TWI684862B - Muti-state memory device and method for adjusting memory state characteristics of the same - Google Patents

Muti-state memory device and method for adjusting memory state characteristics of the same Download PDF

Info

Publication number
TWI684862B
TWI684862B TW107128377A TW107128377A TWI684862B TW I684862 B TWI684862 B TW I684862B TW 107128377 A TW107128377 A TW 107128377A TW 107128377 A TW107128377 A TW 107128377A TW I684862 B TWI684862 B TW I684862B
Authority
TW
Taiwan
Prior art keywords
memory
value
memory unit
state
control unit
Prior art date
Application number
TW107128377A
Other languages
Chinese (zh)
Other versions
TW202009708A (en
Inventor
林榆瑄
林昱佑
李峰旻
王超鴻
曾柏皓
許凱捷
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW107128377A priority Critical patent/TWI684862B/en
Application granted granted Critical
Publication of TWI684862B publication Critical patent/TWI684862B/en
Publication of TW202009708A publication Critical patent/TW202009708A/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A multi-state memory device includes a first memory element, a second memory element, a first controlling element and a second controlling element. The second memory element has a memory cell structure identical to that of the first memory element and connects to the first memory element in series. The first controlling element is connected to the first memory element either in series or in parallel. The second controlling element has a characteristic value identical to that of the first controlling element and is electrically connected to the second memory element by a connection structure identical to that of the first controlling element. When the first memory element receives a first signal and a second signal through the first controlling element, a first state value and a second state value are generated correspondingly, and the characteristic value is greater than the first state value and less than the second state value.

Description

多重狀態憶體元件及其記憶狀態值的調整方法 Multi-state memory element and method for adjusting memory state value

本揭露書是有關於一種非揮發性記憶體(non-volatile memory,NVM)。特別是有關於一種多重狀態記憶體元件(multi-state memory)及其記憶狀態值(characteristics of memory-state)的調整方法。 This disclosure is about a non-volatile memory (NVM). In particular, there is a method for adjusting a multi-state memory device (multi-state memory) and its memory state value (characteristics of memory-state).

非揮發性記憶體元件,具有在移除電源時亦不丟失儲存於記憶單元中之資訊的特性。目前較被廣泛使用的是屬於採用電荷儲存式(charge trap)的電荷儲存式快閃(Charge Trap Flash,CTF)記憶體元件。然而,隨著記憶體元件的積集密度增加,元件關鍵尺寸(critical size)和間隔(pitch)縮小,電荷儲存式快閃記憶體元件面臨其物理極限,而無法動作。 Non-volatile memory elements have the property of not losing the information stored in the memory unit when the power is removed. At present, more widely used are charge storage flash (CTF) memory devices that use a charge trap (charge trap). However, as the accumulation density of the memory device increases, the critical size and pitch of the device decrease, and the charge storage type flash memory device faces its physical limit and cannot operate.

多重狀態記憶體元件,是藉由向記憶元件施加複數個不同的脈衝電壓,以產生複數個記憶狀態值來作為資訊儲存狀態的判讀依據。以電阻式記憶體元件為例,當對電阻式隨機存取記憶體元件(Resistive random-access memory,ReRAM)的施加兩個不同的脈 衝電壓時,電阻式隨機存取記憶體元件的金屬氧化物薄膜會產生兩個不同的電阻值,用來作為資料儲存狀態例如“0”和“1”的判讀依據。由於,多重狀態記憶體元件不論在元件密度(device density)、電力消耗、程式化/抹除速度或三維空間堆疊特性上,都優於快閃記憶體。因此,目前已成為倍受業界關注的記憶體元件之一。 The multi-state memory element is to apply a plurality of different pulse voltages to the memory element to generate a plurality of memory state values as the basis for the judgment of the information storage state. Taking a resistive memory device as an example, when applying two different pulses to a resistive random access memory device (Resistive random-access memory, ReRAM) When a voltage is applied, the metal oxide film of the resistive random access memory device generates two different resistance values, which are used as the basis for judging the data storage status such as "0" and "1". Because multi-state memory devices are superior to flash memory in terms of device density, power consumption, programming/erasing speed, or three-dimensional space stacking characteristics. Therefore, it has become one of the memory devices that has attracted much attention in the industry.

然而,多重狀態記憶體元件,常會因為製程變異(process variation)或元件的尺寸公差(dimensional tolerance),使得位於相同記憶體串列(cell string)中的每一個記憶單元(或記憶胞)的記憶狀態值分布範圍有所差異,進而導致當以相同訊號來對這些記憶單元進行資料讀取時,無法準確判讀多重狀態記憶體元件的資料儲存狀態,嚴重影響多重狀態記憶體元件的操作可靠度(reliability)。 However, for multi-state memory devices, due to process variation or dimensional tolerance of the device, the memory of each memory cell (or memory cell) located in the same memory string The distribution range of state values is different, which leads to the inability to accurately judge the data storage state of the multi-state memory device when reading data from these memory units with the same signal, which seriously affects the operational reliability of the multi-state memory device ( reliability).

因此,有需要提供一種先進的多重狀態記憶體元件及其記憶狀態值的調整方法,來解決習知技術所面臨的問題。 Therefore, there is a need to provide an advanced multi-state memory device and its memory state value adjustment method to solve the problems faced by the conventional technology.

本說明書的一實施例揭露一種多重狀態記憶體(multi-state memory)元件,此多重狀態記憶體包括:第一記憶體單元、第二記憶體單元、第一控制單元以及第二控制單元。第二記憶體單元具有與第一記憶體單元實質相同的記憶胞結構,並與第一記憶體單元串接。第一控制單元與第一記憶體單元串聯或並聯。第二控制單元,具有與第一控制單元相同的特徵值以及相 同連接結構,用以與第二記憶體單元電性連接。當第一記憶體單元經由第一控制單元接收第一訊號和第二訊號時,第一記憶體單元分別產生第一狀態值和第二狀態值;其中特徵值介於第一狀態值第二狀態值之間。 An embodiment of the present specification discloses a multi-state memory device. The multi-state memory device includes: a first memory unit, a second memory unit, a first control unit, and a second control unit. The second memory unit has substantially the same memory cell structure as the first memory unit, and is connected in series with the first memory unit. The first control unit and the first memory unit are connected in series or in parallel. The second control unit has the same characteristic values and phases as the first control unit The same connection structure is used to electrically connect with the second memory unit. When the first memory unit receives the first signal and the second signal via the first control unit, the first memory unit generates a first state value and a second state value respectively; wherein the characteristic value is between the first state value and the second state Between values.

本說明書的另一實施例揭露一種多重狀態記憶體元件之記憶狀態值的調整方法,包括下述步驟:提供一個第一記憶體單元及一個具有與第一記憶體單元實質相同之記憶胞結構的第二記憶體單元,並使第一記憶體單元和第二記憶體單元串接。提供一個第一控制單元,使其與第一記憶體單元串聯或並聯。提供一個第二控制單元,具有與第一控制單元相同的特徵值以及相同連接結構,用以與第二記憶體單元電性連接。當第一記憶體單元經由第一控制單元接收第一訊號和第二訊號時,第一記憶體單元分別產生一個第一狀態值和一個第二狀態值;其中,特徵值介於第一狀態值和第二狀態值之間。 Another embodiment of the present specification discloses a method for adjusting the memory state value of a multi-state memory element, including the following steps: providing a first memory unit and a memory cell structure having substantially the same memory cell structure as the first memory unit The second memory unit, and the first memory unit and the second memory unit are connected in series. A first control unit is provided to be connected in series or in parallel with the first memory unit. A second control unit is provided, having the same characteristic value and the same connection structure as the first control unit, for electrically connecting with the second memory unit. When the first memory unit receives the first signal and the second signal via the first control unit, the first memory unit respectively generates a first state value and a second state value; wherein the characteristic value is between the first state value And the second state value.

根據上述實施例,本說明書是揭露一種包含至少一記憶胞串列的多重狀態記憶體元件及其記憶狀態值的調整方法。其係採用串聯或並聯的方式,在同一條記憶胞串列中的每一個記憶體單元(記憶胞)上電性連接一個控制單元,用以調整每一記憶體單元的記憶狀態值,降低不同記憶體單元在接收相同訊號時所產生之記憶狀態值的分布變異程度,進而準確判讀多重狀態記憶體元件的資料儲存狀態。 According to the above embodiment, the present specification discloses a multi-state memory device including at least one memory cell string and a method for adjusting the memory state value. It adopts series or parallel connection, and each memory cell (memory cell) in the same memory cell series is electrically connected to a control unit, which is used to adjust the memory state value of each memory cell and reduce the difference. The degree of distribution variation of the memory state value generated by the memory unit when receiving the same signal, so as to accurately judge the data storage state of the multi-state memory element.

在本說明書的一些實施例中,記憶狀態值可以是記憶單元的電阻值、電導值(conductance)或臨界電壓值(threshold voltage,Vth)。控制單元件的種類,則根據記憶狀態值的選擇,而可以是一種具有穩定阻值的電阻或一種具有一穩定臨界電壓的開關(switch)。控制單元件和記憶體單元的連接方式(串聯或並聯),可以隨著多重狀態記憶體元件的種類、應用範圍以及操作訊號的形式來進行選擇。 In some embodiments of the present specification, the memory state value may be the resistance value, conductivity value or threshold voltage value of the memory cell voltage, Vth). The type of control unit depends on the selection of the memory state value, and may be a resistor with a stable resistance value or a switch with a stable threshold voltage. The connection mode (serial or parallel) of the control unit and the memory unit can be selected according to the type, application range and operation signal form of the multi-state memory device.

例如,在本說明書的一實施例中,當多重狀態記憶體元件是以每一個記憶體單元的電阻值來作為資料儲存狀態(例如“0”和“1”)的判讀依據時,控制單元件可以是一種具有穩定阻值的電阻。且當操作訊號為一固定電壓時,每一個記憶體單元都可以與一個電阻與形成串聯,藉以減少記憶體單元用來作為儲存狀態值的電導值在低阻值範圍中的分布變異程度;而當操作訊號為一固定電流時,每一個記憶體單元都可以與一個電阻形成並聯,藉以減少記憶體單元用來作為儲存狀態值的電阻值在高阻值範圍中的分布變異程度。 For example, in an embodiment of the present specification, when the multi-state memory device uses the resistance value of each memory cell as the basis for judging the data storage state (such as "0" and "1"), the control unit device It can be a resistor with stable resistance. And when the operation signal is a fixed voltage, each memory cell can be connected in series with a resistor to reduce the degree of variation in the distribution of the conductivity value of the memory cell used as the storage state value in the low resistance range; and When the operation signal is a fixed current, each memory cell can be connected in parallel with a resistor, thereby reducing the degree of variation in the distribution of the resistance value of the memory cell as a storage state value in the high resistance range.

在本說明書的另一實施例中,當多重狀態記憶體元件是以每一個記憶體單元的臨界電壓值來作為資料儲存狀態(例如“0”和“1”)的判讀依據時,控制單元件可以是一種具有穩定臨界電壓的開關。且當每一個記憶體單元與一個開關形成串聯時,可以減少記憶體單元用來作為儲存狀態值的臨界電壓值在低臨界電壓值範圍中的分布變異程度;而當每一個記憶體單元都與一個開關形成並聯時,可以減少記憶體單元用來作為儲存狀態值的臨界電壓值在高臨界電壓值範圍中的分布變異程度。 In another embodiment of the present specification, when the multi-state memory device uses the threshold voltage value of each memory cell as the basis for judging the data storage state (such as "0" and "1"), the control unit device It can be a switch with stable threshold voltage. And when each memory cell is connected in series with a switch, the degree of variation in the distribution of the threshold voltage value used by the memory cell as the storage state value in the low threshold voltage range can be reduced; and when each memory cell is connected to When a switch is formed in parallel, the distribution variation of the critical voltage value used by the memory cell as the storage state value in the high critical voltage value range can be reduced.

100、400、700、1000、1100、1200、1300‧‧‧多重狀態記憶體元件 100, 400, 700, 1000, 1100, 1200, 1300‧‧‧ multi-state memory device

101-104、1001-1004、1201-1204‧‧‧記憶體單元 101-104, 1001-1004, 1201-1204 ‧‧‧ memory unit

111-114、1011-1014、1211-1214、1311-1314‧‧‧選擇開關 111-114, 1011-1014, 1211-1214, 1311-1314 ‧‧‧ selector switch

401-404、701-704、1005-1008、1105-1108、1205-1208、1305-1308‧‧‧控制單元 401-404, 701-704, 1005-1008, 1105-1108, 1205-1208, 1305-1308‧‧‧Control unit

101a-104a、1001a-1004a‧‧‧上電極層 101a-104a, 1001a-1004a, upper electrode layer

101b-104b、1001b-1004b‧‧‧下電極層 101b-104b, 1001b-1004b‧Lower electrode layer

101c-104c、1001c-1004c‧‧‧過渡金屬層 101c-104c, 1001c-1004c ‧‧‧ transition metal layer

111a-114a、1011a-1014a‧‧‧閘極 111a-114a, 1011a-1014a ‧‧‧ gate

111b-114b、1011b-1014b‧‧‧源極 111b-114b, 1011b-1014b‧‧‧Source

111c-114c、1011c-1014c‧‧‧汲極 111c-114c, 1011c-1014c ‧‧‧ Drain

150、150a-150e、450、450a-450e、750、750a-750e、1050、1150、1250、1350‧‧‧記憶胞串列 150, 150a-150e, 450, 450a-450e, 750, 750a-750e, 1050, 1150, 1250, 1350

131-134、431-434、731-734、1031-1034、1131-1134、1231-1234、1331-1334‧‧‧記憶胞結構 131-134, 431-434, 731-734, 1031-1034, 1131-1134, 1231-1234, 1331-1334‧‧‧ memory cell structure

201、202、301-305、501、502、601-605、801、802、901-905‧‧‧曲線 201, 202, 301-305, 501, 502, 601-605, 801, 802, 901-905

203、213‧‧‧臨界電阻值 203, 213‧‧‧ critical resistance value

606-609‧‧‧臨界電導值 606-609‧‧‧critical conductivity

BL‧‧‧位元線 BL‧‧‧bit line

SL‧‧‧共同源極線 SL‧‧‧ common source line

LRS‧‧‧低電阻值區域 LRS‧‧‧Low resistance area

HRS‧‧‧高電阻值區域 HRS‧‧‧High resistance area

WL1、WL2、WL3、WL4‧‧‧字元線 WL1, WL2, WL3, WL4 ‧‧‧ character line

為了對本說明書之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:第1圖係根據本說明書的一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖;第2A圖係繪示,在對第1圖所示之多重狀態記憶體元件的記憶胞結構提供較高固定電壓的第一訊號和較低固定電壓的第二訊號分別進行寫入(program)之後,再分別藉由具有一個固定電壓脈衝的讀取訊號來進行讀取(read),所得出的電阻值累積分布函數圖;第2B圖係繪根據第2A圖所繪示的電導值累積分布函數圖;第3圖係繪示對採用如第1圖所繪示的記憶體單元所組合而成的記憶體串列,對其施加相同電壓脈衝進行寫入後,再採用一個具有固定電壓脈衝的讀取訊號來進行讀取,所得到的記憶體串列總和電導值累積分布函數圖;第4圖係根據本說明書的另一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖;第5圖係繪示在對第4圖所示之多重狀態記憶體元件的記憶胞結構提供較低固定電壓的第一訊號和較高固定電壓的第二訊號之後,所得出的單一記憶體單元的電阻值累積分布函數圖;第6圖係繪示對採用如第4圖所繪示的記憶體單元所組合而成的記憶體串列,對其施加相同電壓脈衝後,所得到的記憶體串列總和電導值累積分布函數圖; 第7圖係根據本說明書的又一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖;第8圖係繪示在對第7圖所示之多重狀態記憶體元件的記憶胞結構提供較高固定電流的第一訊號和較低固定電流的第二訊號之後,所得出的單一記憶體單元的電阻值累積分布函數圖;第9圖係繪示對採用如第7圖所繪示的記憶體單元所組合而成的記憶體串列,對其提供相同電流訊號後,所得到的記憶體串列總和電導值累積分布函數圖;第10圖係根據本說明書的再一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖;第11圖係根據本說明書的又另一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖;第12圖係根據本說明書的又再一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖;以及第13圖係根據本說明書的又再一實施例所繪示之多重狀態記憶體元件的電路方塊示意圖。 In order to have a better understanding of the above and other aspects of this specification, the following examples are specifically described in conjunction with the drawings as follows: Figure 1 is a multi-state memory device according to an embodiment of this specification Block diagram of the circuit; Figure 2A shows that the first signal with a higher fixed voltage and the second signal with a lower fixed voltage are written separately for the memory cell structure of the multi-state memory device shown in Figure 1 After entering the program, the reading is performed by a read signal with a fixed voltage pulse, and the cumulative distribution function diagram of the resistance value is obtained; FIG. 2B is drawn according to FIG. 2A Cumulative distribution function diagram of conductance value; Figure 3 shows a memory string composed of the memory cells as shown in Figure 1. After applying the same voltage pulse to write to it, another one is used. The reading signal with a fixed voltage pulse is used for reading, and the resulting cumulative distribution function diagram of the sum of conductance values of the memory string; FIG. 4 is a diagram of a multi-state memory device according to another embodiment of the present specification. Schematic diagram of the circuit block; FIG. 5 shows the result of providing the first signal with a lower fixed voltage and the second signal with a higher fixed voltage to the memory cell structure of the multi-state memory device shown in FIG. 4 Cumulative distribution function diagram of the resistance value of a single memory cell; Figure 6 shows a series of memory composed of memory cells as shown in Figure 4, after applying the same voltage pulse to it The cumulative distribution function graph of the sum of conductance values of the obtained memory series; FIG. 7 is a schematic circuit block diagram of a multi-state memory device according to yet another embodiment of this specification; FIG. 8 is a diagram showing the structure of the memory cell of the multi-state memory device shown in FIG. 7; After the first signal with a higher fixed current and the second signal with a lower fixed current, the cumulative distribution function diagram of the resistance value of the single memory cell is obtained; Figure 9 shows The memory string of the memory unit is combined, and after providing the same current signal to it, the cumulative distribution function graph of the sum of conductance values of the obtained memory string; FIG. 10 is drawn according to yet another embodiment of this specification The circuit block diagram of the multi-state memory device shown in FIG. 11 is the circuit block diagram of the multi-state memory device according to yet another embodiment of this specification. The FIG. 12 is still another one according to this specification. The circuit block diagram of the multi-state memory device shown in the embodiment; and FIG. 13 is the circuit block diagram of the multi-state memory device according to yet another embodiment of this specification.

本說明書是提供一種多重狀態記憶體元件及其記憶狀態值的調整方法,可較精準判讀多重狀態記憶體元件的資訊儲存狀態,進而提高多重狀態記憶體元件的操作可靠度。為了對本說明書之上述實施例及其他目的、特徵和優點能更明顯易懂, 下文特舉一記憶體元件及其製作方法作為較佳實施例,並配合所附圖式作詳細說明。 This specification provides a multi-state memory device and a method for adjusting its memory state value, which can accurately interpret the information storage state of the multi-state memory device, thereby improving the operation reliability of the multi-state memory device. In order to make the above embodiments of the specification and other purposes, features and advantages more obvious and understandable, In the following, a memory device and its manufacturing method are specifically cited as preferred embodiments, which will be described in detail in conjunction with the attached drawings.

但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。 However, it must be noted that these specific implementation examples and methods are not intended to limit the present invention. The present invention can still be implemented using other features, components, methods, and parameters. The proposed preferred embodiments are only used to illustrate the technical features of the present invention, and are not intended to limit the patent application scope of the present invention. Those with ordinary knowledge in this technical field will be able to make equivalent modifications and changes based on the description of the following description without departing from the spirit of the present invention. In different embodiments and drawings, the same elements will be denoted by the same element symbols.

請參照第1圖,第1圖係根據本說明書的一實施例所繪示之多重狀態記憶體元件100的電路方塊示意圖。其中,多重狀態記憶體元件100包括複數個結構相同的記憶體單元101-104以及複數個結構相同的選擇開關111-114。每一個記憶體單元都與一個選擇開關對應並且彼此串聯,形成一個記憶胞結構(例如,記憶胞結構131-134)。這些記憶胞結構131-134又可藉由一條位元線BL彼此串接形成一條記憶胞串列150。而值得注意的是,雖然第1圖所繪示的記憶體串列150僅包含4個記憶胞結構131-134(記憶體單元101-104),但記憶體串列150中記憶胞結構(記憶體單元)的數量並不以此為限,在本說明書的其他實施例中,記憶體串列150可以包括數量更多或更少的記憶胞結構(記憶體單元)。 Please refer to FIG. 1, which is a circuit block diagram of a multi-state memory device 100 according to an embodiment of this specification. The multi-state memory device 100 includes a plurality of memory cells 101-104 with the same structure and a plurality of selection switches 111-114 with the same structure. Each memory cell corresponds to a selection switch and is connected in series with each other to form a memory cell structure (for example, memory cell structures 131-134). The memory cell structures 131-134 can be connected in series to form a memory cell string 150 by a bit line BL. It is worth noting that although the memory string 150 shown in FIG. 1 only includes four memory cell structures 131-134 (memory units 101-104), the memory cell structure (memory) in the memory string 150 The number of memory cells is not limited to this. In other embodiments of the present specification, the memory string 150 may include more or less memory cell structures (memory cells).

例如,在本實施例中,記憶體單元101與選擇開關111彼此串聯,形成一個記憶胞結構131;記憶體單元102與選擇開關112彼此串聯,形成一個記憶胞結構132;記憶體單元103與選擇開關113彼此串聯,形成一個記憶胞結構133;以及記憶體單元104與選擇開關114彼此串聯,形成一個記憶胞結構134。 For example, in this embodiment, the memory unit 101 and the selection switch 111 are connected in series to form a memory cell structure 131; the memory unit 102 and the selection switch 112 are connected in series to form a memory cell structure 132; the memory unit 103 and the selection The switches 113 are connected in series to form a memory cell structure 133; and the memory cell 104 and the selection switch 114 are connected in series to form a memory cell structure 134.

在本說明書的一些實施例中,記憶體單元101-104可以是一種以電阻值來作為資料儲存狀態(例如“0”和“1”)之判讀依據的記憶體元件。例如,電阻式隨機存取記憶體元件(Resistive Random-Access Memory,ReRAM)、相變化記憶體(Phase Change Memory、PCM)、磁阻式隨機存取記憶體(Magnetic Random-Access Memory,MRAM)或自旋轉移力矩隨機存取記憶體(Spin-Transfer Torque Random-Access Memory,STT-RAM)。 In some embodiments of the present specification, the memory cells 101-104 may be a memory element that uses the resistance value as the basis for judging the data storage state (for example, "0" and "1"). For example, Resistive Random-Access Memory (ReRAM), Phase Change Memory (PCM), Magnetic Random-Access Memory (MRAM) or Spin-Transfer Torque Random-Access Memory (STT-RAM).

在本實施例中,記憶體單元101-104可以是一種電阻式隨機存取記憶體元件。記憶體單元101包括一個上電極層101a、一個下電極層101b和一個過渡金屬層101c。其中,上電極層101a連接至選擇開關111;下電極層101b連接至位元線BL;過渡金屬層101c連接上電極層101a和下電極層101b。記憶體單元102包括一個上電極層102a、一個下電極層102b和一個過渡金屬層102c。其中,上電極層102a連接至選擇開關112;下電極層102b連接至位元線BL;過渡金屬層102c連接上電極層102a和下電極層102b。記憶體單元103包括一個上電極層 103a、一個下電極層103b和一個過渡金屬層103c。其中,上電極層103a連接至選擇開關113;下電極層103b連接至位元線BL;過渡金屬層103c連接上電極層103a和下電極層103b。記憶體單元104包括一個上電極層104a、一個下電極層104b和一個過渡金屬層104c。其中,上電極層104a連接至選擇開關114;下電極層104b連接至位元線BL;過渡金屬層104c連接上電極層104a和下電極層104b。 In this embodiment, the memory cells 101-104 may be a resistive random access memory device. The memory cell 101 includes an upper electrode layer 101a, a lower electrode layer 101b, and a transition metal layer 101c. Among them, the upper electrode layer 101a is connected to the selection switch 111; the lower electrode layer 101b is connected to the bit line BL; and the transition metal layer 101c is connected to the upper electrode layer 101a and the lower electrode layer 101b. The memory cell 102 includes an upper electrode layer 102a, a lower electrode layer 102b, and a transition metal layer 102c. The upper electrode layer 102a is connected to the selection switch 112; the lower electrode layer 102b is connected to the bit line BL; and the transition metal layer 102c is connected to the upper electrode layer 102a and the lower electrode layer 102b. The memory unit 103 includes an upper electrode layer 103a, a lower electrode layer 103b and a transition metal layer 103c. Among them, the upper electrode layer 103a is connected to the selection switch 113; the lower electrode layer 103b is connected to the bit line BL; and the transition metal layer 103c is connected to the upper electrode layer 103a and the lower electrode layer 103b. The memory cell 104 includes an upper electrode layer 104a, a lower electrode layer 104b, and a transition metal layer 104c. The upper electrode layer 104a is connected to the selection switch 114; the lower electrode layer 104b is connected to the bit line BL; and the transition metal layer 104c is connected to the upper electrode layer 104a and the lower electrode layer 104b.

在本說明書的一些實施例中,選擇開關111-114可以是一種電晶體(transistor)、一種二極體(diode)或一種選擇器(selector)。在本實施例中,選擇開關111-114可以是一種金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。其中,選擇開關111的閘極111a連接至字元線WL1;選擇開關111的源極111b連接至共同源極線SL;選擇開關111的汲極111c連接至記憶體單元101的上電極層101a。選擇開關112的閘極112a連接至字元線WL2;選擇開關112的源極112b連接至共同源極線SL;選擇開關112的汲極112c連接至記憶體單元102的上電極層102a。選擇開關113的閘極113a連接至字元線WL3;選擇開關113的源極113b連接至共同源極線SL;選擇開關113的汲極113c連接至記憶體單元103的上電極層103a。選擇開關114的閘極114a連接至字元線WL4;選擇開關114的源極114b連接至共同源極 線SL;選擇開關114的汲極114c連接至記憶體單元104的上電極層104a。 In some embodiments of the present specification, the selection switches 111-114 may be a transistor, a diode, or a selector. In this embodiment, the selection switches 111-114 may be a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET). The gate 111a of the selection switch 111 is connected to the word line WL1; the source 111b of the selection switch 111 is connected to the common source line SL; and the drain 111c of the selection switch 111 is connected to the upper electrode layer 101a of the memory cell 101. The gate 112a of the selection switch 112 is connected to the word line WL2; the source 112b of the selection switch 112 is connected to the common source line SL; and the drain 112c of the selection switch 112 is connected to the upper electrode layer 102a of the memory cell 102. The gate 113a of the selection switch 113 is connected to the word line WL3; the source 113b of the selection switch 113 is connected to the common source line SL; and the drain 113c of the selection switch 113 is connected to the upper electrode layer 103a of the memory cell 103. The gate 114a of the selection switch 114 is connected to the word line WL4; the source 114b of the selection switch 114 is connected to the common source Line SL; the drain 114c of the selection switch 114 is connected to the upper electrode layer 104a of the memory cell 104.

請參照第2A圖和第2B圖,第2A圖係繪示在對第1圖所示之多重狀態記憶體元件100的記憶胞結構131-134提供較高電壓的第一訊號和較低電壓的第二訊號分別進行寫入之後,再分別藉由具有一個固定電壓脈衝的讀取訊號來進行讀取所得出的單一記憶體單元(例如記憶體單元101)電阻值累積分布函數圖。第2B圖係繪根據第2A圖所繪示的電導值(conductance)累積分布函數圖。其中,第2A圖的橫軸代表記憶體單元101的電阻值;縱軸代表記憶體單元101的累積機率。第2B圖的橫軸代表記憶體單元101的電導值;縱軸代表記憶體單元101的累積機率。第2A圖中的曲線201和202分別代表,對記憶體單元101施加一個高電壓脈衝和一個低電壓脈衝時在所量測到的電阻值累積分布函數區線。第2B圖中的曲線211和212則分別代表,對應曲線201和202的電導值累積分布函數區線。 Please refer to FIG. 2A and FIG. 2B. FIG. 2A illustrates the first signal of higher voltage and the lower voltage of the memory cell structure 131-134 of the multi-state memory device 100 shown in FIG. After the second signals are written separately, the resistance value cumulative distribution function graph of a single memory cell (for example, the memory cell 101) obtained by reading with a read signal having a fixed voltage pulse respectively. FIG. 2B is a graph plotting the cumulative distribution function of conductance shown in FIG. 2A. The horizontal axis of FIG. 2A represents the resistance value of the memory cell 101; the vertical axis represents the cumulative probability of the memory cell 101. The horizontal axis of FIG. 2B represents the conductivity value of the memory cell 101; the vertical axis represents the cumulative probability of the memory cell 101. Curves 201 and 202 in FIG. 2A respectively represent the cumulative distribution function area line of the measured resistance value when a high voltage pulse and a low voltage pulse are applied to the memory cell 101. Curves 211 and 212 in Fig. 2B represent the cumulative distribution function area lines corresponding to the curves 201 and 202, respectively.

在被施加一個高電壓脈衝後,記憶體單元101的電阻值累積分布會落在電阻值較高的區域HRS(參見曲線201);電導值累積分布會落在電導值較低的區域(參見曲線211)。在被施加一個低電壓脈衝後,記憶體單元101的電阻值累積分布會落在電阻值較低的區域LRS(參見曲線202);電導值累積分布會落在電導值較高的區域(參見曲線212)。曲線201和202(211和212)二者之間具有一個彼此不重疊的讀取區間。讀取時,藉由比較記 憶體單元的電阻值(電導值)是否高於或低於位於讀取區間的臨界電阻值203(213),可決定儲存於較電阻式隨機存取記憶體胞中的資料儲存狀態(例如,決定儲存位元(bit)為“0”或“1”)。 After a high voltage pulse is applied, the cumulative distribution of the resistance value of the memory cell 101 will fall in the region of higher resistance HRS (see curve 201); the cumulative distribution of the conductivity value will fall in the region of lower conductivity value (see curve 211). After a low voltage pulse is applied, the cumulative distribution of the resistance value of the memory cell 101 will fall in the area of lower resistance LRS (see curve 202); the cumulative distribution of the conductivity value will fall in the area of higher conductivity value (see curve 212). Curves 201 and 202 (211 and 212) have a reading interval that does not overlap with each other. When reading, by comparing Whether the resistance value (conductance value) of the memory cell is higher or lower than the critical resistance value 203 (213) located in the reading interval can determine the data storage state stored in the more resistive random access memory cell (for example, Decide whether the storage bit (bit) is "0" or "1").

由第2A圖和第2B圖可以看出,記憶體單元101在高電阻值區域HRS中的電阻值分布變異程度(其範圍橫跨1.5x105歐姆(Ohm,Ω)至1.4x106歐姆之間),大於低電阻值區域LRS中的電阻值分布變異程度(其範圍橫跨0歐姆至5x104歐姆之間)。且記憶體單元101在低電阻值區域LRS中的電導值分布變異程度(其範圍橫跨2.5x10-5西門子(S)至7.5x10-5西門子之間)大於在高電阻值區域HRS中的電導值分布變異程度(其範圍橫跨0西門子至9x10-6西門子之間)。 As can be seen from FIGS. 2A and 2B, the degree of variation of the resistance value distribution of the memory cell 101 in the high resistance value region HRS (the range of which spans between 1.5× 10 5 ohms (Ohm, Ω) to 1.4× 10 6 ohms ), which is greater than the variation degree of the resistance value distribution in the low resistance value region LRS (the range of which spans between 0 ohms and 5× 10 4 ohms). And the conductance value storage unit 101 in a low resistance region LRS distribution degree of variation (which spans the range between 2.5x10 -5 Siemens (S) to 7.5x10 -5 Siemens) is greater than the conductance value of the high resistance region of the HRS The degree of variation of the value distribution (its range spans from 0 Siemens to 9x10 -6 Siemens).

然而,由於製程變異或元件的尺寸公差等因素,使得每一個構成多重狀態記憶體元件100的記憶體單元101-104的電阻值(電導值)分布變異程度都不相同。甚至可能呈現相反的特性。而這個現象,將導致以相同條件對記憶體單元102-104進行讀取(read)時,無法準確判讀每一個記憶體單元101-104的資料儲存狀態。 However, due to factors such as process variation or dimensional tolerance of the device, the resistance (conductance) distribution of each memory cell 101-104 constituting the multi-state memory device 100 varies in degree of variation. It may even exhibit the opposite characteristics. This phenomenon will result in the inability to accurately determine the data storage status of each memory unit 101-104 when the memory units 102-104 are read under the same conditions.

這個問題,在以非揮發性記憶體為基礎的神經形態計算(neuromorphic computing)應用中會被更加凸顯。例如,當分別對多重狀態記憶體元件100中不同記憶體串列150a-150b的所有記憶體單元施加相同電壓脈衝時,若將同一條記憶體串列(例如記憶體串列150a)中所量測到的記憶體單元電阻值(電導值)予 以加總,得到的總和電導值累積分布函數圖。所得到的總和電導值累積分布函數圖會因為不同記憶體串列150a-150b使用電阻值(電導值)分布變異程度不同的記憶體單元,而出現很大的數值差異。 This problem will be more prominent in neuromorphic computing applications based on non-volatile memory. For example, when the same voltage pulse is applied to all the memory cells of different memory strings 150a-150b in the multi-state memory device 100, if the same memory string (eg, memory string 150a) is measured The measured resistance value (conductance value) of the memory cell is Take the summation to get the cumulative distribution function graph of the sum conductance value. The resulting cumulative distribution function graph of the total conductance value will have large numerical differences due to the use of memory cells with different degrees of variation in the distribution of resistance values (conductance values) of different memory strings 150a-150b.

請參照第3圖,第3圖係繪示對採用如第1圖所繪示的記憶體單元101-104所組合而成的記憶體串列150a-150e,分別對其施加相同電壓脈衝進行寫入後,再採用一個具有固定電壓脈衝的讀取訊號來進行讀取,所得到的記憶體串列總和電導值累積分布函數圖。其中,構成記憶體串列150a-150e的每一個記憶體單元101-104可能具有相同結構,但在以相同條件進行寫入之後再進行讀取時,會分別具有不同的記憶狀態值。曲線301-305係分別代表記憶體串列150a-150e的總和電導值累積分布函數曲線。 Please refer to FIG. 3, which illustrates the writing of the same voltage pulses to the memory strings 150a-150e formed by combining the memory cells 101-104 as shown in FIG. 1. After the input, a read signal with a fixed voltage pulse is used for reading, and the cumulative distribution function graph of the total conductance value of the memory string is obtained. Among them, each of the memory cells 101-104 constituting the memory strings 150a-150e may have the same structure, but when written under the same conditions and then read, they will have different memory state values. Curves 301-305 represent the cumulative distribution function curves of the sum conductance of the memory strings 150a-150e, respectively.

例如在本實施例中,構成記憶體串列150a的所有記憶體單元101-104,其所讀取的記憶狀態值(電阻值),在高電阻值區域HRS中的電阻值分布變異程度,皆大於低電阻值區域LRS中的電阻值分布變異程度。記憶體串列150b中有3個記憶體單元(例如記憶體單元101-103),其所讀取的記憶狀態值(電阻值),在高電阻值區域HRS中的電阻值分布變異程度大於在低電阻值區域LRS中的電阻值分布變異程度;另一個記憶體單元(例如記憶體單元104)在低電阻值區域LRS中的電阻值分布變異程度,則大於在高電阻值區域HRS中的電阻值分布變變異程度。記 憶體串列150c中有2個記憶體單元(例如記憶體單元101-102),其所讀取的記憶狀態值(電阻值),在高電阻值區域HRS中的電阻值分布變異程度大於在低電阻值區域LRS中的電阻值分布變異程度;另外的2個記憶體單元(例如記憶體單元103-104)所讀取的記憶狀態值(電阻值),在低電阻值區域LRS中的電阻值分布變異程度大於在高電阻值區域HRS中的電阻值分布變異程度。記憶體串列150d中只有1個記憶體單元(例如記憶體單元101),其所讀取的記憶狀態值(電阻值),在高電阻值區域HRS中的電阻值分布變異程度大於在低電阻值區域LRS中的電阻值分布變異程度;另外3個記憶體單元(例如記憶體單元102-104),其所讀取的記憶狀態值(電阻值),在低電阻值區域LRS中的電阻值分布變異程度大於在高電阻值區域HRS中的電阻值分布變異程度。記憶體串列150e中所有記憶體單元101-104,其所讀取的記憶狀態值(電阻值),在低電阻值區域LRS中的電阻值分布變異程度大於在高電阻值區域HRS中的電阻值分布變異程度。 For example, in this embodiment, all the memory cells 101-104 constituting the memory string 150a, the read memory state value (resistance value), and the variation degree of the resistance value distribution in the high resistance value region HRS are all The degree of variation of the resistance value distribution in the LRS greater than the low resistance value area. There are three memory cells (for example, memory cells 101-103) in the memory series 150b, and the read memory state value (resistance value) in the high resistance value area HRS has a greater variation in resistance value distribution than in the The degree of variation of the resistance value distribution in the low resistance value region LRS; the degree of variation in the resistance value distribution of another memory cell (for example, the memory unit 104) in the low resistance value region LRS is greater than the resistance in the high resistance value region HRS The degree of variation of the value distribution. Remember There are two memory cells (for example, memory cells 101-102) in the memory series 150c, and the read memory state value (resistance value) in the high resistance value area HRS has a greater variation in resistance value distribution than in the The degree of variation of the resistance value distribution in the low resistance value region LRS; the memory state values (resistance values) read by the other 2 memory cells (eg, memory cells 103-104), the resistance in the low resistance value region LRS The degree of variation in the value distribution is greater than the degree of variation in the resistance value distribution in the HRS in the high resistance value region. There is only one memory cell (for example, memory cell 101) in the memory series 150d, and the read memory state value (resistance value) in the high resistance value area HRS has a greater variation in resistance value distribution than in the low resistance The degree of variation of the resistance value distribution in the value area LRS; the other three memory cells (such as memory cells 102-104), the read memory state value (resistance value), the resistance value in the low resistance value area LRS The degree of variation in the distribution is greater than the degree of variation in the resistance value distribution in the HRS in the high resistance value region. The memory state values (resistance values) of all the memory cells 101-104 in the memory string 150e have a greater variation in resistance value distribution in the low resistance value region LRS than in the high resistance value region HRS The degree of variation in the value distribution.

由第3圖可以觀察到,除了記憶體串列150a(參見曲線301)之外,其他記憶體串列150b-150e(參見)的總和電導值分布曲線302-305延伸的範圍都相當大,且彼此之間都有重疊區域,無法在二取線之間找到一個不重疊的臨界值,來作為資料儲存狀態的判讀標準。 It can be observed from FIG. 3 that, in addition to the memory series 150a (see curve 301), the extended range of the total conductance value distribution curves 302-305 of the other memory series 150b-150e (see) is quite large, and There are overlapping areas between each other, and it is impossible to find a non-overlapping critical value between the two fetch lines as a criterion for judging the data storage status.

為了解決此一問題,請參照第4圖,第4圖係根據本說明書的另一實施例所繪示之多重狀態記憶體元件400的電路 方塊示意圖。多重狀態記憶體元件400的結構大致上與多重狀態記憶體元件100類似,差別僅在於多重狀態記憶體元件400還包括複數個控制單元401-404,分別與記憶體單元101-104對應,並且彼此串聯。 In order to solve this problem, please refer to FIG. 4, which is a circuit of a multi-state memory device 400 according to another embodiment of this specification. Block diagram. The structure of the multi-state memory device 400 is roughly similar to that of the multi-state memory device 100, except that the multi-state memory device 400 also includes a plurality of control units 401-404, which correspond to the memory units 101-104, and Tandem.

在本實施例中,記憶體單元101與選擇開關111和控制單元401彼此串聯,形成一個記憶胞結構431;記憶體單元102與選擇開關112和控制單元402彼此串聯,形成一個記憶胞結構432;記憶體單元103與選擇開關113和控制單元403彼此串聯,形成一個記憶胞結構433;以及記憶體單元104與選擇開關114和控制單元404彼此串聯,形成一個記憶胞結構434。這些記憶胞結構431-434又可藉由一條位元線BL彼此串接形成一條記憶胞串列450 In this embodiment, the memory unit 101 and the selection switch 111 and the control unit 401 are connected in series to form a memory cell structure 431; the memory unit 102 and the selection switch 112 and the control unit 402 are connected in series to form a memory cell structure 432; The memory unit 103 and the selection switch 113 and the control unit 403 are connected in series with each other to form a memory cell structure 433; and the memory unit 104, the selection switch 114 and the control unit 404 are connected in series with each other to form a memory cell structure 434. These memory cell structures 431-434 can be connected in series by a bit line BL to form a memory cell string 450

在本說明書的一些實施例中,控制單元401-404可以是任何一種可以提供穩定電阻值(特徵值)的電子電路元件(例如電晶體、電阻元件、記憶體元件)、寄生元件(例如半導體摻雜區)或絕緣結構(例如材料為矽氧化物的介電隔離結構)。例如,在本實施例中,控制單元401-404可以是一種由摻雜多晶矽所構成的電阻元件,且控制單元401-404具有實質相同的電阻值(特徵值)。 In some embodiments of this specification, the control units 401-404 may be any electronic circuit elements (such as transistors, resistance elements, memory elements), parasitic elements (such as semiconductor doping) that can provide stable resistance values (characteristic values) Impurity region) or an insulating structure (such as a dielectric isolation structure made of silicon oxide). For example, in this embodiment, the control units 401-404 may be a resistance element composed of doped polysilicon, and the control units 401-404 have substantially the same resistance value (characteristic value).

控制單元401的一端連接至記憶體單元101的下電極層101b,另一端連接至位元線BL;控制單元402的一端連接至記憶體單元102的下電極層102b,另一端連接至位元線BL; 控制單元403的一端連接至記憶體單元103的下電極層103b,另一端連接至位元線BL;控制單元404的一端連接至記憶體單元104的下電極層104b,另一端連接至位元線BL。 One end of the control unit 401 is connected to the lower electrode layer 101b of the memory unit 101, the other end is connected to the bit line BL; one end of the control unit 402 is connected to the lower electrode layer 102b of the memory unit 102, and the other end is connected to the bit line BL; One end of the control unit 403 is connected to the lower electrode layer 103b of the memory unit 103, the other end is connected to the bit line BL; one end of the control unit 404 is connected to the lower electrode layer 104b of the memory unit 104, and the other end is connected to the bit line BL.

當將選擇開關111-114全部開啟,並通過位元線BL對記憶胞串列450中的記憶胞結構431-434施加一個較高電壓的脈衝和一個較低電壓的脈衝(即提供一個高電壓訊號和一個低電壓訊號)時,可以分別得出每一個記憶體單元101-104的電阻值累積分布函數(未繪示)和電導值累積分布函數。 When the selector switches 111-114 are all turned on, a higher voltage pulse and a lower voltage pulse are applied to the memory cell structures 431-434 in the memory cell string 450 through the bit line BL (ie, a high voltage is provided Signal and a low voltage signal), the cumulative distribution function (not shown) of the resistance value and the cumulative distribution function of the conductivity value of each memory cell 101-104 can be obtained separately.

例如請參照第5圖。第5圖係繪示在對第4圖所示之多重狀態記憶體元件400的記憶胞結構431-434提供低電壓訊號(低電壓脈衝通)和高電壓訊號(高電壓脈衝通)之後,所得出的單一記憶體單元(例如記憶體單元101)的電阻值累積分布函數圖。當記憶胞結構431的記憶體單元101在接收低電壓的第一訊號時,所量測的電阻值在累積分布函數上形成一個低電阻值區域LRS(未繪示);當記憶胞結構431的記憶體單元101在接收高電壓訊號時,所量測的電阻值在累積分布函數上形成一個高電阻值區域HRS(未繪示)。之後,再將前述的電阻值累積分布函數(未繪示)轉換成第5圖所繪示的電導值累積分布函數圖。其中,曲線501和502分別代表對應低電阻值區域LRS和高電阻值區域HRS的電導值累積分布。其中,控制單元401所提供的穩定電阻(特徵值)值實質上介於高電阻值區域HRS與低電阻值區域LRS之間。 For example, please refer to Figure 5. FIG. 5 shows that after the low-voltage signal (low-voltage pulse-on) and the high-voltage signal (high-voltage pulse-on) are provided to the memory cell structures 431-434 of the multi-state memory device 400 shown in FIG. 4, A graph of the cumulative distribution function of the resistance values of a single memory cell (eg, memory cell 101). When the memory cell 101 of the memory cell structure 431 receives the low voltage first signal, the measured resistance value forms a low resistance value region LRS (not shown) on the cumulative distribution function; when the memory cell structure 431 When the memory unit 101 receives the high voltage signal, the measured resistance value forms a high resistance value region HRS (not shown) on the cumulative distribution function. After that, the aforementioned cumulative distribution function of resistance value (not shown) is converted into the cumulative distribution function diagram of conductivity value shown in FIG. 5. Among them, the curves 501 and 502 respectively represent the cumulative distribution of conductance values corresponding to the low resistance value region LRS and the high resistance value region HRS. The stable resistance (characteristic value) provided by the control unit 401 is substantially between the high resistance value region HRS and the low resistance value region LRS.

將第5圖與2B圖相比,可觀察到:在記憶胞結構431的記憶體單元101上附加一個串聯的控制單元401,可以限縮記憶體單元101的電導值在低電阻值區域LRS(高電導值區域)中的分布範圍。同理,其他記憶體單元102-104的電導值在低電阻值區域LRS(高電導值區域)中的分布變異程度也會降低。 Comparing Figure 5 with Figure 2B, it can be observed that the addition of a series control unit 401 to the memory cell 101 of the memory cell structure 431 can limit the conductivity value of the memory cell 101 in the low resistance value region LRS ( Distribution range in the region of high conductance value). Similarly, the distribution variation of the conductance values of the other memory cells 102-104 in the low resistance value region LRS (high conductance value region) will also decrease.

同第3圖所述,將在同一記憶體串列(例如記憶體串列450a)中所量測到的每一個記憶體單元101-104位於低電阻值區域LRS的對應電導值予以加總,即可得到記憶胞串列450a的總和電導值累積分布函數。請參照第6圖,第6圖係繪示對採用如第4圖所繪示的記憶體單元101-104所組合而成的記憶體串列431-434,對其施加相同電壓脈衝後,所得到的記憶體串列總和電導值累積分布函數圖。其中,曲線601-605分別代表記憶體串列450a-450e的總和電導值累積分布函數。 As described in FIG. 3, the corresponding conductance values of each of the memory cells 101-104 located in the low resistance value region LRS measured in the same memory string (for example, the memory string 450a) are added up. A cumulative distribution function of the sum conductance of the memory cell string 450a can be obtained. Please refer to FIG. 6. FIG. 6 shows the memory strings 431-434 formed by combining the memory cells 101-104 as shown in FIG. 4, after applying the same voltage pulse to them. The obtained cumulative distribution function graph of the sum of conductance values of the memory series. Among them, the curves 601-605 represent cumulative distribution functions of the sum conductance of the memory strings 450a-450e, respectively.

由第6圖可以觀察到,曲線601-605的電導值分布範圍相當緊縮,且彼此之間都有一未重疊區域,可以在曲線601-605之間找到多個臨界電導值606-609,用來作為資料儲存狀態的判讀標準。這顯示,在附加了與記憶體單元101-104串連的控制單元401-404之後,可以改善多重狀態記憶體元件400中記憶體單元101-104資料儲存狀態的判讀準確率,達到提高多重狀態記憶體元件400之操作可靠度的目的。 It can be observed from Figure 6 that the distribution range of the conductivity values of the curves 601-605 is quite narrow, and there is a non-overlapping area between each other. Multiple critical conductivity values 606-609 can be found between the curves 601-605 for As a criterion for reading the data storage status. This shows that after the control units 401-404 connected in series with the memory units 101-104 are added, the accuracy of the interpretation of the data storage state of the memory units 101-104 in the multi-state memory device 400 can be improved, and the multi-state can be improved The purpose of the operational reliability of the memory device 400.

請參照第7圖,第7圖係根據本說明書的又一實施例所繪示之多重狀態記憶體元件700的電路方塊示意圖。多重狀 態記憶體元件700的結構大致上與多重狀態記憶體元件400類似,差別僅在於多重狀態記憶體元件700的控制單元701-704分別與對應的記憶體單元101-104並聯,而非串聯。 Please refer to FIG. 7, which is a circuit block diagram of a multi-state memory device 700 according to yet another embodiment of this specification. Polymorphism The structure of the multi-state memory device 700 is similar to that of the multi-state memory device 400 except that the control units 701-704 of the multi-state memory device 700 are connected in parallel with the corresponding memory units 101-104, not in series.

在本實施例中,記憶體單元101與控制單元701彼此並聯,再與選擇開關111串聯,以形成一個記憶胞結構731;記憶體單元102與控制單元702彼此並聯,再與選擇開關112串聯,以形成一個記憶胞結構732;記憶體單元103與控制單元703彼此並聯,再與選擇開關113串聯,以形成一個記憶胞結構733;記憶體單元104與控制單元704彼此並聯,再與選擇開關114串聯,以形成一個記憶胞結構734。並通過位元線BL將記憶胞結構731-734串接,以形成記憶胞串列750。 In this embodiment, the memory unit 101 and the control unit 701 are connected in parallel with each other, and then connected in series with the selection switch 111 to form a memory cell structure 731; the memory unit 102 and the control unit 702 are connected in parallel with each other, and then connected in series with the selection switch 112, To form a memory cell structure 732; the memory unit 103 and the control unit 703 are connected in parallel with each other, and then connected in series with the selection switch 113 to form a memory cell structure 733; the memory unit 104 and the control unit 704 are connected in parallel with each other, and then the selection switch 114 Connected in series to form a memory cell structure 734. The memory cell structures 731-734 are connected in series through the bit line BL to form a memory cell string 750.

在本實施例中,控制單元701-704可以是一種由摻雜多晶矽所構成的電阻元件,且控制單元701-704具有實質相同的電阻值。其中,控制單元701的一端連接至記憶體單元101的上電極層101a和選擇開關111的汲極111c,另一端連接至記憶體單元101的下電極層101b和位元線BL。控制單元702的一端連接至記憶體單元102的上電極層102a和選擇開關112的汲極112c,另一端連接至記憶體單元102的下電極層102b和位元線BL。控制單元703的一端連接至記憶體單元103的上電極層103a和選擇開關113的汲極113c,另一端連接至記憶體單元103的下電極層103b和位元線BL;控制單元704的一端連接至記憶 體單元104的上電極層104a和選擇開關114的汲極114c,另一端連接至記憶體單元103的下電極層103b和位元線BL。 In this embodiment, the control units 701-704 may be a resistance element composed of doped polysilicon, and the control units 701-704 have substantially the same resistance value. One end of the control unit 701 is connected to the upper electrode layer 101 a of the memory unit 101 and the drain 111 c of the selection switch 111, and the other end is connected to the lower electrode layer 101 b of the memory unit 101 and the bit line BL. One end of the control unit 702 is connected to the upper electrode layer 102a of the memory unit 102 and the drain 112c of the selection switch 112, and the other end is connected to the lower electrode layer 102b of the memory unit 102 and the bit line BL. One end of the control unit 703 is connected to the upper electrode layer 103a of the memory unit 103 and the drain 113c of the selection switch 113, and the other end is connected to the lower electrode layer 103b of the memory unit 103 and the bit line BL; one end of the control unit 704 is connected To memory The upper electrode layer 104 a of the body cell 104 and the drain 114 c of the selection switch 114 have the other ends connected to the lower electrode layer 103 b of the memory cell 103 and the bit line BL.

當將選擇開關111-114全部開啟,並通過位元線BL分別對記憶胞串列750中的記憶胞結構731-734提供一個具有較高固定電流的第一訊號,以及一個具有較低固定電流的第二訊號,可以分別得出每一個記憶體單元101-104的電阻值累積分布函數。 When the selector switches 111-114 are all turned on, and the bit lines BL respectively provide a first signal with a higher fixed current and a lower fixed current to the memory cell structures 731-734 in the memory cell string 750 In the second signal, the cumulative distribution function of the resistance value of each memory cell 101-104 can be obtained separately.

以記憶體單元101為例,請參照第8圖。第8圖係繪示在對第7圖所示之多重狀態記憶體元件700的記憶胞結構731-734提供具有較高固定電流的第一訊號和具有較低固定電流的第二訊號之後,所得出的單一記憶體單元(例如記憶體單元101)的電阻值累積分布函數圖。當記憶胞結構731的記憶體單元101在接收到具有較高固定電流的第一訊號時,所量測的電阻值會在累積分布函數上形成一個低電阻值區域LRS(如曲線801所繪示);當記憶胞結構731的記憶體單元101在接收到具有較低固定電流的第一訊號時,所量測的電阻值會在累積分布函數上形成一個高電阻值區域HRS(如曲線802所繪示)。其中,控制單元701所提供的穩定電阻值(特徵值),實質上介於高電阻值區域HRS(如曲線802所繪示)與低電阻值區域LRS(如曲線801所繪示)之間。 Taking the memory unit 101 as an example, please refer to FIG. 8. FIG. 8 shows that after providing the first signal with a higher fixed current and the second signal with a lower fixed current to the memory cell structures 731-734 of the multi-state memory device 700 shown in FIG. 7, A graph of the cumulative distribution function of the resistance values of a single memory cell (eg, memory cell 101). When the memory cell 101 of the memory cell structure 731 receives the first signal with a higher fixed current, the measured resistance value will form a low resistance value region LRS on the cumulative distribution function (as shown by curve 801 ); When the memory cell 101 of the memory cell structure 731 receives the first signal with a lower fixed current, the measured resistance value will form a high resistance value region HRS (as shown by curve 802) on the cumulative distribution function (Shown). The stable resistance value (characteristic value) provided by the control unit 701 is substantially between the high resistance value region HRS (as shown by curve 802) and the low resistance value region LRS (as shown by curve 801).

將第8圖與2A圖的圖相比,可觀察到:在記憶胞結構731的記憶體單元101附加一個並聯的控制單元701,可以限縮記憶體單元101的電阻值在高電阻值區域HRS的分布範圍, 降記憶體單元101在高電阻值區域HRS中的電阻值分布變異程度。同理,其他記憶體單元102-104的電阻值在高電阻值區域HRS中的分布變異程度也會降低。 Comparing Figure 8 with Figure 2A, it can be observed that adding a parallel control unit 701 to the memory cell 101 of the memory cell structure 731 can limit the resistance value of the memory cell 101 in the high resistance value region HRS Distribution of The degree of variation of the resistance value distribution of the memory lowering unit 101 in the high resistance value region HRS. Similarly, the degree of variation in the distribution of the resistance values of the other memory cells 102-104 in the HRS region will also decrease.

將在同一記憶體串列(例如記憶體串列750a)中所量測到的每一個記憶體單元101-104位於高電阻值區域HRS的對應電導值予以加總,即可得到記憶胞串列750a的總和電導值累積分布函數。請參照第9圖,第9圖係繪示對如第7圖所繪示的記憶體單元101-104所組合而成的記憶體串列731-734提供相同電流之訊號後,所得到的記憶體串列總和電導值累積分布函數圖。其中,曲線901-905係分別代表記憶體串列750a-750e的總和電導值累積分布函數。 Summing up the corresponding conductance values of each memory cell 101-104 located in the high resistance value region HRS measured in the same memory string (eg, memory string 750a) to obtain the memory cell string Cumulative conductance cumulative distribution function of 750a. Please refer to FIG. 9, which shows the memory obtained after providing the same current signal to the memory strings 731-734 assembled from the memory units 101-104 shown in FIG. 7. Cumulative distribution function graph of the total conductance value of the volume series. Among them, curves 901-905 represent the cumulative distribution function of the total conductance of the memory strings 750a-750e, respectively.

由第9圖可以觀察到,曲線901-905的電導值分布範圍相當緊縮,且彼此之間都有一未重疊區域,可以在二曲線之間找到多個臨界值906-909,用來作為資料儲存狀態的判讀標準。這顯示,在附加了與記憶體單元101-104串連的控制單元701-704之後,可以改善多重狀態記憶體元件700中記憶體單元101-104資料儲存狀態的判讀準確率,達到提高多重狀態記憶體元件700之操作可靠度的目的。 It can be observed from Figure 9 that the distribution of the conductivity values of curves 901-905 is quite tight, and there is a non-overlapping area between each other. Multiple critical values 906-909 can be found between the two curves for data storage Interpretation criteria of status. This shows that after the control units 701-704 connected in series with the memory units 101-104 are added, the accuracy of the interpretation of the data storage state of the memory units 101-104 in the multi-state memory device 700 can be improved, and the multi-state can be improved The purpose of the operational reliability of the memory element 700.

值得注意的是,雖然在第1圖、第4圖和第7圖中,構成多重狀態記憶體元件100、400和700的記憶胞串列150、170和750皆係AND型記憶胞串列,但本說明書所述構成多重狀態記憶體元件之記憶胞串列的形式,並不以此為限。在本說明 書的一些實施例中,構成多重狀態記憶體元件之記憶胞串列可以是一種NAND型記憶胞串列。 It is worth noting that although in Figures 1, 4, and 7, the memory cell strings 150, 170, and 750 constituting the multi-state memory devices 100, 400, and 700 are all AND-type memory cell strings, However, the form of the memory cell string constituting the multi-state memory device described in this specification is not limited thereto. In this note In some embodiments of the book, the memory cell string constituting the multi-state memory device may be a NAND type memory cell string.

例如,參照第10圖,第10圖係根據本說明書的再一實施例所繪示之多重狀態記憶體元件1000的電路方塊示意圖。其中,多重狀態記憶體元件1000包括複數個結構相同的記憶體單元1001-1004、複數個結構相同的選擇開關1011-1014以及複數個結構相同的控制單元1005-1008。 For example, referring to FIG. 10, FIG. 10 is a circuit block diagram of a multi-state memory device 1000 according to yet another embodiment of the present specification. The multi-state memory device 1000 includes a plurality of memory units 1001-1004 with the same structure, a plurality of selection switches 1011-1014 with the same structure, and a plurality of control units 1005-1008 with the same structure.

在本說明書的一些實施例中,記憶體單元1001-1004可以是一種電阻式隨機存取記憶體元件、相變化記憶體、磁阻式隨機存取記憶體或自旋轉移力矩隨機存取記憶體。在本實施例中,記憶體單元1001-1004可以是一種電阻式隨機存取記憶體元件。 In some embodiments of the present specification, the memory cells 1001-1004 may be a resistive random access memory element, a phase change memory, a magnetoresistive random access memory or a spin-transfer torque random access memory . In this embodiment, the memory cells 1001-1004 can be a resistive random access memory device.

選擇開關1011-1014可以是一種電晶體、一種二極體或一種選擇器。在本實施例中,選擇開關1011-1014可以是一種金屬氧化物半導體場效電晶體。控制單元1005-1008可以是任何一種可以提供穩定阻值(特徵值)的電子電路元件(例如電晶體、電阻元件、記憶體元件)、寄生元件(例如半導體摻雜區)或絕緣結構(例如材料為矽氧化物的介電隔離結構)。在本實施例中,控制單元1005-1008以是一種由摻雜多晶矽所構成的電阻元件,且控制單元1005-1008具有實質相同的電阻值。 The selection switches 1011-1014 can be a transistor, a diode, or a selector. In this embodiment, the selection switches 1011-1014 may be a metal oxide semiconductor field effect transistor. The control unit 1005-1008 may be any electronic circuit element (such as a transistor, a resistive element, a memory element), a parasitic element (such as a semiconductor doped region), or an insulating structure (such as a material) that can provide a stable resistance value (characteristic value) (Silicon oxide dielectric isolation structure). In this embodiment, the control unit 1005-1008 is a resistance element composed of doped polysilicon, and the control unit 1005-1008 has substantially the same resistance value.

記憶體單元1001與選擇開關1011以及控制單元1005彼此並聯,形成一個記憶胞結構1031;記憶體單元1002 與選擇開關1012以及控制單元1006彼此並聯,形成一個記憶胞結構1032;記憶體單元1003與選擇開關1013以及控制單元1007彼此並聯,形成一個記憶胞結構1033;以及記憶體單元1004與選擇開關1014以及控制單元1008彼此並聯,形成一個記憶胞結構1034。這些記憶胞結構1031-1034又可藉由一條位元線BL彼此串接形成一條記憶胞串列1050 The memory unit 1001, the selection switch 1011 and the control unit 1005 are connected in parallel with each other to form a memory cell structure 1031; the memory unit 1002 The selection switch 1012 and the control unit 1006 are connected in parallel to each other to form a memory cell structure 1032; the memory unit 1003 and the selection switch 1013 and the control unit 1007 are connected in parallel to each other to form a memory cell structure 1033; and the memory unit 1004 and the selection switch 1014 and The control units 1008 are connected in parallel to each other to form a memory cell structure 1034. These memory cell structures 1031-1034 can be connected in series by a bit line BL to form a memory cell string 1050

其中,選擇開關1011的閘極1011a連接至字元線WL1;選擇開關1011的源極1011b連接至記憶體單元1001的上電極層1001a和控制單元1005的一端;選擇開關1011的汲極1011c連接至記憶體單元1001的下電極層1001b和控制單元1005的另一端。選擇開關1012的閘極1012a連接至字元線WL2;選擇開關1012的源極1012b連接至記憶體單元1002的上電極層1002a和控制單元1006的一端;選擇開關1012的汲極1012c連接至記憶體單元1002的下電極層1002b和控制單元1006的另一端。選擇開關1013的閘極1013a連接至字元線WL3;選擇開關1013的源極1013b連接至記憶體單元1003的上電極層1003a和控制單元1007的一端;選擇開關1013的汲極1013c連接至記憶體單元1003的下電極層1003b和控制單元1007的另一端。選擇開關1014的閘極1014a連接至字元線WL4;選擇開關1014的源極1014b連接至記憶體單元1004的上電極層1004a和控制單元1008的一端;選擇開關1014的汲極1014c連接至記憶體單元1004的下電極層1004b和控制單元1008的另一端。 The gate 1011a of the selection switch 1011 is connected to the word line WL1; the source 1011b of the selection switch 1011 is connected to the upper electrode layer 1001a of the memory cell 1001 and one end of the control unit 1005; the drain 1011c of the selection switch 1011 is connected to The lower electrode layer 1001b of the memory unit 1001 and the other end of the control unit 1005. The gate 1012a of the selection switch 1012 is connected to the word line WL2; the source 1012b of the selection switch 1012 is connected to the upper electrode layer 1002a of the memory cell 1002 and one end of the control unit 1006; the drain 1012c of the selection switch 1012 is connected to the memory The lower electrode layer 1002b of the unit 1002 and the other end of the control unit 1006. The gate 1013a of the selection switch 1013 is connected to the word line WL3; the source 1013b of the selection switch 1013 is connected to the upper electrode layer 1003a of the memory unit 1003 and one end of the control unit 1007; the drain 1013c of the selection switch 1013 is connected to the memory The lower electrode layer 1003b of the unit 1003 and the other end of the control unit 1007. The gate 1014a of the selection switch 1014 is connected to the word line WL4; the source 1014b of the selection switch 1014 is connected to the upper electrode layer 1004a of the memory cell 1004 and one end of the control unit 1008; the drain 1014c of the selection switch 1014 is connected to the memory The lower electrode layer 1004b of the unit 1004 and the other end of the control unit 1008.

如前所述,當將選擇開關1011-1014全部開啟,並通過位元線BL對記憶胞串列1050中的記憶胞結構1031-1034提供一個第一訊號(例如較低的固定電壓)和一個第二訊號(例如較高的固定電壓)時,可以分別得出每一個記憶體單元1001-1004的電阻值累積分布函數(未繪示)。每個記憶胞結構1031-1034的電阻值累積分布函數會分別具有一個低電阻值分布區域LRS(未繪示)和一個高電阻值分布區域HRS(未繪示)。其中,控制單元1005-1008所提供的穩定電阻值(特徵值)實質上介於高電阻值分布區域HRS與低電阻值分布區域LRS之間。 As described above, when the selection switches 1011-1014 are all turned on, and a bit line BL is provided to the memory cell structure 1031-1034 in the memory cell string 1050, a first signal (for example, a lower fixed voltage) and a During the second signal (for example, a higher fixed voltage), the cumulative distribution function (not shown) of the resistance value of each memory cell 1001-1004 can be obtained separately. The cumulative distribution function of the resistance value of each memory cell structure 1031-1034 will have a low resistance value distribution area LRS (not shown) and a high resistance value distribution area HRS (not shown), respectively. The stable resistance value (characteristic value) provided by the control unit 1005-1008 is substantially between the high resistance value distribution area HRS and the low resistance value distribution area LRS.

將每個記憶胞結構1031-1034的電阻值累積分布函數(未繪示),與未附加串聯控制單元之記憶胞結構131的電阻值累積分布函數(如的2B圖所繪示)相比,可觀察到:在記憶胞結構1031-1034的每一個記憶體單元1001-1004上對應地並聯一個控制單元1005-1008,可以限縮每一個記憶體單元1001-1004的電阻值在高電阻值區域HRS的分布範圍。 Compare the cumulative distribution function of the resistance value of each memory cell structure 1031-1034 (not shown) with the cumulative distribution function of the resistance value of the memory cell structure 131 without a serial control unit (as shown in Figure 2B), It can be observed that a corresponding control unit 1005-1008 is connected in parallel with each memory cell 1001-1004 of the memory cell structure 1031-1034, which can limit the resistance value of each memory cell 1001-1004 in the high resistance value region Distribution range of HRS.

請參照第11圖,第11圖係根據本說明書的又另一實施例所繪示之多重狀態記憶體元件1100的電路方塊示意圖。其中,多重狀態記憶體元件1100的結構大致與多重狀態記憶體元件900相同,差別僅在於多重狀態記憶體元件1100的控制單元1105-1108分別與對應的記憶體單元1001-1004串聯,而非並聯。由於多重狀態記憶體元件1100的其他結構與記憶狀態值的調整方法以詳述如上,在此不再贅述。 Please refer to FIG. 11, which is a circuit block diagram of a multi-state memory device 1100 according to yet another embodiment of this specification. The structure of the multi-state memory device 1100 is roughly the same as that of the multi-state memory device 900. The only difference is that the control units 1105-1108 of the multi-state memory device 1100 are connected in series with the corresponding memory units 1001-1004, not in parallel. . Since the other structures of the multi-state memory device 1100 and the method for adjusting the memory state value are described in detail above, they will not be repeated here.

另外,在本說明書的一些實施例中,構成多重狀態記憶體元件的記憶體單元可以是一種以臨界電壓值(threshold voltage,Vth)來作為資料儲存狀態(例如“0”和“1”)之判讀依據的記憶體元件。例如,鐵電隨機存取記憶體(Ferroelectric Random-Access Memory,FeRAM)。構成多重狀態記憶體元件的控制單元可以是任何一種可以提供穩定臨界電壓值(特徵值)的電子電路元件(例如電晶體、二極體或選擇器)。 In addition, in some embodiments of the present specification, the memory cell constituting the multi-state memory device may be a data storage state (such as "0" and "1") with a threshold voltage (threshold voltage, Vth) The memory element on which the interpretation is based. For example, Ferroelectric Random-Access Memory (FeRAM). The control unit constituting the multi-state memory element may be any electronic circuit element (such as a transistor, a diode, or a selector) that can provide a stable threshold voltage value (characteristic value).

請參照第12圖,第12圖係根據本說明書的又再一實施例所繪示之多重狀態記憶體元件1200的電路方塊示意圖。其中,多重狀態記憶體元件1200包括複數個結構相同的記憶體單元1201-1204、複數個結構相同的選擇開關1211-1214以及複數個結構相同的控制單元1205-1208。在本實施例中,記憶體單元1201-1204可以是一種鐵電隨機存取記憶體。控制單元1205-1208可以是一種二極體。 Please refer to FIG. 12, which is a circuit block diagram of a multi-state memory device 1200 according to yet another embodiment of this specification. The multi-state memory device 1200 includes a plurality of memory units 1201-1204 with the same structure, a plurality of selection switches 1211-1214 with the same structure, and a plurality of control units 1205-1208 with the same structure. In this embodiment, the memory units 1201-1204 may be a ferroelectric random access memory. The control unit 1205-1208 may be a diode.

記憶體單元1201與選擇開關1211以及控制單元1205彼此串聯,形成一個記憶胞結構1231;記憶體單元1202與選擇開關1212以及控制單元1206彼此串聯,形成一個記憶胞結構1232;記憶體單元1203與選擇開關1213以及控制單元1207彼此串聯,形成一個記憶胞結構1233;以及記憶體單元1204與選擇開關1214以及控制單元1208彼此串聯,形成一個記憶胞結構1234。通過位元線BL將記憶胞結構1231-1234串接,以形成記憶胞串列1250。 The memory unit 1201 and the selection switch 1211 and the control unit 1205 are connected in series to form a memory cell structure 1231; the memory unit 1202 and the selection switch 1212 and the control unit 1206 are connected in series to form a memory cell structure 1232; the memory unit 1203 and the selection The switch 1213 and the control unit 1207 are connected in series with each other to form a memory cell structure 1233; and the memory unit 1204 and the selection switch 1214 and the control unit 1208 are connected in series with each other to form a memory cell structure 1234. The memory cell structures 1231-1234 are connected in series through the bit lines BL to form a memory cell string sequence 1250.

當選擇開關1211-1214全部開啟,並通過位元線BL對記憶胞串列1250中的記憶體單元1201-1204提供一個第一訊號(例如較低的固定電壓)和一個第二訊號(例如較高的固定電壓)時,可以分別得出每一個記憶體單元1201-1204的臨界電壓值累積分布函數(未繪示)。每一個記憶體單元1201-1204的臨界電壓值累積分布函數會分別具有一個低臨界電壓值區域LVth(未繪示)和一個高臨界電壓值區域HVth(未繪示)。其中,控制單元1201-1204所提供的穩定臨界電壓值(特徵值)實質上介於高臨界電壓值區域HVth與低臨界電壓值區域LVth之間。 When the selection switches 1211-1214 are all turned on, and a bit line BL is provided to the memory cells 1201-1204 in the memory cell string 1250, a first signal (such as a lower fixed voltage) and a second signal (such as High fixed voltage), the cumulative distribution function (not shown) of the threshold voltage value of each memory cell 1201-1204 can be obtained separately. The cumulative distribution function of the threshold voltage value of each memory cell 1201-1204 has a low threshold voltage value region LVth (not shown) and a high threshold voltage value region HVth (not shown), respectively. The stable threshold voltage value (characteristic value) provided by the control units 1201-1204 is substantially between the high threshold voltage value region HVth and the low threshold voltage value region LVth.

同理,將每一個記憶體單元1201-1204的臨界電壓值累積分布函數(未繪示),與未附加串聯控制單元之記憶體單元的臨界電壓值累積分布函數(未繪示)相比,可觀察到:在每一個記憶體單元1201-1204上對應串聯一個控制單元1205-1208,可以限縮記憶體單元1201-1204的臨界電壓在值低臨界電壓值區域LVth的範圍,降低每一個記憶體單元1201-1204在低臨界電壓值區域LVth中臨界電壓值的分布變異程度,達到提高多重狀態記憶體元件1200操作可靠度的目的。 Similarly, compare the cumulative distribution function (not shown) of the critical voltage value of each memory cell 1201-1204 with the cumulative distribution function (not shown) of the critical voltage value of the memory cell without the additional serial control unit, It can be observed that a control unit 1205-1208 is connected in series with each memory unit 1201-1204, which can limit the threshold voltage of the memory unit 1201-1204 to the range of the low critical voltage value region LVth, reducing each memory The distribution variation of the threshold voltage value in the low threshold voltage value region LVth of the body units 1201-1204 achieves the purpose of improving the operation reliability of the multi-state memory device 1200.

請參照第13圖,第13圖係根據本說明書的一實施例所繪示之多重狀態記憶體元件1300的電路方塊示意圖。多重狀態記憶體元件1300的結構大致上與多重狀態記憶體元件1200類似差別僅在於,多重狀態記憶體元件1300的控制單元 1301-1304,分別與對應的記憶體單元1201-1204並聯,而非串聯。 Please refer to FIG. 13, which is a circuit block diagram of a multi-state memory device 1300 according to an embodiment of the present specification. The structure of the multi-state memory device 1300 is substantially similar to that of the multi-state memory device 1200 except that the control unit of the multi-state memory device 1300 1301-1304, respectively connected in parallel with the corresponding memory cells 1201-1204, rather than in series.

在本實施例中,記憶體單元1201與控制單元1201彼此並聯,再與選擇開關1211串聯,以形成一個記憶胞結構1331;記憶體單元1202與控制單元1202彼此並聯,再與選擇開關1212串聯,以形成一個記憶胞結構1332;記憶體單元1201與控制單元1303彼此並聯,再與選擇開關1213串聯,以形成一個記憶胞結構1333;記憶體單元1204與控制單元1304彼此並聯,再與選擇開關1214串聯,以形成一個記憶胞結構1334。並通過位元線BL將記憶胞結構1331-1334串接,以形成記憶胞串列1350。 In this embodiment, the memory unit 1201 and the control unit 1201 are connected in parallel with each other, and then connected in series with the selection switch 1211 to form a memory cell structure 1331; the memory unit 1202 and the control unit 1202 are connected in parallel with each other, and then connected in series with the selection switch 1212, To form a memory cell structure 1332; the memory unit 1201 and the control unit 1303 are connected in parallel with each other, and then connected in series with the selection switch 1213 to form a memory cell structure 1333; the memory unit 1204 and the control unit 1304 are connected in parallel with each other, and then the selection switch 1214 Connected in series to form a memory cell structure 1334. And the memory cell structures 1331-1334 are connected in series through the bit line BL to form a memory cell string sequence 1350.

當選擇開關1211-1214全部開啟,並通過位元線BL對記憶胞串列1350中的記憶體單元1201-1204提供一個第一訊號(例如較低的固定電壓)和一個第二訊號(例如較高的固定電壓)時,可以分別得出每一個記憶體單元1201-1204的臨界電壓值累積分布函數(未繪示)。每一個記憶體單元1201-1204的臨界電壓值累積分布函數會分別具有一個低臨界電壓值區域LVth(未繪示)和一個高臨界電壓值區域HVth(未繪示)。其中,控制單元1301-1304所提供的穩定臨界電壓值(特徵值)實質上介於高臨界電壓值區域HVth與低臨界電壓值區域LVth之間。 When the selection switches 1211-1214 are all turned on, and a bit line BL is provided to the memory cells 1201-1204 in the memory cell string 1350, a first signal (e.g., a lower fixed voltage) and a second signal (e.g. High fixed voltage), the cumulative distribution function (not shown) of the threshold voltage value of each memory cell 1201-1204 can be obtained separately. The cumulative distribution function of the threshold voltage value of each memory cell 1201-1204 has a low threshold voltage value region LVth (not shown) and a high threshold voltage value region HVth (not shown), respectively. The stable threshold voltage value (characteristic value) provided by the control units 1301-1304 is substantially between the high threshold voltage value region HVth and the low threshold voltage value region LVth.

同理,將每一個記憶體單元1201-1204的臨界電壓值累積分布函數(未繪示),與未附加串聯控制單元之記憶體單元的臨界電壓值累積分布函數(未繪示)相比,可觀察到:在每一個 記憶體單元1201-1204上對應並聯一個控制單元1305-1308,可以限縮每一個記憶體單元1201-1204的臨界電壓值在高臨界電壓值區域HVth的分布範圍,降低每一個記憶體單元1201-1204,在高臨界電壓值區域HVth中臨界電壓值的分布變異程度,達到提高多重狀態記憶體元件1300操作可靠度的目的。 Similarly, compare the cumulative distribution function (not shown) of the critical voltage value of each memory cell 1201-1204 with the cumulative distribution function (not shown) of the critical voltage value of the memory cell without the additional serial control unit, Observable: in each A corresponding control unit 1305-1308 is connected in parallel to the memory units 1201-1204, which can limit the distribution range of the critical voltage value of each memory unit 1201-1204 in the region of high critical voltage value HVth and reduce each memory unit 1201-204 1204, the degree of variation in the distribution of the critical voltage value in the high critical voltage value region HVth achieves the purpose of improving the operation reliability of the multi-state memory device 1300.

根據上述實施例,本說明書是揭露一種包含至少一記憶胞串列的多重狀態記憶體元件及其記憶狀態值的調整方法。其係採用串聯或並聯的方式,在同一條記憶胞串列中的每一個記憶體單元(記憶胞)上電性連接一個控制單元,用以調整每一記憶體單元的記憶狀態值,降低不同記憶體單元在接收相同訊號時所產生之記憶狀態值的分布變異程度,進而準確判讀多重狀態記憶體元件的資料儲存狀態。 According to the above embodiment, the present specification discloses a multi-state memory device including at least one memory cell string and a method for adjusting the memory state value. It adopts series or parallel connection, and each memory cell (memory cell) in the same memory cell series is electrically connected to a control unit, which is used to adjust the memory state value of each memory cell and reduce the difference. The degree of distribution variation of the memory state value generated by the memory unit when receiving the same signal, so as to accurately judge the data storage state of the multi-state memory element.

在本說明書的一些實施例中,記憶狀態值可以是記憶單元的電阻值、電導值或臨界電壓值。控制單元件的種類,則根據記憶狀態值的選擇,而可以是一種具有穩定阻值的電阻或一種具有一穩定臨界電壓的開關。控制單元件和記憶體單元的連接方式(串聯或並聯),可以隨著多重狀態記憶體元件的種類、應用範圍以及操作訊號的形式來進行選擇。 In some embodiments of the present specification, the memory state value may be the resistance value, conductivity value, or threshold voltage value of the memory cell. The type of control unit depends on the selection of the memory state value, and may be a resistor with stable resistance or a switch with a stable threshold voltage. The connection mode (serial or parallel) of the control unit and the memory unit can be selected according to the type, application range and operation signal form of the multi-state memory device.

例如,在本說明書的一實施例中,當多重狀態記憶體元件是以每一個記憶體單元的電阻值來作為資料儲存狀態(例如“0”和“1”)的判讀依據時,控制單元件可以是一種具有穩定阻值的電阻。且當操作訊號為一固定電壓時,每一個記憶體單元都可 以與一個電阻與形成串聯,藉以減少記憶體單元用來作為儲存狀態值的電導值在低阻值範圍中的分布變異程度;而當操作訊號為一固定電流時,每一個記憶體單元都可以與一個電阻形成並聯,藉以減少記憶體單元用來作為儲存狀態值的電阻值在高阻值範圍中的分布變異程度。 For example, in an embodiment of the present specification, when the multi-state memory device uses the resistance value of each memory cell as the basis for judging the data storage state (such as "0" and "1"), the control unit device It can be a resistor with stable resistance. And when the operation signal is a fixed voltage, each memory unit can It can be connected in series with a resistor to reduce the degree of variation in the distribution of the conductivity value of the memory cell as the storage state value in the low resistance range; and when the operation signal is a fixed current, each memory cell can Formed in parallel with a resistor to reduce the degree of variation in the distribution of the resistance value used by the memory cell as the storage state value in the high resistance range.

在本說明書的另一實施例中,當多重狀態記憶體元件是以每一個記憶體單元的臨界電壓值來作為資料儲存狀態(例如“0”和“1”)的判讀依據時,控制單元件可以是一種具有穩定臨界電壓的開關。且當每一個記憶體單元與一個開關形成串聯時,可以減少記憶體單元用來作為儲存狀態值的臨界電壓值在低臨界電壓值範圍中的分布變異程度;而當每一個記憶體單元都與一個開關形成並聯時,可以減少記憶體單元用來作為儲存狀態值的臨界電壓值在高臨界電壓值範圍中的分布變異程度。 In another embodiment of the present specification, when the multi-state memory device uses the threshold voltage value of each memory cell as the basis for judging the data storage state (such as "0" and "1"), the control unit device It can be a switch with stable threshold voltage. And when each memory cell is connected in series with a switch, the degree of variation in the distribution of the threshold voltage value used by the memory cell as the storage state value in the low threshold voltage range can be reduced; and when each memory cell is connected to When a switch is formed in parallel, the distribution variation of the critical voltage value used by the memory cell as the storage state value in the high critical voltage value range can be reduced.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何該技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in this technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be deemed as defined by the appended patent application scope.

400‧‧‧多重狀態記憶體元件 400‧‧‧Multi-state memory element

101-104‧‧‧記憶體單元 101-104‧‧‧Memory unit

111-114‧‧‧選擇開關 111-114‧‧‧selection switch

401-404‧‧‧控制單元 401-404‧‧‧Control unit

101a-104a‧‧‧上電極層 101a-104a‧‧‧ Upper electrode layer

101b-104b‧‧‧下電極層 101b-104b‧‧‧Lower electrode layer

101c-104c‧‧‧過渡金屬層 101c-104c‧‧‧Transition metal layer

111a-114a‧‧‧閘極 111a-114a‧‧‧Gate

111b-114b‧‧‧源極 111b-114b‧‧‧Source

111c-114c‧‧‧汲極 111c-114c‧‧‧ Drain

450‧‧‧記憶胞串列 450‧‧‧ Memory cell series

431-434‧‧‧記憶胞結構 431-434‧‧‧ memory cell structure

BL‧‧‧位元線 BL‧‧‧bit line

SL‧‧‧共同源極線 SL‧‧‧ common source line

WL1、WL2、WL3、WL4‧‧‧字元線 WL1, WL2, WL3, WL4 ‧‧‧ character line

Claims (10)

一種多重狀態記憶體(multi-state memory)元件包括:一第一記憶體單元;一第二記憶體單元,具有與該第一記憶體單元實質相同的一記憶胞結構,並與該第一記憶體單元串接;一第一控制單元,與該第一記憶體單元串聯或並聯;以及一第二控制單元,具有與該第一控制單元相同的一特徵值以及一相同連接結構,用以與該第二記憶體單元電性連接;當該第一記憶體單元經由該第一控制單元接收一第一訊號和一第二訊號時,該第一記憶體單元分別產生一第一狀態值和一第二狀態值;其中,該特徵值介於該第一狀態值和該第二狀態值之間。 A multi-state memory device includes: a first memory unit; a second memory unit, having a memory cell structure substantially the same as the first memory unit, and the first memory Body units are connected in series; a first control unit is connected in series or parallel with the first memory unit; and a second control unit has the same characteristic value and the same connection structure as the first control unit for The second memory unit is electrically connected; when the first memory unit receives a first signal and a second signal through the first control unit, the first memory unit generates a first state value and a A second state value; wherein the characteristic value is between the first state value and the second state value. 如申請專利範圍第1項所述之多重狀態記憶體元件,其中該第一狀態值和該第二狀態值,係在該第一記憶體單元分別接收該第一訊號和該第二訊號後,藉由對該第一記憶體單元輸入具有一固定電壓脈衝的一讀取訊號所量測而得。 The multi-state memory device as described in item 1 of the patent scope, wherein the first state value and the second state value are after the first memory unit receives the first signal and the second signal, It is measured by inputting a read signal with a fixed voltage pulse to the first memory unit. 如申請專利範圍第1項所述之多重狀態記憶體元件,其中該第一控制單元包括一第一電阻,具有一第一電阻 值;該第二控制單元包括一第二電阻,具有一第二電阻值,該特徵值為該第一電阻值,且實質等於該第二電阻值;當第一訊號和該第二訊號皆為一固定電壓時,該第一電阻與該第一記憶體單元串聯,該第二電阻與該第二記憶體單元串聯;當第一訊號和該第二訊號皆為一固定電流時,該第一電阻與該第一記憶體單元並聯;且該第二電阻與該第二記憶體單元並聯。 The multi-state memory device as described in item 1 of the patent application range, wherein the first control unit includes a first resistor having a first resistor Value; the second control unit includes a second resistor having a second resistance value, the characteristic value is the first resistance value, and is substantially equal to the second resistance value; when both the first signal and the second signal are At a fixed voltage, the first resistor is connected in series with the first memory unit, and the second resistor is connected in series with the second memory unit; when both the first signal and the second signal are a fixed current, the first The resistor is connected in parallel with the first memory unit; and the second resistor is connected in parallel with the second memory unit. 如申請專利範圍第1項所述之多重狀態記憶體元件,其中該第一控制單元包括一第一開關(switch),具有一第一臨界電壓值;該第二控制單元包括一第二開關,具有一第二臨界電壓值,該特徵值為該第一臨界電壓值,且實質等於該第二臨界電壓值;其中當該第一狀態值小於該第一臨界電壓值,且具有比該第二狀態值大的一分布變異程度時,該第一開關與該第一記憶體單元串聯;且該第二開關與該第二記憶體單元串聯;當該第一狀態值大於該第一臨界電壓值,且具有比該第二狀態值大的一分布變異程度時,該第一開關與該第一記憶體單元並聯;且該第二開關與該第二記憶體單元並聯。 The multi-state memory device as described in item 1 of the patent scope, wherein the first control unit includes a first switch with a first threshold voltage value; the second control unit includes a second switch, Has a second threshold voltage value, the characteristic value is the first threshold voltage value, and is substantially equal to the second threshold voltage value; wherein when the first state value is less than the first threshold voltage value, and has a second When the distribution of the state value is large, the first switch is connected in series with the first memory unit; and the second switch is connected in series with the second memory unit; when the first state value is greater than the first threshold voltage value And a distribution variation greater than the second state value, the first switch is connected in parallel with the first memory unit; and the second switch is connected in parallel with the second memory unit. 如申請專利範圍第4項所述之多重狀態記憶體元件,更包括:一第一選擇開關以及一第二選擇開關,二者具 有相同的一開關結構,分別電性連接該第一記憶體單元和該第二記憶體單元;當該第一開關與該第一記憶體單元串聯,且該第二開關與該第二記憶體單元串聯時,該第一選擇開關包括:一第一閘極,連接一第一字元線;一第一源極,連接一共同源極線;以及一第一汲極,通過該第一記憶體單元和該第一控制單元連接至一位元線;該第二選擇開關包括:一第二閘極,連接一第二字元線;一第二源極,連接該共同源極線;以及一第二汲極,通過該第二記憶體單元和該第二控制單元連接至該位元線;當該第一開關與該第一記憶體單元並聯,且該第二開關與該第二記憶體單元並聯時,該第一選擇開關包括:一第一閘極,連接一第一字元線;一第一源極,連結該第一記憶體單元的一端;以及一第一汲極,連結該第一記憶體單元的另一端;該第二選擇開關包括:一第二閘極,連接一第二字元線;一第二源極,連結該第二記憶體單元的一端;以及一第二汲極,連結該第二記憶體單元的另一端。 The multi-state memory device as described in item 4 of the patent application scope further includes: a first selection switch and a second selection switch, both of which have There is the same switch structure, which is electrically connected to the first memory unit and the second memory unit respectively; when the first switch is connected in series with the first memory unit, and the second switch and the second memory unit When the cells are connected in series, the first selection switch includes: a first gate connected to a first word line; a first source connected to a common source line; and a first drain through the first memory The body unit and the first control unit are connected to a bit line; the second selection switch includes: a second gate connected to a second word line; a second source connected to the common source line; and A second drain connected to the bit line through the second memory unit and the second control unit; when the first switch is connected in parallel with the first memory unit, and the second switch and the second memory When the body units are connected in parallel, the first selection switch includes: a first gate connected to a first word line; a first source connected to one end of the first memory unit; and a first drain connected to The other end of the first memory unit; the second selector switch includes: a second gate connected to a second word line; a second source connected to one end of the second memory unit; and a first The second drain is connected to the other end of the second memory unit. 如申請專利範圍第1項所述之多重狀態記憶體元件,更包括一第三記憶體單元,具有該記憶胞結構,且串接該第二記憶體單元,形成一記憶體串列。 The multi-state memory device as described in item 1 of the patent application scope further includes a third memory unit having the memory cell structure, and the second memory unit is connected in series to form a memory array. 一種多重狀態記憶體元件之記憶狀態值(characteristics of memory-state)的調整方法,包括:提供一第一記憶體單元;提供一第二記憶體單元,具有與該第一記憶體單元實質相同的一記憶胞結構,並與該第一記憶體單元串接;提供一第一控制單元,使其與該第一記憶體單元串聯或並聯;以及提供一第二控制單元,具有與該第一控制單元相同的一特徵值以及一相同連接結構,用以與該第二記憶體單元電性連接;當該第一記憶體單元經由該第一控制單元接收一第一訊號和一第二訊號時,該第一記憶體單元分別產生一第一狀態值和一第二狀態值;其中,該特徵值介於該第一狀態值和該第二狀態值之間。 A method for adjusting the characteristics of memory-state of a multi-state memory device includes: providing a first memory unit; providing a second memory unit having substantially the same as the first memory unit A memory cell structure, which is connected in series with the first memory unit; provides a first control unit to be connected in series or parallel with the first memory unit; and provides a second control unit with the first control The unit has a characteristic value and an identical connection structure for electrically connecting with the second memory unit; when the first memory unit receives a first signal and a second signal through the first control unit, The first memory unit respectively generates a first state value and a second state value; wherein the characteristic value is between the first state value and the second state value. 如申請專利範圍第7項所述之多重狀態記憶體元件之記憶狀態值的調整方法,其中該第一狀態值和該第二狀態值,係在該第一記憶體單元接收該第一訊號或該第二訊號 後,藉由對該第一記憶體單元輸入具有一固定電壓脈衝的一讀取訊號所量測而得。 The method for adjusting the memory state value of a multi-state memory device as described in item 7 of the patent application scope, wherein the first state value and the second state value are received by the first signal in the first memory unit or The second signal Then, it is measured by inputting a read signal with a fixed voltage pulse to the first memory unit. 如申請專利範圍第7項所述之多重狀態記憶體元件之記憶狀態值的調整方法,其中當該第一訊號和該第二訊號皆為一固定電壓時,提供該第一控制單元的步驟包括,提供一第一電阻與該第一記憶體單元串聯;提供該第二控制單元的步驟包括,提供一第二電阻與該第二記憶體單元串聯;該特徵值等於該第一電阻的一第一電阻值和該第二電阻的一第二電阻值;當該特徵值為一電阻值,當該第一訊號和該第二訊號皆為一固定電流時,提供該第一控制單元的步驟包括,提供一第一電阻與該第一記憶體單元並聯;提供該第二控制單元的步驟包括,提供一第二電阻與該第二記憶體單元並聯;該特徵值等於該第一電阻的一第一電阻值和該第二電阻的一第二電阻值。 The method for adjusting the memory state value of a multi-state memory element as described in item 7 of the patent application scope, wherein when both the first signal and the second signal are a fixed voltage, the step of providing the first control unit includes , Providing a first resistor in series with the first memory unit; providing the second control unit includes providing a second resistor in series with the second memory unit; the characteristic value is equal to a first A resistance value and a second resistance value of the second resistance; when the characteristic value is a resistance value, when both the first signal and the second signal are a fixed current, the step of providing the first control unit includes , Providing a first resistor in parallel with the first memory unit; providing the second control unit includes providing a second resistor in parallel with the second memory unit; the characteristic value is equal to a first A resistance value and a second resistance value of the second resistance. 如申請專利範圍第1項所述之多重狀態記憶體元件之記憶狀態值的調整方法,其中該特徵值為一臨界電壓,當該第一狀態值小於該臨界電壓,且具有比該第二狀態值大的一分布變異程度時,提供該第一控制單元的步驟,包括提供一第一開關與該第一記憶體單元串聯;提供該第二控制單 元的步驟,包括提供一第二開關與該第二記憶體單元串聯;該特徵值等於該第一開關的一第一臨界電壓和該第二開關的一第二臨界電壓值;當該第一狀態值大於該第一臨界電壓值,且具有比該第二狀態值大的一分布變異程度時,提供該第一控制單元的步驟,包括提供一第一開關與該第一記憶體單元並聯;提供該第二控制單元的步驟,包括提供一第二開關與該第二記憶體單元並聯;該特徵值等於該第一開關的一第一臨界電壓和該第二開關的一第二臨界電壓值。 The method for adjusting the memory state value of a multi-state memory device as described in item 1 of the patent scope, wherein the characteristic value is a threshold voltage, when the first state value is less than the threshold voltage The step of providing the first control unit includes a first switch connected in series with the first memory unit when a distribution with a large value has a variation degree of distribution; the second control unit is provided The step of the element includes providing a second switch in series with the second memory cell; the characteristic value is equal to a first threshold voltage of the first switch and a second threshold voltage of the second switch; when the first When the state value is greater than the first threshold voltage value and has a distribution variation greater than the second state value, the step of providing the first control unit includes providing a first switch in parallel with the first memory unit; The step of providing the second control unit includes providing a second switch in parallel with the second memory unit; the characteristic value is equal to a first threshold voltage of the first switch and a second threshold voltage value of the second switch .
TW107128377A 2018-08-14 2018-08-14 Muti-state memory device and method for adjusting memory state characteristics of the same TWI684862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107128377A TWI684862B (en) 2018-08-14 2018-08-14 Muti-state memory device and method for adjusting memory state characteristics of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107128377A TWI684862B (en) 2018-08-14 2018-08-14 Muti-state memory device and method for adjusting memory state characteristics of the same

Publications (2)

Publication Number Publication Date
TWI684862B true TWI684862B (en) 2020-02-11
TW202009708A TW202009708A (en) 2020-03-01

Family

ID=70413514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128377A TWI684862B (en) 2018-08-14 2018-08-14 Muti-state memory device and method for adjusting memory state characteristics of the same

Country Status (1)

Country Link
TW (1) TWI684862B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120069633A1 (en) * 2010-03-30 2012-03-22 Yoshikazu Katoh Nonvolatile storage device and method for writing into the same
US20150220457A1 (en) * 2013-02-28 2015-08-06 Panasonic Intellectual Property Management Co., Ltd. Cryptographic processing device
TW201743334A (en) * 2016-06-07 2017-12-16 來揚科技股份有限公司 Read/write control device of resistive type memory
US20180166135A1 (en) * 2016-12-09 2018-06-14 Microsemi Soc Corp. Resistive Random Access Memory Cell
TW201826133A (en) * 2017-01-12 2018-07-16 韓商愛思開海力士有限公司 Memory system and operating method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120069633A1 (en) * 2010-03-30 2012-03-22 Yoshikazu Katoh Nonvolatile storage device and method for writing into the same
US20150220457A1 (en) * 2013-02-28 2015-08-06 Panasonic Intellectual Property Management Co., Ltd. Cryptographic processing device
TW201743334A (en) * 2016-06-07 2017-12-16 來揚科技股份有限公司 Read/write control device of resistive type memory
US20180166135A1 (en) * 2016-12-09 2018-06-14 Microsemi Soc Corp. Resistive Random Access Memory Cell
TW201826133A (en) * 2017-01-12 2018-07-16 韓商愛思開海力士有限公司 Memory system and operating method of the same

Also Published As

Publication number Publication date
TW202009708A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
US9847123B2 (en) Multi-bit ferroelectric memory device and methods of forming the same
US8098520B2 (en) Storage device including a memory cell having multiple memory layers
JP5176018B2 (en) Control of memory device with variable resistance characteristics
US10482953B1 (en) Multi-state memory device and method for adjusting memory state characteristics of the same
US9590014B2 (en) Resistance variable memory cell structures and methods
US10255953B2 (en) Bi-directional RRAM decoder-driver
US10192616B2 (en) Ovonic threshold switch (OTS) driver/selector uses unselect bias to pre-charge memory chip circuit and reduces unacceptable false selects
US20210233961A1 (en) Multi-component cell architectures for a memory device
TWI684862B (en) Muti-state memory device and method for adjusting memory state characteristics of the same
KR102301109B1 (en) Resistive random access memory and manufacturing method thereof
Lee et al. Review of candidate devices for neuromorphic applications
US10468459B2 (en) Multiple vertical TFT structures for a vertical bit line architecture
CN110858502B (en) Multi-state memory element and method for adjusting storage state value thereof
US20220374202A1 (en) Multiply operation circuit, multiply and accumulate circuit, and methods thereof
US8149610B2 (en) Nonvolatile memory device
TWI847204B (en) Deck-level signal development cascodes
TWI802971B (en) Memory cell, memory device manufacturing method and memory device operation method thereof
US20230065465A1 (en) Memory cell, memory device manufacturing method and memory device operation method thereof
US20230262995A1 (en) Vertical memory architecture
EP4357981A1 (en) Hybrid feram/oxram data storage circuit
TW202236171A (en) Memory device and operation thereof
CN115035934A (en) Memory device and operation method thereof
TWI443662B (en) Nonvolatile memory device