TWI681403B - Seven-transistor dual port static random access memory - Google Patents

Seven-transistor dual port static random access memory Download PDF

Info

Publication number
TWI681403B
TWI681403B TW107124718A TW107124718A TWI681403B TW I681403 B TWI681403 B TW I681403B TW 107124718 A TW107124718 A TW 107124718A TW 107124718 A TW107124718 A TW 107124718A TW I681403 B TWI681403 B TW I681403B
Authority
TW
Taiwan
Prior art keywords
voltage
nmos transistor
control signal
inverter
read
Prior art date
Application number
TW107124718A
Other languages
Chinese (zh)
Other versions
TW202006721A (en
Inventor
蕭明椿
李相毅
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW107124718A priority Critical patent/TWI681403B/en
Application granted granted Critical
Publication of TWI681403B publication Critical patent/TWI681403B/en
Publication of TW202006721A publication Critical patent/TW202006721A/en

Links

Images

Abstract

本發明提出一種7T雙埠靜態隨機存取記憶體,其主要包括一記憶體陣列(1)、複數個控制電路(2)、複數個預充電電路(3)、一待機啟動電路(4)、複數個高電壓位準控制電路(5)、複數個寫入用字元線控制電路(6)、以及複數個讀取用字元線控制電路(7)。藉此,於寫入模式時,可藉由該複數個控制電路(2)以及該複數個寫入用字元線控制電路(6)的組合以防止寫入邏輯1困難之同時,亦有效提高寫入速度,而於讀取模式時,則藉由該複數個控制電路(2)、該複數個高電壓位準控制電路(5)以及該複數個讀取用字元線控制電路(7)的組合以於提高讀取速度的同時,亦避免無謂的功率耗損。 The invention provides a 7T dual-port static random access memory, which mainly includes a memory array (1), a plurality of control circuits (2), a plurality of precharge circuits (3), a standby start circuit (4), A plurality of high voltage level control circuits (5), a plurality of writing word line control circuits (6), and a plurality of reading word line control circuits (7). In this way, in the writing mode, the combination of the plurality of control circuits (2) and the plurality of writing word line control circuits (6) can prevent writing logic 1 from being difficult, and effectively improve The writing speed, and in the reading mode, by the plurality of control circuits (2), the plurality of high voltage level control circuits (5) and the plurality of read word line control circuits (7) In order to improve the reading speed, it also avoids unnecessary power consumption.

Description

7T雙埠靜態隨機存取記憶體 7T dual-port static random access memory

本發明係有關於一種7T雙埠(dual port)靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種有效提高7T SRAM待機效能,並能有效提高讀取速度與寫入速度,且能有效降低漏電流(leakage current)、降低讀取時之半選定晶胞干擾以及避免無謂的功率耗損之SRAM。 The present invention relates to a 7T dual port (Static Random Access Memory, SRAM for short), in particular to an effective increase in the standby performance of 7T SRAM, and can effectively increase the reading speed and writing speed And can effectively reduce leakage current (leakage current), reduce half-selected cell interference during reading and avoid unnecessary power consumption of SRAM.

習知之單埠靜態隨機存取記憶體(SRAM)如第1a圖所示,其主要包括一記憶體陣列(memory array),該記憶體陣列係由複數個記憶體區塊(memory block,MB1、MB2等)所組成,每一記憶體區塊更由複數列記憶體晶胞(a plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns of memory cells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體晶胞;複數條字元線(word line,WL1、WL2等),每一字元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs,BL1、BLB1...BLm、BLBm等),每一位元線對係對應至複數行記憶體晶胞中之一行,且每一位元線對係由一位元線(BL1...BLm)及一互補位元線(BLB1...BLBm)所組成。 The conventional static random access memory (SRAM) is shown in Figure 1a, which mainly includes a memory array. The memory array is composed of a plurality of memory blocks (memory block, MB 1 , MB 2 etc.), each memory block is further composed of a plurality of rows of memory cells and a plurality of rows of memory cells, Each row of memory cells and each row of memory cells includes a plurality of memory cells; a plurality of word lines (word line, WL 1 , WL 2 etc.), each word line corresponds to a plurality of row memory One row in the unit cell; and plural bit line pairs (BL 1 , BLB 1 ... BL m , BLB m, etc.), each bit line pair corresponds to the plural row memory cell One row, and each bit line pair is composed of a bit line (BL 1 ... BL m ) and a complementary bit line (BLB 1 ... BLB m ).

第1b圖所示即是6T單埠靜態隨機存取記憶體(SRAM)晶胞 之電路示意圖,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該單埠SRAM晶胞需要6個電晶體,且於讀取邏輯0時,為了避免讀取操作初始瞬間(initial instant)另一驅動電晶體導通,節點A之讀取初始瞬間電壓(VAR)必須滿足方程式(1):VAR=VDD×(RM1)/(RM1+RM3)<VTM2 (1)以防止讀取時之半選定晶胞干擾(half-selected cell disturbance),其中,VAR表示節點A之讀取初始瞬間電壓,RM1與RM3分別表示該NMOS電晶體(M1)與該NMOS電晶體(M3)之導通電阻,而VDD與VTM2分別表示電源供應電壓與該NMOS電晶體(M2)之臨界電壓,此導致驅動電晶體與存取電晶體之間的電流驅動能力比(即單元比率,cell ratio)通常設定在2.2至3.5之間(請參考98年10月20日第US76060B2號專利說明書第2欄第8-10行)。 Figure 1b shows the circuit schematic diagram of the 6T SRAM cell, where PMOS transistors (P1) and (P2) are called load transistors and NMOS transistors. (M1) and (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is a word line, and BL And BLB are bit line and complementary bit line, because the SRAM cell of this port requires 6 transistors, and when reading logic 0, in order to avoid the initial moment of the read operation (initial instant) The other driving transistor is turned on, and the initial voltage (V AR ) of node A must meet the equation (1): V AR = V DD × (R M1 )/(R M1 + R M3 )<V TM2 (1) to prevent half-selected cell disturbance during reading, where V AR represents the initial instantaneous voltage of reading at node A, and R M1 and R M3 respectively represent the NMOS transistor (M1 ) And the on-resistance of the NMOS transistor (M3), and V DD and V TM2 respectively represent the power supply voltage and the threshold voltage of the NMOS transistor (M2), which results in the current between the driving transistor and the access transistor The drive capability ratio (ie, cell ratio) is usually set between 2.2 and 3.5 (please refer to the second column of US76060B2 Patent Specification No. US76060B2, 1998, lines 8-10).

第1b圖所示6T單埠靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態分析模擬結果,如第2圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬。 Figure 1b shows the HSPICE transient analysis simulation results of the 6T-port static random access memory cell during the write operation. As shown in Figure 2, it is simulated using TSMC 90nm CMOS process parameters.

用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T單埠靜態隨機存取記憶體晶胞之電路示意圖,與第1b圖之6T單埠靜態隨機存取記憶體晶胞相比,此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶體晶胞少一個電晶體及少一條位元線,惟該5T單埠靜態隨機存取記憶體晶胞 在不變更PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶體晶胞左側節點A原本儲存邏輯0的情況,由於節點A之電荷僅單獨自位元線(BL)傳送,因此在將節點A中先前寫入的邏輯0蓋寫成邏輯1之寫入初始瞬間電壓(VAW)等於方程式(2):VAW=VDD×(RM1)/(RM1+RM3) (2)其中,VAW表示節點A之寫入初始瞬間電壓,RM1與RM3分別表示NMOS電晶體(M1)與NMOS電晶體(M3)之導通電阻,比較方程式(1)與方程式(2)可知,寫入初始瞬間電壓(VAW)小於NMOS電晶體(M2)之臨界電壓(VTM2),因而無法完成寫入邏輯1之操作。第3圖所示5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果,如第4圖所示,其係使用TSMC 90奈米CMOS製程參數加以模擬,由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 One way to reduce the number of transistors in the 6T static random access memory (SRAM) cell is shown in Figure 3. Figure 3 shows a schematic circuit diagram of a 5T static random access memory cell with only a single bit line. Compared with the 6T static random access memory cell of Figure 1b, this 5T static The random access memory cell has one transistor and one bit line less than that of the 6T static random access memory cell, but the 5T static random access memory cell does not change the PMOS transistors P1 and P2 And in the case of the channel width-to-length ratio of NMOS transistors M1, M2, and M3, there is a problem that it is quite difficult to write logic 1. Consider the case where the node A on the left side of the memory cell originally stores logic 0. Since the charge of node A is only transferred from the bit line (BL), the logic 0 previously written in node A is overwritten by the logic 1 The initial instantaneous voltage (V AW ) is equal to equation (2): V AW = V DD × (R M1 )/(R M1 + R M3 ) (2) where V AW represents the initial instantaneous voltage of node A, R M1 and R M3 represent the on-resistance of NMOS transistor (M1) and NMOS transistor (M3) respectively. Comparing equation (1) and equation (2), we can see that the initial instantaneous voltage (V AW ) is less than that of NMOS transistor (M2) ) Of the threshold voltage (V TM2 ), so the operation of writing logic 1 cannot be completed. The simulation results of the HSPICE transient analysis of the 5T static random access memory cell shown in Figure 3 during the write operation. As shown in Figure 4, it is simulated using TSMC 90nm CMOS process parameters. The simulation results can confirm that the 5T static random access memory cell with a single bit line has a problem that it is quite difficult to write logic 1.

接下來討論靜態隨機存取記憶體(SRAM)之單埠及雙埠架構,第1b圖之6T靜態隨機存取記憶體(SRAM)晶胞即是單埠靜態隨機存取記憶體(SRAM)晶胞之一例,其係使用兩條位元線BL及BLB做讀寫的動作,也就是讀與寫均是經由同樣的一對位元線來達成,是以在同一時間內只能進行讀或寫的動作,因此,當欲設計具有同時讀寫能力之雙埠靜態隨機存取記憶體時,便需要多加入兩顆存取電晶體以及另一對位元線(請參考第5圖所示電路,其中WBL及WBLB為寫入用位元線對、RBL及RBLB為讀取用位元線對、WWL為寫入用字元線、RWL為讀取用字元線),這使得記憶體晶胞的面積大大地增加,如果我們能夠簡化記憶體晶胞的架構,使得一條 位元線負責讀取的動作,而另一條位元線負責寫入的動作,則在設計雙埠靜態隨機存取記憶體時,記憶體晶胞便不需要多加入兩顆電晶體及一對位元線,這樣記憶體晶胞的面積便會減小許多,傳統的雙埠靜態隨機存取記憶體晶胞之所以不採用這種方法,是因為如前所述存在寫入邏輯1相當困難之問題。 Next, we will discuss the dual-port and static random access memory (SRAM) ports. The 6T static random access memory (SRAM) cell in Figure 1b is the static random access memory (SRAM) cell. An example of a cell, which uses two bit lines BL and BLB to perform read and write operations, that is, read and write are achieved through the same pair of bit lines, so only read or Write action, therefore, when you want to design a dual-port static random access memory with simultaneous read and write capabilities, you need to add two additional access transistors and another pair of bit lines (please refer to Figure 5 Circuit, where WBL and WBLB are bit line pairs for writing, RBL and RBLB are bit line pairs for reading, WWL is word line for writing, and RWL is word line for reading), which makes the memory The area of the cell is greatly increased. If we can simplify the structure of the memory cell, make a The bit line is responsible for the read operation, and the other bit line is responsible for the write operation. When designing a dual-port static random access memory, the memory cell does not need to add two more transistors and a pair of Bit line, so the area of the memory cell will be reduced a lot. The reason why the traditional dual-port static random access memory cell does not use this method is because it is very difficult to write logic 1 as described above. Question.

迄今,有許多具單一讀取位元線之雙埠靜態隨機存取記憶體晶胞之技術被提出,例如專利文獻1所提出之「Dual write wordline memory cell」(第US9336863B2號,105年5月10日授予Qualcomm Corporation),其係藉由二階段之寫入操作以避免由於使用單一寫入位元線所導致寫入邏輯1困難之問題,於寫入操作之第一階段預先寫入邏輯1,而於寫入操作之第二階段,則視實際寫入資料而決定是否將該預先寫入之邏輯1放電至邏輯0;專利文獻2所提出之「Method of writing to and reading data from a three-dimensional two port register file」(第US 9275724B2號,105年3月1日授予TSMC Corporation),其係使用二個專用的讀取NMOS電晶體以達成單一讀取位元線之SRAM晶胞的讀取操作,而於寫入操作時由於使用二個存取電晶體與需要互補寫入位元線,導致SRAM晶胞電晶體數量較多之缺失;專利文獻3所提出之「雙埠靜態隨機存取記憶體」(第TW I605551B,106年11月11日授予修平科技大學),其係藉由控制電路與高電壓位準控制電路的組合設計,於讀取操作之第一階段,利用控制電路將原本的接地電壓節點的電位拉低至小於接地電壓,並配合高電壓位準控制電路以減少讀取路徑之電阻,而加速單一讀取位元線之電荷的放電從而提高SRAM之讀取速度,而於讀取操作之第二階段,則將原本比接地電壓低的電壓改回接地電壓,以避 免無謂的功率消耗。該等專利雖可有效解決使用單一寫入位元線所導致寫入邏輯1困難之問題,惟該等專利均未考慮到SRAM操作電壓將降為0.9伏特以下,此時易因製程-電壓-溫度(PVT)變化而造成可能無法在規範的時間內完成寫入操作,因此仍有改進空間。 So far, many technologies of dual-port static random access memory cells with a single read bit line have been proposed, such as the "Dual write wordline memory cell" proposed in Patent Document 1 (No. US9336863B2, May 105 Granted to Qualcomm Corporation on the 10th. It uses a two-stage write operation to avoid the difficulty of writing logic 1 due to the use of a single write bit line. Write logic 1 in advance in the first stage of the write operation , And in the second stage of the writing operation, it depends on the actual written data to decide whether to discharge the pre-written logic 1 to logic 0; Patent Document 2 proposed "Method of writing to and reading data from a three -dimensional two port register file" (No. US 9275724B2, granted to TSMC Corporation on March 1, 105), which uses two dedicated read NMOS transistors to achieve a single read bit line SRAM cell read Fetch operation, and because of the use of two access transistors and the need for complementary write bit lines during the write operation, a large number of SRAM cell transistors are missing; the "dual port static random access" proposed in Patent Document 3 "Retrieve memory" (No. TW I605551B, awarded to Shuiping University of Science and Technology on November 11, 106), which is designed by the combination of control circuit and high voltage level control circuit, using the control circuit in the first stage of the reading operation Lower the potential of the original ground voltage node to less than the ground voltage, and cooperate with the high voltage level control circuit to reduce the resistance of the read path, and accelerate the discharge of the charge of a single read bit line to increase the reading speed of the SRAM , And in the second stage of the reading operation, the voltage that was originally lower than the ground voltage is changed back to the ground voltage to avoid No unnecessary power consumption. Although these patents can effectively solve the problem of the difficulty of writing logic 1 caused by the use of a single write bit line, these patents do not consider that the SRAM operating voltage will drop below 0.9 volts. At this time, it is easy to process-voltage- Changes in temperature (PVT) may cause the write operation to fail to complete within the specified time, so there is still room for improvement.

有鑑於此,本發明之主要目的係提出一種7T雙埠靜態隨機存取記憶體,其能藉由二階段的寫入用字元線控制電路(6)以有效解決10奈米以下SRAM操作電壓降為0.9V以下時易造成寫入時間無法滿足規範之問題,該寫入用字元線控制電路(6)於對應寫入用字元線(WWL)致能的第一階段,將對應寫入用字元線控制信號(WWLC)設定成較電源供應電壓(VDD)還高之第二高電源供應電壓(VDDH2),以有效提高寫入速度,而於該第一階段後之第二階段時,則將該對應寫入用字元線控制信號(WWLC)拉低回該電源供應電壓(VDD),以減緩寫干擾入。 In view of this, the main purpose of the present invention is to propose a 7T dual-port static random access memory, which can effectively solve the SRAM operating voltage below 10 nanometers by the two-stage writing word line control circuit (6) When it is lower than 0.9V, it is easy to cause the problem that the writing time cannot meet the specifications. The writing word line control circuit (6) at the first stage of enabling the corresponding writing word line (WWL) enables the corresponding writing The input word line control signal (WWLC) is set to the second highest power supply voltage (V DDH2 ) that is higher than the power supply voltage (V DD ) to effectively increase the writing speed, and after the first stage In the second stage, the corresponding write word line control signal (WWLC) is pulled back to the power supply voltage (V DD ) to slow down the write interference.

本發明之次要目的係提出一種7T雙埠靜態隨機存取記憶體,其能藉由讀取用字元線控制電路(7)以於對應讀取用字元線(RWL)致能的第一階段,將對應讀取用字元線控制信號(RWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),以進一步減少讀取路徑之電阻,並加速讀取用位元線(RWL)上之電荷的放電從而有效提高讀取速度,而於該第一階段後之第二階段時,則將該對應讀取用字元線控制信號(RWLC)拉低回該電源供應電壓(VDD),以減緩讀取干擾。 The secondary objective of the present invention is to propose a 7T dual-port static random access memory, which can be enabled by the read word line control circuit (7) corresponding to the read word line (RWL). In the first stage, the corresponding read word line control signal (RWLC) is set to the second highest power supply voltage (V DDH2 ) higher than the power supply voltage (V DD ) to further reduce the resistance of the read path , And accelerate the discharge of the charge on the read bit line (RWL) to effectively improve the reading speed, and in the second stage after the first stage, the corresponding read word line control signal ( RWLC) pulls back the power supply voltage (V DD ) to slow down the read interference.

本發明提出一種7T雙埠靜態隨機存取記憶體,其主要包括一記憶體陣列(1)、複數個控制電路(2)、複數個預充電電路(3)、一 待機啟動電路(4)、複數個高電壓位準控制電路(5)、複數個寫入用字元線控制電路(6)、以及複數個讀取用字元線控制電路(7)。藉此,於寫入模式時,可藉由該複數個控制電路(2)以及該複數個寫入用字元線控制電路(6)的組合以防止寫入邏輯1困難之同時,亦有效提高寫入速度,而於讀取模式時,則藉由該複數個控制電路(2)、該複數個高電壓位準控制電路(5)以及該複數個讀取用字元線控制電路(7)的組合以於提高讀取速度的同時,亦避免無謂的功率耗損。 The invention provides a 7T dual-port static random access memory, which mainly includes a memory array (1), a plurality of control circuits (2), a plurality of precharge circuits (3), a The standby start circuit (4), a plurality of high voltage level control circuits (5), a plurality of writing word line control circuits (6), and a plurality of reading word line control circuits (7). In this way, in the writing mode, the combination of the plurality of control circuits (2) and the plurality of writing word line control circuits (6) can prevent writing logic 1 from being difficult, and effectively improve The writing speed, and in the reading mode, by the plurality of control circuits (2), the plurality of high voltage level control circuits (5) and the plurality of read word line control circuits (7) In order to improve the reading speed, it also avoids unnecessary power consumption.

1‧‧‧SRAM晶胞 1‧‧‧SRAM cell

2‧‧‧控制電路 2‧‧‧Control circuit

3‧‧‧預充電電路 3‧‧‧Precharge circuit

4‧‧‧待機啟動電路 4‧‧‧ Standby start circuit

5‧‧‧高電壓位準控制電路 5‧‧‧High voltage level control circuit

6‧‧‧寫入用字元線控制電路 6‧‧‧ Writing word line control circuit

7‧‧‧讀取用字元線控制電路 7‧‧‧Character line control circuit for reading

/WC‧‧‧反相寫入控制信號 /WC‧‧‧Inverse write control signal

WC‧‧‧寫入控制信號 WC‧‧‧Write control signal

P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor

P12‧‧‧第二PMOS電晶體 P12‧‧‧ Second PMOS transistor

M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor

M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor

M13‧‧‧第三NMOS電晶體 M13‧‧‧ Third NMOS transistor

A‧‧‧儲存節點 A‧‧‧storage node

B‧‧‧反相儲存節點 B‧‧‧Inverted storage node

C‧‧‧節點 C‧‧‧Node

M14‧‧‧第一讀取用電晶體 M14‧‧‧ First reading transistor

M15‧‧‧第二讀取用電晶體 M15‧‧‧ Second reading transistor

WBL‧‧‧寫入用位元線 WBL‧‧‧Bit line for writing

WWL‧‧‧寫入用字元線 WWL‧‧‧Character line for writing

RBL‧‧‧讀取用位元線 RBL‧‧‧bit line for reading

RWL‧‧‧讀取用字元線 RWL‧‧‧Character line for reading

WWLC‧‧‧寫入用字元線控制信號 WWLC‧‧‧Character line control signal for writing

RWL‧‧‧讀取用字元線控制信號 RWL‧‧‧Character line control signal for reading

S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal

/S‧‧‧反相待機模式控制信號 /S‧‧‧Inverted standby mode control signal

VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node

VL2‧‧‧第二低電壓節點 VL2‧‧‧second low voltage node

M21‧‧‧第四NMOS電晶體 M21‧‧‧ Fourth NMOS transistor

M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS transistor

M23‧‧‧第六NMOS電晶體 M23‧‧‧Sixth NMOS transistor

M24‧‧‧第七NMOS電晶體 M24‧‧‧NMOS transistor

M25‧‧‧第八NMOS電晶體 M25‧‧‧Eighth NMOS transistor

M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor

M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS transistor

M28‧‧‧第十一NMOS電晶體 M28‧‧‧Eleventh NMOS transistor

RC‧‧‧讀取控制信號 RC‧‧‧Read control signal

RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage

INV3‧‧‧第三反相器 INV3‧‧‧third inverter

D1‧‧‧第一延遲電路 D1‧‧‧ First delay circuit

P31‧‧‧第三PMOS電晶體 P31‧‧‧The third PMOS transistor

P‧‧‧預充電信號 P‧‧‧Precharge signal

M41‧‧‧第十二NMOS電晶體 M41‧‧‧Twelfth NMOS transistor

P41‧‧‧第四PMOS電晶體 P41‧‧‧ Fourth PMOS transistor

D2‧‧‧第二延遲電路 D2‧‧‧second delay circuit

VDD‧‧‧電源供應電壓 V DD ‧‧‧ Power supply voltage

VDDH1‧‧‧第一高電源供應電壓 V DDH1 ‧‧‧The highest power supply voltage

VDDH2‧‧‧第二高電源供應電壓 V DDH2 ‧‧‧The second highest power supply voltage

P51‧‧‧第五PMOS電晶體 P51‧‧‧ fifth PMOS transistor

P52‧‧‧第六PMOS電晶體 P52‧‧‧The sixth PMOS transistor

INV4‧‧‧第四反相器 INV4‧‧‧ fourth inverter

VH‧‧‧高電壓節點 VH‧‧‧High voltage node

P61‧‧‧第七PMOS電晶體 P61‧‧‧The seventh PMOS transistor

P62‧‧‧第八PMOS電晶體 P62‧‧‧Eighth PMOS transistor

P63‧‧‧第九PMOS電晶體 P63‧‧‧Ninth PMOS transistor

M61‧‧‧第十三NMOS電晶體 M61‧‧‧Thirteenth NMOS transistor

INV5‧‧‧第五反相器 INV5‧‧‧fifth inverter

INV6‧‧‧第六反相器 INV6‧‧‧ sixth inverter

P71‧‧‧第十PMOS電晶體 P71‧‧‧Tenth PMOS transistor

P72‧‧‧第十一PMOS電晶體 P72‧‧‧Eleventh PMOS transistor

P73‧‧‧第十二PMOS電晶體 P73‧‧‧12th PMOS transistor

M71‧‧‧第十四NMOS電晶體 M71‧‧‧14th NMOS transistor

INV7‧‧‧第七反相器 INV7‧‧‧ seventh inverter

INV8‧‧‧第八反相器 INV8‧‧‧ Eighth inverter

BLB‧‧‧互補位元線 BLB‧‧‧Complementary bit line

BLB1 BLBm‧‧‧互補位元線 BLB 1 BLB m ‧‧‧ complementary bit line

MB1 MBk‧‧‧記憶體區塊 MB 1 MB k ‧‧‧ memory block

WL1 WLn‧‧‧字元線 WL 1 WL n ‧‧‧ character line

BL1 BLm‧‧‧位元線 BL 1 BL m ‧‧‧ bit line

M1M4‧‧‧NMOS電晶體 M1 M4‧‧‧‧NMOS transistor

P1P2‧‧‧PMOS電晶體 P1 P2‧‧‧PMOS transistor

I1、I2、I3、I4‧‧‧漏電流 I 1 , I 2 , I 3 , I 4 ‧‧‧ leakage current

第1a圖 係顯示習知之靜態隨機存取記憶體;第1b圖 係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖;第2圖 係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖;第3圖 係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖;第4圖 係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖;第5圖 係顯示習知8T雙埠靜態隨機存取記憶體晶胞之電路示意圖;第6圖 係顯示本發明較佳實施例所提出之電路示意圖;第7圖 係顯示第6圖之本發明較佳實施例於寫入期間之簡化電路圖;第8圖 係顯示第6圖之本發明較佳實施例於讀取期間之簡化電路圖;第9圖 係顯示第6圖之本發明較佳實施例於待機期間之簡化電路圖。 Figure 1a shows the conventional static random access memory; Figure 1b shows the schematic circuit diagram of the conventional 6T static random access memory cell; Figure 2 shows the conventional 6T static random access memory cell Figure 3 is a circuit diagram of the conventional 5T static random access memory cell; Figure 4 is a circuit diagram of the conventional 5T static random access memory cell; Figure 5 is a schematic circuit diagram of a conventional 8T dual-port static random access memory cell; Figure 6 is a schematic circuit diagram of the preferred embodiment of the present invention; Figure 7 is a schematic diagram of the present invention of Figure 6 Simplified circuit diagram of the preferred embodiment during writing; Fig. 8 is a simplified circuit diagram of the preferred embodiment of the invention of Fig. 6 during reading; Fig. 9 is a preferred embodiment of the invention of Fig. 6 Simplified circuit diagram during standby.

根據上述之主要目的,本發明提出一種7T雙埠靜態隨機存取記憶體,其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶 胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶體晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶體晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使雙埠SRAM快速進入待機模式,以有效提高雙埠SRAM之待機效能;複數個高電壓位準控制電路(5),每一列記憶體晶胞設置一個高電壓位準控制電路(5),以在讀取邏輯0時減少讀取路徑之電阻從而提高讀取速度;複數個寫入用字元線控制電路(6),每一列記憶體晶胞設置一個寫入用字元線控制電路(6),以在由邏輯0寫入邏輯1或由邏輯1寫入邏輯0時,於對應寫入用字元線(WWL)致能的第一階段,將對應寫入用字元線控制信號(WWLC)設定成較電源供應電壓(VDD)還高之第二高電源供應電壓(VDDH2),以有效提高寫入速度;以及複數個讀取用字元線控制電路(7),每一列記憶體晶胞設置一個讀取用字元線控制電路(7),以在讀取邏輯0時,於對應讀取用用字元線(RWL)致能的第一階段,將對應讀取用字元線控制信號(RWLC)設定成較電源供應電壓(VDD)還高之第二高電源供應電壓(VDDH2),以進一步減少讀取路徑之電阻,並加速讀取用位元線(RWL)上之電荷的放電,從而有效提高讀取速度。 According to the above main purpose, the present invention proposes a 7T dual-port static random access memory, which mainly includes a memory array composed of a plurality of rows of memory cells and a plurality of rows of memory cells, Each column of memory cells and each row of memory cells includes a plurality of memory cells (1); a plurality of control circuits (2), each column of memory cells is provided with a control circuit (2); a plurality of Pre-charging circuit (3), each row of memory cells is provided with a pre-charging circuit (3); a standby start circuit (4), the standby start circuit (4) is to prompt the dual-port SRAM to quickly enter the standby mode, to effectively improve Standby performance of dual-port SRAM; multiple high voltage level control circuits (5), each row of memory cells is equipped with a high voltage level control circuit (5) to reduce the resistance of the read path when reading logic 0 Thereby increasing the reading speed; a plurality of writing word line control circuits (6), each column of memory cells is provided with a writing word line control circuit (6) to write logic 1 or logic 1 from logic 0 When writing logic 0 from logic 1, the corresponding writing word line control signal (WWLC) is set to a value higher than the power supply voltage (V DD ) in the first stage of enabling the corresponding writing word line (WWL) The second highest power supply voltage (V DDH2 ) to effectively increase the writing speed; and a plurality of read word line control circuits (7), each row of memory cells is provided with a read word line A control circuit (7) to set the corresponding read word line control signal (RWLC) to a power source in the first stage of enabling the corresponding read word line (RWL) when reading logic 0 The supply voltage (V DD ) is the second highest power supply voltage (V DDH2 ) to further reduce the resistance of the read path and accelerate the discharge of the charge on the read bit line (RWL), thereby effectively improving the read Take the speed.

為了便於說明起見,第6圖所示之7T雙埠靜態隨機存取記憶體僅以一個記憶體晶胞(1)、一條寫入用字元線(WWL)、一條寫入用位元線(WBL)、一條讀取用字元線(RWL)、一條讀取用位元線(RBL)、一控制電路(2)、一預充電電路(3)、一待機啟動電路(4)、一高電壓位準控制電路(5)、一寫入用字元線控制電路(6)、以及一讀取用字元線 控制電路(7)做為實施例來說明。該記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P11與一第一NMOS電晶體M11所組成)、一第二反相器(由一第二PMOS電晶體P12與一第二NMOS電晶體M12所組成)、一第三NMOS電晶體(M13)、一第一讀取用電晶體(M14)以及一第二讀取用電晶體(M15),其中,該第一反相器及該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第二反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反相器之輸出(節點B)則用於儲存SRAM晶胞之反相資料。 For ease of explanation, the 7T dual-port static random access memory shown in Figure 6 has only one memory cell (1), one word line for writing (WWL), and one bit line for writing (WBL), a read word line (RWL), a read bit line (RBL), a control circuit (2), a precharge circuit (3), a standby start circuit (4), a High voltage level control circuit (5), a writing word line control circuit (6), and a reading word line The control circuit (7) is described as an embodiment. The memory cell (1) includes a first inverter (composed of a first PMOS transistor P11 and a first NMOS transistor M11), and a second inverter (composed of a second PMOS transistor Composed of a crystal P12 and a second NMOS transistor M12), a third NMOS transistor (M13), a first reading transistor (M14) and a second reading transistor (M15), wherein, The first inverter and the second inverter are alternately coupled, that is, the output of the first inverter (ie, node A) is connected to the input of the second inverter, and the second inverter The output of the phase inverter (ie, node B) is connected to the input of the first inverter, and the output of the first inverter (node A) is used to store the data of the SRAM cell, and the second inverter The output (node B) is used to store the inverted data of the SRAM cell.

該記憶體晶胞(1)之該第一反相器(由該第一PMOS電晶體P11與該第一NMOS電晶體M11所組成)係連接在一電源供應電壓(VDD)與一第一低電壓節點(VL1)之間,該第二反相器(由該第二PMOS電晶體P12與該第二NMOS電晶體M12所組成)係連接在一高電壓節點(VH)與一第二低電壓節點(VL2)之間,該第一讀取用電晶體(M14)之源極、閘極與汲極係分別連接至該第二讀取用電晶體(M15)之汲極、該讀取用字元線(RWL)與該讀取用位元線(RBL),而該第二讀取用電晶體(M15)之源極、閘極與汲極則分別連接至該第二低電壓節點(VL2)、該第二反相器之輸出(即節點B)與該第一讀取用電晶體(M14)之源極。 The first inverter (composed of the first PMOS transistor P11 and the first NMOS transistor M11) of the memory cell (1) is connected to a power supply voltage (V DD ) and a first Between the low voltage node (VL1), the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12) is connected to a high voltage node (VH) and a second low voltage node Between the voltage node (VL2), the source, gate and drain of the first reading transistor (M14) are connected to the drain and reading of the second reading transistor (M15), respectively The word line (RWL) and the read bit line (RBL) are used, and the source, gate and drain of the second read transistor (M15) are respectively connected to the second low voltage node (VL2), the output of the second inverter (ie, node B) and the source of the first read transistor (M14).

請再參考第6圖,該控制電路(2)係由一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體 (M28)、一讀取控制信號(RC)、一第三反相器(INV3)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一反相寫入控制信號(/WC)、一寫入控制信號(WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S)所組成。該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至接地電壓、該反相待機模式控制信號(/S)與該第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該待機模式控制信號(S)與該第二低電壓節點(VL2);該第六NMOS電晶體(M23)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第二低電壓節點(VL2);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV3)之輸出與該第八NMOS電晶體(M25)之該閘極之間;該第三反相器(INV3)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至接地電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該待機模式控制信號(S)、該寫入控制信號(WC)與該第九NMOS電晶體(M26)之閘極;而該第十一NMOS電晶體(M28)之源極、閘極與汲極係分別連接至該反相待機模式控制信號(/S)、該反相寫入控制信號(/WC)與該第十NMOS電晶體(M27) 之汲極。在此值得注意的是,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得,且該反相寫入控制信號(/WC)係由一寫入控制信號(WC)經另一反相器而獲得。 Please refer to FIG. 6 again. The control circuit (2) is composed of a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a seventh NMOS transistor Crystal (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), a read control signal (RC), a third inverter (INV3), a first delay circuit (D1), an accelerated read voltage (RGND), an inverted write control signal (/ WC), a write control signal (WC), a standby mode control signal (S) and an inverted standby mode control signal (/S). The source, gate, and drain of the fourth NMOS transistor (M21) are connected to the ground voltage, the inverted standby mode control signal (/S), and the second low voltage node (VL2); the fifth The source, gate and drain of the NMOS transistor (M22) are connected to the first low voltage node (VL1), the standby mode control signal (S) and the second low voltage node (VL2); the first The source of the six NMOS transistors (M23) is connected to the ground voltage, and the gate and the drain are connected together and connected to the first low voltage node (VL1); the source of the seventh NMOS transistor (M24) , The gate and the drain are connected to the drain of the eighth NMOS transistor (M25), the read control signal (RC) and the second low voltage node (VL2); the eighth NMOS transistor (M25) ) Source, gate and drain are connected to the accelerated read voltage (RGND), the output of the first delay circuit (D1) and the source of the seventh NMOS transistor (M24); the first The delay circuit (D1) is connected between the output of the third inverter (INV3) and the gate of the eighth NMOS transistor (M25); the input of the third inverter (INV3) is for receiving The read control signal (RC), and the output is connected to the input of the first delay circuit (D1); the source, gate, and drain of the ninth NMOS transistor (M26) are connected to the ground voltage, The drain of the tenth NMOS transistor (M27) and the first low voltage node (VL1); the source, gate and drain of the tenth NMOS transistor (M27) are respectively connected to the standby mode control signal (S), the write control signal (WC) and the gate of the ninth NMOS transistor (M26); and the source, gate and drain of the eleventh NMOS transistor (M28) are connected to The inverted standby mode control signal (/S), the inverted write control signal (/WC) and the tenth NMOS transistor (M27) Jiji. It is worth noting here that the inverted standby mode control signal (/S) is obtained from the standby mode control signal (S) through an inverter, and the inverted write control signal (/WC) is derived from A write control signal (WC) is obtained through another inverter.

其中,該第十一NMOS電晶體(M28)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該寫入控制信號(WC)為邏輯高位準時,該節點(C)之電壓位準係為該待機模式控制信號(S),而當該寫入控制信號(WC)為邏輯低位準時,該節點(C)之電壓位準係為該反相待機模式控制信號(/S)之邏輯位準;由於該節點(C)之邏輯高位準係為一電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之臨界電壓(VTM28)的電壓位準,因此當該7T靜態隨機存取記憶體於非寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯高位準)時,該節點(C)係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之該臨界電壓(VTM28)的電壓位準,而非該電源供應電壓(VDD)之電壓位準,故可具有較低之功率消耗;且於後續進入寫入模式(此時對應之該寫入控制信號(WC)為邏輯高位準)時,由於可快速地將儲存於該節點(C)之電荷經由該第十NMOS電晶體(M27)放電至足以關閉以該節點(C)作為閘極之該第九NMOS電晶體(M26),故可較快速地進入該寫入模式。 Among them, the drain of the eleventh NMOS transistor (M28), the drain of the tenth NMOS transistor (M27) and the gate of the ninth NMOS transistor (M26) are connected together to form a node ( C), when the write control signal (WC) is a logic high level, the voltage level of the node (C) is the standby mode control signal (S), and when the write control signal (WC) is a logic low level On time, the voltage level of the node (C) is the logic level of the inverse standby mode control signal (/S); since the logic high level of the node (C) is a power supply voltage (V DD ) Subtract the voltage level of the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28), so when the 7T SRAM is in the non-write mode (the corresponding inverse write control signal at this time (/WC) is the logic high level), the node (C) is the voltage level of the power supply voltage (V DD ) minus the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28) , Instead of the voltage level of the power supply voltage (V DD ), it can have lower power consumption; and enter the write mode later (the corresponding write control signal (WC) is logic high level) At this time, since the charge stored in the node (C) can be quickly discharged through the tenth NMOS transistor (M27) enough to turn off the ninth NMOS transistor (M26) with the node (C) as the gate, Therefore, the write mode can be entered relatively quickly.

該控制電路(2)係設計成可因應不同操作模式而控制該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準,於寫入模式時,將選定晶胞中較接近該寫入用位元線(WBL)之驅動電晶體(即該第一NMOS電晶體M11)的源極電壓(即該第一低電壓節點VL1)設定成較 接地電壓為高之一預定電壓(即該第六NMOS電晶體(M23)之閘源極電壓VGS(M23))且將選定晶胞中另一驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯1困難之問題。 The control circuit (2) is designed to control the voltage levels of the first low-voltage node (VL1) and the second low-voltage node (VL2) according to different operation modes. The source voltage of the drive transistor (i.e. the first NMOS transistor M11) closer to the write bit line (WBL) is set to one higher than the ground voltage A predetermined voltage (ie, the gate-source voltage V GS(M23) of the sixth NMOS transistor (M23)) and the source voltage of the other driving transistor (ie, the second NMOS transistor M12) in the selected cell ( That is, the second low-voltage node VL2) is set to the ground voltage in order to prevent the difficulty of writing logic 1.

於讀取模式之第一階段時,將選定晶胞中較接近讀取用位元線(RBL)之驅動電晶體(即該第二NMOS電晶體M12)的源極電壓(即該第二低電壓節點VL2)設定成呈較接地電壓為低之電壓,該較接地電壓為低之該第二低電壓節點(VL2)可有效提高讀取速度,而於讀取模式之第二階段時,將選定晶胞中較接近讀取用位元線(RBL)之驅動電晶體(即該第二NMOS電晶體M12)的源極電壓設定回接地電壓,以便減少無謂的功率消耗,其中該讀取模式之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV3)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。 In the first stage of the read mode, the source voltage (ie, the second lowest voltage) of the driving transistor (ie, the second NMOS transistor M12) in the selected cell closer to the read bit line (RBL) is selected The voltage node VL2) is set to a lower voltage than the ground voltage. The second low voltage node (VL2) which is lower than the ground voltage can effectively improve the reading speed. In the second stage of the reading mode, the The source voltage of the driving transistor (ie, the second NMOS transistor M12) closer to the read bit line (RBL) in the selected cell is set back to the ground voltage in order to reduce unnecessary power consumption, wherein the read mode The time between the second phase and the first phase is equal to the read control signal (RC) from the logic low level to the logic high level, and to the eighth NMOS transistor (M25) gate voltage The time enough to turn off the eighth NMOS transistor (M25) can be adjusted by the falling delay time of the third inverter (INV3) and the delay time provided by the first delay circuit (D1).

於待機模式時,將所有記憶體晶胞中之驅動電晶體的源極電壓設定成較接地電壓為高之該預定電壓,以便降低漏電流;而於保持模式時則將記憶體晶胞中之驅動電晶體的源極電壓設定成接地電壓,以便維持原來之保持特性,該第一低電壓節點(VL1)及該第二低電壓節點VL2於寫入模式、讀取模式、待機模式與保持模式之詳細工作電壓位準如下述表1所示。 In the standby mode, the source voltage of the driving transistors in all memory cells is set to the predetermined voltage higher than the ground voltage in order to reduce the leakage current; in the hold mode, the source voltage in the memory cells The source voltage of the driving transistor is set to the ground voltage in order to maintain the original retention characteristics. The first low voltage node (VL1) and the second low voltage node VL2 are in write mode, read mode, standby mode and hold mode The detailed working voltage level is shown in Table 1 below.

Figure 107124718-A0101-12-0012-1
Figure 107124718-A0101-12-0012-1

表1中之該反相寫入控制信號(/WC)係為一寫入控制信號(WC)之反相信號,而該寫入控制信號(WC)則為一寫入致能信號(Write Enable,簡稱WE)與對應之寫入用字元線(WWL)信號的及閘(AND gate)運算結果,此時僅於該寫入致能信號(WE)與該對應之寫入用字元線(WWL)信號均為邏輯高位準時,該寫入控制信號(WC)方為邏輯高位準;該讀取控制信號(RC)為一讀取致能信號(Read Enable,簡稱RE)與對應之讀取用字元線(RWL)信號的及閘運算結果。在此值得注意的是,對於非選定字元線及非選定位元線係設定為浮接(floating)狀態,而對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)之漏電流。 The inverted write control signal (/WC) in Table 1 is an inverted signal of a write control signal (WC), and the write control signal (WC) is a write enable signal (Write Enable) , Abbreviated as WE) and the corresponding write word line (WWL) signal and gate (AND gate) operation result, at this time only the write enable signal (WE) and the corresponding write word line (WWL) signals are logic high level, the write control signal (WC) is the logic high level; the read control signal (RC) is a read enable signal (Read Enable, RE for short) and the corresponding read Take the result of the AND operation of the word line (RWL) signal. It is worth noting here that for non-selected word lines and non-selected positioning element lines, the floating state is set, and for the non-read mode, the read control signal (RC) is set to the acceleration Read the voltage (RGND) level to prevent the leakage current of the seventh NMOS transistor (M24).

請參考第6圖,該預充電電路(3)係由一第三PMOS電晶體(P31)以及一預充電信號(P)所組成,該第三PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P) 與相對應之讀取用位元線(RBL),以便於預充電期間,藉由邏輯低位準之該預充電信號(P),以將相對應之讀取用位元線(RBL)預充電至該電源供應電壓(VDD)之位準。 Please refer to Fig. 6, the precharge circuit (3) is composed of a third PMOS transistor (P31) and a precharge signal (P), the source and gate of the third PMOS transistor (P31) And the drain are connected to the power supply voltage (V DD ), the precharge signal (P) and the corresponding read bit line (RBL), so that during the precharge period, the logic low level of the Precharge signal (P) to precharge the corresponding read bit line (RBL) to the level of the power supply voltage (V DD ).

請再參考第6圖,該待機啟動電路(4)係由一第四PMOS電晶體(P41)、一第十二NMOS電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成。該第四PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十二NMOS電晶體(M41)之汲極;該第十二NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第四PMOS電晶體(P41)之汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第十二NMOS電晶體(M41)之閘極。 Please refer to FIG. 6 again, the standby start circuit (4) is composed of a fourth PMOS transistor (P41), a twelfth NMOS transistor (M41), a second delay circuit (D2), and the inverting standby Mode control signal (/S). The source, gate and drain of the fourth PMOS transistor (P41) are connected to the power supply voltage (V DD ), the inverse standby mode control signal (/S) and the twelfth NMOS transistor, respectively (M41) drain; the source, gate and drain of the twelfth NMOS transistor (M41) are connected to the output of the first low voltage node (VL1) and the second delay circuit (D2) respectively And the drain of the fourth PMOS transistor (P41); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the output of the second delay circuit (D2) is Connect to the gate of the twelfth NMOS transistor (M41).

請再參考第6圖,該高電壓位準控制電路(5)係由一第五PMOS電晶體(P51)、一第六PMOS電晶體(P52)以及一第四反相器(INV4)所組成,其中該第五PMOS電晶體(P51)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與該高電壓節點(VH),該第六PMOS電晶體(P52)之源極、閘極與汲極係分別連接至一第一高電源供應電壓(VDDH1)、該第四反相器(INV4)之輸出與該高電壓節點(VH),而該第四反相器(INV4)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第六PMOS電晶體(P52)之汲極。在此值得注意的是,該第一反相器係連接在該電源供應電壓(VDD)與該第一低電壓節點(VL1)之間,而該第二反相器則連接在該高電壓節點(VH)與該第二低電壓節點(VL2) 之間。 Please refer to FIG. 6 again, the high voltage level control circuit (5) is composed of a fifth PMOS transistor (P51), a sixth PMOS transistor (P52), and a fourth inverter (INV4) , Wherein the source, gate and drain of the fifth PMOS transistor (P51) are respectively connected to the power supply voltage (V DD ), the read control signal (RC) and the high voltage node (VH), The source, gate and drain of the sixth PMOS transistor (P52) are respectively connected to a first high power supply voltage (V DDH1 ), the output of the fourth inverter (INV4) and the high voltage node (VH), and the input of the fourth inverter (INV4) is for receiving the read control signal (RC), and the output is connected to the drain of the sixth PMOS transistor (P52). It is worth noting here that the first inverter is connected between the power supply voltage (V DD ) and the first low voltage node (VL1), and the second inverter is connected to the high voltage Between the node (VH) and the second low voltage node (VL2).

請再參考第6圖,該寫入用字元線控制電路(6)係由一第七PMOS電晶體(P61)、一第八PMOS電晶體(P62)、一第九PMOS電晶體(P63)、一第十三NMOS電晶體(M61)、一第五反相器(INV5)、一第六反相器(INV6)、一第二高電源供應電壓(VDDH2)、一寫入用字元線(WWL)以及一寫入用字元線控制信號(WWLC)所組成。該第七PMOS電晶體(P61)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第五反相器(INV5)之輸出與該第八PMOS電晶體(P62)之源極;該第八PMOS電晶體(P62)之源極、閘極與汲極係分別連接至該第七PMOS電晶體(P61)之汲極、該第六反相器(INV6)之輸出與該寫入用字元線控制信號(WWLC);該第九PMOS電晶體(P63)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該第五反相器(INV5)之輸出與該寫入用字元線控制信號(WWLC);該第十三NMOS電晶體(M61)之源極、閘極與汲極係分別連接至該寫入用字元線控制信號(WWLC)、該第五反相器(INV5)之輸出與該接地電壓;該第五反相器(INV5)之輸入係供接收該寫入用字元線(WWL),而該第六反相器(INV6)之輸入則與該第五反相器(INV5)之輸出連接。 Please refer to FIG. 6 again, the write word line control circuit (6) is composed of a seventh PMOS transistor (P61), an eighth PMOS transistor (P62), and a ninth PMOS transistor (P63) , A thirteenth NMOS transistor (M61), a fifth inverter (INV5), a sixth inverter (INV6), a second highest power supply voltage (V DDH2 ), a writing character Line (WWL) and a write word line control signal (WWLC). The source, gate and drain of the seventh PMOS transistor (P61) are respectively connected to the second high power supply voltage (V DDH2 ), the output of the fifth inverter (INV5) and the eighth PMOS The source of the transistor (P62); the source, gate and drain of the eighth PMOS transistor (P62) are connected to the drain of the seventh PMOS transistor (P61) and the sixth inverter, respectively (INV6) output and the write word line control signal (WWLC); the source, gate and drain of the ninth PMOS transistor (P63) are connected to the power supply voltage (V DD ), The output of the fifth inverter (INV5) and the write word line control signal (WWLC); the source, gate, and drain of the thirteenth NMOS transistor (M61) are connected to the write Input word line control signal (WWLC), the output of the fifth inverter (INV5) and the ground voltage; the input of the fifth inverter (INV5) is for receiving the write word line (WWL) ), and the input of the sixth inverter (INV6) is connected to the output of the fifth inverter (INV5).

該寫入用字元線控制電路(6)於致能時係採用二階段操作以有效解決10奈米以下SRAM操作電壓降為0.9以下時易造成寫入時間無法滿足規範之問題,於該寫入用字元線(WWL)致能的第一階段,將該寫入用字元線控制信號(WWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),以有效提高寫入速度,而於該第一階段後之 第二階段時,則將該寫入用字元線控制信號(WWLC)拉低回該電源供應電壓(VDD),以減緩寫干擾入;其中,該寫入用字元線控制電路(6)之該第二階段與該第一階段相隔之時間,係等於該第五反相器(INV5)之輸出足以導通該第七PMOS電晶體(P61)之時間起算,並至該第六反相器(INV6)之輸出足以關閉該第八PMOS電晶體(P62)為止之時間,其值可藉由該第六反相器(INV6)之上升延遲時間來調整。 The word line control circuit (6) for writing uses a two-stage operation when it is enabled to effectively solve the problem that the writing time cannot meet the specification when the SRAM operating voltage below 10 nanometers drops below 0.9. In the first phase of enabling word line (WWL) enablement, the write word line control signal (WWLC) is set to the second highest power supply voltage (V DD ) higher than the power supply voltage (V DD ) V DDH2 ) to effectively increase the writing speed, and in the second stage after the first stage, the write word line control signal (WWLC) is pulled back to the power supply voltage (V DD ), In order to slow down the write interference; wherein, the time between the second phase and the first phase of the write word line control circuit (6) is equal to the output of the fifth inverter (INV5) enough to turn on the The time of the seventh PMOS transistor (P61) is calculated, and the time until the output of the sixth inverter (INV6) is sufficient to turn off the eighth PMOS transistor (P62), the value of which can be determined by the sixth inversion (INV6) to adjust the rising delay time.

請再參考第6圖,該讀取用字元線控制電路(7)係由一第十PMOS電晶體(P71)、一第十一PMOS電晶體(P72)、一第十二PMOS電晶體(P73)、一第十四NMOS電晶體(M71)、一第七反相器(INV7)、一第八反相器(INV8)、該第二高電源供應電壓(VDDH2)、一讀取用字元線(RWL)以及一讀取用字元線控制信號(RWLC)所組成。該第十PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第七反相器(INV7)之輸出與該第十一PMOS電晶體(P72)之源極;該第十一PMOS電晶體(P72)之源極、閘極與汲極係分別連接至該該第十PMOS電晶體(P71)之汲極、該第八反相器(INV8)之輸出與該讀取用字元線控制信號(RWLC);第十二PMOS電晶體(P73)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該第七反相器(INV7)之輸出與該讀取用字元線控制信號(RWLC);該第十四NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該讀取用字元線控制信號(RWLC)、該第七反相器(INV7)之輸出與該接地電壓;該第七反相器(INV7)之輸入係供接收該讀取用字元線(RWL),而該第八反相器(INV8)之輸入則與該第七反相器(INV7)之輸出連接。 Please refer to FIG. 6 again, the read word line control circuit (7) is composed of a tenth PMOS transistor (P71), an eleventh PMOS transistor (P72), and a twelfth PMOS transistor ( P73), a fourteenth NMOS transistor (M71), a seventh inverter (INV7), an eighth inverter (INV8), the second highest power supply voltage (V DDH2 ), a reading The word line (RWL) and a read word line control signal (RWLC) are formed. The source, gate and drain of the tenth PMOS transistor (P71) are respectively connected to the second high power supply voltage (V DDH2 ), the output of the seventh inverter (INV7) and the eleventh The source of the PMOS transistor (P72); the source, gate and drain of the eleventh PMOS transistor (P72) are connected to the drain and the eighth of the tenth PMOS transistor (P71), respectively The output of the inverter (INV8) and the read word line control signal (RWLC); the source, gate, and drain of the twelfth PMOS transistor (P73) are connected to the power supply voltage (V DD ), the output of the seventh inverter (INV7) and the read word line control signal (RWLC); the source, gate and drain of the fourteenth NMOS transistor (M71) are connected respectively To the read word line control signal (RWLC), the output of the seventh inverter (INV7) and the ground voltage; the input of the seventh inverter (INV7) is for receiving the read character Line (RWL), and the input of the eighth inverter (INV8) is connected to the output of the seventh inverter (INV7).

該讀取用字元線控制電路(7)於致能時係採用二階段操作,於該讀取用字元線(RWL)致能的第一階段,將該讀取用字元線控制信號(RWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),以有效提高讀取速度,而於該第一階段後之第二階段時,則將該讀取用字元線控制信號(RWLC)拉低回該電源供應電壓(VDD),以減緩讀取擾入;其中,該讀取用字元線控制電路(7)之該第二階段與該第一階段相隔之時間,係等於該第七反相器(INV7)之輸出足以導通該第十PMOS電晶體(P71)之時間起算,並至該第八反相器(INV8)之輸出足以關閉該第十一PMOS電晶體(P72)為止之時間,其值可藉由該第八反相器(INV8)之上升延遲時間來調整。 The read word line control circuit (7) adopts two-stage operation when it is enabled, and in the first stage of the read word line (RWL) enable, the read word line control signal (RWLC) is set to the second highest power supply voltage (V DDH2 ) that is higher than the power supply voltage (V DD ) to effectively increase the reading speed, while in the second stage after the first stage, then The read word line control signal (RWLC) is pulled back to the power supply voltage (V DD ) to slow the read disturbance; wherein, the second of the read word line control circuit (7) The time between the phase and the first phase is equal to the time when the output of the seventh inverter (INV7) is sufficient to turn on the tenth PMOS transistor (P71), and to the eighth inverter (INV8) The output is sufficient to turn off the eleventh PMOS transistor (P72), and its value can be adjusted by the rising delay time of the eighth inverter (INV8).

茲說明第6圖之本發明較佳實施例的工作原理如下: The working principle of the preferred embodiment of the present invention shown in FIG. 6 is as follows:

(I)寫入模式(write mode) (I) write mode

於寫入操作開始前,該寫入控制信號(WC)為邏輯低位準,使得該第十一NMOS電晶體(M28)導通(ON),並使得該第十NMOS電晶體(M27)截止(OFF),由於此時該反相待機模式控制信號(/S)為邏輯高位準,於是該第十一NMOS電晶體(M28)之汲極呈邏輯高位準,該邏輯高位準之該第十一NMOS電晶體(M28)之汲極會導通該第九NMOS電晶體(M26),並使得該低電壓節點(VL1)呈接地電壓。 Before the write operation starts, the write control signal (WC) is at a logic low level, so that the eleventh NMOS transistor (M28) is turned on (ON), and the tenth NMOS transistor (M27) is turned off (OFF) ), because the inverted standby mode control signal (/S) is at a logic high level at this time, the drain of the eleventh NMOS transistor (M28) is at a logic high level, and the eleventh NMOS at the logic high level The drain of the transistor (M28) will turn on the ninth NMOS transistor (M26) and make the low voltage node (VL1) assume a ground voltage.

而於寫入操作期間內,該寫入控制信號(WC)為邏輯高位準,使得該第十NMOS電晶體(M27)導通(ON),並使得該第十一NMOS電晶體(M28)之汲極呈接地電壓(由於此時該待機模式控制信號(S)為接 地電壓),該接地電壓使得該第九NMOS電晶體(M26)截止,並使得該低電壓節點(VL1)等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M26),藉此得以有效防止寫入邏輯1困難之問題。第7圖所示為第6圖之本發明較佳實施例於寫入期間之簡化電路圖。 During the write operation period, the write control signal (WC) is at a logic high level, so that the tenth NMOS transistor (M27) is turned on, and the drain of the eleventh NMOS transistor (M28) is made The pole is at a ground voltage (because the standby mode control signal (S) is a ground voltage at this time), the ground voltage turns off the ninth NMOS transistor (M26) and makes the low voltage node (VL1) equal to the sixth NMOS The gate-source voltage V GS (M26) of the transistor (M23) can effectively prevent the problem of writing logic 1 difficult. FIG. 7 is a simplified circuit diagram of the preferred embodiment of the present invention of FIG. 6 during the writing period.

接下來依4種寫入狀態來說明第7圖之本發明較佳實施例如何完成寫入動作。 Next, according to four writing states, it is explained how the preferred embodiment of the present invention shown in FIG. 7 completes the writing operation.

(一)節點A原本儲存邏輯0,而現在欲寫入邏輯0:在寫入動作發生前(該寫入用字元線控制信號WWLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該寫入用字元線(WWL)由Low(接地電壓)轉High(電源供應電壓VDD)。當該寫入用字元線控制信號(WWLC)的電壓大於該第三NMOS電晶體(M13)(即存取電晶體)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為寫入用位元線(WBL)是接地電壓,所以會將該節點A放電,而完成邏輯0的寫入動作,直到寫入週期結束。 (1) Node A originally stored logic 0, but now wants to write logic 0: before the write operation occurs (the write word line control signal WWLC is the ground voltage), the first NMOS transistor (M11) is Turn on (ON). Since the first NMOS transistor (M11) is ON, when the writing operation starts, the writing word line (WWL) changes from Low (ground voltage) to High (power supply voltage V DD ). When the voltage of the write word line control signal (WWLC) is greater than the threshold voltage of the third NMOS transistor (M13) (ie, access transistor), the third NMOS transistor (M13) is turned off ) Changes to ON. At this time, because the write bit line (WBL) is the ground voltage, the node A is discharged, and the logic 0 write operation is completed until the end of the write cycle.

(二)節點A原本儲存邏輯0,而現在欲寫入邏輯1:在寫入動作發生前(該寫入用字元線控制信號WWLC為接地電壓),該第一NMOS電晶體(M11)為導通(ON)。在此值得注意的是,因為該第一NMOS電晶體(M11)為ON,所以當寫入動作開始時,該寫入用字元線控制信號(WWLC)由Low(接地電壓)轉High,該節點A的電壓 會由於寄生電容耦合效應而跟隨該寫入用字元線控制信號(WWLC)的電壓呈現些微上升。當該寫入用字元線控制信號(WWLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶體(M13)由截止(OFF)轉變為導通(ON),此時因為該寫入用位元線(WBL)為該電源供應電壓(VDDH)之電壓位準,並且因為該第一NMOS電晶體(M11)仍為ON且該節點B仍處於電壓位準為接近於該電源供應電壓(VDD)之電壓位準的初始狀態,所以該第一PMOS電晶體(P11)仍為截止(OFF),而該節點A之寫入初始瞬間電壓(VAWI)滿足方程式(3):VAWI=VDD×(RM11+RM23)/(RM13+RM11+RM23)>VTM12 (3)其中,VAWI表示節點A之寫入初始瞬間電壓,RM13表示該第三NMOS電晶體(M13)之導通電阻,RM11表示該第一NMOS電晶體(M11)之導通電阻,RM23表示該第六NMOS電晶體(M23)之導通電阻,而VDD與VTM12分別表示該電源供應電壓(VDD)與該第二NMOS電晶體(M12)之臨界電壓。由於在該第一低電壓節點(VL1)處提供一等於該第六NMOS電晶體(M23)之閘-源極電壓VGS(M23)之電壓位準,因此可輕易地將節點A之電壓位準設定成比第4圖之習知5T靜態隨機存取記憶體晶胞之該節點A之電壓位準還要高許多。該還要高許多之分壓電壓位準係足以使該第二NMOS電晶體(M12)導通,於是使得節點B放電至一較低電壓位準,該節點B之較低電壓位準會使得該第一NMOS電晶體(M11)之導通等效電阻(RM11)呈現較高的電阻值,該第一NMOS電晶體(M11)之該較高的電阻值會於該節點A獲得較高電壓位準,該節點A之較高電壓位準又會經由該第二反相器(由第二PMOS電晶體P12與第二NMOS電晶體M12所組成),而使得該節點B呈現更低電 壓位準,該節點B之更低電壓位準又會經由該第一反相器(由第一PMOS電晶體P11與第一NMOS電晶體M11所組成),而使得該節點A獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓(VDD),而完成邏輯1的寫入動作。 (2) Node A originally stored logic 0, and now wants to write logic 1: Before the write operation occurs (the write word line control signal WWLC is the ground voltage), the first NMOS transistor (M11) is Turn on (ON). It is worth noting here that because the first NMOS transistor (M11) is ON, when the write operation starts, the write word line control signal (WWLC) changes from Low (ground voltage) to High, the The voltage of the node A will slightly increase following the voltage of the write word line control signal (WWLC) due to the parasitic capacitance coupling effect. When the voltage of the write word line control signal (WWLC) is greater than the threshold voltage of the third NMOS transistor (M13), the third NMOS transistor (M13) changes from OFF to ON At this time, because the write bit line (WBL) is the voltage level of the power supply voltage (V DDH ), and because the first NMOS transistor (M11) is still ON and the node B is still in the voltage position Is the initial state close to the voltage level of the power supply voltage (V DD ), so the first PMOS transistor (P11) is still OFF, and the initial instantaneous voltage of the node A (V AWI ) is written ) Meet equation (3): V AWI = V DD × (R M11 + R M23 )/(R M13 + R M11 + R M23 )>V TM12 (3) where V AWI represents the initial instantaneous voltage of node A during writing , R M13 represents the on-resistance of the third NMOS transistor (M13), R M11 represents the on-resistance of the first NMOS transistor (M11), R M23 represents the on-resistance of the sixth NMOS transistor (M23), and V DD and V TM12 represent the threshold voltage of the power supply voltage (V DD ) and the second NMOS transistor (M12), respectively. Since a voltage level equal to the gate-source voltage V GS (M23) of the sixth NMOS transistor (M23) is provided at the first low voltage node (VL1), the voltage level of node A can be easily adjusted The level is set to be much higher than the voltage level of the node A of the conventional 5T static random access memory cell of FIG. 4. The much higher divided voltage level is sufficient to turn on the second NMOS transistor (M12), so that node B is discharged to a lower voltage level, and the lower voltage level of node B will cause the The on-resistance equivalent (R M11 ) of the first NMOS transistor (M11) exhibits a higher resistance value, and the higher resistance value of the first NMOS transistor (M11) will obtain a higher voltage level at the node A The higher voltage level of the node A will pass through the second inverter (composed of the second PMOS transistor P12 and the second NMOS transistor M12), so that the node B presents a lower voltage level , The lower voltage level of the node B will pass through the first inverter (composed of the first PMOS transistor P11 and the first NMOS transistor M11), so that the node A obtains a higher voltage level, Following this cycle, the node A can be charged to the power supply voltage (V DD ), and the logic 1 write operation is completed.

其中,該第一低電壓節點(VL1)於節點A原本儲存邏輯0,而在寫入邏輯1之期間,係具有等於該第六NMOS電晶體(M23)之閘源極電壓VGS(M23)的電壓位準,而於寫入邏輯1後,又會因經由該第九NMOS電晶體(M26)放電而為接地電壓之位準。 Wherein, the first low voltage node (VL1) originally stores logic 0 at node A, and during the writing of logic 1, it has a gate-source voltage V GS (M23) equal to the sixth NMOS transistor (M23) After writing logic 1, it will be the level of the ground voltage due to the discharge through the ninth NMOS transistor (M26).

在此值得注意的是,本發明係藉由二階段的寫入用字元線控制電路(6)以有效解決10奈米以下SRAM操作電壓降為0.9V以下時易造成寫入時間無法滿足規範之問題,該寫入用字元線控制電路(6)於該寫入用字元線(WWL)致能的第一階段,將該寫入用字元線控制信號(WWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),由於在節點A原本儲存邏輯0而在寫入邏輯1初期,該第三NMOS電晶體(M13)係工作於飽和區,飽和區之電流係與閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓VTM13後之平方成正比例,因此將該寫入用字元線控制信號(WWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2)的該第一階段期間,可有效加速寫入邏輯1之速度;此外,為了減緩寫入期間對於半選定晶胞的干擾現象,於該第一階段後之第二階段期間,則將該寫入用字元線控制信號(WWLC)拉低回該電源供應電壓(VDD)之電壓位準,其中,該寫入用字元線控制電路(6)之該第二階段與該第一階段相隔之時間,係等於該第五反相器(INV5)之輸出足以導通該第七 PMOS電晶體(P61)之時間起算,並至該第六反相器(INV6)之輸出足以關閉該第八PMOS電晶體(P62)為止之時間,其值可藉由該第六反相器(INV6)之上升延遲時間來調整。 It is worth noting here that the present invention uses a two-stage write word line control circuit (6) to effectively solve the problem that the write time cannot meet the specification when the SRAM operating voltage below 10 nanometers drops below 0.9V Problem, the write word line control circuit (6) sets the write word line control signal (WWLC) to be higher than the write word line (WWL) enable in the first stage The second highest power supply voltage (V DDH2 ) whose power supply voltage (V DD ) is still higher, because the logic 0 was originally stored at the node A and at the beginning of the writing of the logic 1, the third NMOS transistor (M13) works at The saturation zone, the current in the saturation zone is proportional to the square of the gate-source voltage V GS (M13) after deducting its critical voltage V TM13 , so the write word line control signal (WWLC) During the first stage of the second highest power supply voltage (V DDH2 ) set higher than the power supply voltage (V DD ), the speed of writing logic 1 can be effectively accelerated; in addition, in order to slow down the writing period The interference phenomenon of the semi-selected cell, during the second stage after the first stage, the write word line control signal (WWLC) is pulled back to the voltage level of the power supply voltage (V DD ), The time period between the second phase and the first phase of the write word line control circuit (6) is equal to the output of the fifth inverter (INV5) enough to turn on the seventh PMOS transistor ( P61) time, and the time until the output of the sixth inverter (INV6) is enough to turn off the eighth PMOS transistor (P62), its value can be increased by the sixth inverter (INV6) Delay time to adjust.

(三)節點A原本儲存邏輯1,而現在欲寫入邏輯1:在寫入動作發生前(該寫入用字元線控制信號WWLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該寫入用字元線控制信號(WWLC)由Low(接地電壓)轉High,由於該節點A為該電源供應電壓(VDD)之電壓位準,且該寫入用位元線(WBL)為該電源供應電壓(VDD)之電壓位準,因此當該第二高電源供應電壓(VDDH2)設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第三NMOS電晶體(M13)臨界電壓之VTM13的總和時,亦即VDD<VDDH2<VDD+VTM13 (4)會使該第三NMOS電晶體(M13)繼續保持截止(OFF)狀態;此時因為該第一PMOS電晶體(P11)仍為ON,所以該節點A的電壓會維持於該電源供應電壓(VDD)之電壓位準,直到寫入週期結束。 (3) Node A originally stored logic 1, and now wants to write logic 1: before the write operation occurs (the write word line control signal WWLC is the ground voltage), the first PMOS transistor (P11) is Turn on (ON). When the write word line control signal (WWLC) changes from Low (ground voltage) to High, because the node A is the voltage level of the power supply voltage (V DD ), and the write bit line (WBL) ) Is the voltage level of the power supply voltage (V DD ), so when the second highest power supply voltage (V DDH2 ) is set to be higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) And the sum of V TM13 of the critical voltage of the third NMOS transistor (M13), that is, V DD <V DDH2 <V DD +V TM13 (4) will cause the third NMOS transistor (M13) to continue to remain off (OFF) state; at this time, because the first PMOS transistor (P11) is still ON, the voltage of the node A will be maintained at the voltage level of the power supply voltage (V DD ) until the end of the write cycle.

(四)節點A原本儲存邏輯1,而現在欲寫入邏輯0:在寫入動作發生前(該寫入用字元線控制信號WWLC為接地電壓),該第一PMOS電晶體(P11)為導通(ON)。當該寫入用字元線控制信號(WWLC)由Low(接地電壓)轉High,且該寫入用字元線控制信號(WWLC)的電壓大於該第三NMOS電晶體(M13)的臨界電壓時,該第三NMOS電晶 體(M13)由截止(OFF)轉變為導通(ON),此時因為該寫入用位元線(WBL)是Low(接地電壓),所以會將該節點A以及該第一低電壓節點(VL1)放電而完成邏輯0的寫入動作,直到寫入週期結束。 (4) Node A originally stored logic 1, but now wants to write logic 0: before the write operation occurs (the write word line control signal WWLC is the ground voltage), the first PMOS transistor (P11) is Turn on (ON). When the write word line control signal (WWLC) changes from Low (ground voltage) to High, and the voltage of the write word line control signal (WWLC) is greater than the threshold voltage of the third NMOS transistor (M13) The third NMOS transistor The body (M13) changes from OFF to ON. At this time, because the write bit line (WBL) is Low (ground voltage), the node A and the first low voltage node ( VL1) discharge and complete the logic 0 write operation until the end of the write cycle.

在此值得注意的是,節點A由邏輯0寫入邏輯1以及由邏輯1寫入邏輯0時,該第三NMOS電晶體(M13)係工作於飽和區,飽和區之電流係與其閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓後之平方成正比例,因此藉由二階段的該寫入用字元線控制電路(6)而於該寫入用字元線(WWL)致能的第一階段,將該寫入用字元線控制信號(WWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),可有效加速節點A由邏輯0寫入邏輯1以及由邏輯1寫入邏輯0之寫入速度。 It is worth noting here that when node A writes logic 1 from logic 0 and logic 1 writes logic 0, the third NMOS transistor (M13) works in the saturation region, and the current in the saturation region is its gate-source The voltage level of the polar voltage V GS (M13) is proportional to the square of the threshold voltage after deducting its critical voltage. Therefore, the writing word line control circuit (6) is applied to the writing word line ( WWL) The first stage of enabling, setting the write word line control signal (WWLC) to the second highest power supply voltage (V DDH2 ) which is higher than the power supply voltage (V DD ), can be effective Accelerate the writing speed of node A from logic 0 to logic 1 and logic 1 to logic 0.

(Ⅱ)讀取模式(read mode) (Ⅱ) Read mode

於讀取操作開始前,該讀取控制信號(RC)及該寫入控制信號(WC)均為邏輯低位準,而該反相待機模式控制信號(/S)及該反相寫入控制信號(/WC)均為邏輯高位準,使得該第十一NMOS電晶體(M28)導通,並使得該第十NMOS電晶體(M27)截止,於是該第十一NMOS電晶體(M28)之汲極呈邏輯高位準,邏輯高位準之該第十一NMOS電晶體(M28)之汲極會導通第九NMOS電晶體(M26),並使得該第一低電壓節點(VL1)呈接地電壓。另一方面,由於該讀取控制信號(RC)為邏輯低位準,使得該第七NMOS電晶體(M24)截止(OFF),並使得該第八NMOS電晶體(M25)導通(ON)。 Before the start of the read operation, the read control signal (RC) and the write control signal (WC) are at logic low levels, and the inverted standby mode control signal (/S) and the inverted write control signal (/WC) are logic high levels, making the eleventh NMOS transistor (M28) on and off the tenth NMOS transistor (M27), so the drain of the eleventh NMOS transistor (M28) At a logic high level, the drain of the eleventh NMOS transistor (M28) at the logic high level turns on the ninth NMOS transistor (M26), and causes the first low voltage node (VL1) to assume a ground voltage. On the other hand, since the read control signal (RC) is at a logic low level, the seventh NMOS transistor (M24) is turned off (OFF), and the eighth NMOS transistor (M25) is turned on (ON).

在此值得注意的是,於讀取操作開始前之預充電期間,該預充電信號(P)係為邏輯低位準,藉此以將相對應之讀取用位元線(RBL)預 充電至該電源供應電壓(VDD)之位準,惟由於例如10奈米以下製程技術之操作電壓將降為0.9伏特以下時將造成讀取速度降低而無法滿足規範之問題,因此,本發明提出二階段的讀取控制以於提高讀取速度並滿足規範的同時,亦避免無謂的功率耗損。 It is worth noting here that during the precharge period before the start of the read operation, the precharge signal (P) is a logic low level, thereby precharging the corresponding read bit line (RBL) to The level of the power supply voltage (V DD ), but because the operating voltage of process technology such as below 10 nanometers will be reduced to below 0.9 volts, the reading speed will be reduced and the specification cannot be met. Therefore, the present invention proposes two The stage of reading control can improve the reading speed and meet the specifications, while avoiding unnecessary power consumption.

第6圖所示之本發明較佳實施例係藉由二階段的讀取控制以於提高讀取速度的同時,亦避免無謂的功率耗損,於讀取操作之第一階段,該讀取控制信號(RC)為邏輯高位準,使得該第七NMOS電晶體(M24)導通,由於此時該第八NMOS電晶體(M25)仍導通,於是該第二低電壓節點(VL2)大約呈較接地電壓為低之該加速讀取電壓(RGND),該較接地電壓為低之該加速讀取電壓(RGND)可有效提高讀取速度。 The preferred embodiment of the present invention shown in FIG. 6 uses two-stage reading control to increase reading speed while avoiding unnecessary power consumption. In the first stage of reading operation, the reading control The signal (RC) is at a logic high level, so that the seventh NMOS transistor (M24) is turned on. Since the eighth NMOS transistor (M25) is still turned on at this time, the second low voltage node (VL2) is approximately grounded The accelerated reading voltage (RGND) whose voltage is low, and the accelerated reading voltage (RGND) whose voltage is lower than the ground voltage can effectively improve the reading speed.

而於讀取操作之第二階段,雖然該讀取控制信號(RC)仍為邏輯高位準,使得該第七NMOS電晶體(M24)仍為導通,惟由於此時該第八NMOS電晶體(M25)截止,於是該第二低電壓節點(VL2)會經由導通的該第四NMOS電晶體(M21)而呈接地電壓(由於讀取操作期間該反相待機模式控制信號(/S)為邏輯高位準),藉此可有效減少無謂的功率消耗。在此值得注意的是,該讀取操作之該第二階段與該第一階段相隔之時間,係等於該讀取控制信號(RC)由邏輯低位準轉變為邏輯高位準起算,並至該第八NMOS電晶體(M25)之閘極電壓足以關閉該第八NMOS電晶體(M25)為止之時間,其值可藉由該第三反相器(INV3)之下降延遲時間與該第一延遲電路(D1)所提供之延遲時間來調整。再者,無論於讀取操作之第一階段抑是第二階段,該第四NMOS電晶體(M21)均呈導通狀態(由於讀取操作期間該反相待機模式控制信號(/S)為邏輯高位準)。第8圖所示為第6圖之本發 明較佳實施例於讀取期間之簡化電路圖。 In the second phase of the read operation, although the read control signal (RC) is still at a logic high level, the seventh NMOS transistor (M24) is still turned on, but due to the eighth NMOS transistor ( M25) is turned off, so that the second low voltage node (VL2) will assume a ground voltage through the turned-on fourth NMOS transistor (M21) (because the inverted standby mode control signal (/S) is logic during the read operation High level), which can effectively reduce unnecessary power consumption. It is worth noting here that the time between the second phase and the first phase of the read operation is equal to the read control signal (RC) changing from a logic low level to a logic high level, and to the first The gate voltage of the eight NMOS transistors (M25) is sufficient to turn off the eighth NMOS transistor (M25). The value can be determined by the falling delay time of the third inverter (INV3) and the first delay circuit (D1) Adjust the delay time provided. Furthermore, regardless of whether the first stage or the second stage of the read operation, the fourth NMOS transistor (M21) is turned on (because the inverted standby mode control signal (/S) is logic during the read operation High level). Figure 8 shows the origin of Figure 6 A simplified circuit diagram of the preferred embodiment during reading is shown.

接下來依2種讀取狀態來說明第8圖之本發明較佳實施例如何藉由控制電路(2)、該高電壓位準控制電路(5)以及讀取用字元線控制電路(7)以於提高讀取速度的同時,亦避免無謂的功率耗損。 Next, according to two reading states, how the preferred embodiment of the present invention shown in FIG. 8 is controlled by the control circuit (2), the high voltage level control circuit (5), and the read word line control circuit (7) ) In order to improve the reading speed, it also avoids unnecessary power consumption.

(一)讀取邏輯1(節點A儲存邏輯1):在讀取動作發生前,該第一NMOS電晶體(M11)為截止(OFF)且該第二NMOS電晶體(M12)為導通(ON),該節點A與該節點B分別為該電源供應電壓(VDD)與接地電壓,而該讀取用位元線(RBL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於節點B為接地電壓,因此該第二讀取用電晶體(M15)截止(OFF),藉此可有效保持該讀取用位元線(RBL)為該電源供應電壓(VDD)直到讀取週期結束而順利完成讀取邏輯1之操作。在此值得注意的是,於讀取操作之該第一階段,該第二低電壓節點(VL2)於讀取邏輯1時之讀取初始瞬間電壓(VRVL2I)必須滿足方程式(5):VRVL2I=RGND×RM21/(RM21+RM24+RM25)>-VTM12 (5)以有效地防止讀取時之半選定晶胞干擾,其中,VRVL2I表示該第二低電壓節點(VL2)於讀取邏輯1時之讀取初始瞬間電壓,RGND表示該加速讀取電壓,RM21表示該第四NMOS電晶體(M21)之導通電阻,RM24表示該第七NMOS電晶體(M24)之導通電阻,RM25表示該第八NMOS電晶體(M25)之導通電阻,而VTM12表示該第二NMOS電晶體(M12)之臨界電壓;而於該讀取操作之該第二階段,該第二低電壓節點(VL2)之電壓(VRVL2)可由方程式(6)表示 VRVL2=接地電壓 (6)藉此,可有效地減少無謂的功率消耗。再者,為了有效降低讀取時之半選定晶胞干擾與有效降低漏電流,必須將較接地電壓為低之該加速讀取電壓(RGND)設定為使該第二低電壓節點(VL2)之電壓位準小於該第二NMOS電晶體(M12)之臨界電壓(VTM12),同時可更嚴謹地將較接地電壓為低之該加速讀取電壓(RGND)之絕對值|RGND|設定為低於該第二NMOS電晶體(M12)之臨界電壓(VTM12),亦即|RGND|<VTM12 (7)其中,|RGND|與VTM12分別表示該加速讀取電壓之絕對值與該第二NMOS電晶體(M12)之臨界電壓。 (1) Read logic 1 (node A stores logic 1): Before the read operation occurs, the first NMOS transistor (M11) is turned off (OFF) and the second NMOS transistor (M12) is turned on (ON ), the node A and the node B are the power supply voltage (V DD ) and the ground voltage, respectively, and the read bit line (RBL) is equal to the power supply voltage due to the precharge circuit (3) ( V DD ). During the reading period, since the node B is the ground voltage, the second reading transistor (M15) is turned off, thereby effectively maintaining the reading bit line (RBL) to the power supply voltage ( V DD ) until the end of the read cycle and successfully complete the operation of reading logic 1. It is worth noting here that in the first stage of the read operation, the initial instantaneous voltage (V RVL2I ) of the second low voltage node (VL2) when reading logic 1 must satisfy equation (5): V RVL2I = RGND × R M21 / (R M21 + R M24 + R M25 )>-V TM12 (5) to effectively prevent the interference of the semi-selected cell during reading, where V RVL2I represents the second low voltage node ( VL2) The initial instantaneous voltage when reading logic 1, RGND represents the accelerated reading voltage, R M21 represents the on-resistance of the fourth NMOS transistor (M21), R M24 represents the seventh NMOS transistor (M24 ), R M25 represents the on-resistance of the eighth NMOS transistor (M25), and V TM12 represents the critical voltage of the second NMOS transistor (M12); and in the second stage of the read operation, The voltage (V RVL2 ) of the second low voltage node (VL2) can be expressed by equation (6) V RVL2 = ground voltage (6), thereby effectively reducing unnecessary power consumption. In addition, in order to effectively reduce the interference of the semi-selected cell during reading and effectively reduce the leakage current, the accelerated reading voltage (RGND) lower than the ground voltage must be set to make the second low voltage node (VL2) The voltage level is lower than the threshold voltage (V TM12 ) of the second NMOS transistor (M12), and the absolute value of the accelerated read voltage (RGND) lower than the ground voltage can be more strictly set | RGND | set to low The threshold voltage (V TM12 ) of the second NMOS transistor (M12), that is, |RGND|<V TM12 (7) where |RGND| and V TM12 represent the absolute value of the accelerated reading voltage and the first The critical voltage of two NMOS transistors (M12).

(二)讀取邏輯0(節點A儲存邏輯0):在讀取動作發生前,該第一NMOS電晶體(M11)為導通(ON)且該第二NMOS電晶體(M12)為截止(OFF),該節點A與該節點B分別為接地電壓與該電源供應電壓(VDD),而該讀取用位元線(RBL)則因該預充電電路(3)而等於該電源供應電壓(VDD)。於讀取期間,由於節點B為該第一高電源供應電壓(VDDH1),且該第二低電壓節點(VL2)呈較接地電壓為低之電壓,本發明將該第一高電源供應電壓(VDDH1)設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即VDD<VDDH1<VDD+|VTP12| (8) (2) Read logic 0 (node A stores logic 0): Before the read action occurs, the first NMOS transistor (M11) is turned on (ON) and the second NMOS transistor (M12) is turned off (OFF ), the node A and the node B are the ground voltage and the power supply voltage (V DD ), respectively, and the read bit line (RBL) is equal to the power supply voltage due to the precharge circuit (3) ( V DD ). During the reading period, since node B is the first high power supply voltage (V DDH1 ) and the second low voltage node (VL2) is lower than the ground voltage, the present invention uses the first high power supply voltage (V DDH1 ) is set to be higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the absolute value of the second PMOS transistor (P12) threshold voltage | V TP12 | That is, V DD <V DDH1 <V DD +|V TP12 | (8)

其中,|VTP12|表示該第二PMOS電晶體(P12)臨界電壓之絕對值,因此,可藉由增加該第二讀取用電晶體(M15)之導通程度,以提高讀取邏 輯0之速度,同時配合較接地電壓為低之該第二低電壓節點(VL2)以進一步提高讀取速度。 Among them, |V TP12 | represents the absolute value of the critical voltage of the second PMOS transistor (P12), therefore, the read logic 0 can be increased by increasing the conduction degree of the second reading transistor (M15) At the same time, the second low voltage node (VL2), which is lower than the ground voltage, is used to further increase the reading speed.

再者,於讀取期間,藉由該讀取用字元線控制電路(7)以於該讀取用字元線(RWL)致能的第一階段,將該讀取用字元線控制信號(RWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),以進一步減少讀取路徑之電阻,並加速該讀取用位元線(RWL)上之電荷的放電從而再進一步提高讀取速度,而於該第一階段後之第二階段時,則將該讀取用字元線控制信號(RWLC)拉低回該電源供應電壓(VDD),以減緩讀取干擾。在此值得注意的是,該第二高電源供應電壓(VDDH2)設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第一讀取用電晶體(M14)臨界電壓之VTM14的總和時,亦即VDD<VDDH2<VDD+VTM14 (9)比較方程式(4)與方程式(9)可知,該第二高電源供應電壓(VDDH2)必須滿足該電源供應電壓(VDD)與該第一讀取用電晶體(M14)臨界電壓之VTM14的總和(VDD+VTM14)以及該電源供應電壓(VDD)與該第三NMOS電晶體(M13)臨界電壓之VTM13的總和(VDD+VTM13)兩者中之較小者。 Furthermore, during the reading period, the read word line control circuit (7) controls the read word line in the first stage enabled by the read word line (RWL) The signal (RWLC) is set to the second highest power supply voltage (V DDH2 ) that is higher than the power supply voltage (V DD ) to further reduce the resistance of the read path and accelerate the read bit line (RWL) ) Discharge of the charge on the) to further increase the reading speed, and in the second stage after the first stage, the read word line control signal (RWLC) is pulled back to the power supply voltage (V DD ) to alleviate read interference. It is worth noting here that the second highest power supply voltage (V DDH2 ) is set higher than the power supply voltage (V DD ) but lower than the power supply voltage (V DD ) and the first reading transistor (M14) The sum of V TM14 of the critical voltage, that is, V DD <V DDH2 <V DD +V TM14 (9) Comparing equation (4) and equation (9), it can be seen that the second highest power supply voltage (V DDH2 ) must satisfy the power supply voltage (V DD) and the first reading electric crystal (M14) V TM14 total sum of the threshold voltage (V DD + V TM14) and the power supply voltage (V DD) and the third The smaller of the sum of V TM13 (V DD +V TM13 ) of the critical voltage of the NMOS transistor (M13).

(III)待機模式(standby mode) (III) Standby mode

首先,說明第6圖之待機啟動電路(4)如何促使雙埠SRAM快速進入待機模式,以有效提高SRAM之待機效能:首先,於進入待機模式之前,該反相待機模式控制信號(/S)為邏輯High,該邏輯High之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)截止(OFF),並使得該第十二 NMOS電晶體(M41)導通(ON);接著於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯Low之反相待機模式控制信號(/S)使得該第四PMOS電晶體(P41)導通(ON),惟於待機模式之初始期間內(該初始期間係等於該反相待機模式控制信號(/S)由邏輯High轉變為邏輯Low起算,至該第十二NMOS電晶體(M41)之閘極電壓足以關閉該第十二NMOS電晶體(M41)為止之時間,其可藉由該第二延遲電路(D2)所提供之一延遲時間來調整),該第十二NMOS電晶體(M41)仍導通(ON),於是可對該第一低電壓節點(VL1)快速充電到達該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,亦即雙埠SRAM可快速進入待機模式。在此值得注意的是,於待機模式之初始期間後,該第十二NMOS電晶體(M41)關閉並停止供應電流。 First, explain how the standby start circuit (4) of Figure 6 prompts the dual-port SRAM to quickly enter the standby mode to effectively improve the standby performance of the SRAM: first, before entering the standby mode, the inverted standby mode control signal (/S) Logic High, the inverse standby mode control signal (/S) of the logic High makes the fourth PMOS transistor (P41) off (OFF), and makes the twelfth NMOS transistor (M41) on (ON); Then after entering the standby mode, the inverted standby mode control signal (/S) is logic Low, and the inverted standby mode control signal (/S) of the logic Low causes the fourth PMOS transistor (P41) to turn on (ON) , But within the initial period of the standby mode (the initial period is equal to the inverse standby mode control signal (/S) from logic High to logic Low, from the gate voltage of the twelfth NMOS transistor (M41) Enough time to turn off the twelfth NMOS transistor (M41), which can be adjusted by a delay time provided by the second delay circuit (D2)), the twelfth NMOS transistor (M41) is still on (ON), the first low voltage node (VL1) can be quickly charged to the voltage level of the critical voltage (V TM23 ) of the sixth NMOS transistor (M23), that is, the dual-port SRAM can quickly enter the standby mode . It is worth noting here that after the initial period of standby mode, the twelfth NMOS transistor (M41) turns off and stops supplying current.

請參考第6圖,於待機模式時,該待機模式控制信號(S)為邏輯高位準,而該反相待機模式控制信號(/S)為邏輯低位準,該邏輯低位準之該反相待機模式控制信號(/S)可使得該控制電路(2)中之該第四NMOS電晶體(M21)截止(OFF),而該邏輯高位準之該待機模式控制信號(S)則使得該第五NMOS電晶體(M22)導通(ON),此時該第五NMOS電晶體(M22)係作為等化器(equalizer)使用,因此可藉由呈導通狀態之該第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,且該等電壓位準均會等於該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準。第9圖所示為第6圖之本發明較佳實施例於待機期間之簡化電路圖。 Please refer to FIG. 6, in the standby mode, the standby mode control signal (S) is at a logic high level, and the inverted standby mode control signal (/S) is at a logic low level, and the inverted standby of the logic low level The mode control signal (/S) makes the fourth NMOS transistor (M21) in the control circuit (2) OFF, and the standby mode control signal (S) of the logic high level makes the fifth The NMOS transistor (M22) is turned on. At this time, the fifth NMOS transistor (M22) is used as an equalizer. Therefore, the fifth NMOS transistor (M22) in the on state can be used. So that the voltage level of the first low voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels will be equal to the sixth NMOS transistor (M23) The voltage level of the critical voltage (V TM23 ). FIG. 9 is a simplified circuit diagram of the preferred embodiment of the present invention shown in FIG. 6 during standby.

接下來說明本發明於待機模式(standby mode)時如何減少 漏電流,請參考第9圖,第9圖描述有本發明實施例處於待機模式時所產生之各漏電流(subthreshold leakage current)I1、I2、I3、I4,其中假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low(在此值得注意的是,由於待機模式時該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準均維持在該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準,因此節點A為邏輯Low之電壓位準亦維持在該VTM23的電壓位準),而該第二反相器之輸出(即節點B)為邏輯High(電源供應電壓VDD)。請參考第5圖之傳統8T雙埠SRAM與第9圖之本發明實施例,來說明本發明所提出之雙埠靜態隨機存取記憶體與第5圖之傳統8T雙埠SRAM於漏電流方面之比較,首先關於流經該第三NMOS電晶體(M13)之漏電流I1,由於本發明於待機模式時節點A之電壓位準係維持在該VTM23的電壓位準,且假設該寫入用字元線(WWL)於待機模式時係設定成接地電壓,而該寫入用位元線(WBL)於待機模式時則設定為該電源供應電壓(VDD),因此本發明之第三NMOS電晶體(M13)的閘源極電壓(VGS)為負值,反觀於待機模式時第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)的閘源極電壓(VGS)等於0,根據閘極引發汲極洩漏(Gate Induced Drain Leakage,簡稱GIDL)效應或2005年3月8日第US6865119號專利案第3(A)及3(B)圖之結果可知,對於NMOS電晶體而言,閘源極電壓為-0.1伏特時之次臨界電流約為閘源極電壓為0伏特時之次臨界電流的1%,因此導因於GIDL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)者;再者,本發明該第三NMOS電晶體(M13)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23 的電壓位準,反觀於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)之汲源極電壓(VDS)係等於該電源供應電壓(VDD),根據汲極引發能障下跌(Drain-Induced Barrier Lowering,簡稱DIBL)效應,由於DIBL效應所引發之流經本發明之該第三NMOS電晶體(M13)之漏電流I1亦小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)者;結果,流經本發明之該第三NMOS電晶體(M13)之漏電流I1遠小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M3)者。 Next, how to reduce the leakage current in the standby mode of the present invention is described. Please refer to FIG. 9, which describes the leakage currents I 1 generated by the embodiment of the present invention when in the standby mode. , I 2 , I 3 , I 4 , where it is assumed that the output of the first inverter in the SRAM cell (ie, node A) is logic Low (it is worth noting here that the first low voltage is in standby mode The voltage levels of the node (VL1) and the second low voltage node (VL2) are maintained at the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23), so the node A is a logic low voltage The level is also maintained at the voltage level of the V TM23 ), and the output of the second inverter (ie, node B) is logic High (power supply voltage V DD ). Please refer to the conventional 8T dual-port SRAM in FIG. 5 and the embodiment of the present invention in FIG. 9 to illustrate the leakage current of the dual-port static random access memory proposed in the present invention and the conventional 8T dual-port SRAM in FIG. 5 For comparison, first, regarding the leakage current I 1 flowing through the third NMOS transistor (M13), since the voltage level of the node A is maintained at the voltage level of the V TM23 when the invention is in the standby mode, and it is assumed that the write The input word line (WWL) is set to the ground voltage when in standby mode, and the write bit line (WBL) is set to the power supply voltage (V DD ) when in standby mode, so the first three NMOS transistor (M13) the gate-source voltage (V GS) is negative, on the other hand, when a conventional stand-by mode of FIG. 5 8T two-port SRAM of the NMOS transistor (M3) of the gate-source voltage (V GS) Equal to 0, according to the results of Gate Induced Drain Leakage (GIDL) or the results of Figures 3(A) and 3(B) of the US Patent No. US6865119 of March 8, 2005, for NMOS For crystals, the sub-critical current when the gate-source voltage is -0.1 volts is about 1% of the sub-critical current when the gate-source voltage is 0 volts. Therefore, the flow caused by the GIDL effect through the first The leakage current I 1 of the three NMOS transistors (M13) is much smaller than that of the conventional 8T dual-port SRAM NMOS transistor (M3) of FIG. 5; furthermore, the drain source of the third NMOS transistor (M13) of the present invention The voltage (V DS ) is the power supply voltage (V DD ) minus the voltage level of the V TM23 . In contrast to the drain source voltage (V DS of the NMOS transistor (M3) of the traditional 8T dual-port SRAM in Figure 5 ) Is equal to the power supply voltage (V DD ), according to the Drain-Induced Barrier Lowering (DIBL) effect, which is caused by the DIBL effect and flows through the third NMOS transistor (M13) of the present invention The leakage current I 1 is also smaller than the NMOS transistor (M3) of the conventional 8T dual-port SRAM of FIG. 5; as a result, the leakage current I 1 flowing through the third NMOS transistor (M13) of the present invention is much smaller than that of FIG. 5. NMOS transistor (M3) of traditional 8T dual-port SRAM.

接著關於流經該第一PMOS電晶體(P11)之漏電流I2,由於待機模式時該第一PMOS電晶體(P11)之源極係為該電源供應電壓(VDD),而該第一PMOS電晶體(P11)之汲極係維持在該VTM23的電壓位準,因此本發明之該第一PMOS電晶體(P11)之源汲極電壓(VSD)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於第5圖之傳統8T雙埠SRAM之PMOS電晶體(P1)之源汲極電壓(VSD)係等於該電源供應電壓(VDD),根據DIBL效應,因此流經本發明之該第一PMOS電晶體(P11)之漏電流I2會小於第1b圖先前技藝之PMOS電晶體(P1)者。 Next, regarding the leakage current I 2 flowing through the first PMOS transistor (P11), since the source of the first PMOS transistor (P11) is the power supply voltage (V DD ) in the standby mode, and the first The drain of the PMOS transistor (P11) is maintained at the voltage level of the V TM23 , so the source drain voltage (V SD ) of the first PMOS transistor (P11) of the present invention is the power supply voltage (V DD ) The voltage level of the V TM23 is deducted. In contrast, the source-drain voltage (V SD ) of the PMOS transistor (P1) of the traditional 8T dual-port SRAM in Figure 5 is equal to the power supply voltage (V DD ), according to Due to the DIBL effect, the leakage current I 2 flowing through the first PMOS transistor (P11) of the present invention will be smaller than that of the PMOS transistor (P1) of the prior art shown in FIG. 1b.

然後,關於流經該第二NMOS電晶體(M12)之漏電流I3,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該VTM23的電壓位準,節點A之電壓位準亦維持在該VTM23的電壓位準,而節點B之電壓位準係等於該電源供應電壓(VDD)且該第二NMOS電晶體(M12)之基底為接地電壓,因此本發明之該第二NMOS電晶體(M12)的基源極電壓(VBS)為負值,且該第二NMOS電晶體(M12)之汲源極電壓(VDS)為該電源供應電壓(VDD)扣減該VTM23的電壓位準,反觀於第5圖之傳統8T雙埠SRAM 之NMOS電晶體(M2)的基源極電壓(VBS)等於0,且NMOS電晶體(M2)之汲源極電壓(VDS)等於該電源供應電壓(VDD),根據本體效應(body effect)及DIBL效應可知,流經本發明之該第二NMOS電晶體(M12)之漏電流I3遠小於第5圖之傳統8T雙埠SRAM之NMOS電晶體(M2)者。 Then, regarding the leakage current I 3 flowing through the second NMOS transistor (M12), since the voltage level of the second low voltage node (VL2) in the standby mode is maintained at the voltage level of the V TM23 , node A The voltage level of the V TM23 is also maintained, and the voltage level of the node B is equal to the power supply voltage (V DD ) and the base of the second NMOS transistor (M12) is the ground voltage. The base-source voltage (V BS ) of the second NMOS transistor (M12) invented is a negative value, and the drain-source voltage (V DS ) of the second NMOS transistor (M12) is the power supply voltage (V DD ) deduct the voltage level of the V TM23 , in contrast to the base-source voltage (V BS ) of the NMOS transistor (M2) of the conventional 8T dual-port SRAM in Figure 5 is equal to 0, and the NMOS transistor (M2) The drain source voltage (V DS ) is equal to the power supply voltage (V DD ). According to the body effect and the DIBL effect, the leakage current I 3 flowing through the second NMOS transistor (M12) of the present invention is much smaller than Figure 5 is the NMOS transistor (M2) of the traditional 8T dual-port SRAM.

最後,關於流經該第一讀取用電晶體(M14)之漏電流I4,由於本發明與第5圖之傳統8T雙埠SRAM之讀取方式不同,且本發明待機模式下之讀取用位元線(RBL)可設定成接地電壓,而第5圖之傳統8T雙埠SRAM為了防止節點B之電壓位準下降,待機模式下之讀取用位元線對(RBL、RBLB)係設定成電源供應電壓,因此無從比較流經該第一讀取用電晶體(M14)之漏電流I4。綜合以上分析可知,本發明所提出之雙埠靜態隨機存取記憶體與第5圖之傳統8T雙埠SRAM相較具有較低之漏電流。 Finally, regarding the leakage current I 4 flowing through the first reading transistor (M14), since the present invention is different from the reading method of the conventional 8T dual-port SRAM of FIG. 5, and the reading in the standby mode of the present invention The bit line (RBL) can be set to ground voltage, and in order to prevent the voltage level of node B from decreasing in the conventional 8T dual-port SRAM of Figure 5, the bit line pair (RBL, RBLB) for reading in standby mode It is set to the power supply voltage, so there is no comparison of the leakage current I 4 flowing through the first reading transistor (M14). Based on the above analysis, it can be seen that the dual-port static random access memory proposed by the present invention has a lower leakage current than the conventional 8T dual-port SRAM of FIG. 5.

(IV)保持模式(retention mode) (IV) Retention mode

保持模式時,由於該第一低電壓節點(VL1)與該第二低電壓節點(VL2)均設定成接地電壓,其工作原理相同於傳統具單一位元線之雙埠SRAM晶胞,於此不再累述。 In the hold mode, since the first low-voltage node (VL1) and the second low-voltage node (VL2) are set to the ground voltage, the working principle is the same as the traditional dual-port SRAM cell with a single bit line. No more tired.

【發明功效】 【Invention Effect】

本發明所提出之7T雙埠靜態隨機存取記憶體,具有如下功效: The 7T dual-port static random access memory proposed by the present invention has the following effects:

(1)高寫入速度:由於由邏輯0寫入邏輯1以及由邏輯1寫入邏輯0時,存取電晶體(即第三NMOS電晶體M13)係工作於飽和區,飽和區之電流係與其閘-源極電壓VGS(M13)之電壓位準扣減其臨界電壓後之平方成正比例,因此藉由二階段的該寫入用字元線控制電路(6)而於該寫入用字元線(WWL)致能的第一階段,將該寫入用字元線控制信號(WWLC) 設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),可有效加速由邏輯0寫入邏輯1以及由邏輯1寫入邏輯0之寫入速度; (1) High writing speed: when writing logic 1 from logic 0 and logic 0 from logic 1, the access transistor (ie, the third NMOS transistor M13) works in the saturation region, and the current in the saturation region is It is proportional to the square of its gate-source voltage V GS(M13) after deducting its critical voltage, so it is used for writing by the two-stage writing word line control circuit (6) In the first phase of enabling the word line (WWL), the write word line control signal (WWLC) is set to the second highest power supply voltage (V DDH2 ) that is higher than the power supply voltage (V DD ) ), can effectively speed up the writing speed from logic 0 to logic 1 and from logic 1 to logic 0;

(2)高讀取速度並避免無謂的功率消耗:藉由該複數個控制電路(2)、該複數個高電壓位準控制電路(5)以及該複數個讀取用字元線控制電路(7)的創新組合以於提高讀取速度的同時,亦避免無謂的功率耗損;其中,該複數個控制電路(2)於讀取邏輯0之第一階段,將該第二低電壓節點(VL2)設定成較接地電壓為低之電壓,該複數個高電壓位準控制電路(5)於讀取邏輯0時,將該節點B設定成較該電源供應電壓(VDD)還高之該第一高電源供應電壓(VDDH1),而該讀取用字元線控制電路(7)於讀取邏輯0之第一階段,將該讀取用字元線控制信號(RWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2)。 (2) High reading speed and avoid unnecessary power consumption: by the plural control circuits (2), the plural high voltage level control circuits (5) and the plural reading word line control circuits ( 7) An innovative combination to improve reading speed while avoiding unnecessary power consumption; wherein, the plurality of control circuits (2) at the first stage of reading logic 0, the second low voltage node (VL2 ) Is set to a voltage lower than the ground voltage, the plurality of high-voltage level control circuits (5), when reading logic 0, sets the node B to the first higher than the power supply voltage (V DD ) A high power supply voltage (V DDH1 ), and the read word line control circuit (7) sets the read word line control signal (RWLC) to be higher than the The power supply voltage (V DD ) is still the second highest power supply voltage (V DDH2 ).

(3)快速進入待機模式:由於本發明所提出之7T雙埠靜態隨機存取記憶體設置有待機啟動電路(4)以促使SRAM快速進入待機模式,並藉此以謀求提高7T雙埠SRAM之待機效能; (3) Quickly enter the standby mode: The 7T dual-port static random access memory proposed by the present invention is provided with a standby start circuit (4) to prompt the SRAM to quickly enter the standby mode, and thereby to improve the 7T dual-port SRAM Standby performance

(4)提高寫入邏輯1之速度,並避免寫入邏輯1困難之問題:本發明於寫入操作時,可藉由該複數個控制電路(2)以及該複數個寫入用字元線控制電路(6)以有效防止寫入邏輯1困難之同時,亦提高寫入邏輯1之速度; (4) Increase the speed of writing logic 1 and avoid the problem of writing logic 1 difficult: the present invention can use the plural control circuits (2) and the plural writing word lines during writing operation The control circuit (6) effectively prevents the difficulty of writing logic 1 and also increases the speed of writing logic 1;

(5)低待機電流:由於本發明所提出之7T雙埠靜態隨機存取記憶體於待機模式時,可藉由呈導通狀態之該第五NMOS電晶體(M22),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,並使得該等電壓位準均等於該第六NMOS電晶體(M23)之臨界電壓的位準,因此本發明所提出之雙埠靜態隨機存取記憶體亦具備低待機電流之功效; (5) Low standby current: Since the 7T dual-port static random access memory proposed by the present invention is in standby mode, the fifth NMOS transistor (M22) in the on state can be used to make the first low The voltage level of the voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels are equal to the level of the critical voltage of the sixth NMOS transistor (M23), Therefore, the dual-port static random access memory proposed by the present invention also has the effect of low standby current;

(6)有效降低半選定晶胞干擾:本發明所提出之7T雙埠靜態隨機存取記憶體由於使用分離的讀/寫路徑,且該讀取路徑係設計成將該第一和第二讀取用電晶體(M14和M15)串聯連接在該讀取用位元線(RBL)與該第二低電壓節點(VL2)之間,並將該反相儲存節點(B)連接至該第 二讀取用電晶體(M15)的閘極,因此可有效降低半選定晶胞干擾(half-selected cell disturbance),其中該半選定晶胞係指被該讀取用字元線(RWL)選定但未被該讀取用位元線(RBL)選定之記憶體晶胞。 (6) Effectively reduce the interference of the semi-selected cell: The 7T dual-port static random access memory proposed by the present invention uses a separate read/write path, and the read path is designed to read the first and second reads The fetch transistors (M14 and M15) are connected in series between the read bit line (RBL) and the second low voltage node (VL2), and the inverting storage node (B) is connected to the first The gate of the second reading transistor (M15) can effectively reduce half-selected cell disturbance, where the half-selected cell refers to being selected by the read word line (RWL) But the memory cell not selected by the read bit line (RBL).

(7)低電晶體數:對於具有1024列1024行之SRAM陣列而言,傳統第5圖之8T雙埠SRAM陣列共需1024×1024×8=8,388,608顆電晶體,而本發明所提出之7T雙埠靜態隨機存取記憶體僅需1024×1024×7+1024×36+6=7,376,902顆電晶體,其減少12.1%之電晶體數。 (7) Low number of transistors: For SRAM arrays with 1024 columns and 1024 rows, the traditional 8T dual-port SRAM array in Figure 5 requires a total of 1024×1024×8=8,388,608 transistors, and the 7T proposed by the present invention The dual-port static random access memory only requires 1024×1024×7+1024×36+6=7,376,902 transistors, which reduces the number of transistors by 12.1%.

雖然本發明特別揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本發明的精神與範圍。因此,所有相關技術範疇內之改變都包括在本發明之申請專利範圍內。 Although the present invention specifically discloses and describes selected preferred embodiments, those skilled in the art may understand that any possible changes in form or detail do not depart from the spirit and scope of the present invention. Therefore, all changes within the relevant technical category are included in the patent application scope of the present invention.

1‧‧‧SRAM晶胞 1‧‧‧SRAM cell

2‧‧‧控制電路 2‧‧‧Control circuit

3‧‧‧預充電電路 3‧‧‧Precharge circuit

4‧‧‧待機啟動電路 4‧‧‧ Standby start circuit

5‧‧‧高電壓位準控制電路 5‧‧‧High voltage level control circuit

6‧‧‧寫入用字元線控制電路 6‧‧‧ Writing word line control circuit

7‧‧‧讀取用字元線控制電路 7‧‧‧Character line control circuit for reading

/WC‧‧‧反相寫入控制信號 /WC‧‧‧Inverse write control signal

WC‧‧‧寫入控制信號 WC‧‧‧Write control signal

P11‧‧‧第一PMOS電晶體 P11‧‧‧The first PMOS transistor

P12‧‧‧第二PMOS電晶體 P12‧‧‧ Second PMOS transistor

M11‧‧‧第一NMOS電晶體 M11‧‧‧First NMOS transistor

M12‧‧‧第二NMOS電晶體 M12‧‧‧Second NMOS transistor

M13‧‧‧第三NMOS電晶體 M13‧‧‧ Third NMOS transistor

A‧‧‧儲存節點 A‧‧‧storage node

B‧‧‧反相儲存節點 B‧‧‧Inverted storage node

C‧‧‧節點 C‧‧‧Node

M14‧‧‧第一讀取用電晶體 M14‧‧‧ First reading transistor

M15‧‧‧第二讀取用電晶體 M15‧‧‧ Second reading transistor

WBL‧‧‧寫入用位元線 WBL‧‧‧Bit line for writing

WWL‧‧‧寫入用字元線 WWL‧‧‧Character line for writing

RBL‧‧‧讀取用位元線 RBL‧‧‧bit line for reading

RWL‧‧‧讀取用字元線 RWL‧‧‧Character line for reading

WWLC‧‧‧寫入用字元線控制信號 WWLC‧‧‧Character line control signal for writing

RWLC‧‧‧讀取用字元線控制信號 RWLC‧‧‧Character line control signal for reading

S‧‧‧待機模式控制信號 S‧‧‧Standby mode control signal

/S‧‧‧反相待機模式控制信號 /S‧‧‧Inverted standby mode control signal

VL1‧‧‧第一低電壓節點 VL1‧‧‧The first low voltage node

VL2‧‧‧第二低電壓節點 VL2‧‧‧second low voltage node

M21‧‧‧第四NMOS電晶體 M21‧‧‧ Fourth NMOS transistor

M22‧‧‧第五NMOS電晶體 M22‧‧‧Fifth NMOS transistor

M23‧‧‧第六NMOS電晶體 M23‧‧‧Sixth NMOS transistor

M24‧‧‧第七NMOS電晶體 M24‧‧‧NMOS transistor

M25‧‧‧第八NMOS電晶體 M25‧‧‧Eighth NMOS transistor

M26‧‧‧第九NMOS電晶體 M26‧‧‧Ninth NMOS transistor

M27‧‧‧第十NMOS電晶體 M27‧‧‧Tenth NMOS transistor

M28‧‧‧第十一NMOS電晶體 M28‧‧‧Eleventh NMOS transistor

RC‧‧‧讀取控制信號 RC‧‧‧Read control signal

RGND‧‧‧加速讀取電壓 RGND‧‧‧Accelerated reading voltage

INV3‧‧‧第三反相器 INV3‧‧‧third inverter

D1‧‧‧第一延遲電路 D1‧‧‧ First delay circuit

P31‧‧‧第三PMOS電晶體 P31‧‧‧The third PMOS transistor

P‧‧‧預充電信號 P‧‧‧Precharge signal

M41‧‧‧第十二NMOS電晶體 M41‧‧‧Twelfth NMOS transistor

P41‧‧‧第四PMOS電晶體 P41‧‧‧ Fourth PMOS transistor

D2‧‧‧第二延遲電路 D2‧‧‧second delay circuit

VDD‧‧‧電源供應電壓 V DD ‧‧‧ Power supply voltage

VDDH1‧‧‧第一高電源供應電壓 V DDH1 ‧‧‧The highest power supply voltage

VDDH2‧‧‧第二高電源供應電壓 V DDH2 ‧‧‧The second highest power supply voltage

P51‧‧‧第五PMOS電晶體 P51‧‧‧ fifth PMOS transistor

P52‧‧‧第六PMOS電晶體 P52‧‧‧The sixth PMOS transistor

INV4‧‧‧第四反相器 INV4‧‧‧ fourth inverter

VH‧‧‧高電壓節點 VH‧‧‧High voltage node

P61‧‧‧第七PMOS電晶體 P61‧‧‧The seventh PMOS transistor

P62‧‧‧第八PMOS電晶體 P62‧‧‧Eighth PMOS transistor

P63‧‧‧第九PMOS電晶體 P63‧‧‧Ninth PMOS transistor

M61‧‧‧第十三NMOS電晶體 M61‧‧‧Thirteenth NMOS transistor

INV5‧‧‧第五反相器 INV5‧‧‧fifth inverter

INV6‧‧‧第六反相器 INV6‧‧‧ sixth inverter

P71‧‧‧第十PMOS電晶體 P71‧‧‧Tenth PMOS transistor

P72‧‧‧第十一PMOS電晶體 P72‧‧‧Eleventh PMOS transistor

P73‧‧‧第十二PMOS電晶體 P73‧‧‧12th PMOS transistor

M71‧‧‧第十四NMOS電晶體 M71‧‧‧14th NMOS transistor

INV7‧‧‧第七反相器 INV7‧‧‧ seventh inverter

INV8‧‧‧第八反相器 INV8‧‧‧ Eighth inverter

Claims (10)

一種7T雙埠靜態隨機存取記憶體,包括:一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包含有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶體晶胞設置一個控制電路(2);複數個預充電電路(3),每一行記憶體晶胞設置一個預充電電路(3);一待機啟動電路(4),該待機啟動電路(4)係促使該7T雙埠靜態隨機存取記憶體快速進入待機模式,以有效提高該7T雙埠靜態隨機存取記憶體之待機效能;以及複數個寫入用字元線控制電路(6),每一列記憶體晶胞設置一個寫入用字元線控制電路(6),以於寫入模式有效提高由邏輯0寫入邏輯1以及由邏輯1寫入邏輯0之寫入速度;其中,每一記憶體晶胞(1)更包含:一第一反相器,係由一第一PMOS電晶體(P11)與一第一NMOS電晶體(M11)所組成,該第一反相器係連接在一電源供應電壓(VDD)與一第一低電壓節點(VL1)之間;一第二反相器,係由一第二PMOS電晶體(P12)與一第二NMOS電晶體(M12)所組成,該第二反相器係連接在一高電壓節點(VH)與一第二低電壓節點(VL2)之間;一儲存節點(A),係由該第一反相器之輸出端所形成;一反相儲存節點(B),係由該第二反相器之輸出端所形成;一第三NMOS電晶體(M13),係連接在該儲存節點(A)與一寫入用位元線(WBL)之間,且閘極連接至一寫入用字元線控制信號(WWLC);一第一讀取用電晶體(M14),該第一讀取用電晶體(M14)之源極、閘極與汲極係分別連接至一第二讀取用電晶體(M15)之汲極、一讀取用字元線控制信號(RWLC)與一讀取用位元線(RBL);以及該第二讀取用電晶體(M15),該第二讀取用電晶體(M15)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、該反相儲存節點(B)與該第一讀取用電晶體(M14)之源極; 其中,該第一反相器和該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出端(即該儲存節點A)係連接至該第二反相器之輸入端,而該第二反相器之輸出端(即該反相儲存節點B)則連接至該第一反相器之輸入端;而每一控制電路(2)更包含:一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體(M28)、一讀取控制信號(RC)、一第三反相器(INV3)、一第一延遲電路(D1)、一加速讀取電壓(RGND)、一反相寫入控制信號(/WC)、一寫入控制信號(WC)、一待機模式控制信號(S)以及一反相待機模式控制信號(/S);其中,該第四NMOS電晶體(M21)之源極、閘極與汲極係分別連接至一接地電壓、該反相待機模式控制信號(/S)與該第二低電壓節點(VL2);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該待機模式控制信號(S)與該第二低電壓節點(VL2);該第六NMOS電晶體(M23)之源極係連接至該接地電壓,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極、閘極與汲極係分別連接至該第八NMOS電晶體(M25)之汲極、該讀取控制信號(RC)與該第二低電壓節點(VL2);該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該加速讀取電壓(RGND)、該第一延遲電路(D1)之輸出與該第七NMOS電晶體(M24)之源極;該第一延遲電路(D1)係連接在該第三反相器(INV3)之輸出與該第八NMOS電晶體(M25)之該閘極之間;該第三反相器(INV3)之輸入係供接收該讀取控制信號(RC),而輸出則連接至該第一延遲電路(D1)之輸入;該第九NMOS電晶體(M26)之源極、閘極與汲極係分別連接至該接地 電壓、該第十NMOS電晶體(M27)之汲極與該第一低電壓節點(VL1);該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至該待機模式控制信號(S)、該寫入控制信號(WC)與該第九NMOS電晶體(M26)之閘極;該第十一NMOS電晶體(M28)之源極、閘極與汲極係分別連接至該反相待機模式控制信號(/S)、該反相寫入控制信號(/WC)與該第九NMOS電晶體(M26)之閘極;其中,該第十一NMOS電晶體(M28)之汲極、該第十NMOS電晶體(M27)之汲極及該第九NMOS電晶體(M26)之閘極係連接在一起並形成一節點(C),當該寫入控制信號(WC)為邏輯高位準時,該節點(C)之電壓位準係為該待機模式控制信號(S),而當該寫入控制信號(WC)為邏輯低位準時,該節點(C)之電壓位準係為該反相待機模式控制信號(/S)之邏輯位準;由於該節點(C)之邏輯高位準係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之臨界電壓(VTM28)的電壓位準,因此當該7T雙埠靜態隨機存取記憶體於非寫入模式(此時對應之該反相寫入控制信號(/WC)為邏輯高位準)時,該節點(C)係為該電源供應電壓(VDD)扣減該第十一NMOS電晶體(M28)之該臨界電壓(VTM28)的電壓位準,而非該電源供應電壓(VDD)之電壓位準,故可具有較低之功率消耗;且於後續進入寫入模式(此時對應之該寫入控制信號(WC)為邏輯高位準)時,由於可快速地將儲存於該節點(C)之電荷經由該第十NMOS電晶體(M27)放電至足以關閉以該節點(C)作為閘極之該第九NMOS電晶體(M26),故可較快速地進入該寫入模式;其中,對於非讀取模式期間之該讀取控制信號(RC)係設定為該加速讀取電壓(RGND)之位準,以防止該第七NMOS電晶體(M24)於非讀取模式期間之漏電流;再者,該待機啟動電路(4)係設計成於進入待機模式之一初始期間內,對該第一低電壓節點(VL1)處之寄生電容快速充電至該第六NMOS電晶體(M23)之臨界電壓(VTM23)的電壓位準;最後,每一寫入用字元線控制電路(6)係由一第七PMOS電晶體(P61)、一第八PMOS電晶體(P62)、一第九PMOS電晶體(P63)、一第十三 NMOS電晶體(M61)、一第五反相器(INV5)、一第六反相器(INV6)、一第二高電源供應電壓(VDDH2)、一寫入用字元線(WWL)以及該寫入用字元線控制信號(WWLC)所組成;其中該第七PMOS電晶體(P61)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第五反相器(INV5)之輸出與該第八PMOS電晶體(P62)之源極;該第八PMOS電晶體(P62)之源極、閘極與汲極係分別連接至該第七PMOS電晶體(P61)之汲極、該第六反相器(INV6)之輸出與該寫入用字元線控制信號(WWLC);該第九PMOS電晶體(P63)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該第五反相器(INV5)之輸出與該寫入用字元線控制信號(WWLC);該第十三NMOS電晶體(M61)之源極、閘極與汲極係分別連接至該寫入用字元線控制信號(WWLC)、該第五反相器(INV5)之輸出與該接地電壓;該第五反相器(INV5)之輸入係供接收該寫入用字元線(WWL),而該第六反相器(INV6)之輸入則與該第五反相器(INV5)之輸出連接。 A 7T dual-port static random access memory includes: a memory array composed of a plurality of rows of memory cells and a plurality of rows of memory cells, each row of memory cells and each row of memory The body cell includes a plurality of memory cells (1); a plurality of control circuits (2), each column of memory cells is provided with a control circuit (2); a plurality of precharge circuits (3), each row of memory The body cell is provided with a pre-charging circuit (3); a standby start circuit (4), which causes the 7T dual-port static random access memory to quickly enter standby mode to effectively improve the 7T dual Standby performance of port static random access memory; and a plurality of writing word line control circuits (6), each row of memory cells is provided with a writing word line control circuit (6) for writing The mode effectively improves the writing speed of writing logic 1 from logic 0 and writing logic 0 from logic 1; each memory cell (1) further includes: a first inverter, which is composed of a first PMOS Transistor (P11) and a first NMOS transistor (M11), the first inverter is connected between a power supply voltage (V DD ) and a first low voltage node (VL1); a first The two inverters are composed of a second PMOS transistor (P12) and a second NMOS transistor (M12). The second inverter is connected to a high voltage node (VH) and a second low voltage Between the voltage nodes (VL2); a storage node (A) is formed by the output of the first inverter; an inverting storage node (B) is formed by the output of the second inverter A third NMOS transistor (M13) is connected between the storage node (A) and a write bit line (WBL), and the gate is connected to a write word line control signal ( WWLC); a first reading transistor (M14), the source, gate and drain of the first reading transistor (M14) are respectively connected to a second reading transistor (M15) Drain, a read word line control signal (RWLC) and a read bit line (RBL); and the second read transistor (M15), the second read transistor ( M15) the source, gate and drain are connected to the second low voltage node (VL2), the inverting storage node (B) and the source of the first read transistor (M14) respectively; , The first inverter and the second inverter are coupled alternately, that is, the output terminal of the first inverter (that is, the storage node A) is connected to the input terminal of the second inverter , And the output terminal of the second inverter (that is, the inverted storage node B) is connected to the input terminal of the first inverter; and each control circuit (2) further includes: a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), a seventh NMOS transistor (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), one Tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), a read control signal (RC), a third inverter (INV3), a first delay circuit (D1), an acceleration Read voltage (RGND), an inverted write control signal (/WC), a write control signal (WC), a standby mode control signal (S) and an inverted standby mode control signal (/S); , The source, gate and drain of the fourth NMOS transistor (M21) are connected to a ground voltage, the reverse standby mode control signal (/S) and the second low voltage node (VL2); The source, gate and drain of the fifth NMOS transistor (M22) are connected to the first low voltage node (VL1), the standby mode control signal (S) and the second low voltage node (VL2) respectively; The source of the sixth NMOS transistor (M23) is connected to the ground voltage, and the gate and the drain are connected together and connected to the first low voltage node (VL1); the seventh NMOS transistor (M24) The source, gate and drain are connected to the drain of the eighth NMOS transistor (M25), the read control signal (RC) and the second low voltage node (VL2); the eighth NMOS The source, gate and drain of the crystal (M25) are respectively connected to the accelerated read voltage (RGND), the output of the first delay circuit (D1) and the source of the seventh NMOS transistor (M24); The first delay circuit (D1) is connected between the output of the third inverter (INV3) and the gate of the eighth NMOS transistor (M25); the input of the third inverter (INV3) It is for receiving the read control signal (RC), and the output is connected to the input of the first delay circuit (D1); the source, gate and drain of the ninth NMOS transistor (M26) are connected to The ground voltage, the drain of the tenth NMOS transistor (M27) and the first low voltage node (VL1); the source, gate and drain of the tenth NMOS transistor (M27) are respectively connected to the Standby mode control signal (S), the write control signal (WC) and the gate of the ninth NMOS transistor (M26); the source, gate and drain of the eleventh NMOS transistor (M28) Respectively connected to the inverted standby mode control signal (/S), the inverted write control signal (/WC) and the gate of the ninth NMOS transistor (M26); wherein, the eleventh NMOS transistor ( The drain of M28), the drain of the tenth NMOS transistor (M27) and the gate of the ninth NMOS transistor (M26) are connected together and form a node (C), when the write control signal ( WC) is the logic high level, the voltage level of the node (C) is the standby mode control signal (S), and when the write control signal (WC) is the logic low level, the voltage level of the node (C) The level is the logical level of the inverse standby mode control signal (/S); since the The logic high level of node (C) is the voltage level of the power supply voltage (V DD ) minus the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28), so when the 7T dual port is statically random When the access memory is in the non-write mode (the corresponding inverse write control signal (/WC) is at a logic high level), the node (C) deducts the power supply voltage (V DD ) The voltage level of the threshold voltage (V TM28 ) of the eleventh NMOS transistor (M28) is not the voltage level of the power supply voltage (V DD ), so it can have lower power consumption; In the write mode (when the corresponding write control signal (WC) is at a logic high level), the charge stored in the node (C) can be quickly discharged through the tenth NMOS transistor (M27) enough The ninth NMOS transistor (M26) with the node (C) as the gate is turned off, so the write mode can be entered more quickly; wherein, for the read control signal (RC) during the non-read mode Set to the level of the accelerated read voltage (RGND) to prevent the leakage current of the seventh NMOS transistor (M24) during the non-read mode; moreover, the standby start circuit (4) is designed to enter During an initial period of standby mode, the parasitic capacitance at the first low voltage node (VL1) is quickly charged to the voltage level of the threshold voltage (V TM23 ) of the sixth NMOS transistor (M23); finally, each The writing word line control circuit (6) is composed of a seventh PMOS transistor (P61), an eighth PMOS transistor (P62), a ninth PMOS transistor (P63), and a thirteenth NMOS transistor (M61), a fifth inverter (INV5), a sixth inverter (INV6), a second high power supply voltage (V DDH2 ), a word line for writing (WWL) and the writing It is composed of word line control signal (WWLC); wherein the source, gate and drain of the seventh PMOS transistor (P61) are connected to the second high power supply voltage (V DDH2 ) and the fifth The output of the inverter (INV5) and the source of the eighth PMOS transistor (P62); the source, gate and drain of the eighth PMOS transistor (P62) are respectively connected to the seventh PMOS transistor (P61) drain, the output of the sixth inverter (INV6) and the write word line control signal (WWLC); the source, gate and drain of the ninth PMOS transistor (P63) It is connected to the power supply voltage (V DD ), the output of the fifth inverter (INV5) and the write word line control signal (WWLC); the source of the thirteenth NMOS transistor (M61) The gate, gate and drain are connected to the write word line control signal (WWLC), the output of the fifth inverter (INV5) and the ground voltage; the fifth inverter (INV5) The input is for receiving the write word line (WWL), and the input of the sixth inverter (INV6) is connected to the output of the fifth inverter (INV5). 如申請專利範圍第1項所述之7T雙埠靜態隨機存取記憶體,其中,更包括複數個高電壓位準控制電路(5),每一列記憶體晶胞設置一個高電壓位準控制電路(5),以在讀取邏輯0時提高讀取速度,每一高電壓位準控制電路(5)更包含:一第五PMOS電晶體(P51)、一第六PMOS電晶體(P52)以及一第四反相器(INV4);其中,該第五PMOS電晶體(P51)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該讀取控制信號(RC)與該高電壓節點(VH);該第六PMOS電晶體(P52)之源極、閘極與汲極係分別連接至一第一高電源供應電壓(VDDH1)、該第四反相器(INV4)之輸出與該高電壓節點(VH);該第四反相器(I63)之輸入係供接收該讀取控制信號(RC),而該輸出則連接至該第六PMOS電晶體(P52)之閘極。 The 7T dual-port static random access memory as described in item 1 of the patent scope, which also includes a plurality of high voltage level control circuits (5), each row of memory cells is provided with a high voltage level control circuit (5) To increase the reading speed when reading logic 0, each high voltage level control circuit (5) further includes: a fifth PMOS transistor (P51), a sixth PMOS transistor (P52) and A fourth inverter (INV4); wherein the source, gate and drain of the fifth PMOS transistor (P51) are connected to the power supply voltage (V DD ) and the read control signal (RC ) And the high voltage node (VH); the source, gate and drain of the sixth PMOS transistor (P52) are connected to a first high power supply voltage (V DDH1 ) and the fourth inverter respectively (INV4) output and the high voltage node (VH); the input of the fourth inverter (I63) is for receiving the read control signal (RC), and the output is connected to the sixth PMOS transistor ( P52) gate. 如申請專利範圍第2項所述之7T雙埠靜態隨機存取記憶體,其中,更包 括複數個讀取用字元線控制電路(7),每一列記憶體晶胞設置一個讀取用字元線控制電路(7),以在讀取邏輯0時進一步減少讀取路徑之電阻,並加速該讀取用位元線(RWL)上之電荷的放電從而再進一步提高讀取速度,每一讀取用字元線控制電路(7)更包含:一第十PMOS電晶體(P71)、一第十一PMOS電晶體(P72)、一第十二PMOS電晶體(P73)、一第十四NMOS電晶體(M71)、一第七反相器(INV7)、一第八反相器(INV8)、該第二高電源供應電壓(VDDH2)、該讀取用字元線(RWL)以及該讀取用字元線控制信號(RWLC);其中,該第十PMOS電晶體(P71)之源極、閘極與汲極係分別連接至該第二高電源供應電壓(VDDH2)、該第七反相器(INV7)之輸出與該第十一PMOS電晶體(P72)之源極;該第十一PMOS電晶體(P72)之源極、閘極與汲極係分別連接至該第十PMOS電晶體(P71)之汲極、該第八反相器(INV8)之輸出與該讀取用字元線控制信號(RWLC);第十二PMOS電晶體(P73)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該第七反相器(INV7)之輸出與該讀取用字元線控制信號(RWLC);該第十四NMOS電晶體(M71)之源極、閘極與汲極係分別連接至該接地電壓、該第七反相器(INV7)之輸出與該讀取用字元線控制信號(RWLC);該第七反相器(INV7)之輸入係供接收該讀取用字元線(RWL),而該第八反相器(INV8)之輸入則與該第七反相器(INV7)之輸出連接。 7T dual-port static random access memory as described in item 2 of the patent scope, which also includes a plurality of read word line control circuits (7), one read word for each row of memory cells Element line control circuit (7) to further reduce the resistance of the read path when reading logic 0, and accelerate the discharge of the charge on the read bit line (RWL) to further increase the reading speed, each The read word line control circuit (7) further includes: a tenth PMOS transistor (P71), an eleventh PMOS transistor (P72), a twelfth PMOS transistor (P73), a fourteenth NMOS transistor (M71), a seventh inverter (INV7), an eighth inverter (INV8), the second highest power supply voltage (V DDH2 ), the read word line (RWL) and The read word line control signal (RWLC); wherein the source, gate and drain of the tenth PMOS transistor (P71) are connected to the second high power supply voltage (V DDH2 ), the The output of the seventh inverter (INV7) and the source of the eleventh PMOS transistor (P72); the source, gate and drain of the eleventh PMOS transistor (P72) are connected to the first The drain of the ten PMOS transistor (P71), the output of the eighth inverter (INV8) and the read word line control signal (RWLC); the source and gate of the twelfth PMOS transistor (P73) The pole and the drain are connected to the power supply voltage (V DD ), the output of the seventh inverter (INV7) and the read word line control signal (RWLC); the fourteenth NMOS transistor ( M71) the source, gate and drain are connected to the ground voltage, the output of the seventh inverter (INV7) and the read word line control signal (RWLC); the seventh inverter The input of (INV7) is for receiving the read word line (RWL), and the input of the eighth inverter (INV8) is connected to the output of the seventh inverter (INV7). 如申請專利範圍第3項所述之7T雙埠靜態隨機存取記憶體,其中,每一預充電電路(3)係由一第三PMOS電晶體(P31)以及一預充電信號(P)所組成;其中,該第三PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該預充電信號(P)與該讀取用位元線(RBL),以便於一預充電期間,藉由邏輯低位準之該預充電信號(P),以將該讀取用位元線(RBL)預充電至該電源供應電壓(VDD)之位準;該待機啟動電路(4)係由一第四PMOS電晶體(P41)、一第十二NMOS 電晶體(M41)、一第二延遲電路(D2)以及該反相待機模式控制信號(/S)所組成;其中,該第四PMOS電晶體(P41)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD)、該反相待機模式控制信號(/S)與該第十二NMOS電晶體(M41)之汲極;該第十二NMOS電晶體(M41)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該第二延遲電路(D2)之輸出與該第四PMOS電晶體(P41)之該汲極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第十二NMOS電晶體(M41)之閘極。 The 7T dual-port static random access memory as described in item 3 of the patent scope, wherein each precharge circuit (3) is composed of a third PMOS transistor (P31) and a precharge signal (P) Composition; wherein, the source, gate and drain of the third PMOS transistor (P31) are respectively connected to the power supply voltage (V DD ), the precharge signal (P) and the read bit line (RBL), in order to precharge the read bit line (RBL) to the bit of the power supply voltage (V DD ) by the precharge signal (P) at a logic low level during a precharge period The standby start circuit (4) is composed of a fourth PMOS transistor (P41), a twelfth NMOS transistor (M41), a second delay circuit (D2) and the inverted standby mode control signal (/ S); wherein, the source, gate and drain of the fourth PMOS transistor (P41) are respectively connected to the power supply voltage (V DD ), the inverse standby mode control signal (/S) and The drain of the twelfth NMOS transistor (M41); the source, gate and drain of the twelfth NMOS transistor (M41) are connected to the first low voltage node (VL1) and the second The output of the delay circuit (D2) and the drain of the fourth PMOS transistor (P41); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the second The output of the delay circuit (D2) is connected to the gate of the twelfth NMOS transistor (M41). 如申請專利範圍第4項所述之7T雙埠靜態隨機存取記憶體,其中,該儲存節點(A)於原本儲存邏輯0,而在寫入邏輯1之寫入初始瞬間電壓(VAWI)滿足下列方程式:VAWI=VDD×(RM11+RM23)/(RM13+RM11+RM23)且VAWI>VTM12其中,VAWI表示該儲存節點(A)由儲存邏輯0而寫入邏輯1之該寫入初始瞬間電壓,RM11、RM13與RM23分別表示該第一NMOS電晶體(M11)、該第三NMOS電晶體(M13)與該第六NMOS電晶體(M23)之導通電阻,而VDD與VTM12分別表示該電源供應電壓(VDD)與該第二NMOS電晶體(M12)之臨界電壓。 The 7T dual-port static random access memory as described in item 4 of the patent scope, wherein the storage node (A) originally stores logic 0, and the initial instantaneous voltage (V AWI ) is written when logic 1 is written Satisfy the following equation: V AWI = V DD × (R M11 + R M23 )/(R M13 + R M11 + R M23 ) and V AWI > V TM12 where V AWI indicates that the storage node (A) consists of storage logic 0 and The initial instantaneous voltage for writing logic 1, R M11 , R M13 and R M23 respectively represent the first NMOS transistor (M11), the third NMOS transistor (M13) and the sixth NMOS transistor (M23 ), and V DD and V TM12 represent the power supply voltage (V DD ) and the threshold voltage of the second NMOS transistor (M12), respectively. 如申請專利範圍第5項所述之7T雙埠靜態隨機存取記憶體,該第二高電源供應電壓(VDDH2)係設定為滿足該電源供應電壓(VDD)與該第一讀取用電晶體(M14)之臨界電壓(VTM14)的總和(即VDD+VTM14)以及該電源供應電壓(VDD)與該第三NMOS電晶體(M13)之臨界電壓(VTM13)的總和(即VDD+VTM13)兩者中之較小者。 For the 7T dual-port static random access memory described in item 5 of the patent scope, the second highest power supply voltage (V DDH2 ) is set to satisfy the power supply voltage (V DD ) and the first reading The sum of the critical voltage (V TM14 ) of the transistor (M14) (that is, V DD +V TM14 ) and the sum of the power supply voltage (V DD ) and the critical voltage (V TM13 ) of the third NMOS transistor (M13) (Ie V DD +V TM13 ) whichever is smaller. 如申請專利範圍第6項所述之7T雙埠靜態隨機存取記憶體,其中,該每一寫入用字元線控制電路(6)於致能時可再細分成二個階段,於該寫入 用字元線(WWL)致能的一第一階段,將該寫入用字元線控制信號(WWLC)設定成較該電源供應電壓(VDD)還高之該第二高電源供應電壓(VDDH2),以有效提高寫入速度,而於該第一階段後之一第二階段時,則將該寫入用字元線控制信號(WWLC)拉低回該電源供應電壓(VDD),以減緩寫干擾入;其中,該每一寫入用字元線控制電路(6)之該第二階段與該第一階段相隔之時間,係等於該第五反相器(INV5)之輸出足以導通該第七PMOS電晶體(P61)之時間起算,並至該第六反相器(INV6)之輸出足以關閉該第八PMOS電晶體(P62)為止之時間,其值可藉由該第六反相器(INV6)之上升延遲時間來動態調整。 The 7T dual-port static random access memory as described in item 6 of the patent application scope, wherein the word line control circuit (6) for each write can be further subdivided into two stages when it is enabled. A first stage of writing word line (WWL) enablement, setting the writing word line control signal (WWLC) to the second highest power supply higher than the power supply voltage (V DD ) Voltage (V DDH2 ) to effectively increase the writing speed, and in a second stage after the first stage, the write word line control signal (WWLC) is pulled back to the power supply voltage (V DD ) to slow down write interference; wherein, the time between the second phase and the first phase of each write word line control circuit (6) is equal to the fifth inverter (INV5) The output is sufficient to turn on the seventh PMOS transistor (P61), and the time until the output of the sixth inverter (INV6) is sufficient to turn off the eighth PMOS transistor (P62), the value can be determined by The rising delay time of the sixth inverter (INV6) is dynamically adjusted. 如申請專利範圍第7項所述之7T雙埠靜態隨機存取記憶體,其中,讀取操作係可再細分成二個階段,於該讀取操作之一第一階段係藉由將該第二低電壓節點(VL2)設定成較該接地電壓為低之電壓以有效提高讀取速度,而於該讀取操作之一第二階段則藉由將該第二低電壓節點(VL2)設定回該接地電壓,以便減少無謂的功率消耗;於該讀取操作之該第一階段,該第二低電壓節點(VL2)於讀取邏輯1時之讀取初始瞬間電壓(VRVL2I)必須滿足下列方程式:VRVL2I=RGND×RM21/(RM21+RM24+RM25)且VRVL2I>-VTM12以有效地防止讀取時之半選定晶胞干擾,其中,VRVL2I表示該第二低電壓節點(VL2)於讀取邏輯1時之該讀取初始瞬間電壓,RGND表示該加速讀取電壓,RM21表示該第四NMOS電晶體(M21)之導通電阻,RM24表示該第七NMOS電晶體(M24)之導通電阻,RM25表示該第八NMOS電晶體(M25)之導通電阻,而VTM12表示該第二NMOS電晶體(M12)之臨界電壓。 The 7T dual-port static random access memory as described in item 7 of the patent application scope, in which the reading operation can be further subdivided into two stages, and the first stage of the reading operation is The second low voltage node (VL2) is set to a lower voltage than the ground voltage to effectively increase the reading speed, and in a second stage of the reading operation, the second low voltage node (VL2) is set back The ground voltage in order to reduce unnecessary power consumption; in the first stage of the read operation, the read initial instantaneous voltage (V RVL2I ) of the second low voltage node (VL2) when reading logic 1 must meet the following Equation: V RVL2I =RGND×R M21 /(R M21 +R M24 +R M25 ) and V RVL2I >-V TM12 to effectively prevent the interference of semi-selected cells during reading, where V RVL2I represents the second lowest The initial instantaneous voltage of the voltage node (VL2) when reading logic 1, RGND represents the accelerated reading voltage, R M21 represents the on-resistance of the fourth NMOS transistor (M21), and R M24 represents the seventh NMOS On-resistance of the transistor (M24), R M25 represents the on-resistance of the eighth NMOS transistor (M25), and V TM12 represents the critical voltage of the second NMOS transistor (M12). 如申請專利範圍第1項所述之7T雙埠靜態隨機存取記憶體,其中,該第一高電源供應電壓(VDDH1)係設定為高於該電源供應電壓(VDD)但低於該電源供應電壓(VDD)與該第二PMOS電晶體(P12)臨界電壓之絕對值|VTP12|的總和,亦即VDD<VDDH1<VDD+|VTP12|。 The 7T dual-port static random access memory as described in item 1 of the patent scope, wherein the first high power supply voltage (V DDH1 ) is set higher than the power supply voltage (V DD ) but lower than the The sum of the power supply voltage (V DD ) and the absolute value of the critical voltage of the second PMOS transistor (P12) |V TP12 |, that is, V DD <V DDH1 <V DD +|V TP12 |. 如申請專利範圍第1項所述之7T雙埠靜態隨機存取記憶體,其中,該每一 控制電路(2)中之該加速讀取電壓(RGND)之絕對值|RGND|係設定為低於該每一記憶體晶胞(1)中之該第二NMOS電晶體(M12)之臨界電壓(VTM12),亦即|RGND|<VTM12The 7T dual-port static random access memory as described in item 1 of the patent scope, wherein the absolute value of the accelerated read voltage (RGND) in each control circuit (2) | RGND | is set to low The threshold voltage (V TM12 ) of the second NMOS transistor (M12) in each memory cell (1) is |RGND|<V TM12 .
TW107124718A 2018-07-18 2018-07-18 Seven-transistor dual port static random access memory TWI681403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107124718A TWI681403B (en) 2018-07-18 2018-07-18 Seven-transistor dual port static random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107124718A TWI681403B (en) 2018-07-18 2018-07-18 Seven-transistor dual port static random access memory

Publications (2)

Publication Number Publication Date
TWI681403B true TWI681403B (en) 2020-01-01
TW202006721A TW202006721A (en) 2020-02-01

Family

ID=69942695

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124718A TWI681403B (en) 2018-07-18 2018-07-18 Seven-transistor dual port static random access memory

Country Status (1)

Country Link
TW (1) TWI681403B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002223A1 (en) * 2004-07-02 2006-01-05 Samsung Electronics Co., Ltd. SRAM employing virtual rail scheme stable against various process-voltage-temperature variations
US20070217262A1 (en) * 2005-10-26 2007-09-20 Manoj Sachdev Segmented Column Virtual Ground Scheme In A Static Random Access Memory (SRAM) Circuit
US20070236984A1 (en) * 2006-04-11 2007-10-11 Honeywell International Inc. SRAM with read assist
US20090323401A1 (en) * 2008-06-26 2009-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. 8t low leakage sram cell
US20110007596A1 (en) * 2009-07-13 2011-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Low-Leakage Power Supply Architecture for an SRAM Array
US8503221B1 (en) * 2011-06-02 2013-08-06 Richard Frederic Hobson SRAM cell with common bit line and source line standby voltage
TWI618083B (en) * 2017-06-23 2018-03-11 修平學校財團法人修平科技大學 Seven transistor static random access memory
TWI618091B (en) * 2017-05-26 2018-03-11 修平學校財團法人修平科技大學 Dual port static random access memory

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002223A1 (en) * 2004-07-02 2006-01-05 Samsung Electronics Co., Ltd. SRAM employing virtual rail scheme stable against various process-voltage-temperature variations
US20070217262A1 (en) * 2005-10-26 2007-09-20 Manoj Sachdev Segmented Column Virtual Ground Scheme In A Static Random Access Memory (SRAM) Circuit
US20070236984A1 (en) * 2006-04-11 2007-10-11 Honeywell International Inc. SRAM with read assist
US20090323401A1 (en) * 2008-06-26 2009-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. 8t low leakage sram cell
US20110007596A1 (en) * 2009-07-13 2011-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Low-Leakage Power Supply Architecture for an SRAM Array
US8503221B1 (en) * 2011-06-02 2013-08-06 Richard Frederic Hobson SRAM cell with common bit line and source line standby voltage
TWI618091B (en) * 2017-05-26 2018-03-11 修平學校財團法人修平科技大學 Dual port static random access memory
TWI618083B (en) * 2017-06-23 2018-03-11 修平學校財團法人修平科技大學 Seven transistor static random access memory

Also Published As

Publication number Publication date
TW202006721A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
TWI660348B (en) Dual port static random access memory
TWI655630B (en) 7T dual-static static random access memory with high read/write speed
TWI660365B (en) Dual port static random access memory with fast read/write speed
TWI618091B (en) Dual port static random access memory
TWI660364B (en) Seven transistor dual port static random access memory
TWI638361B (en) Seven transistor static random access memory with fast write speed
TWI618083B (en) Seven transistor static random access memory
TWI716162B (en) Dual port static random access memory
TWI704575B (en) Seven-transistor static random access memory with improved access speed
TWI633561B (en) Seven-transistor dual port static random access memory with fast write speed
TWI633545B (en) Seven-transistor static random access memory with fast write speed
TWI681403B (en) Seven-transistor dual port static random access memory
TWI676172B (en) Dual port static random access memory with improved access speed
TWI678705B (en) Seven-transistor static random access memory with improved access speed
TWI717877B (en) Seven-transistor static random access memory with fast read/write speed
TWI655629B (en) 7T static random access memory with high read/write speed
TWI673712B (en) Seven-transistor dual port static random access memory with improved access speed
TWI713027B (en) Dual port static random access memory with fast read/write speed
TWI713028B (en) Dual port static random access memory with improved access speed
TWI713026B (en) Seven-transistor dual port static random access memory
TWI717876B (en) Semiconductor memory device
TWI709962B (en) Seven-transistor dual port static random access memory with improved access speed
TWI781854B (en) Memory device
TWI781836B (en) Semiconductor memory device
TWI618084B (en) Seven transistor dual port static random access memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees