh)
Other versions
TW202022985A (en
Inventor
黃振明
邱淳靖
翁士元
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW107145318A priority Critical patent/TWI685918B/en
Application granted granted Critical
Publication of TWI685918B publication Critical patent/TWI685918B/en
Publication of TW202022985A publication Critical patent/TW202022985A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method of forming a tapered gate oxide layer and a semiconductor structure comprising the tapered gate dielectric layer is provided. In the method of fabricating the tapered gate dielectric layer, a patterned stack layer having a first oxide layer and a silicon nitride layer disposed thereon is formed on a substrate. Then, an oxide spacer is formed on the sidewall of the patterned stack layer. Next, a third oxide layer is formed on the substrate, and the thickness of the third oxide layer is smaller than the thickness of the first oxide layer. The first oxide layer, the silicon nitride layer, the oxide spacer and the third oxide layer form the tapered gate dielectric layer. A method of forming a semiconductor structure including the tapered gate dielectric is also provided.

Description

具有傾斜面之閘介電層及其半導體結構的製造方法Gate dielectric layer with inclined surface and manufacturing method of semiconductor structure

本發明是有關於一種半導體製程,且特別是有關於一種具有傾斜面之閘介電層及其半導體結構的製造方法。 The invention relates to a semiconductor manufacturing process, and in particular to a method for manufacturing a gate dielectric layer with an inclined plane and a semiconductor structure thereof.

使用平面雙閘極元件(planar dual gate device),讓高壓橫向擴散金氧半電晶體(Laterally Diffused Metal Oxide Semiconductor;LDMOS)在汲極-源極崩潰電壓(Drain-Source Breakdown Voltage;BVDSS)、特定導通電阻(specific ON-resistance;Rsp)、跨導(transconductance)、熱載子壽命(hot carrier lifetimes)、安全操作區(safe operating area;SOA)等各方面的評量指標(figure of merit;FOM)上皆具有優秀的表現。此類LDMOS的關鍵結構為厚度不一的閘介電層,且厚薄閘介電層之間具有厚度漸變的部分來平順地連接薄閘介電層和厚閘介電層,藉此獲得更為均勻的橫 向電場分布,以減少多晶矽場板(polysilicon field plate)的表面電場(reduced surface field;RESURF)。 Using a planar dual gate device (Layerally Diffused Metal Oxide Semiconductor; LDMOS) at the drain-source breakdown voltage (BV DSS ), Specific ON-resistance (R sp ), transconductance, hot carrier lifetimes, safe operating area (SOA) and other evaluation indicators (figure of merit) ; FOM) have excellent performance. The key structure of this type of LDMOS is a gate dielectric layer with different thickness, and there is a portion with a gradually varying thickness between the thick and thin gate dielectric layers to smoothly connect the thin gate dielectric layer and the thick gate dielectric layer, thereby obtaining more Uniform lateral electric field distribution to reduce the surface field (reduced surface field; RESURF) of the polysilicon field plate.

因此本發明提供一種具有傾斜面之閘介電層及其半導體結構的製造方法。 Therefore, the present invention provides a method for manufacturing a gate dielectric layer having an inclined surface and a semiconductor structure thereof.

在上述具有傾斜面之閘介電層的製造方法中,先在基底上形成圖案化的疊層,疊層包括下方之第一氧化層和上方之氮化矽層。然後在圖案化疊層的側壁上形成氧化間隙壁。接著在基底上形成第三氧化層,第三氧化層的厚度小於該第一氧化層的厚度。上述第一氧化層、該氮化矽層、氧化間隙壁和第三氧化層構成具有傾斜面之閘介電層。 In the above method for manufacturing a gate dielectric layer with an inclined plane, a patterned stack is first formed on a substrate. The stack includes a first oxide layer below and a silicon nitride layer above. An oxide spacer is then formed on the sidewall of the patterned stack. Next, a third oxide layer is formed on the substrate. The thickness of the third oxide layer is smaller than the thickness of the first oxide layer. The above-mentioned first oxide layer, the silicon nitride layer, the oxide spacer and the third oxide layer constitute a gate dielectric layer having an inclined surface.

依據一實施例,上述圖案化疊層的形成方法包含先在基底上依序形成第一氧化層和氮化矽層。對第一氧化層和氮化矽層進行微影蝕刻製程,以圖案化上述疊層並暴露出部分基底的表面。上述之第一氧化層的形成方法例如可為熱氧化法,上述之氮化矽層的形成方法例如可為化學氣相沉積法或含氮電漿處理法。 According to an embodiment, the method for forming the patterned stack includes first forming a first oxide layer and a silicon nitride layer on the substrate in sequence. A lithography etching process is performed on the first oxide layer and the silicon nitride layer to pattern the above-mentioned stack and expose part of the surface of the substrate. The method for forming the first oxide layer may be a thermal oxidation method, and the method for forming the silicon nitride layer may be a chemical vapor deposition method or a nitrogen-containing plasma treatment method, for example.

依據另一實施例,上述氧化間隙壁的形成方法包括在基底上形成第二氧化層,以覆蓋上述之疊層和基底。再利用非等向性蝕刻該第二氧化層,以氮化矽層做為蝕刻停止層(etch stop layer),直至暴露出未被該疊層所覆蓋之基底的表面。上述之第二氧化層的形成方法例如可為化學氣相沉積法,上述之非等向性蝕刻的方 法例如可為乾蝕刻法,或是乾蝕刻法和溼蝕刻法的混用。 According to another embodiment, the method for forming the above-mentioned oxide spacer includes forming a second oxide layer on the substrate to cover the above-mentioned stacked layer and the substrate. The second oxide layer is then anisotropically etched, using the silicon nitride layer as an etch stop layer (etch stop layer) until the surface of the substrate not covered by the stack is exposed. The method for forming the above-mentioned second oxide layer may be, for example, chemical vapor deposition, and the method for anisotropic etching described above The method may be, for example, dry etching, or a mixture of dry etching and wet etching.

依據再一實施例,上述第三氧化層的形成方法例如可為熱氧化法或化學氣相沉積法。 According to still another embodiment, the method for forming the third oxide layer may be, for example, a thermal oxidation method or a chemical vapor deposition method.

依據又一實施例,上述具有傾斜面之閘介電層的製造方法還包含在形成該氧化間隙壁和形成該第三氧化層的步驟之間,去除上述的氮化矽層,例如使用乾蝕刻法或濕蝕刻法來去除上述氮化矽層。而且,氧化間隙壁的高度約略等於第一氧化層的厚度。 According to yet another embodiment, the method for manufacturing the gate dielectric layer with an inclined surface further includes removing the silicon nitride layer between the steps of forming the oxide spacer and forming the third oxide layer, for example, using dry etching Method or wet etching method to remove the silicon nitride layer. Moreover, the height of the oxidation spacer is approximately equal to the thickness of the first oxide layer.

在包含上述具有傾斜面之閘介電層的半導體結構的製造方法中,除了上述之具有傾斜面之閘介電層的製造步驟之外,還包括在閘介電層上形成閘極,再於閘極兩側之基底中形成源極和汲極。 In the manufacturing method of the semiconductor structure including the above-mentioned inclined gate dielectric layer, in addition to the above-mentioned manufacturing steps of the above-mentioned inclined gate dielectric layer, it also includes forming a gate electrode on the gate dielectric layer, and then Source and drain are formed in the substrate on both sides of the gate.

基於上述,利用氧化間隙壁來形成位於薄閘介電層和厚氧化層之間的斜面,以平順地連接薄閘介電層和厚閘介電層,讓電場分布地更均勻,增加包含此具有傾斜面之閘介電層的半導體結構具有更優秀的元件性能。 Based on the above, the oxide spacer is used to form a slope between the thin gate dielectric layer and the thick oxide layer to smoothly connect the thin gate dielectric layer and the thick gate dielectric layer to make the electric field distribution more uniform. The semiconductor structure with the inclined gate dielectric layer has better device performance.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

100‧‧‧基底 100‧‧‧ base

110‧‧‧第一氧化層 110‧‧‧First oxide layer

120‧‧‧氮化矽層 120‧‧‧Silicon nitride layer

125‧‧‧疊層 125‧‧‧Lamination

130‧‧‧氧化間隙壁 130‧‧‧ Oxidation gap

140‧‧‧第三氧化層 140‧‧‧third oxide layer

150‧‧‧閘極 150‧‧‧Gate

160‧‧‧汲極 160‧‧‧ Jiji

170‧‧‧源極 170‧‧‧Source

180‧‧‧摻雜井 180‧‧‧Doped well

圖1和圖2A-2B是依照本發明第一實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 2A-2B are schematic cross-sectional structure diagrams of a manufacturing process of a gate dielectric layer with an inclined plane according to the first embodiment of the present invention.

圖1和圖3A-3B是依照本發明第二實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 3A-3B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a second embodiment of the invention.

圖1和圖4A-4B是依照本發明第三實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 4A-4B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a third embodiment of the invention.

圖1和圖5A-5B是依照本發明第四實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。 1 and 5A-5B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a fourth embodiment of the invention.

圖1和圖2A-2B是依照本發明第一實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。在圖1中,在基底100上依序形成第一氧化層110和氮化矽層120。第一氧化層110的形成方法例如可為熱氧化法(thermal oxidation),第一氧化層110的厚度例如約為130-170Å,例如130、140、150、160、170Å。氮化矽層120的形成方法例如可為化學氣相沉積法(chemical vapor deposition;CVD)直接沉積出氮化矽層120,或是使用含氮電漿來氮化第一氧化層110的表層而形成氮化矽層120。氮化矽層120的厚度例如約為30-70Å,例如30、40、50、60、70Å。 1 and 2A-2B are schematic cross-sectional structure diagrams of a manufacturing process of a gate dielectric layer with an inclined plane according to the first embodiment of the present invention. In FIG. 1, a first oxide layer 110 and a silicon nitride layer 120 are sequentially formed on the substrate 100. The formation method of the first oxide layer 110 may be, for example, thermal oxidation. The thickness of the first oxide layer 110 is, for example, about 130-170Å, such as 130, 140, 150, 160, 170Å. The formation method of the silicon nitride layer 120 may be, for example, a chemical vapor deposition (CVD) method to directly deposit the silicon nitride layer 120, or a nitrogen-containing plasma is used to nitride the surface layer of the first oxide layer 110. The silicon nitride layer 120 is formed. The thickness of the silicon nitride layer 120 is, for example, about 30-70Å, such as 30, 40, 50, 60, 70Å.

接著,圖案化氮化矽層120和第一氧化層110,得到圖案化的疊層125,並暴露出部分基底100的表面。上述圖案化的方法,例如可先對氮化矽層120進行微影蝕刻製程,得到圖案化的氮化矽層120。接著,以圖案化的氮化矽層120為硬罩幕,繼續蝕刻第一氧化層110,形成圖案化的疊層125。 Next, the silicon nitride layer 120 and the first oxide layer 110 are patterned to obtain a patterned stack 125, and a portion of the surface of the substrate 100 is exposed. For the above patterning method, for example, a lithography etching process may be performed on the silicon nitride layer 120 to obtain a patterned silicon nitride layer 120. Next, using the patterned silicon nitride layer 120 as a hard mask, the first oxide layer 110 is continuously etched to form a patterned stack 125.

在圖2A中,形成第二氧化層,階梯覆蓋在暴露的基底100和圖案化的疊層125之上,第二氧化層的厚度例如約為150-250Å,例如約180-220Å,如180、190、200、210、220Å。接著,對第二氧化層進行非等向性蝕刻,直至暴露出氮化矽層120為止,得到位在疊層125側壁的氧化間隙壁130。上述第二氧化層的形成方法例如可為化學氣相沉積法,而上述之非等向性蝕刻的方法例如可為乾蝕刻法,或是乾蝕刻法和溼蝕刻法的混用。一般來說,只用乾蝕刻法就可以得到氧化間隙壁130,若想調整氧化間隙壁130表面的傾斜程度,可以調整乾蝕刻法的各種參數,或是加入濕蝕刻法。由於此為半導體製程領域之具有通常知識者所能自行決定者,因此不再贅述此步驟的所有細節。 In FIG. 2A, a second oxide layer is formed, and the step covers the exposed substrate 100 and the patterned stack 125. The thickness of the second oxide layer is, for example, about 150-250Å, such as about 180-220Å, such as 180, 190, 200, 210, 220Å. Next, the second oxide layer is anisotropically etched until the silicon nitride layer 120 is exposed to obtain an oxide spacer 130 located on the side wall of the stack 125. The method for forming the second oxide layer may be, for example, chemical vapor deposition, and the method for anisotropic etching may be, for example, dry etching, or a mixture of dry etching and wet etching. Generally speaking, the oxide spacer 130 can be obtained only by dry etching. If you want to adjust the degree of inclination of the surface of the oxide spacer 130, you can adjust various parameters of the dry etching method or add a wet etching method. Since this is a decision made by those with ordinary knowledge in the field of semiconductor manufacturing, all details of this step will not be repeated here.

然後,形成第三氧化層140,覆蓋暴露出的基底100、氧化間隙壁130和氮化矽層120。第三氧化層140的形方法成例如可為化學氣相沉積法,且第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。到此步驟,上述第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。 Then, a third oxide layer 140 is formed to cover the exposed substrate 100, the oxide spacer 130, and the silicon nitride layer 120. The forming method of the third oxide layer 140 may be, for example, chemical vapor deposition, and the thickness of the third oxide layer 140 may be about 25-35Å, such as 25, 27, 29, 30, 31, 33, 35Å. At this step, the first oxide layer 110, the silicon nitride layer 120, the oxide spacer 130, and the third oxide layer 140 constitute a gate dielectric layer having an inclined surface.

在圖2B中,可繼續在閘介電層(第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。 In FIG. 2B, the gate electrode 150 may continue to be formed on the gate dielectric layer (the first oxide layer 110, the silicon nitride layer 120, the oxide spacer 130, and the third oxide layer 140), and then the thicker first A drain 160 is formed on the side of the oxide layer 110, and a source 170 is formed in the doped well 180 on the side of the thinner third oxide layer 140 to obtain the basic structure of a laterally diffused metal oxide semi-transistor.

圖1和圖3A-3B是依照本發明第二實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。圖1的說明如前所述,在此不再贅述。接著,在圖3A中,形成位在疊層125側壁的氧化間隙壁130,氧化間隙壁130的形成方法已在圖2A中敘述過,在此不再贅述。 1 and 3A-3B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a second embodiment of the invention. The description of FIG. 1 is as described above and will not be repeated here. Next, in FIG. 3A, an oxide spacer 130 located on the side wall of the stack 125 is formed. The formation method of the oxide spacer 130 has been described in FIG. 2A and will not be repeated here.

然後,進行熱氧化或含氧電漿處理法,氧化基底100和氮化矽層120的表面,形成第三氧化層140。第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。至此,上述第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。 Then, thermal oxidation or oxygen-containing plasma treatment is performed to oxidize the surfaces of the substrate 100 and the silicon nitride layer 120 to form a third oxide layer 140. The thickness of the third oxide layer 140 may be, for example, about 25-35Å, such as 25, 27, 29, 30, 31, 33, 35Å. So far, the first oxide layer 110, the silicon nitride layer 120, the oxide spacer 130 and the third oxide layer 140 constitute a gate dielectric layer having an inclined surface.

在圖3B中,可繼續在閘介電層(第一氧化層110、氮化矽層120、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。 In FIG. 3B, the gate electrode 150 may continue to be formed on the gate dielectric layer (the first oxide layer 110, the silicon nitride layer 120, the oxide spacer 130, and the third oxide layer 140), and then the thicker first A drain 160 is formed on the side of the oxide layer 110, and a source 170 is formed in the doped well 180 on the side of the thinner third oxide layer 140 to obtain the basic structure of a laterally diffused metal oxide semi-transistor.

圖1和圖4A-4B是依照本發明第三實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。圖1的說明如前所述,在此不再贅述。在圖4A中,形成第二氧化層,階梯覆蓋在暴露的基底100和圖案化的疊層125之上,第二氧化層的厚度例如約為150-250Å,例如約180-220Å,如180、190、200、210、220Å。接著,對第二氧化層進行非等向性蝕刻,直至所得的氧化間隙壁130的高度約略等於第一氧化層110的厚度為止,形成位 在第一氧化層110側壁上的氧化間隙壁130。上述的第二氧化層的蝕刻方法如前面圖2A所述,在此不再贅述之。 1 and 4A-4B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a third embodiment of the invention. The description of FIG. 1 is as described above and will not be repeated here. In FIG. 4A, a second oxide layer is formed, and the steps cover the exposed substrate 100 and the patterned stack 125. The thickness of the second oxide layer is, for example, about 150-250Å, such as about 180-220Å, such as 180, 190, 200, 210, 220Å. Next, the second oxide layer is anisotropically etched until the height of the obtained oxide spacer 130 is approximately equal to the thickness of the first oxide layer 110 to form a bit An oxide spacer 130 is formed on the sidewall of the first oxide layer 110. The above-mentioned etching method of the second oxide layer is as described above in FIG. 2A and will not be repeated here.

接著,去除氮化矽層120,去除的方法例如可為乾蝕刻法或濕蝕刻法。然後,形成第三氧化層140,覆蓋暴露出的基底100、氧化間隙壁130和第一氧化層110。第三氧化層140的形成方法例如可為化學氣相沉積法,且第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。到此步驟,上述第一氧化層110、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。 Next, the silicon nitride layer 120 is removed, and the removal method may be, for example, a dry etching method or a wet etching method. Then, a third oxide layer 140 is formed to cover the exposed substrate 100, the oxide spacer 130, and the first oxide layer 110. The method for forming the third oxide layer 140 may be, for example, chemical vapor deposition, and the thickness of the third oxide layer 140 may be about 25-35Å, such as 25, 27, 29, 30, 31, 33, 35Å. Up to this step, the first oxide layer 110, the oxide spacer 130 and the third oxide layer 140 constitute a gate dielectric layer having an inclined surface.

在圖4B中,可繼續在閘介電層(第一氧化層110、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。 In FIG. 4B, the gate electrode 150 may continue to be formed on the gate dielectric layer (the first oxide layer 110, the oxide spacer 130, and the third oxide layer 140), and then the gate electrode 150 may be formed on the thicker first oxide layer 110 side. Electrode 160, and a source electrode 170 is formed in the doped well 180 on the side of the thin third oxide layer 140 to obtain the basic structure of a laterally diffused metal oxide semi-transistor.

圖1和圖5A-5B是依照本發明第四實施例之一種具有傾斜面之閘介電層的製造流程的剖面結構示意圖。在圖5A中,形成位在第一氧化層110側壁上的氧化間隙壁130。氧化間隙壁130形成方法如前面圖4A所述,在此不再贅述之。 1 and 5A-5B are schematic cross-sectional structural views of a manufacturing process of a gate dielectric layer with an inclined plane according to a fourth embodiment of the invention. In FIG. 5A, an oxide spacer 130 located on the side wall of the first oxide layer 110 is formed. The method for forming the oxidized spacer 130 is as described above in FIG. 4A and will not be repeated here.

接著,去除氮化矽層120,去除的方法例如可為乾蝕刻法或濕蝕刻法。然後,進行熱氧化法或含氧電漿處理法,氧化基底100的表面,形成第三氧化層140,且第三氧化層140的厚度例如可約為25-35Å,如25、27、29、30、31、33、35Å。至此,上述 第一氧化層110、氧化間隙壁130和第三氧化層140構成具有傾斜面之閘介電層。 Next, the silicon nitride layer 120 is removed, and the removal method may be, for example, a dry etching method or a wet etching method. Then, a thermal oxidation method or an oxygen-containing plasma treatment method is performed to oxidize the surface of the substrate 100 to form a third oxide layer 140, and the thickness of the third oxide layer 140 may be about 25-35Å, such as 25, 27, 29, 30, 31, 33, 35Å. So far, the above The first oxide layer 110, the oxide spacer 130, and the third oxide layer 140 constitute a gate dielectric layer having an inclined surface.

請參考圖5B,圖5B是依照本發明另一實施例的一種半導體元件的剖面結構示意圖。在圖2B中,可繼續在閘介電層(第一氧化層110、氧化間隙壁130和第三氧化層140)之上形成閘極150,然後在較厚的第一氧化層110側形成汲極160,並在較薄的第三氧化層140側之摻雜井180中形成源極170,得到橫向擴散金氧半電晶體的基本結構。 Please refer to FIG. 5B, which is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention. In FIG. 2B, the gate electrode 150 may continue to be formed on the gate dielectric layer (the first oxide layer 110, the oxide spacer 130, and the third oxide layer 140), and then the drain is formed on the thicker first oxide layer 110 side. Electrode 160, and a source electrode 170 is formed in the doped well 180 on the side of the thin third oxide layer 140 to obtain the basic structure of a laterally diffused metal oxide semi-transistor.

綜上所述,本發明利用氧化間隙壁來形成位於閘介電層中薄層和厚層之間的斜面,以平順地連接閘介電層中之薄層和厚層。藉此讓電場分布地更均勻,減少多晶矽場板的表面電場,讓包含具有傾斜面之閘介電層的半導體結構具有更優秀的元件表現。 In summary, the present invention uses an oxide spacer to form a slope between the thin layer and the thick layer in the gate dielectric layer to smoothly connect the thin layer and the thick layer in the gate dielectric layer. In this way, the electric field distribution is more uniform, the surface electric field of the polysilicon field plate is reduced, and the semiconductor structure including the gate dielectric layer with the inclined plane has better device performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100‧‧‧基底 100‧‧‧ base

110‧‧‧第一氧化層 110‧‧‧First oxide layer

120‧‧‧氮化矽層 120‧‧‧Silicon nitride layer

125‧‧‧疊層 125‧‧‧Lamination

130‧‧‧氧化間隙壁 130‧‧‧ Oxidation gap

140‧‧‧第三氧化層 140‧‧‧third oxide layer

Claims (12)

一種具有傾斜面之閘介電層的製造方法,包括: 形成圖案化之疊層在基底上,該疊層包含位於下方之第一氧化層和位於上方之氮化矽層; 形成氧化間隙壁在該疊層的側壁上;以及 形成第三氧化層在該基底之上,其中該第三氧化層的厚度小於該第一氧化層的厚度,且該第一氧化層、該氮化矽層、該氧化間隙壁和該第三氧化層構成具有傾斜面之閘介電層。A method for manufacturing a gate dielectric layer with an inclined plane includes: forming a patterned stack on a substrate, the stack including a first oxide layer located below and a silicon nitride layer located above; forming an oxide spacer Forming a third oxide layer on the substrate; wherein the thickness of the third oxide layer is less than the thickness of the first oxide layer, and the first oxide layer, the silicon nitride layer, the The oxide spacer and the third oxide layer constitute a gate dielectric layer having an inclined surface. 如請求項1所述具有傾斜面之閘介電層的製造方法,其中形成該疊層的方法包括: 形成該第一氧化層於該基底之上; 形成該氮化矽層於該第一氧化層之上;以及 圖案化該氮化矽層和該第一氧化層,以暴露出該基底的部分表面。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 1, wherein the method of forming the stack includes: forming the first oxide layer on the substrate; forming the silicon nitride layer on the first oxide Above the layer; and patterning the silicon nitride layer and the first oxide layer to expose part of the surface of the substrate. 如請求項2所述具有傾斜面之閘介電層的製造方法,其中該第一氧化層的形成方法包含熱氧化法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 2, wherein the method for forming the first oxide layer includes a thermal oxidation method. 如請求項2所述具有傾斜面之閘介電層的製造方法,其中該氮化矽層的形成方法包含化學氣相沉積法或含氮電漿處理法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 2, wherein the method for forming the silicon nitride layer includes a chemical vapor deposition method or a nitrogen-containing plasma treatment method. 如請求項2所述具有傾斜面之閘介電層的製造方法,其中圖案化該氮化矽層和該第一氧化層的方法包含微影蝕刻法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 2, wherein the method of patterning the silicon nitride layer and the first oxide layer includes a lithography etching method. 如請求項1所述具有傾斜面之閘介電層的製造方法,其中形成該氧化間隙壁的方法包括: 形成第二氧化層於該基底之上,以覆蓋該疊層和該基底;以及 非等向性蝕刻該第二氧化層,直至暴露出未被該疊層所覆蓋之該基底的表面。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 1, wherein the method of forming the oxide spacer includes: forming a second oxide layer on the substrate to cover the stack and the substrate; and non- The second oxide layer is etched isotropically until the surface of the substrate not covered by the stack is exposed. 如請求項6所述具有傾斜面之閘介電層的製造方法,其中該第二氧化層的形成方法包含化學氣相沉積法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 6, wherein the method for forming the second oxide layer includes a chemical vapor deposition method. 如請求項6所述具有傾斜面之閘介電層的製造方法,其中非等向性蝕刻該第二氧化層的方法包含使用乾蝕刻法,或是混用乾蝕刻法和溼蝕刻法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 6, wherein the method of anisotropically etching the second oxide layer includes using a dry etching method, or a mixture of dry etching and wet etching. 如請求項1所述具有傾斜面之閘介電層的製造方法,其中該第三氧化層的形成方法包含熱氧化法或化學氣相沉積法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 1, wherein the method for forming the third oxide layer includes a thermal oxidation method or a chemical vapor deposition method. 如請求項1所述具有傾斜面之閘介電層的製造方法,更包括在形成該氧化間隙壁和形成該第三氧化層的步驟之間,去除該氮化矽層,且該氧化間隙壁的高度等於該第一氧化層的厚度。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 1, further comprising removing the silicon nitride layer and forming the oxide spacer between the steps of forming the oxide spacer and forming the third oxide layer The height of is equal to the thickness of the first oxide layer. 如請求項10所述具有傾斜面之閘介電層的製造方法,其中去除該氮化矽層的方法包括乾蝕刻法或濕蝕刻法。The method for manufacturing a gate dielectric layer having an inclined surface as described in claim 10, wherein the method for removing the silicon nitride layer includes a dry etching method or a wet etching method. 一種半導體結構的製造方法,包括: 使用如請求項1-11任一項所述之製造方法形成具有傾斜面之該閘介電層在該基底上; 形成閘極在該閘介電層上;以及 形成源極和汲極在該閘極兩側之該基底中。A manufacturing method of a semiconductor structure, comprising: forming the gate dielectric layer having an inclined plane on the substrate using the manufacturing method described in any one of claims 1-11; forming a gate electrode on the gate dielectric layer; And the source and the drain are formed in the substrate on both sides of the gate.
TW107145318A 2018-12-14 2018-12-14 Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same TWI685918B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107145318A TWI685918B (en) 2018-12-14 2018-12-14 Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107145318A TWI685918B (en) 2018-12-14 2018-12-14 Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same

Publications (2)

Publication Number Publication Date
TWI685918B true TWI685918B (en) 2020-02-21
TW202022985A TW202022985A (en) 2020-06-16

Family

ID=70413377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107145318A TWI685918B (en) 2018-12-14 2018-12-14 Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same

Country Status (1)

Country Link
TW (1) TWI685918B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201631634A (en) * 2014-12-30 2016-09-01 格羅方德半導體公司 Tapered gate oxide in LDMOS devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201631634A (en) * 2014-12-30 2016-09-01 格羅方德半導體公司 Tapered gate oxide in LDMOS devices

Also Published As

Publication number Publication date
TW202022985A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
KR101319719B1 (en) Fin profile structure and method of making same
US8022483B2 (en) Semiconductor and manufacturing method for the same
KR100809841B1 (en) Semiconductor device with sti and its manufacture
JP2013058688A (en) Semiconductor device manufacturing method
US7875938B2 (en) LDMOS device with multiple gate insulating members
JP2011138947A (en) Semiconductor device and method for manufacturing the same
TWI708390B (en) Semiconductor structure and method of forming the same
CN106960875B (en) Semiconductor device and method for manufacturing the same
US20050260840A1 (en) Method of fabricating T-shaped polysilicon gate by using dual damascene process
WO2014171014A1 (en) Method for producing semiconductor device, and semiconductor device
KR20070082921A (en) Method of forming an isolation layer of the fin type field effect transistor and method of manufacturing the fin type field effect transistor using the same
TWI685918B (en) Method of fabricating tapered gate dielectric layer and semiconductor structure comprising the same
CN109103106B (en) Method for preparing lateral diffusion metal oxide semiconductor
TW201212231A (en) Semiconductor device and fabrications thereof
WO2012169218A1 (en) Method for manufacturing silicon carbide semiconductor device
TWI739087B (en) Manufacturing method of split gate structure and split gate structure
KR100702324B1 (en) Semiconductor device and method for fabricating the same
TW409361B (en) Self-aligned contact process
JP2004228342A (en) Semiconductor device and its manufacturing method
JP4193638B2 (en) Semiconductor device manufacturing method and semiconductor device
KR100912960B1 (en) Transistor with recess channel and method for fabricating the same
JP2007234740A (en) Manufacturing method of semiconductor device
TWI715967B (en) Semiconductor structure and method of processing the same
WO2024169311A1 (en) Split-gate mosfet device and manufacturing method therefor
JP2012109378A (en) Semiconductor device and method of manufacturing the same